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Naked singularities and Seifert’s conjecture
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It is shown that for a general nonstatic spherically symmetric metric of the Kerr-Schild class several
energy-momentum complexes give the same energy distribution as in the Penrose prescription, obtained by
Tod. This result is useful for investigating the Seifert conjecture for naked singularities. The naked singularity
forming in the Vaidya null dust collapse supports the Seifert conjecture. Further, an example and a counter-
example to this conjecture are presented in the Einstein massless scalar theory.@S0556-2821~99!00520-2#

PACS number~s!: 04.20.Dw, 04.20.Cv, 04.20.Jb, 04.70.Bw
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In a series of seminal papers it was established that u
a wide variety of circumstances a spacetime singularity
inevitable in a physically realistic complete gravitational c
lapse@1#. However, these studies were silent on a very i
portant question: whether or not a spacetime singularity a
ing therefrom will be visible to observers. To this end abo
three decades ago, Penrose@2# in his review on gravitationa
collapse asked ‘‘Does there exist a cosmic censor who
bids the occurrence of naked singularities, clothing each
in an absolute event horizon?’’ Though there is no prec
statement of acosmic censorship hypothesis~CCH!, roughly
speaking it states that naked singularities do not occu
generic realistic gravitational collapse. There are two v
sions of the CCH: the hypothesis that, generically, singul
ties forming due to gravitational collapse are hidden ins
black holes is known as theweak cosmic censorship hypot
esis, whereas thestrong cosmic censorship hypothesisstates
that, generically, timelike singularities never occur~see@3#
and references therein!. No proof for any version of the CCH
is known and it is considered the most important unsolv
problem in classical general relativity@4–6#. The subject of
singularities fascinated many researchers~see @1–16# and
references therein!.

Since the CCH was proposed, numerous counterexam
to this hypothesis have been found in the literature~see
@8–11# and references therein!. Iguchi et al. @12# examined
the stability of nakedness of singularity in the Lemaitr
Tolman-Bondi collapse against the odd-parity modes of n
spherical linear perturbations for the metric and reported
the perturbations do not diverge but are well defined eve
the neighborhood of a central naked singularity. Much wo
has been done on black holes as well as on naked singu
ties, but it was not known how black holes could be diffe
entiated observationally from naked singularities~if these in-
deed exist!. Recently it has been shown that the gravitatio
lensing could be possibly helpful for this purpose@13#. As
the known counterexamples to CCH are of special geome
nature, it is still believed by most that the conjecture c
rectly characterizes realistic gravitational collapse. Recen
Wald @3# reviewed the status of the weak cosmic censors
and expressed his view that naked singularities cannot a
generically.

*Email address: shwetket@maths.uct.ac.za
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The idea of naked singularities has been disliked by m
physicists as their existence is thought to give serious pr
lems. For instance, there can be production of matter an
radiation out of extremely high gravitational fields and t
mechanism for that is not known and there can be ot
causal influences from the infinitely compressed mater
When the first few counterexamples to the CCH were
tained it was clear that the CCH could not be proved
generality. Penrose@14# imposed a condition that a nake
singularity must be proved to be stable against perturbat
of initial conditions as well as equations of state. Seifert@15#
conjectured that any singularity that occurs if a finite nonz
amount of matter tends to collapse into one point is hidd
and naked singularities occur only if one has singularit
along lines or surfaces or if the central singularities are ca
fully arranged that they contain only zero mass.

There have been some discussions on ‘‘mass’’ of na
singularities@5,16#, but not many studies have been don
The investigation of this subject is difficult as there is
agreed and precise definition of local or quasilocal mass
general relativity and it has been a ‘‘recalcitrant’’ proble
since the outset of this theory. Bergqvist@17# performed cal-
culations with several different definitions of mass~their
uses are not restricted to ‘‘Cartesian coordinates’’! and re-
ported that not any two of them give the same result for
Reissner-Nordstro¨m and Kerr spacetimes. On the other ha
it is also known that severalenergy-momentum complexe
~their uses are restricted to ‘‘Cartesian coordinates’’! give the
same and reasonable results for some well known spacet
@18–20#. These are encouraging results and we will use so
of them to investigate the Seifert conjecture. We use geo
etrized units and follow the convention that Latin~Greek!
indices run from 0. . . 3 (1 . . . 3). Thecomma and semico
lon, respectively, stand for the partial and covariant deri
tives.

