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Topological censorship and higher genus black holes
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Motivated by recent interest in black holes whose asymptotic geometry approaches that of anti—de Sitter
spacetime, we give a proof of topological censorship applicable to spacetimes with such asymptotic behavior.
Employing a useful rephrasing of topological censorship as a property of homotopies of arbitrary loops, we
then explore the consequences of topological censorship for the horizon topology of black holes. We find that
the genera of horizons are controled by the genus of the space at infinity. Our results make it clear that there
is no conflict between topological censorship and the nonspherical horizon topologies of locally anti—de Sitter
black holes. More specifically, |69 be the domain of outer communications of a boundary at infinity “scri.”

We show that the principle of topological censorstiyT C), which is that every causal curve i having end

points on scri can be deformed to scri, holds under reasonable conditions for timelike scri, as it is known to do
for a simply connected null scri. We then show that the PTC implies that the fundamental group of scri maps,
via inclusion, onto the fundamental group®f i.e., everyloop in D is homotopic to a loop in scri. We use this

to determine the integral homology of preferred spacelike hypersurf@aschy surfaces or analogues
thereoj in the domain of outer communications of any four-dimensional spacetime obeying the PTC. From
this, we establish that the sum of the genera of the cross sections in which such a hypersurface meets black hole
horizons is bounded above by the genus of the cut of infinity defined by the hypersurface. Our results
generalize familiar theorems valid for asymptotically flat spacetimes requiring simple connectivity of the
domain of outer communications and spherical topology for stationary and evolving black holes.
[S0556-282(199)08218-1

PACS numbd(s): 04.70.Bw, 04.20.Gz

[. INTRODUCTION of the active topological censorship theorem of Friedman,
Schleich, and Witf5] (FSW). This latter result states that in
It is generally a matter of course that the gross features o globally hyperbolic, asymptotically flafAF) spacetime
shape, i.e., the topology, of composite objects, from mol-obeying an averaged null energy conditiotimately, in the
ecules to stars, are determined by their internal structure. Yehodified form used below—sd€]), every causal curve be-
black holes are an exception. A black hole has little internafjinning and ending on the boundary at infinity could be ho-
structure, but the topology of its horizon is nonethelessmotopically deformed to that boundary. When topological
strongly constrained, seemingly by tegternalstructure of  censorship holds, the domain of outer communications
spacetime. This was made apparent in the early work ofDOC—the region exterior to black and white holes an
Hawking[1], who established via a beautiful variational ar- AF spacetime must be simply connecf&d.
gument the spherical topology of stationary horizons. Hawk- Jacobson and Venkataramdi, also using the topologi-
ing’s proof was predicated on the global causal theoretic reeal censorship theorem of FSW, were able to extend the
sult that no outer trapped surfaces can exist outside the blagksult of Chrusiel and Wald on black hole topology beyond
hole region, unless energy conditions or cosmic censorshithe stationary case. The principle behind their arguments was
are violated. As argued by Hawking fit], the possibility of  that any horizon topology other than spherical would allow
toroidal topology, which arises as a borderline case in higertain causal curves outside the horizon to link with it, and
argument, can be eliminated by consideration of a certaiso such curves would not be deformable to infinity, which
characteristic initial value problem and the assumption ofyould contradict FSW.
analyticity; sed 2] for further discussion of this issue. In the early 1990s, new solutions with nonspherical black
In recent years an entirely different approach to the studyole horizons were discovered in locally anti—de Sitter
of black hole topology has developed, based on the notion ofAdS) spacetime$8—13]; for a recent review, selel4]. The
topological censorshipgn 1994, Chrusiel and Wald 3], im-  original topological censorship theorem did not apply to
proving in the stationary setting the result on black hole tothese spacetimes since they were not AF and not globally
pology considered 2] and[4], were able to remove the hyperbolic. However, two improvements to the proof of to-
analyticity assumption in Hawking's theorem by making usepological censorship indicated that these differences ought
not matter. Galloway15] was able to produce a “finite in-
finity” version of topological censorship that replaced the

*Email address: galloway@math.miami.edu usual asymptotic conditions on the geometry with a mild
"Email address: schleich@noether.physics.ubc.ca geometrical condition on a finitely distant boundary, and
*Email address: donwitt@noether.physics.ubc.ca Galloway and Woolgalr16] were able to replace the assump-
SEmail address: ewoolgar@math.ualberta.ca tion of global hyperbolicity by weak cosmic censorship.

0556-2821/99/6(10)/10403911)/$15.00 60 104039-1 ©1999 The American Physical Society



GALLOWAY, SCHLEICH, WITT, AND WOOLGAR PHYSICAL REVIEW D60 104039

Moreover, it was soon observéti7] that topological censor- pose no constraints at all on the topology of black hole ho-
ship in the sense of FSW held true for each of the newlyrizons. Hawking’sg=0 restriction[1,19,20 on the horizon
discovered black hole constructions in locally AdS spacetopology, by way of contrast, does assume non-negative en-
time, although no general proof was known in this settingergy density on the horizon and so is not in force in the
and obviously the aforementioned corollary implying spheri-presence of a negative cosmological constant in vacuum, but
cal horizon topology could not hold. This is not as we will see, the PTC remains valid and imposes con-
paradoxical—the topology of the locally AdS black hole straints on the topology.
spacetimes is such that no causal curve links with a non- In Sec. lll, we will prove that the mapping from the fun-
spherical horizon in such a way as to preclude a homotopgamental group of to that of the domain of outer commu-
deforming that curve to infinity.In fact, we will see below nications is a surjection for spacetimes satisfying the PTC.
that the corollary implying the spherical topology of black This theorem generalizes previous results on the DOC being
holes in AF spacetime is merely a special case of a moreimply connected in asymptotically flat spacetimes. This
general corollary of topological censorship which gives acharacterization allows us to shift attention from causal
relationship between the topology of the black hole horizongurves to arbitrary loops in further study of the consequences
and the “topology of infinity.” In this sense, the topology of of the PTC.
the black hole horizons is governed by a structure that is as In Sec. IV, by considering loops restricted to certain
“external” as possible, being entirely at infinity. spacelike surfaces and using arguments from algebraic topol-

