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Topological censorship and higher genus black holes
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Motivated by recent interest in black holes whose asymptotic geometry approaches that of anti–de Sitter
spacetime, we give a proof of topological censorship applicable to spacetimes with such asymptotic behavior.
Employing a useful rephrasing of topological censorship as a property of homotopies of arbitrary loops, we
then explore the consequences of topological censorship for the horizon topology of black holes. We find that
the genera of horizons are controled by the genus of the space at infinity. Our results make it clear that there
is no conflict between topological censorship and the nonspherical horizon topologies of locally anti–de Sitter
black holes. More specifically, letD be the domain of outer communications of a boundary at infinity ‘‘scri.’’
We show that the principle of topological censorship~PTC!, which is that every causal curve inD having end
points on scri can be deformed to scri, holds under reasonable conditions for timelike scri, as it is known to do
for a simply connected null scri. We then show that the PTC implies that the fundamental group of scri maps,
via inclusion, onto the fundamental group ofD: i.e.,everyloop inD is homotopic to a loop in scri. We use this
to determine the integral homology of preferred spacelike hypersurfaces~Cauchy surfaces or analogues
thereof! in the domain of outer communications of any four-dimensional spacetime obeying the PTC. From
this, we establish that the sum of the genera of the cross sections in which such a hypersurface meets black hole
horizons is bounded above by the genus of the cut of infinity defined by the hypersurface. Our results
generalize familiar theorems valid for asymptotically flat spacetimes requiring simple connectivity of the
domain of outer communications and spherical topology for stationary and evolving black holes.
@S0556-2821~99!08218-1#
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I. INTRODUCTION

It is generally a matter of course that the gross feature
shape, i.e., the topology, of composite objects, from m
ecules to stars, are determined by their internal structure.
black holes are an exception. A black hole has little inter
structure, but the topology of its horizon is nonethele
strongly constrained, seemingly by theexternalstructure of
spacetime. This was made apparent in the early work
Hawking @1#, who established via a beautiful variational a
gument the spherical topology of stationary horizons. Haw
ing’s proof was predicated on the global causal theoretic
sult that no outer trapped surfaces can exist outside the b
hole region, unless energy conditions or cosmic censor
are violated. As argued by Hawking in@1#, the possibility of
toroidal topology, which arises as a borderline case in
argument, can be eliminated by consideration of a cer
characteristic initial value problem and the assumption
analyticity; see@2# for further discussion of this issue.

In recent years an entirely different approach to the st
of black hole topology has developed, based on the notio
topological censorship. In 1994, Chrus´ciel and Wald@3#, im-
proving in the stationary setting the result on black hole
pology considered in@2# and @4#, were able to remove the
analyticity assumption in Hawking’s theorem by making u
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of the active topological censorship theorem of Friedm
Schleich, and Witt@5# ~FSW!. This latter result states that i
a globally hyperbolic, asymptotically flat~AF! spacetime
obeying an averaged null energy condition~ultimately, in the
modified form used below—see@6#!, every causal curve be
ginning and ending on the boundary at infinity could be h
motopically deformed to that boundary. When topologic
censorship holds, the domain of outer communicatio
~DOC—the region exterior to black and white holes! of an
AF spacetime must be simply connected@6#.

Jacobson and Venkataramani@7#, also using the topologi-
cal censorship theorem of FSW, were able to extend
result of Chrus´ciel and Wald on black hole topology beyon
the stationary case. The principle behind their arguments
that any horizon topology other than spherical would allo
certain causal curves outside the horizon to link with it, a
so such curves would not be deformable to infinity, whi
would contradict FSW.

In the early 1990s, new solutions with nonspherical bla
hole horizons were discovered in locally anti–de Sit
~AdS! spacetimes@8–13#; for a recent review, see@14#. The
original topological censorship theorem did not apply
these spacetimes since they were not AF and not glob
hyperbolic. However, two improvements to the proof of t
pological censorship indicated that these differences ou
not matter. Galloway@15# was able to produce a ‘‘finite in-
finity’’ version of topological censorship that replaced th
usual asymptotic conditions on the geometry with a m
geometrical condition on a finitely distant boundary, a
Galloway and Woolgar@16# were able to replace the assum
tion of global hyperbolicity by weak cosmic censorshi
©1999 The American Physical Society39-1



-
wl
ce
in
ri
t
le
o
op

ck
o
a
n
f
a

th

be
ry

ar

y

e
ce
of
-

ed
s
ua

th
g

ho-

en-
he
but

on-

-
-
C.
ing

his
sal
ces

in
pol-
ck

in
re-
hy

sec-

le

by
b-

ho-
the
ck

ri-
em-
tor-
the
in

ults
ck

TC
lly

e

e

or

ac
w

f

ev

g

GALLOWAY, SCHLEICH, WITT, AND WOOLGAR PHYSICAL REVIEW D60 104039
Moreover, it was soon observed@17# that topological censor
ship in the sense of FSW held true for each of the ne
discovered black hole constructions in locally AdS spa
time, although no general proof was known in this sett
and obviously the aforementioned corollary implying sphe
cal horizon topology could not hold. This is no
paradoxical—the topology of the locally AdS black ho
spacetimes is such that no causal curve links with a n
spherical horizon in such a way as to preclude a homot
deforming that curve to infinity.1 In fact, we will see below
that the corollary implying the spherical topology of bla
holes in AF spacetime is merely a special case of a m
general corollary of topological censorship which gives
relationship between the topology of the black hole horizo
and the ‘‘topology of infinity.’’ In this sense, the topology o
the black hole horizons is governed by a structure that is
‘‘external’’ as possible, being entirely at infinity.

In this paper, we will consider spacetimes that obey
Principle of Topological Censorship~PTC!. Let M be a
spacetime with metricgab . Suppose this spacetime can
conformally included into a spacetime with bounda
M85MøI, with metricgab8 whose restriction toM obeys
gab8 5V2gab , and whereI is the V50 surface, which de-
finesI as the boundary at infinity. For a connected bound
componentI,2 the domain of outer communicationD is de-
fined by

DªI 1~I!ùI 2~I!. ~1!