The Einstein energy-momentum complex is@21#

Q i
k5

1

16p
Hi

kl
,l , ~1!

where

Hi
kl52Hi

lk5
gin

A2g
@2g~gknglm2glngkm!# ,m . ~2!
©1999 The American Physical Society41-1



ity
-

i-

a

iv

p

pe

om

rg

m-

are
-

en
xes
rg,

t for
rr-
bydi

ar
re

K. S. VIRBHADRA PHYSICAL REVIEW D 60 104041
Q0
0 and Qa

0 stand for the energy and momentum dens
components, respectively.1 The energy and momentum com
ponents are given by

Pi5E E E Q i
0dx1dx2dx3. ~3!

Applying Gauss’s theorem one obtains

Pi5
1

16pE E Hi
0a na dS, ~4!

wherena is the outward unit normal vector over the infin
tesimal surface elementdS and P0 and Pa stand for the
energy and momentum components, respectively.

The symmetric energy-momentum complex of Land
and Lifshitz is@23#

Lik5
1

16p
l iklm

,lm , ~5!

where

l iklm52g~gikglm2gil gkm!. ~6!

L00 andLa0 are the energy and energy current~momentum!
density components. The energy and momentum are g
by

Pi5E E E Li0dx1dx2dx3. ~7!

Using Gauss’s theorem, the energy and momentum com
nents are

Pi5
1

16pE E l i0am
,m na dS. ~8!

The symmetric energy-momentum complex of Papa
trou is @24#

S ik5
1

16p
Niklm

,lm , ~9!

where

Niklm5A2g~gikh lm2gil hkm1glmh ik2glkh im!, ~10!

with

h ik5diag~1,21,21,21!. ~11!

S00 andSa0 are the energy and energy current~momen-
tum! density components. The energy and momentum c
ponents are given by

1Though the energy-momentum complex obtained by Tolman
fers in form from the Einstein energy-momentum complex, both
equivalent in import@22#. The present author was earlier unawa
of this @18–20#.
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Pi5E E E S i0dx1dx2dx3. ~12!

For the time-independent metrics, one has

Pi5
1

16pE E Ni0ab
,b na dS. ~13!

The symmetric energy-momentum complex of Weinbe
is @25#

Wik5
1

16p
Dlik

,l , ~14!

where

Dlik5
]ha

a

]xl
h ik2

]ha
a

]xi
h lk2

]hal

]xa
h ik1

]hai

]xa
h lk1

]hlk

]xi

2
]hik

]xl
~15!

and

hik5gik2h ik . ~16!

h ik is the Minkowski metric. Indices onhik or ]/]xi are
raised or lowered with help ofh ’s. It is clear that

Dlik52Dilk . ~17!

W00 andWa0 are the energy and energy current~momen-
tum! density components. The energy and momentum co
ponents are given by

Pi5E E E Wi0dx1dx2dx3. ~18!

Using Gauss’s theorem, one has

Pi5
1

16pE E Da0i na dS. ~19!

Though the uses of the energy-momentum complexes
restricted to ‘‘Cartesian coordinates’’~i.e., these give mean
ingful results in these coordinates!, these satisfy thelocal
conservation laws(Q i

k
,k50, L ,k

ik50, S ,k
ik50, W,k

ik50) in
all systems of coordinates.

We first discuss some of our earlier results in brief. Th
we use them to show that the energy-momentum comple
of Einstein, Landau and Lifshitz, Papapetrou and Weinbe
and the Penrose quasilocal definition give the same resul
a general nonstatic spherically symmetric metric of the Ke
Schild class. The Kerr-Schild class spacetimes are given
metricsgik of the form

gik5h ik2Hl i l k , ~20!

f-
e
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NAKED SINGULARITIES AND SEIFERT’S CONJECTURE PHYSICAL REVIEW D60 104041
whereh ik5diag(1,21,21,21) is the Minkowski metric.H
is the scalar field andl i is a null, geodesic and shear fre
vector field in the Minkowski spacetime, which are respe
tively expressed as

habl al b50,

habl i ,al b50, ~21!

~ l a,b1 l b,a!l a
,ch

bc2~ l a
,a!250.

