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Naked singularities and Seifert’s conjecture
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It is shown that for a general nonstatic spherically symmetric metric of the Kerr-Schild class several
energy-momentum complexes give the same energy distribution as in the Penrose prescription, obtained by
Tod. This result is useful for investigating the Seifert conjecture for naked singularities. The naked singularity
forming in the Vaidya null dust collapse supports the Seifert conjecture. Further, an example and a counter-
example to this conjecture are presented in the Einstein massless scalar [{86656-282(99)00520-2

PACS numbg(s): 04.20.Dw, 04.20.Cv, 04.20.Jb, 04.70.Bw

In a series of seminal papers it was established that under The idea of naked singularities has been disliked by many
a wide variety of circumstances a spacetime singularity iphysicists as their existence is thought to give serious prob-
inevitable in a physically realistic complete gravitational col-lems. For instance, there can be production of matter and/or
lapse[1]. However, these studies were silent on a very im-radiation out of extremely high gravitational fields and the
portant question: whether or not a spacetime singularity arismechanism for that is not known and there can be other
ing therefrom will be visible to observers. To this end aboutcausal influences from the infinitely compressed material.
three decades ago, Penrg&&in his review on gravitational When the first few counterexamples to the CCH were ob-
collapse asked “Does there exist a cosmic censor who fortained it was clear that the CCH could not be proved in
bids the occurrence of naked singularities, clothing each ongenerality. Penrosgl4] imposed a condition that a naked
in an absolute event horizon?” Though there is no precis@ingularity must be proved to be stable against perturbations
statement of @osmic censorship hypothe$CH), roughly  of initial conditions as well as equations of state. Seif]
speaking it states that naked singularities do not occur igonjectured that any singularity that occurs if a finite nonzero
generic realistic gravitational collapse. There are two veramount of matter tends to collapse into one point is hidden
sions of the CCH: the hypothesis that, generically, singulariand naked singularities occur only if one has singularities
ties forming due to gravitational collapse are hidden insidedlong lines or surfaces or if the central singularities are care-
black holes is known as theeak cosmic censorship hypoth- fully arranged that they contain only zero mass.
esis whereas thetrong cosmic censorship hypothesiates There have been some discussions on “mass” of naked
that, generically, timelike singularities never ocdsee[3]  Singularities[5,16], but not many studies have been done.
and references thergirNo proof for any version of the CCH The investigation of this subject is difficult as there is no
is known and it is considered the most important unsolvedgreed and precise definition of local or quasilocal mass in
problem in classical general relativifg—6]. The subject of ~general relativity and it has been a “recalcitrant” problem
singularities fascinated many researchésse[1-16] and  Since the outset of this theory. Bergq\is?] performed cal-
references therejn culations with several different definitions of maébeir

Since the CCH was proposed, numerous counterexampléises are not restricted to “Cartesian coordinajeaid re-
to this hypothesis have been found in the literatisee ported that not any two of them give the same result for the
[8—11] and references therginiguchi et al. [12] examined Reissner-Nordstm and Kerr spacetimes. On the other hand
the stability of nakedness of singularity in the Lemaitre-it is also known that severanergy-momentum complexes
Tolman-Bondi collapse against the odd-parity modes of nonttheir uses are restricted to “Cartesian coordinajegiVe the
spherical linear perturbations for the metric and reported thagame and reasonable results for some well known spacetimes
the perturbations do not diverge but are well defined even ih18—20. These are encouraging results and we will use some
the neighborhood of a central naked singularity. Much workof them to investigate the Seifert conjecture. We use geom-
has been done on black holes as well as on naked singulagtrized units and follow the convention that LatiGreek
ties, but it was not known how black holes could be differ-indices run from Q... 3 (1 ...3). Thecomma and semico-
entiated observationally from naked singularitigshese in-  lon, respectively, stand for the partial and covariant deriva-
deed exist Recently it has been shown that the gravitationaltives.