The PTC is the following condition onD:
Principle of Topological Censorship. Every causal curve

whose initial and final end points belong toI is fixed end
point homotopic to a curve onI.3

The PTC has already been established for general, ph
cally reasonable AF spacetime; cf.@5#, @16#. In the next sec-
tion we present a proof of the PTC in a setting that includ
many asymptotically locally anti–de Sitter black hole spa
times. This generalization exploits the fact that PTC pro
generally follow from a condition on double-null compo
nents of the Ricci tensor. These components can be relat
the double-null components of the stress-energy ten
through the double-null components of the Einstein eq
tions. This relation involves no trace terms and so clearly
insensitive to the cosmological constant. This corrects
impression that the PTC is invalid in the presence of a ne
tive cosmological constant@13,18#, an impression that, if it
were true, would imply that the PTC in this case would im

1That topological censorship proofs should generalize to sp
times having the asymptotic structure of these new black holes
first suggested in@7#.

2For the purpose of discussion, in the AF case we assume
simplicity that i 0 is included inI.

3FSW’s original statement of topological censorship required
ery causal curve beginning and ending onI to be homotopic to one
in a ‘‘simply connected neighborhood of infinity.’’ Our phrasin
above accommodates spacetimes for whichI has no simply con-
nected neighborhoods.
10403
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pose no constraints at all on the topology of black hole
rizons. Hawking’sg50 restriction@1,19,20# on the horizon
topology, by way of contrast, does assume non-negative
ergy density on the horizon and so is not in force in t
presence of a negative cosmological constant in vacuum,
as we will see, the PTC remains valid and imposes c
straints on the topology.

In Sec. III, we will prove that the mapping from the fun
damental group ofI to that of the domain of outer commu
nications is a surjection for spacetimes satisfying the PT
This theorem generalizes previous results on the DOC be
simply connected in asymptotically flat spacetimes. T
characterization allows us to shift attention from cau
curves to arbitrary loops in further study of the consequen
of the PTC.

In Sec. IV, by considering loops restricted to certa
spacelike surfaces and using arguments from algebraic to
ogy, we give a very direct derivation of the topology of bla
hole horizons and the integral homology of hypersurfaces
exterior regions of four-dimensional spacetimes. More p
cisely, we consider the topology of the closure of the Cauc
surfaces or analogues thereof for the DOC whose inter
tions with the horizons are closed two-manifolds~‘‘good
cuts’’!. We find that

(
i 51

k

gi<go ,

where thegi are the genera of the cuts of the black ho
horizons andgo is the genus of a cut ofI by the surface.
Thus the topology of black hole horizons is constrained
the topology at infinity. This result also pertains to any su
domain of the DOC that lies to the future of a cut ofI and
whose Cauchy surfaces—or analogues thereof—meet the
rizons at closed two-manifolds. Therefore, it applies to
topology of the black hole horizons in the presence of bla
hole formation or evolution at times for which the approp
ate subdomain and surfaces can be found. Finally, we d
onstrate that the integral homology of these surfaces is
sion free and consequently completely determined by
Betti numbers. Furthermore, these are completely fixed
terms of the genera of the boundary.

Section V contains a discussion concerning these res
and their applicability to the case of nonstationary bla
holes.

II. VALIDITY OF THE PTC

The aim of this section is to present a version of the P
applicable to spacetimes which are asymptotically loca
anti–de Sitter. Hence we consider a spacetimeM, with met-
ric gab , which can be conformally included into a spacetim
with boundary M85MøI, with metric gab8 , such that
]M85I is timelike ~i.e., is a Lorentzian hypersurface in th
induced metric! andM5M8\I. We permitI to have mul-
tiple components. With regard to the conformal fact
VPC1(M8), we make the standard assumptions that~a!
V.0 and gab8 5V2gab on M, and ~b! V50 and dVÞ0
pointwise onI.
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TOPOLOGICAL CENSORSHIP AND HIGHER GENUS . . . PHYSICAL REVIEW D 60 104039
Just as in the case of spacetimes without a boundary
say that a spacetime with boundaryM8 is globally hyper-
bolic provided M8 is strongly causal and the se
J1(p,M8)ùJ2(q,M8) are compact for allp,qPM8. Note
that whenI is timelike, as in the situation considered he
M can never be globally hyperbolic. However, in many e
amples of interest, such as anti–de Sitter space and the
main of outer communications of various locally Ad
spaces,M8 is.

For later convenience, we define a Cauchy surface forM8
to be a subsetV8,M8 which is met once and only once b
each inextendible causal curve inM8. Then V8 will be a
spacelike hypersurface which, as a manifold with bounda
has a boundary onI. It can be shown, as in the standard ca
that a spacetime with timelike boundaryD8 which is globally
hyperbolic admits a Cauchy surfaceV8 and is homeomorphic
to R3V8. ~This can be shown by directly modifying th
proof of proposition 6.6.8 in@19#. Many of the locally
anti–de Sitter and related models@8–11,13,14# which have
been constructed have DOCs which admit Cauchy surfa
of this sort.

The proof of the PTC is a consequence of the followi
basic result.

Theorem 2.1. LetM,M8 be as described above, and a
sume the following conditions hold.
~i! M85MøI is globally hyperbolic.
~ii ! There is a componentI0 of I which admits a compac
spacelike cut.
~iii ! For each point p inM nearI0 and any future complete
null geodesic s→h(s) in M starting at p,
*0

`Ric(h8,h8)ds>0.
ThenI0 cannot communicate with any other component oI,
i.e., J1(I0)ù(I\I0)5B.

Condition ~iii ! is a modified form of the average null en
ergy condition~ANEC!. This term usually refers to a cond
tion of the same form as~iii ! except that the integral is take
over geodesics complete to both past and future. Note th
one assumes that the Einstein equations with cosmolog
constant Rab2 1

2 Rgab1Lgab58pTab hold, then for any
null vectorX, Ric(X,X)5RabX

aXb58pTabX
aXb. Then the

integrand Ric(h8,h8) in ~iii ! could be replaced by
T(h8,h8). Clearly, the presence and sign of the cosmolo
cal constant are irrelevant to whether or not a spacetime
isfying the Einstein equations will satisfy condition~iii !.

For the next theorem, if]M8 is not connected, letI de-
note a single component of]M8. Let D5I 1(I)ùI 2(I) be
the domain of outer communications ofM with respect toI.
Assume thatD does not meet any other components
]M8. Note that if the conditions of theorem 2.1 hold, th
latter assumption is automatically satisfied. Using in addit
the fact thatI is timelike, it follows thatD is connected and
the closure ofD in M8 containsI. Then D8ªDøI is a
connected spacetime with boundary, with]D85I and
D5D8\I.