An interesting feature of the Kerr-Schild class metricgik
in Eq. ~20! is that the vector fieldl i remains null, geodesic
and shear-free with the metricgik . Equations~21! lead to

gabl al b50,

gabl i ;al b50, ~22!

~ l a;b1 l b;a!l a
;cg

bc2~ l a
;a!250.

There are several well-known spacetimes of the Ke
Schild class, for instance, Schwarzschild, Reissn
Nordström, Kerr, Kerr-Newman, Vaidya, Dybneyet al.,
Kinnersley, Bonnor-Vaidya, and Vaidya-Patel~for refer-
ences see in@26#!.

It is known that the energy-momentum complexes of E
stein Q i

k, Landau and LifshitzLik, PapapetrouS ik and
WeinbergWik ‘‘coincide’’ for any Kerr-Schild class metric
@20#.

These energy-momentum complexes for any Kerr-Sc
class metric are given by@20#

Q i
k5h i j L

jk, ~23!

Lik5S ik5Wik5
1

16p
L iklm

,lm , ~24!

where

L ikpq[H~h ikl pl q1hpql i l k2h ipl kl q2hkql i l p!. ~25!

To obtain the above result for the Landau and Lifshi
Papapetrou and Weinberg complexes in terms of the sc
functionH and the vectorl i , only null condition of Eqs.~21!
was used while for the Einstein complex the null as well
geodesic conditions were used. The shear-free condition
not required to obtain Eqs.~23!–~25!. Thus, these energy
momentum complexes ‘‘coincide’’ for a class of solutio
more general than the Kerr-Schild class. The energy and
mentum components are

Pi5
1

16pE E L i0am
,m na dS. ~26!

The energy-momentum complexes of Landau and L
shitz, Papapetrou and Weinberg are symmetric in their in
ces and therefore have been used to define angular mo
tum; the spatial components of angular momentum
~though we do not use this in this paper we give here
completeness!
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1

16pE E ~xaLb0sm
,m2xbLa0sm

,m1La0sb!ns dS.

~27!

Now we consider a general nonstatic spherically symm
ric spacetime of the Kerr-Schild class given by the line e
ment

ds25B~u,r !du222dudr2r 2~du21sin2udf2!. ~28!

Transforming the above line element int,x,y,z coordi-
nates according to

u5t1r ,

x5r sinu cosf,
~29!

y5r sinu sinf,

z5r cosu,

one gets

ds25dt22dx22dy22dz22„12B~ t,x,y,z!…

3Fdt1
xdx1ydy1zdz

r G2

. ~30!

This is obviously a Kerr-Schild class metric withH51
2B and l i5(1, x/r ,y/r ,z/r ). Using these in Eqs.~25! and
~26! one gets the expression for energy

E5
r

2
„12B~u!…. ~31!

Tod @27#, using the Penrose quasilocal mass definiti
got the same result. This is indeed an encouraging result.
Penrose mass is called quasilocal because it is obtained
two-surface and is not found by an integral over a spann
three-surface of a local density. The above expression ca
used to test the Seifert conjecture for the naked singular
arising due to a general spherical collapse described by
~28! and satisfying theweak energy condition. These inves-
tigations could give conditions onB(u) for the Seifert con-
jecture to be true and to be false. It could be possible that
Seifert conjecture is true in all these cases. The Vaidya
dust collapse is extensively studied~see@9# and references
therein!. B5122M (u)/r in Eq. ~28! gives the Vaidya null
dust collapse solution. For this, Eq.~31! givesE5M (u) ~see
also @19#!. It is known that forM5lu, a naked singularity
occurs atr 50, u50 for l<1/16. Physically,dM/du repre-
sents the power~energy flowing per unit time! imploding
through a two-sphere of radiusr and it must be non-negativ
for theweak energy conditionto be satisfied. Using Eq.~31!
one finds that the naked singularity in the Vaidya null du
collapse is massless. This supports the Seifert conjecture
the Bonnor-Vaidya spacetimeB5122M (u)/r 1Q(u)2/r 2,
whereQ(u) is the charge parameter. This represents char
null dust collapse. The result in Eq.~31! can be useful for
investigations of the Seifert conjecture in the Bonnor-Vaid
collapse.
1-3
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Now we wish to investigate the Seifert conjecture in t
Einstein massless scalar~EMS! theory, given by equations

Ri j 2
1

2
Rgi j 58pTi j ~32!

and

F ,i
; i50. ~33!