lensing could be possibly helpful for this purpdgs]. As The Einstein energy-momentum complex 2]
the known counterexamples to CCH are of special geometric
nature, it is still believed by most that the conjecture cor- L K
rectly characterizes realistic gravitational collapse. Recently, 0 _ﬁHi A @
Wald [3] reviewed the status of the weak cosmic censorship
and expressed his view that naked singularities cannot arisgnere
generically.
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0,° and®,° stand for the energy and momentum density i Od o
components, respectivelyThe energy and momentum com- P'= 2dx dxdx (12
ponents are given by
For the time-independent metrics, one has
P,=f f f 0,;%dxtdx%dx’. ©)
. . J J N'®*# ; n, dS (13
Applying Gauss’s theorem one obtains 167
1 Ou The symmetric energy-momentum complex of Weinberg
i=16-] | Hi S @ is[25]
wheren,, is the outward unit normal vector over the infini- w1 i
tesimal surface elememS and P, and P, stand for the W 167.,D (14)
energy and momentum components, respectively.
The symmetric energy-momentum complex of Landauynhere
and Lifshitz is[23]
o oh?,  gh? onhd  oh? ah'k
: 1 lik " "8 ik_ a lk_ iky = kg
le:ﬁ)\lklm,lm! (5) D &X| n (9Xi K Ix2 e Ix2 e &Xi
ohk
where - (15)
AKm— g (gikgm— gl gkm). ©6) !
and
L% andL“° are the energy and energy currémomentum
gsnsny components. The energy and momentum are given hic=Gic— 7 - (16)
7k IS the Minkowski metric. Indices oty or d/dx; are
J f f L% xtdx?dx (7)  raised or lowered with help of’s. It is clear that
lik— _ pilk
Using Gauss’s theorem, the energy and momentum compo- DM=-D" (17)
nents are
WO andW<? are the energy and energy currémomen-
IOam tum) density components. The energy and momentum com-
1677[ f AT N, dS. (8 ponents are given by
The symmetric energy-momentum complex of Papape- i 1041243
trou is [24] P'= WPdx dxdx®. (18)
Sike_— 1 N'k'm ) Using Gauss’s theorem, one has
167
i 1 0i
where P'=— D n,dS (19
16

lelm_ [— ik _Im__ il km+ Im_ ik _ |m, 10
99779 g -9 7™, (10 Though the uses of the energy-momentum complexes are

with restricted to “Cartesian coordinategi.e., these give mean-
_ ingful results in these coordinajeghese satisfy théocal
p*=diag1,—1,—1,—1). (1) conservation law$®;* ,=0,L ,/*=0,% ,*=0,W *=0) in
00 0 all systems of coordinates.
2™ andX " are the energy and energy currémtomen- We first discuss some of our earlier results in brief. Then
tum) density components. The energy and momentum comMye use them to show that the energy-momentum complexes
ponents are given by of Einstein, Landau and Lifshitz, Papapetrou and Weinberg,

and the Penrose quasilocal definition give the same result for
a general nonstatic spherically symmetric metric of the Kerr-
Though the energy-momentum complex obtained by Tolman dif-Schild class. The Kerr-Schild class spacetimes are given by
fers in form from the Einstein energy-momentum complex, both arémetricsg; of the form
equivalent in impor{22]. The present author was earlier unaware
of this [18—2(] Jik= 77ik_H|i|ka (20)
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where z; =diag(1-1,—1,—1) is the Minkowski metricH 1
is the scalar field andi is a null, geodesic and shear free JQBZEJ J (XTAPOTM | —xPASOT™ + A“9P)n,, dS.
vector field in the Minkowski spacetime, which are respec- (27)
tively expressed as
ab Now we consider a general nonstatic spherically symmet-
71alp=0, ric spacetime of the Kerr-Schild class given by the line ele-

b ment
7’]a Ii,alb:07 (21)
ds’=B(u,r)du®—2dudr—r?(d#*+sirfed¢?). (28)