We now state the following topological censorship the
rem, applicable to asymptotically locally AdS spacetimes
10403
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Theorem 2.2. LetD be the domain of outer communication
with respect toI as described above, and assume the follo
ing conditions hold.
~i! D85DøI is globally hyperbolic.
~ii ! I admits a compact spacelike cut.
~iii ! For each point p inM near I and any future complete
null geodesic s→h(s) in D starting at p, *0

`Ric(h8,h8)ds
>0.
Then the PTC holds onD.

Remark.Let K be a cut ofI, and letIK be the portion ofI to
the future ofK, IK5IùI 1(K). Let DK be the domain of
outer of communications with respect toIK ,
DK5I 1(IK)ùI 2(IK)5I 1(K)ùI 2(I). Theorems 2.1 and
2.2 apply equally well toDK . This procedure, first discusse
by Jacobson and Venkataramani@7#, allows one, by the
methods of this paper, to study the topology of cuts on
future event horizonH5]I 2(I) of the form ]I 1(IK)ùH.
By taking K sufficiently far to the future, this procedure en
ables one to consider cuts onH well to the future of the
initial formation of the black hole, where one has a grea
expectation that the intersection ofH with ]I 1(IK) will be
reasonable~i.e., a surface!. See@7# and Secs. IV and V below
for further discussion of this point. In what follows, it i
worth keeping in mind thatI may refer to the portion of scr
to the future of a cut.
Proof of theorem 2.1.The global hyperbolicity ofM8 im-
plies that I0 is strongly causal as a spacetime in
own right and that the setsJ1(x,I0)ùJ2(y,I0)
@,J1(x,M8)ùJ2(y,M8)# for x,yPI0 have compact clo-
sure in I0 . This is sufficient to imply thatI0 is globally
hyperbolic as a spacetime in its own right. Assumption~ii !
then implies thatI0 is foliated by compact Cauchy surface

Now suppose thatJ1(I0) meets some other compone
I1 of I: i.e., suppose there exists a future-directed cau
curve from a pointpPI0 to a point qPI1 . Let S0 be a
Cauchy surface forI0 passing throughp. PushS0 slightly in
the normal direction toI0 to obtain a compact spacelik
surfaceS contained inM. Let V be a compact spacelik
hypersurface with boundary spanningS0 andS. By proper-
ties of the conformal factor, we are assured, for suita
pushes, thatS is null mean convex. By this we mean that the
future-directed null geodesics issuing orthogonally fromS
which are ‘‘inward pointing’’ with respect toI0 ~i.e., which
point away fromV! have negative divergence.

Under the present supposition,J1(V) meetsI1 . At the
same time,J1(V) cannot contain all ofI1 . If it did, there
would exist a past inextendible causal curve inI1 starting at
qPI1 contained in the compact setJ1(V)ùJ2(q), contra-
dicting the strong causality ofM8. Hence]J1(V) meetsI1 ;
let q0 be a point in]J1(V)ùI1 . SinceM8 is globally hy-
perbolic, it is causally simple; cf. proposition 6.6.1 in@19#,
which remains valid in the present setting. Hen
]J1(V)5J1(V)\I 1(V), which implies that there exists
future-directed null curveh,]J1(V) that extends from a
point onV to q0 . ~Alternatively, one can prove the existenc
of this curve from results of@21#, which are also valid in the
present setting.! It is possible thath meetsI several times
before reachingq0 . Consider only the portionh0 of h which
9-3
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extends from the initial point ofh on V up to, but not in-
cluding, the first point at whichh meetsI.

By properties of achronal boundaries and the conform
factor,h0 is a future complete null geodesic inM emanating
from a point onV. Sinceh0 cannot enterI 1(V), it follows
that ~1! h0 actually meetsV at a pointp0 of S, ~2! h0 meets
S orthogonally atp0 , and ~3! h0 is inward pointing with
respect toI0 ~i.e., h0 points away fromV!. Since h0 is
future complete, the energy condition~iii ! and null mean
convexity of S imply that there is a null focal point toS
along h0 . But beyond the focal point,h0 must enter
I 1(S)@,I 1(V)#, contradictingh0,]J1(V). j

Proof of theorem 2.2The proof is an application of theorem
2.1, together with a covering space argument. FixpPI. The
inclusion mapi :I→D8 induces a homomorphism of funda
mental groups i * :P1(I,p)→P1(D8,p). The image G
5 i * „P1(I,p)… is a subgroup ofP1(D8,p). Basic covering
space theory guarantees that there exists an essen

unique covering spaceD̃8 of D8 such thatp* „P1(D̃8,p̃)…

5G5 i * „P1(I,p)…, wherep:D̃8→D8 is the covering map

andp( p̃)5p. EquipD̃8 with the pullback metricp* (g8) so

that p:D̃8→D8 is a local isometry. We note that whenI is
simply connected,D̃8 is the universal cover ofD8, but in
general it will not be. In a somewhat different context~i.e.,
whenD8 is a spacetime without boundary andI is a space-
like hypersurface!, D̃8 is known as the Hawking coverin
spacetime: cf.@19,22#.

The covering spacetimeD̃8 has two basic properties:~a!

The componentĨ of p21(I) which passes throughp̃ is a
copy of I: i.e., p* u Ĩ :Ĩ→I is an isometry, and~b!

i * „P1(Ĩ,p̃)…5P1(D̃8,p̃), wherei :Ĩ�D̃8.
Property~b! says that any loop inD̃8 based atp̃ can be

deformed through loops based atp̃ to a loop inĨ based atp̃.
This property is an easy consequence of the defining p
erty p* „P1(D̃8,p̃)…5 i * „P1(I,p)… and the homotopy lifting
property. In turn, property~b! easily implies that any curve
in D̃8 with end points onĨ is fixed end point homotopic to a
curve in Ĩ.