Ri j is the Ricci tensor andR is the Ricci scalar.F stands
for the massless scalar field.Ti j , the energy-momentum ten
sor of the massless scalar field, is given by

Ti j 5F ,iF , j2
1

2
gi j g

abF ,aF ,b . ~34!

Equation~32! with Eq. ~34! can be expressed as

Ri j 58pF ,iF , j . ~35!

It is known that the most general static spherically sy
metric solution to the EMS equations~with the cosmological
constantL50! is asymptotically flat and until recently i
was known that this is the well-known Wyman solution@28#.
Recently, it has been shown that the Janis-Newm
Winicour ~JNW! solution~which was obtained about thirtee
years before the Wyman solution! is the same as the Wyma
solution @29#. This solution is characterized by two consta
parameters, the massM and the ‘‘scalar charge’’q, and is
given by the line element~see in@29#!

ds25S 12
b

r D g

dt22S 12
b

r D 2g

dr2

2S 12
b

r D 12g

r 2~du21sin2udf2! ~36!

and the scalar field

F5
q

bA4p
lnS 12

b

r D , ~37!

where

g5
2M

b
,

~38!
b52AM21q2.

For the ‘‘scalar charge’’ zero this solution reduces to t
Schwarzschild solution.r 5b is a globally naked strong cur
vature singularity~see @30# with @29#!. It is of interest to
investigate whether or not this naked singularity is massl
Obviously Eq.~31! cannot be used for this spacetime. In t
following we obtain the energy expression for the most g
eral nonstatic spherically symmetric metric described by
line element
10404
-

n-

t

s.

-
e

ds25B~r ,t !dt22A~r ,t !dr222F~r ,t !dtdr

2D~r ,t !r 2~du21sin2udf2!. ~39!

We transform the line element~39! to ‘‘Cartesian coordi-
nates’’ t,x,y,z ~according tox5r sinu cosf, y5r sinu sinf,
z5r cosu) and then calculate energy distribution associa
with this using definitions of Einstein, Landau and Lifshit
and Weinberg; these are respectively given by

EE5
r @B~A2D2D8r !2F~rḊ 2F !#

2AAB1F2
, ~40!

ELL5
rD ~A2D2rD 8!

2
, ~41!

EW5
r ~A2D2rD 8!

2
. ~42!

The prime and dot denote for the partial derivative with
spect to the coordinatesr and t, respectively. These energy
momentum complexes have an advantage that one can e
apply Gauss’s theorem to get energy contained inside a t
surface for any spacetime. The same is possible with
Papapetrou energy-momentum complex for the Kerr-Sc
class metrics, but not for arbitrary spacetimes. Howev
while using the Papapetrou energy-momentum complex
can apply Gauss’s theorem for any time-independent me
@see Eq.~13!#. Thus, for static and spherically symmetr
spacetimes (F50 andA,B andD depending only on radia
coordinate! one gets

EP5
r

8~AB!3/2
@4AB2~A2D !1r ~A2B8D22A2BD8

2AA8BD22AB2D82ABB8D1A8B2D !#. ~43!