(Ia,b+Ib,a)|a|c77bc_(|a,a)2:0-
) . ) ) Transforming the above line element tiyx,y,z coordi-
An interesting feature of the Kerr-Schild class mefiic  nates according to

in Eq. (20) is that the vector field; remains null, geodesic

and shear-free with the metrg;, . Equations(21) lead to u=t-+r,
g?°1,1,=0, X=T Sinf cose,
b o (29)
9%li.alp=0, (22) y=rsinésing,
(lapt1pa)12cg2¢—(12.,)%=0. z=r cosf,
There are several well-known spacetimes of the Kerr-one gets
Schild class, for instance, Schwarzschild, Reissner- ) ) 2_ 42
Nordstran, Kerr, Kerr-Newman, Vaidya, Dybnegt al, ds’=dt*—dx’—dy’~dZ’~ (1-B(t,x,y.2))
Kinnersley,. Bonnor-Vaidya, and Vaidya-Patébr refer- xdx+ydy+zdZ?
ences see if26)). X|ldt+ ———| . (30

It is known that the energy-momentum complexes of Ein-

stei_n 0 Landal_J a_md LifshitzL. ", PapapetrouE”‘ and_ This is obviously a Kerr-Schild class metric witthi=1
WeinbergW* “coincide” for any Kerr-Schild class metric —B andl,=(1, x/r,y/r,z/r). Using these in Eqs25) and
I [l [} [l .

20 26) one gets the expression for ener
These energy-momentum complexes for any Kerr—SchiI& ) 9 xp : ay

class metric are given by20]

r
. ” E= E(l—B(u)). (31
0 = n; L', (23)
1 Tod [27], using the Penrose quasilocal mass definition,
Lk=3k=wks—_ piKIm (24) got the same result. This is indeed an encouraging result. The
167 ' Penrose mass is called quasilocal because it is obtained over

two-surface and is not found by an integral over a spanning
three-surface of a local density. The above expression can be
ATKPA=H (KIPIa+ pPaijk— pip[kia_ pkaji|py (25 us_e_d to test the Seifert conject_ure for the naked s_ingularities
arising due to a general spherical collapse described by Eg.
To obtain the above result for the Landau and Lifshitz,(28) and satisfying theveak energy conditioriThese inves-
Papapetrou and Weinberg complexes in terms of the scaldigations could give conditions oB(u) for the Seifert con-
functionH and the vectol; , only null condition of Eqs(21)  jecture to be true and to be false. It could be possible that the
was used while for the Einstein complex the null as well asSeifert conjecture is true in all these cases. The Vaidya null
geodesic conditions were used. The shear-free condition wal!st collapse is extensively studiésee[9] and references
not required to obtain Eqg23)—(25). Thus, these energy- therein. B=1—2M(u)/r in Eq. (28) gives the Vaidya null
momentum complexes “coincide” for a class of solutions dust collapse solution. For this, E@1) givesE=M/(u) (see
more general than the Kerr-Schild class. The energy and ma@lso[19]). It is known that forM =\u, a naked singularity
mentum components are occurs ar =0, u=0 for A=<1/16. PhysicallydM/du repre-
sents the powefenergy flowing per unit timeimploding
1 iOum through a two-sphere of radiusand it must be non-negative
P _Ef f AT m N, dS (26 for theweak energy conditioto be satisfied. Using E¢31)
one finds that the naked singularity in the Vaidya null dust
The energy-momentum complexes of Landau and Lif-collapse is massless. This supports the Seifert conjecture. For
shitz, Papapetrou and Weinberg are symmetric in their indithe Bonnor-Vaidya spacetim@=1—2M (u)/r +Q(u)?/r?,
ces and therefore have been used to define angular momemhereQ(u) is the charge parameter. This represents charged
tum; the spatial components of angular momentum areull dust collapse. The result in E€B1) can be useful for
(though we do not use this in this paper we give here foinvestigations of the Seifert conjecture in the Bonnor-Vaidya
completenegs collapse.