Now let g be a future-directed causal curve inD8 with
end points onI. Assumeg extends fromxPI to yPI. Let g̃

be the lift of g into D̃8 starting atx̃PĨ. Note that the hy-
potheses of theorem 2.1, withM5D̃ªp21(D), M85D̃8,
andI05Ĩ, are satisfied. Hence the future end pointỹ of g̃

must also lie onĨ. Then we know thatg̃ is fixed end point
homotopic to a curve inĨ. Projecting this homotopy down to
D8, it follows thatg is fixed end point homotopic to a curv
in I, as desired. j
Remarks.Since many examples of locally AdS spacetimes
for example, those constructed by identifications of A
@9–11,13,14#—do not obey the generic condition, our ai
was to present a version of the PTC which does not req
it. However, if one replaces the energy condition~iii ! by the
generic condition and the ANEC*2`

` Ric(h8,h8)ds>0
along any complete null geodesics→h(s) in D, then theo-
10403
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rems 2.1 and 2.2 still hold, and moreover they do not requ
the compactness condition~ii !. The proof of theorem 2.1
under these new assumptions involves the construction
complete null line~globally achronal null geodesic! which is
incompatible with the energy conditions. The results in t
setting are rather general, and in particular the proofs do
use in any essential way thatI is timelike. We also mention
that the global hyperbolicity assumption in theorem 2.2 c
be weakened in a fashion similar to what was done in the
case in@16#.

We now turn our attention to a characterization of top
logical censorship which will allow us to more easily explo
the consequences of topological censorship for black h
topology.

III. ALGEBRAIC CHARACTERIZATION
OF TOPOLOGICAL CENSORSHIP

The main result of this section is a restatement of
properties of a spacetime satisfying the PTC in a langu
amenable to algebraic topological considerations.

Let D andI be as in Sec. I. ThenD85DøI is a space-
time with boundary, with ]D85I. The inclusion map
i :I→D8 induces a homomorphism of fundamental grou
i * :P1(I)→P1(D8). Then we have the following.

Proposition 3.1.If the PTC holds forD8, then the group
homomorphismi * :P1(I)→P1(D8) induced by inclusion is
surjective.

Remark.Note that the fundamental groups ofD andD8 are
trivially isomorphic, P1(D)>P1(D8). Hence proposition
3.1 says roughly that every loop inD is deformable to a loop
in I. Moreover, it implies thatP1(D) is isomorphic to the
factor groupP1(I)/ker i * . In particular, ifI is simply con-
nected, then so isD.

Our proof relies on the following straightforward lemm
in topology

Lemma 3.2.Let N be a manifold andS an embedded sub
manifold with inclusion mappingi :S→N. If in the universal
covering space ofN the inverse image ofS by the covering
map is connected, theni * :P1(S)→P1(N) is surjective.

Proof. Strictly speaking, we are dealing with pointed spac
(S,p) and (N,p), for some fixed pointpPS, and we want to
show thati * :P1(S,p)→P1(N,p) is onto. Let @c0# be an
element ofP1(N,p): i.e., let c0 be a loop inN based atp.
Let Ñ be the universal covering space ofN, with covering
mapp:Ñ→N. Choosep̃PÑ such thatp( p̃)5p. Let c̃0 be
the lift of c0 starting atp̃; then,c̃0 is a curve inÑ extending
from p̃ to a pointq̃ with p(q̃)5p. Sincep̃,q̃Pp21(S) and
p21(S) is path connected, there exists a curvec̃1 in p21(S)
from p̃ to q̃. The projected curvec15p( c̃1) is a loop inS

based atp, i.e., @c1#PP1(S,p). Since Ñ is simply con-
nected,c̃0 is fixed end point homotopic toc̃1 . But this im-
plies thatc0 is homotopic toc1 through loops based atp, i.e.,
i * (@c1#)5@c0#, as desired. j
9-4
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TOPOLOGICAL CENSORSHIP AND HIGHER GENUS . . . PHYSICAL REVIEW D 60 104039
Proof of proposition 3.1.We let Ñ be the universal covering
spacetime ofNªD8 with projection p:Ñ→N. Then Ñ
5D̃øĨ, whereD̃5p21(D) is the universal covering space
time of D and Ĩ5p21(I) is the boundary ofÑ.

Every point in D̃ belongs to the inverse image byp of
some point inD, and every point inD lies on some causa
curve beginning and ending onI, so every point inD̃ lies on
some causal curve beginning and ending onĨ. By the PTC
and basic lifting properties, no such curve can end on a
ferent connected component ofĨ than it began on. Therefore
if we label these connected components bya, the open sets
I 1(Ĩa)ùI 2(Ĩa) are a disjoint open cover ofD̃. But D̃ is
connected, soa can take only one value, whenceĨ is con-
nected. It follows thatD8 satisfies the conditions of lemm
3.2 with S5I and thereforei * :P1(I)→P1(D8) is surjec-
tive. Thusi * :P1(I)→P1(D) is surjective. j

All known locally anti–de Sitter black holes and relate
spacetimes are in accordance with proposition 3.1. We c
clude this section with the following simple corollary t
proposition 3.1.

Corollary 3.3. If the PTC holds forD8, thenD is orientable
if I is.

Proof. In fact, D8 is orientable, for ifD8 were not orientable
and I were, thenD8 would possess an orientable doub
cover containing two copiesI1 and I2 of I. Then a curve
from p1PI1 to p2PI2 , where p(p1)5p(p2)5pPI,
would project to a loop inD8 not deformable toI, contrary
to the surjectivity ofi * . j

IV. APPLICATION TO BLACK HOLE TOPOLOGY

The boundary of the region of spacetime visible to o
servers atI by future-directed causal curves is referred to
the event horizon. This horizon is a set of one or more n
surfaces, also called black hole horizons, generated by
geodesics that have no future end points, but possibly h
past end points. The topology of these black hole horizon
constrained in spacetimes obeying the PTC because, as
seen in Sec. III, the topology of the domain of outer comm
nications is constrained by the PTC—intuitively, caus
curves that can communicate with observers atI cannot link
with these horizons in a nontrivial way: rather, they on
carry information about the nontriviality of curves onI.

Useful though this description is, it does not character
the topology of these horizons themselves, but rather
hole that their excision leaves in the spacetime. Howe
one can obtain certain information about these horizon
one considers the topology of the intersection of cert
spacelike hypersurfaces with the horizons in fo
dimensional spacetimes, those whose intersection with
horizons are closed spacelike two-manifolds~good cuts of
the horizons!. For example, if one has a single horizon
product form, as is the case for a stationary black hole, t
the horizon topology is determined by that of the tw
manifold. Of course, black hole horizons are generally no
product form; however, the topology of any good cut is s
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closely related to that of the horizons. For example, if ea
horizon has a region with product topology, this topology
determined by that of a good cut passing through this reg
As demonstrated by Jacobson and Venkataramani@7# for as-
ymptotically flat spacetimes, the PTC constrains the top
ogy of good cuts of the horizons by the closure of a Cauc
surface for the domain of outer communications to be tw
spheres.