In a series of papers there are encouraging results~see in
@18–20#!. Several energy-momentum complexes give
same results for the Einstein-Rosen as well as any metri
the Kerr-Schild class~the Kerr-Schild class has several we
known solutions!. As mentioned earlier these energ
momentum complexes ‘‘coincide’’ for a more general cla
than the Kerr-Schild class. However, it is obvious from Eq
~40!–~43! that the energy-momentum complexes disagree
the most general nonstatic spherically symmetric met
While obtaining the energy distribution@given by Eq.~31!#
for the spacetime described by the line element~28! we used
Kerr-Schild Cartesian coordinates; however, for the case
the most general nonstatic spherically symmetric metric
used what we call ‘‘Schwarzschild Cartesian coordinate
The line element~28! is a special case of the line eleme
~39!. The Einstein energy-momentum complex gives t
same result in both the cases@consider Eq.~31! as a special
case of Eq.~40!# which is the same as Tod found using th
Penrose definition. However, other definitions disagree w
their own results obtained in Kerr-Schild Cartesian a
Schwarzschild Cartesian coordinates@as Eqs.~41!, ~42! and
~43! do not yield Eq.~31! as a special case#. For a simple
1-4
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case of the Schwarzschild metric,ELL5EP5EW5M when
calculations are performed in the Kerr-Schild Cartesian
ordinates; however, in Schwarzschild Cartesian coordin
one has ELL5EW5M (122M /r )21,EP5M (r 222Mr
12M2)/(r 22M )2. It is not clear why different energy
momentum complexes ‘‘coincide’’ in the Kerr-Schild Cart
sian coordinates, but not in the Schwarzschild Cartesian
ordinates. The Einstein-Rosen metric is not of the Ke
Schild class and therefore calculations were not done
Kerr-Schild Cartesian coordinates; however, differe
energy-momentum complexes gave the same and reaso
result. Therefore, the fact that different energy-moment
complexes give the same result for some spacetimes is
restricted to the use of the Kerr-Schild Cartesian coordina
It is known that the quasilocal mass definitions also ha
some problems~see in@17,31#!; for instance, it has not bee
possible to obtain the Penrose quasilocal mass for the
metric.

The present investigations indicate that the Einst
energy-momentum complex is better than other ener
momentum complexes. Therefore, the result in Eq.~40! may
be useful for investigating the Seifert conjecture in the c
text of naked singularities arising due to spherical collaps
which are being investigated~see @10,11# and references
therein!. F50 in Eq. ~40! gives one obtained earlier~see in
@29#!. For the JNW spacetime this equation immediat
gives

E5M . ~44!

The energy expression is independent of the radial dista
and therefore the entire energy is confined to the singula
This is a counterexample to the Seifert conjecture. Howe
for the purely scalar field (M50 in the JNW solution!, the
globally naked strong curvature singularity,r 52q, is mass-
less. This supports the Seifert conjecture. The ‘‘sca
charge’’ in the JNW spacetime does not contribute to
energy, because contributions from the matter and the fi
energy cancel. The anonymous referee mentioned that t
are some indications that the JNW solution does not oc
generically. Therefore, the present counterexample to the
ifert conjecture may not be taken seriously. However, if E
~40! can be considered to be the correct expression for
energy distribution, then Eq.~44! demonstrates that one ca
not prove the Seifert conjecture in generality.

Now we summarize these in the following. The possib
ity of the energy localization in general relativity has be
n-

r-
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debated and there are mutually contradicting viewpoints
this issue@32#. According to Bondi, a nonlocalizable form o
energy is inadmissible in relativity and its location can
principle be found@32#. In fact, a unanimously agreed pre
cise definition of local or even quasilocal mass would ha
been very much useful to understand some important iss
in relativity. For instance, for investigating the Seifert co
jecture~we have discussed in this paper! and thehoop con-
jecture @33#, which states that horizons form when and on
when a massM gets compacted into a region whose circu
ference inevery direction<2pM , these concepts are usefu
However, no adequate prescription is known and it is
clear if it is possible at all. The results obtained using t
energy-momentum complexes are usually not taken s
ously, because their uses are restricted to ‘‘Cartesian coo
nates’’ and the quasilocal mass definitions are also not s
factory. Bergqvist@17# showed that not any two of seve
quasilocal mass definitions he considered give the same
sult for the Reissner-Nordstro¨m as well as Kerr spacetimes
The well-known Penrose quasilocal mass definition co
not deal with the Kerr metric@31#. On the other hand, severa
energy-momentum complexes are known to give the sa
and ‘‘reasonable’’ result for many well known solutions. W
showed that different energy momentum complexes disag
when they are evaluated in Schwarzschild Cartesian coo
nates and give the same result in Kerr-Schild Cartesian
ordinates; however, the Einstein energy-momentum comp
still gives consistent results in both cases. It is not clear w
different definitions ‘‘coincide’’ when calculations are ca
ried out in Kerr-Schild Cartesian coordinates, but disagree
Schwarzschild Cartesian coordinates. At this stage it is
known if this is accidental or points out something intere
ing. Any example or counterexample to the Seifert conj
ture may not be taken seriously unless an adequate pres
tion for localization or quasilocalization of mass is know
and is applied.
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