where
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Now we wish to investigate the Seifert conjecture in the
Einstein massless scal€EMS) theory, given by equations

ds?=B(r,t)dt?—A(r,t)dr?— 2F(r,t)dtdr

—D(r,t)r3(d6?+sirfod ¢?). (39

1
Rij— ERg”- =8mT; (32 We transform the line elemel(89) to “Cartesian coordi-
nates” t,x,y,z (according tox=r sin §cose¢, y=r sin 6 sin ¢,
and z=r cosd) and then calculate energy distribution associated
with this using definitions of Einstein, Landau and Lifshitz,
q),i;i —o. (33) and Weinberg; these are respectively given by
Rij is the Ricci tensor an® is the Ricci scalar® stands = r(B(A—D—-D'r)—F(rD—F)] (40)
for the massless scalar field; , the energy-momentum ten- 2AB+F? ’
sor of the massless scalar field, is given by
rD(A—D-rD"’)
1 W= (41)
Tij=¢,iq’,j_§gijg DDy (34)
r(A—D-rD")
Equation(32) with Eq. (34) can be expressed as Bw=—"—>% (42)
Rij=87®d ;D ;. (39 The prime and dot denote for the partial derivative with re-

. i ) spect to the coordinatesandt, respectively. These energy-

It is known that the most general static spherically sym-momentum complexes have an advantage that one can easily
metric solution to the EMS equatioith the cosmological 5551y Gauss’s theorem to get energy contained inside a two-
constantA=0) is asymptotically flat and until recently it grface for any spacetime. The same is possible with the
was known that this is the well-known Wyman soluti®8].  papapetrou energy-momentum complex for the Kerr-Schild
Recently, it has been shown that the Janis-Newmang|ass metrics, but not for arbitrary spacetimes. However,
Winicour (JNW) solution(which was obtained about thirteen \yhile using the Papapetrou energy-momentum complex one
years before the Wyman solutipis the same as the Wyman can apply Gauss'’s theorem for any time-independent metric
solution[29]. This solution is characterized by two constan'[[See Eq.(13)]. Thus, for static and spherically symmetric

parameters, the madd and the “scalar charge’s, and is
given by the line elemer(see in[29])

-7

b\” b
d32=<1—F) dtz—(l—F dr?

b\~
_<1_F) r2(d6?+sirf6d¢?) (36)
and the scalar field
L (1 b) 37
= n —_—— ,
b4 r
where
3 2M
[
(39
b=2M%+q.

spacetimesK=0 andA,B andD depending only on radial
coordinate one gets

Ep=——[4AB%(A—D)+r(A%B'D—2A%BD’
P 8(AB)3’2[ ( )+r(

—AA'BD—2AB?D’'—~ABB'D+A’'B?D)]. (43

In a series of papers there are encouraging resstis in
[18-20). Several energy-momentum complexes give the
same results for the Einstein-Rosen as well as any metric of
the Kerr-Schild clas$the Kerr-Schild class has several well-
known solutions As mentioned earlier these energy-
momentum complexes “coincide” for a more general class
than the Kerr-Schild class. However, it is obvious from Eqgs.
(40)—(43) that the energy-momentum complexes disagree for
the most general nonstatic spherically symmetric metric.
While obtaining the energy distributidmiven by Eq.(31)]
for the spacetime described by the line elem@8} we used
Kerr-Schild Cartesian coordinates; however, for the case of
the most general nonstatic spherically symmetric metric we
used what we call “Schwarzschild Cartesian coordinates.”

For the “scalar charge” zero this solution reduces to theThe line element28) is a special case of the line element