Now it is possible that a black hole horizon admits tw
good cuts by spacelike hypersurfaces, one entirely to
future of the other, such that the cuts are not homeomorp
This can only happen if null generators enter the horiz
between the two cuts. Physically, such a situation co
sponds to a black hole with transient behavior, such as
induced by formation from collapse, collision of black hole
or absorption of matter. Jacobson and Venkataramani
served that their theorem could also be applied to such s
ations for certain spacelike hypersurfaces that cut the h
zons sufficiently far away from regions of black ho
formation, collision, or matter absorption. Precisely, wh
the domain of outer communications is globally hyperbo
to the future of a cut ofI and if the PTC holds on this
subdomain, then the PTC will constrain the topology of th
subdomain, of its Cauchy surface, and ultimately of go
cuts of the horizons. Thus, though the PTC does not de
mine the topology of arbitrary embedded hypersurfaces
the cuts they make on the horizons, it does do so for hyp
surfaces homeomorphic to Cauchy surfaces for these su
mains that make good cuts of the horizons. Such subdom
can be found for black hole horizons that settle down at l
times.

Below we provide a generalization of these results ap
cable to a more general set of spacetimes satisfying the
than asymptotically flat spacetimes. This generalization
based on the observation that if one can continuously p
any loop in the DOC down into an appropriate spacel
surface that cuts the horizons in spacelike two-manifolds
follows from proposition 3.1 that the fundamental group
the spacelike surface is related to that ofI. In the interests of
a clear presentation that carefully treats all technical deta
we first prove the following results for globally hyperbol
four-dimensional spacetimes with timelike4 I and, we em-
phasize, for any globally hyperbolic subdomain correspo
ing to the future of a cut ofI. We then provide the results fo
the case of globally hyperbolic, asymptotically flat spac
times. From the method of proof of these two cases, i
manifestly apparent that these theorems can be easily ge
alized to a wider class of spacetimes that satisfy the PTC.
conclude with a remark about how to provide the corr
technical statement and proofs for these cases. We will
comment further on the transient behavior associated w
black hole formation in the Discussion section.

Let M be a spacetime with timelike infinityI and domain
of outer communicationsD. AssumeI is connected and ori-

4We remind the reader that the notions of global hyperbolicity a
Cauchy surfaces for spacetimes with timelikeI are reviewed at the
beginning of Sec. II.
9-5
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entable. LetK be a spacelike cut ofI, and letIK be the
portion ofI to the future ofK, IK5IùI 1(K). Let DK be the
DOC with respect to IK , DK5I 1(IK)ùI 2(IK)
5I 1(K)ùI 2(I). Note that DK8ªDKøIK is a connected
spacetime with timelike boundary, with]DK8 5IK and
DK5DK8 \IK . In the following we will assume thatDK8 is
globally hyperbolic and has a Cauchy surfaceV8 as in Sec.
II. The following theorem is the main result pertaining to t
topology of black holes.

Theorem 4.1. LetDK be the domain of outer communication
to the future of the cut K onI as described above. Assum
that DK8 is globally hyperbolic and satisfies the PTC. Su
pose V8 is a Cauchy surface forDK8 such that its closure V

5V̄8 in M8 is a compact topological three-manifold wit
boundary whose boundary]V (corresponding to the edge o
V8 in M8) consists of a disjoint union of compact tw
surfaces,

]V5t
i 50

k

S i , ~2!

whereS0 is on I and theS i , i 51, . . . ,k, are on the event
horizon. Then

(
i 51

k

gi<go , ~3!

where gj5the genus ofS j , j 50,1,...,k. In particular, if S0
is a two-sphere, then so is eachS i , i 51,...,k.

Remark 1.Many known examples of locally AdS black ho
spacetimes have black hole horizons with genus equal of
of scri @9–11,13#. In fact, for these examples,V is a product
space.
Remark 2.Theorem 4.1 has been stated for spacetimes w
timelike I. An analogous version for asymptotically fla
spacetimes holds as well, but differs slightly in technic
details. The AF case will be considered later in the secti

Theorem 4.1 is established in a series of lemmas. Lem
4.2 connects the fundamental group of the Cauchy surfac
that of I. It is the only lemma that uses the conditions th
the spacetime is globally hyperbolic and satisfies the P
The remaining lemmas are based purely on algebraic to
ogy and are in fact applicable to any three-manifold w
compact boundary.

Lemma 4.2.Let the setting be as in theorem 4.1. Then t
group homomorphismi * :P1((0)→P1(V) induced by in-
clusion i :(0→V is onto.

Proof.Let Za be a timelike vector field onDK8 tangent toIK .
Let r :DK8 →V8 be the continuous projection map sendi
each pointpPDK8 to the unique point inV8 determined by
the integral curve ofZa throughp. Note thatr (IK)5(0 .

Fix pP(0 . All loops considered are based atp. Let c0 be
a loop inV. By deformingc0 slightly we can assumec0 is in
V8. SinceDK8 satisfies the hypotheses of theorem 2.2,
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PTC holds forDK8 . Then, by proposition 3.1,c0 can be con-
tinuously deformed through loops inDK8 to a loopc1 in IK .
It follows by composition withr that c05r +c0 can be con-
tinuously deformed through loops inV to the loop
c25r +c1 in (0 , and hencei * (@c2#)5@c0#, as desired. j

By corollary 3.3 and the assumptions of theorem 4.1,V is
a connected, orientable, compact three-manifold with bou
ary whose boundary consists ofk11 compact surfaces( i ,
i 50,...,k. For the following results, which are purely topo
logical, we assumeV is any such manifold.

All homology and cohomology below are taken over t
integers. Thej th homology group of a manifoldP will be
denoted byH j (P), bj (P)ª the rank of the free part o
H j (P) will denote thej th Betti number ofP, andx~P! will
denote the Euler characteristic~the alternating sum of the
Betti numbers!. In the case ofbj (V) @5bj (V0)#, we will
simply write bj .

In general, forV as assumed above,b051, b350, andb1
andb2 satisfy the following inequalities.

Lemma 4.3.For V as above, then~a! b1>( i 50
k gi and

~b! b2>k.

Proof. The boundary surfaces(1 ,(2 , . . . ,(k clearly deter-
mine k linearly independent two-cycles inV, and hence
~b! holds. To prove ~a! we use the formula,x(V)
5 1

2 x(]V), valid for any compact, orientable, odd
dimensional manifold. This formula, together with the e
pressions x(V)512b11b2 and x(]V)5( i 50

k x(( i)5

2(k11)22( i 50
k gi , implies the equation

b15b21(
i 50

k

gi2k. ~4!

The inequality~a! now follows immediately from~b!. j

Lemma 4.4. If the group homomorphismi * :P1((0)
→P1(V) induced by inclusion is onto, then the inequali
~3!, ( i 51

k gi<g0 , holds. In particular, if(0 is a two-sphere,
then so is each( i , i 51, . . . ,k.

Proof. We use the fact that the first integral homology gro
of a space is isomorphic to the fundamental group mod
out by its commutator subgroup. Hence modding out by
commutator subgroups ofP1((0) andP1(V), respectively,
induces fromi * a surjective homomorphism fromH1((0) to
H1(V). It follows that the rank of the free part ofH1(V)
cannot be greater than that ofH1((0), i.e.,

b1<b1~S0!52g0 . ~5!

Combining this inequality with the inequality~a! in lemma
4.3 yields the inequality~3!. SinceV is orientable, so are its
boundary components. If(0 is a two-sphere, then each( i ,
i 51,...,k, is forced by~3! to have genus zero and, hence, is
two-sphere. j
Proof of theorem 4.1.The proof follows immediately from
lemmas 4.2 and 4.4. j

Next we show that the condition oni * in lemma 4.4
completely determines the homology ofV.
9-6
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Proposition 4.5.If i * :P1((0)→P1(V) is onto, then the in-
tegral homologyH* (V,Z) is torsion free and, hence, is com
pletely determined by the Betti numbers. Furthermo
the inequalities in lemma 4.3 become equalities:~a!
b15( i 50

k gi and ~b! b25k.

Proof. We first prove thatH* (V,Z) is torsion free. SinceV
has a boundary,H3(V)50. Also,H0(V) is one copy ofZ as
V is connected. Thus we need to show thatH1(V) and
H2(V) are free.
Claim 1. H2(V) is free.

To prove claim 1 we recall the classic result th
Hn21(Nn) is free for an orientable closedn-manifoldNn. To
make use of this, letV8 be a compact orientable three
manifold without boundary containingV ~e.g., takeV8 to be
the double ofV!, and letB5V8\V.

Assume thatW is a nontrivial torsion element inH2(V).
Now view W as an element inH2(V8). SupposeW50 in
H2(V8). ThenW50 in H2(V8,B). By excision,H2(V8,B)
5H2(V,]V), where ]V is the manifold boundary ofV.
HenceW50 in H2(V,]V). This means thatW5a sum of
boundary components inH2(V). But a sum of boundary
components cannot be a torsion element. ThusWÞ0 in
H2(V8). Moreover, if nW50 in H2(V), then nW50 in
H2(V8). It follows that W is a nontrivial torsion element in
H2(V8), a contradiction. HenceH2(V) is free.
Claim 2. H1(V) is free.

To prove claim 2 we first consider the relative homolo
sequence for the pairV.(0 :

¯→H1~S0!→
a

H1~V!→
b

H1~V,S0!→
]

H̃0~S0!50. ~6!

@Here H̃0((0) is the reduced zeroth-dimensional homolo
group.# Since, as discussed in lemma 4.4,a is onto, we
have kerb5Im a5H1(V), which implies b[0. Hence
ker]5Im b50, and thus] is injective. This implies that
H1(V,S0)50.

Now consider the relative homology sequence for
triple V.]V.(0 :

¯→H1~]V,S0!→H1~V,S0!50→H1~V,]V!

→
]

H0~]V,S0!→¯ . ~7!

Since H0(]V,(0) is torsion free and] is injective,
H1(V,]V) is torsion free. Next, Poincare´-Lefschetz duality
givesH2(V)>H1(V,]V). HenceH2(V) is torsion free. The
universal coefficient theorem implies that

H2~V!>Hom„H2~V!,Z…% Ext„H1~V!,Z…. ~8!

The functor Ext~2, 2! is bilinear in the first argument with
respect to direct sums and Ext(Zk ,Z)5Zk . HenceH2(V)
cannot be torsion free unlessH1(V) is. This completes the
proof of claim 2 and the proof thatH* (V) is torsion free.

It remains to show that the inequalities in lemma 4.3 b
come equalities. We proveb25k; the equationb15( i 50

k

gi then follows from Eq.~4!. In view of lemma 4.3, it is
sufficient to show thatb2<k. SinceH2(V) is finitely gener-
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ated and torsion free, we haveH2(V)>H2(V)
>H1(V,]V), where we have again made use of Poinca´-
Lefschetz duality. Henceb25rankH1(V,]V). To show that
rank H1(V,]V)<k, we refer again to the long exact se
quence ~7!. By excision, H0(]V,(0)>H0(]V\(0 ,B)
5H0(]V\(0). Hence, by the injectivity of ],
rankH1(V,]V)<rank H0(]V,(0)5the number of compo-
nents of]V\(05k. This completes the proof of propositio
4.5. j

The conclusion of proposition 4.5 applies to the spacel
three-surface with boundaryV of theorem 4.1. Thus we hav
completely determined the homology of the Cauchy surfa
of DK8 .

We now consider the asymptotically flat case with n
infinity I5I1øI2. For this case, letK be a spacelike cut o
I2, and let IK be the portion ofI to the future of K,
IK5IùJ1(K). Let DK be the domain of outer of commu
nications with respect to IK , DK5I 1(IK)ùI 2(IK)
5I 1(K)ùI 2(I1). Here DK8ªDKøI1 is a connected
spacetime with boundary, with]DK8 5I1 andDK5DK8 \I1.

We then have the following analogue of theorem 4.1.

Theorem 4.18. Let DK be the domain of outer communica
tions to the future of the cut K onI2 of an asymptotically flat
spacetimeM as described above. Assume thatDK8 is glo-
bally hyperbolic and satisfies the PTC. Suppose V0 is a

Cauchy surface forDK such that its closure V5V̄0 in M is
a topological three-manifold with boundary, compact outsi
a small neighborhood of i0, with boundary components con
sisting of a disjoint union of compact two-surfaces:

]V5t
i 51

k

S i ,

where the( i , i 51, . . . ,k, are on the event horizon. The
all ( i , i 51, . . . ,k, are two-spheres. Moreover, V0 has the
topology of a homotopy three-sphere minus k11 closed
three-balls.