Schwarzschild solutiorr.=b is a globally naked strong cur- (39). The Einstein energy-momentum complex gives the
vature singularity(see[30] with [29]). It is of interest to  same result in both the casgonsider Eq(31) as a special
investigate whether or not this naked singularity is masslessase of Eq(40)] which is the same as Tod found using the
Obviously Eq.(31) cannot be used for this spacetime. In thePenrose definition. However, other definitions disagree with
following we obtain the energy expression for the most gentheir own results obtained in Kerr-Schild Cartesian and
eral nonstatic spherically symmetric metric described by theSchwarzschild Cartesian coordinafes Eqs.(41), (42) and
line element (43) do not yield Eq.(31) as a special cageFor a simple
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case of the Schwarzschild metrig; |, =Ep=Ey=M when debated and there are mutually contradicting viewpoints on
calculations are performed in the Kerr-Schild Cartesian cothis issug32]. According to Bondi, a nonlocalizable form of
ordinates; however, in Schwarzschild Cartesian coordinatesnergy is inadmissible in relativity and its location can in
one has E  =Ew=M(1-2M/r)"LEp=M(r?>=2Mr  principle be found32]. In fact, a unanimously agreed pre-
+2M?)/(r—2M)2 It is not clear why different energy- cise definition of local or even quasilocal mass would have
momentum complexes “coincide” in the Kerr-Schild Carte- heen very much useful to understand some important issues
sian coordinates, but not in the Schwarzschild Cartesian cqn relativity. For instance, for investigating the Seifert con-
ordinates. The Einstein-Rosen metric is not of the Kerrjecture (we have discussed in this papend thehoop con-
Schild class and therefore calculations were not done iflectyre[33], which states that horizons form when and only
Kerr-Schild = Cartesian coordinates; however, different, han a mass gets compacted into a region whose circum-

energy-momentum complexes gave the same and reasonapé(leence inevery directionr=2wM, these concepts are useful.
result. Therefore, the fact that different energy-momenturr,_‘
Q

) . . owever, no adequate prescription is known and it is not
complexes give the same result for some spacetimes is n IR . . .

) . X . Clear if it is possible at all. The results obtained using the
restricted to the use of the Kerr-Schild Cartesian coordmatese.ner momentum complexes are usually not taken seri-
It is known that the quasilocal mass definitions also have Igyb thei P tricted t XC tosi di
some problemgsee in[17,31]); for instance, it has not been ously, because Ineir uses are restricted to “t-artesian coordi-

possible to obtain the Penrose quasilocal mass for the Kefates” and the quasilocal mass definitions are also not satis-

metric. factory. Bergqvist[17] showed that not any two of seven

The present investigations indicate that the Einsteirfluasilocal mass definitions he considered give the same re-
energy-momentum complex is better than other energysult for the Reissner-Nordsm)a; well as Kerr quqetimes,
momentum complexes. Therefore, the result in @q) may The well-known Penrose.quasnocal mass definition could
be useful for investigating the Seifert conjecture in the conot deal with the Kerr metrif31]. On the other hand, several
text of naked singularities arising due to spherical collapses£Nergy-momentum complexes are known to give the same
which are being investigatetsee [10,11 and references and “reasonaple” result for many well known solutlons. We
therein. F=0 in Eq.(40) gives one obtained earli¢see in ~ Showed that different energy momentum complexes disagree

[29]). For the JNW spacetime this equation immediatelyWhen they are evaluated in Schwarzschild Cartesian coordi-
gives nates and give the same result in Kerr-Schild Cartesian co-

ordinates; however, the Einstein energy-momentum complex
E=M. (44) still gives consistent results in both cases. It is not clear why
different definitions “coincide” when calculations are car-
The energy expression is independent of the radial distangged out in Kerr-Schild Cartesian coordinates, but disagree in
and therefore the entire energy is confined to the singularityschwarzschild Cartesian coordinates. At this stage it is not
This is a counterexample to the Seifert conjecture. Howevelnown if this is accidental or points out something interest-
for the purely scalar fieldNi =0 in the JNW solution the  jng. Any example or counterexample to the Seifert conjec-
globally naked strong curvature singularitys 2q, is mass-  ture may not be taken seriously unless an adequate prescrip-

less. This supports the Seifert conjecture. The “scalation for localization or quasilocalization of mass is known
charge” in the JNW spacetime does not contribute to theand is applied.

energy, because contributions from the matter and the field

energy cancel. The anonymous referee mentioned that there

are some indications that the JNW solution does not occur ACKNOWLEDGMENTS
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