Remark 1.In the AF case the asymptotic topology is sphe
cal, which corresponds tog050 in inequality~3!. But since
gi50, i 51, . . . ,k, inequality~3! is satisfied in the AF case
as well. Again, the topology of the event horizon is co
strained by the topology at infinity.
Remark 2.This theorem is a slightly strengthened version
the main theorem in@7#; it does not assume orientability o
V0 , and we conclude a stronger topology for this Cauc
surface.
Proof of theorem 4.18. The arguments used to prove theore
4.1 can be easily adapted, with only minor technical chan
involved, to prove in the AF case that each( i is a two-
sphere. Alternatively, one may argue as follows. By kno
results on topological censorship in the AF case@5,6#, DK is
simply connected and, hence, so isV0 . It follows that Ṽ
5Vø$ i 0% is a compact simply connected three-manifo
with boundary, with boundary components( i ,
i 51, . . . ,k. Then, according to lemma 4.9, p. 47 in Hemp
@23#, each( i is a two-sphere. By attaching three-cells
9-7
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each ( i , we obtain a closed simply connected thre
manifold, which by well-known results~see@23#! is a homo-
topy three-sphere. Removing the attached three-cells andi 0 ,
we obtain thatV0 is a homotopy three-sphere minusk11
closed balls. j
Remark.Although the above results were proved assum
global hyperbolicity, it is clear that the same results will ho
for a more general set of spacetimes that satisfy the PTC
for which a version of lemma 4.2 can be proved. Spacetim
that are not globally hyperbolic but satisfy a weaker con
tion such as weak cosmic censorship can still admit a p
jection onto a preferred spacelike surface. In particular,
can generalize the projection given by the integral flow o
timelike vector field on the domain of outer communicatio
used to push loops into the Cauchy surface to be a ret
Recall a retract ofX onto a subspaceA is a continuous map
r :X→A such thatr uA5 id. Thus, if V0 is a regular retract of
D, that is, if there exists a retractr :DøI→V0øS0 such that
r (I)#S0 , then one can again establish lemma 4.2.

V. DISCUSSION

We wish to emphasize that the results concerning bl
hole topology in four-dimensional spacetimes obtained
Sec. IV in no way contradict the numerical findings of@24#
concerning the existence in principle of temporarily toroid
black holes in asymptotically flat spacetimes. The con
tency of topological censorship with asymptotically flat mo
els containing temporarily toroidal black hole horizons h
been clearly elucidated in@25#. The acausal nature of cros
over sets, expected to be present in the early formation o
event horizon, permits slicings of the event horizon in
ymptotically flat black hole spacetimes with exotic~i.e., non-
spherical! topologies. See the recent papers in Refs.@26, 27#
for further discussion. As described in Sec. IV, the method
topological censorship for exploring the topology of bla
hole horizons makes use of specific time slices, nam
Cauchy surfaces for the DOC or for the subregion of
DOC to the future of a cut onI. Surfaces exhibiting tempo
rarily toroidal black hole horizons are not such surfac
Moreover, the method requires such a slice to have a n
empty edge which meets the horizons inC0 compact sur-
faces. We elaborate further on these points below.

It is important to keep in mind that not all Cauchy su
facesV0 for the DOC are interiors of orientable manifold
with boundary V corresponding to the intersection of
spacelike slice with the black hole horizons. Consider tht
50 slice of theRP3 geon. As discussed in@5#, this space-
time is constructed from thet50 slice of Schwarzschild
spacetime by identifying antipodal points at the throar
52M . The maximal evolution of this slice is a spacetim
with spatial topologyRP32pt. Its universal covering spac
is the maximally extended Schwarzschild spacetime.

The t50 slice of theRP3 geon contains a nonorientab
RP2 with zero expansion. ThisRP2 is not a trapped surfac
as it does not separate the slice into two regions. It is not
of the DOC as any radially outward directed null geode
from this surface does not intersectI; thus, it is clearly part
of the horizon. The intersection of the DOC with thet50
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slice produces a simply connectedV0 . The intersection of
the horizon with this slice isRP2. However, we cannot at
tach this surface toV0 to produce a manifold with boundar
V by the inclusion map; instead, this map reproduces
original t50 slice which has no interior boundary. Not
however, that any spacelike slice that does not pass thro
this RP2 will intersect the horizon at anS2. In fact, this will
be the generic situation. Moreover, the intersection of suc
slice with the DOC will produce a simply connectedV0
which is the interior of a closed connected orientableV with
an S2 interior boundary.

Clearly, this example does not contradict any results
Sec. IV, which assumes an orientableV with two or more
boundaries. However, it does yield the important lesson
one must constructV to apply the theorem, notV0 . It also
gives an example of a badly behaved cut of the horiz
again illustrating the usefulness of taking slices to the fut
of a cut ofI.

For our second example, we construct a toy model o
black hole spacetime that mimics a special case of topol
change, namely, that of black hole formation from a sin
collapse. This model illustrates several features: how
choice of a hypersurface can affect the description of hori
topology and how some cuts ofI give rise to a Cauchy
surface whose edge on the horizon is not a two-manifold

We begin with a three-dimensional model; later a fou
dimensional example will be constructed by treating t
three-dimensional model as a hyperplane through an axi
symmetry in the larger spacetime. Our spacetime can h
either anti–de Sitter or flat geometry; as both are conform
to regions of the Einstein static cylinder, we use as coo
nates in the construction below those of the conformally
lated flat metric~cf. @19#, Secs. 5.1 and 5.2!. We depictI as
timelike in the accompanying figures, but it can equally w
be null.

We begin in three dimensions with a line segmentL de-
fined by t5y50, uxu< l . The futureI 1(L) of this line seg-
ment is a sort of elongated cone, whose traces in hyperpla
of constantt have the shape of rectangles with semicircu
caps attached to the two short sides. We foliate the space
by hyperboloids:

t5a1Ar 21b, ~9!

where r 25x21y2 and a,b are conveniently chosen param
eters. These hyperboloids cutI in a circle. We now remove
from spacetime all points ofJ1(L) above a hyperplanet
5d intersecting it to the future. What remains is a black ho
spacetime and has a globally hyperbolic domain of ou
communicationsD ~again, cf. Sec. II!. The black hole is the
set of remaining points ofI 1(L). The horizon]I 2(I1) is
generated by null geodesics that all begin onL.

The Cauchy surface forD will have topologyR2 and does
not cross the horizon. Thus, to probe the topology of
horizon, one needs to consider spacetimes correspondin
the future of a cut ofI. However, not every cut ofI will
produce a spacetime with a Cauchy slicing with the corr
9-8
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FIG. 1. A bad cut of the horizon. The surfaceVK is the Cauchy
surface for the domain of outer communications of the spacetim
the future of the cutK of I. The inner boundary of the causal futu
of K intersects the horizon at a spacelike line segment. Co
quently the closure ofVK has topologyR2.

FIG. 2. A good cut of the horizon. The surfaceVK is the Cauchy
surface for the domain of outer communications of the spacetim
the future of the cutK of I. The intersection of the inner boundar
of the causal future ofK with the horizon is nowS1. Consequently,
the closure ofVK intersects the horizon atS1.
10403
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FIG. 3. Two slicings of the horizon by hyperboloids. Both illu
trations concentrate on the region near the horizon. The top il
tration is of a hyperboloid that intersects the horizon at two to
logical circles. The bottom illustration is of a hyperboloid that li
to the future of the first. It intersects the horizon at one topologi
circle.

FIG. 4. Entanglement and nonentanglement of curves on b
hole horizons. Each illustration displays a cross section of a cu
I. The cutaway reveals a cut of a black hole horizon inside. In
top illustration, the cut ofI has genus 0, that of the horizon ha
genus 1, and, as illustrated, there are curves not deformable toI. In
the middle illustration, the genus of the cut ofI and that of the
horizon are both 2, and they are linked in such a manner that e
curve is deformable toI. In the illustration at bottom, the genus o
the cut ofI exceeds that of the horizon, and again every curve
deformable toI.
9-9
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GALLOWAY, SCHLEICH, WITT, AND WOOLGAR PHYSICAL REVIEW D60 104039
properties. Such a bad cut ofI is illustrated in Fig. 1. The
boundary of the causal future of this cut intersects the h
zon at a segmentI of L. The topology of a Cauchy slice fo
its DOC isR2\I . Its closure intersects the horizon atI; thus,
as in theRP3 geon above, the closure of this slice has
inner boundary, being in this caseR2.

This 3D spacetime corresponds to a 4D axisymmetric
spacetime. The correspondence between axisymmetric
tial hypersurfaces and thexy planes of the spacetime is ge
erated by rotating eachxy plane about they axis. After this
rotation, one sees that the line segmentL becomes a disk in
the 4D axisymmetric spacetime. The Cauchy surface
question meets the horizon in a disk~a closed two-ball! and
has topologyR3 minus that disk. The closure of the Cauch
surface isR3 and again has no internal boundary. Thus
results of Sec. IV do not apply to this Cauchy slice.

A good cut ofI is illustrated in Fig. 2. This cut intersect
the horizon at a sphere. The topology of a Cauchy surface
its DOC is R2\B2, and the intersection of its closure isS1.
The Cauchy surface in the corresponding four-dimensio
model has topologyR3\B3 with internal boundaryS2. The
results of Sec. IV clearly apply in the latter case.

Of course, not all spacelike surfaces need be Cauchy
faces of the spacetime to the future of a cut ofI. The family
of hyperboloids~9!, two of which are illustrated in Fig. 3
provides an example of such surfaces. As recognized in@25#
in a similar model, this family exhibits the formation of
temporarily toroidal black hole horizon as the parametera in
Eq. ~9! increases; these surfaces intersect the horizon
pair of topological circles, which by axial symmetry corr
spond to a toroidal horizon in the four-dimensional spa
time. The circles increase in size and eventually me
whence the horizon topology changes. After this point, th
surfaces meet the horizon at a circle, corresponding t
sphere by axial symmetry.

In contrast, with respect to constant-t surfaces, the horizon
forms completely at thet50 instant. For everyt.0 hyper-
surface, the black hole has spherical topology, and inequ
l

tt.

.

J.
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~3! holds. Anyt5t0.0 hypersurface is a Cauchy surface f
the region ofD that lies in the future of an appropriate cut
I. The apparent change of horizon topology from toroidal
spherical was an effect entirely dependent on the choice
hypersurface. The only unambiguous description of t
black hole is that no causal curve was able to link with t
horizon, i.e., that the PTC was not violated.

In the Introduction, we offered the view that the topolog
of the boundary at infinity constrained that of the horizon
but one could equally well reverse this picture. Let us co
template a black hole considered as a stationary, caus
well-behaved, isolated system cut off from the Universe b
sufficiently distant boundaryI. Then we have shown tha
topological censorship requires the genus of the horizon
be a lower bound for that of the boundary. As remark
above, this seems an intuitive result; as illustrated in Fig
when one visualizes placing a genusg1 surface within a
genusg2 ‘‘box’’ with no possibility of entangling curves, it
seems clear thatg2>g1 . Yet, as is often the case with suc
things, the powerful machinery of algebraic topology w
required to prove it. An advantage of using this powerful to
is that we were able to completely specify the homology
well-behaved exterior regions of black holes and, in virtue
proposition 4.5, to say that all interesting homology of the
exteriors, save that which is reflected in the topology of s
is directly attributable to the presence of horizons.

ACKNOWLEDGMENTS

E.W. wishes to acknowledge conversations with R.
Mann and W. Smith concerning locally anti–de Sitter spa
times. G.J.G. and E.W. thank Piotr Chrus´ciel for conversa-
tions concerning the validity of topological censorship f
these spacetimes. This work was partially supported by
Natural Sciences and Engineering Research Council
Canada and by the U.S. National Science Foundation, G
No. DMS-9803566.
e-

P.

n-
@1# S. W. Hawking, Commun. Math. Phys.25, 152 ~1972!.
@2# G. J. Galloway, inDifferential Geometry and Mathematica

Physics, Contemporary MathematicsVol. 170, edited by J.
Beem and K. Duggal~AMS, Providence, 1994!, p. 113.

@3# P. T. Chrus´ciel and R. M. Wald, Class. Quantum Grav.11,
L147 ~1994!.

@4# S. F. Browdy and G. J. Galloway, J. Math. Phys.36, 4952
~1995!.

@5# J. L. Friedman, K. Schleich, and D. M. Witt, Phys. Rev. Le
71, 1486~1993!.

@6# G. J. Galloway, Class. Quantum Grav.12, L99 ~1995!.
@7# T. Jacobson and S. Venkataramani, Class. Quantum Grav12,

1055 ~1995!.
@8# J. P. S. Lemos, Phys. Lett. B352, 46 ~1995!.
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