In this paper, we will consider spacetimes that obey theogy, we give a very direct derivation of the topology of black
Principle of Topological CensorshiPTC). Let M be a hole horizons and the integral homology of hypersurfaces in
spacetime with metrig,,. Suppose this spacetime can be exterior regions of four-dimensional spacetimes. More pre-
conformally included into a spacetime with boundary cisely, we consider the topology of the closure of the Cauchy
M' = MUZ, with metricg,, whose restriction to\{ obeys  surfaces or analogues thereof for the DOC whose intersec-
gap=02%g.p, and whereT is the Q=0 surface, which de- tions with the horizons are closed two-manifoldgood
finesZ as the boundary at infinity. For a connected boundarguts”). We find that
componentZ,? the domain of outer communicatidh is de- K
fined by ;1 9i=<0o.

D:=1T(D)N1~(T). 1)
where theg; are the genera of the cuts of the black hole

The PTC is the following condition o®: horizons andy, is the genus of a cut of by the surface.

Principle of Topological CensorshifEvery causal curve Thys the topology of black hole horizons is constrained by
whose initial and final end points belong Tois fixed end  the topology at infinity. This result also pertains to any sub-
point homotopic to a curve of.> domain of the DOC that lies to the future of a cutDfnd

The PTC has already been established for general, physjghose Cauchy surfaces—or analogues thereof—meet the ho-
cally reasonable AF spacetime; £8], [16]. In the next sec-  rizons at closed two-manifolds. Therefore, it applies to the
tion we present a proof of the PTC in a setting that includesopology of the black hole horizons in the presence of black
many asymptotically locally anti—de Sitter black hole spaceole formation or evolution at times for which the appropri-
times. This genera“zation eXpIOitS the fact that PTC prOOfSate subdomain and surfaces can be found. Fina”y, we dem-
generally follow from a condition on double-null compo- onstrate that the integral homology of these surfaces is tor-
nents of the Ricci tensor. These components can be related §yn free and consequently completely determined by the
the double-null components of the stress-energy tensqsetti numbers. Furthermore, these are completely fixed in
through the double-null Components of the Einstein €équaterms of the genera of the boundary_
tions. This relation involves no trace terms and so clearly is Section V contains a discussion concerning these results

insensitive to the cosmological constant. This corrects thengd their applicability to the case of nonstationary black
impression that the PTC is invalid in the presence of a negangles.
tive cosmological constarjtL3,18, an impression that, if it

were true, would imply that the PTC in this case would im- Il VALIDITY OF THE PTC

The aim of this section is to present a version of the PTC
That topological censorship proofs should generalize to space@ppl'c"jlble to spacetimes which are asymptotically locally

times having the asymptotic structure of these new black holes Wagnti—de Sit_ter. Hence we consider_a spacet_Mewith met-_
first suggested ifi7]. ric g,p, Which can be conformally included into a spacetime

2For the purpose of discussion, in the AF case we assume fofith boundary M'=MUZ, with metric Jan, Such that
simplicity thati® is included inZ. dM'=TIis timelike(i.e., is a Lorentzian hypersurface in the

3FSW's original statement of topological censorship required evinduced metrig and M= M"\Z. We permitZ to have mul-
ery causal curve beginning and ending®to be homotopic to one  tiple components. With regard to the conformal factor
in a “simply connected neighborhood of infinity.” Our phrasing € C*(M’'), we make the standard assumptions ttat
above accommodates spacetimes for whichas no simply con- Q>0 and g},=Q2g,, on M, and (b) Q=0 anddQ+#0
nected neighborhoods. pointwise onZ.
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Just as in the case of spacetimes without a boundary, weheorem 2.2. LeD be the domain of outer communications

say that a spacetime with boundaty’ is globally hyper-
bolic provided M’ is strongly causal and the sets
J*(p,M")NJI~(q, M) are compact for alp,qe M’. Note

with respect tdZ as described above, and assume the follow-
ing conditions hold
(i) D'=DUZ is globally hyperbolic.

that whenZ is timelike, as in the situation considered here,(ii) Z admits a compact spacelike cut.
M can never be globally hyperbolic. However, in many ex-(iii) For each point p inM nearZ and any future complete
amples of interest, such as anti—de Sitter space and the dnull geodesic s- 7(s) in D starting at p [oRic(%',7’)ds
main of outer communications of various locally AdS =0.
spaces M’ is. Then the PTC holds of.

For later convenience, we define a Cauchy surfacéir
to be a subse¥’ C M’ which is met once and only once by RemarkLetK be a cut ofZ, and letZk be the portion off to
each inextendible causal curve int’. ThenV’ will be a  the future ofK, Zy=ZN1"(K). Let Dy be the domain of
spacelike hypersurface which, as a manifold with boundaryputer of communications with  respect toZy,
has a boundary of. It can be shown, as in the standard case D=1 (Zx) N1~ (Zx) =1 (K)N1~(Z). Theorems 2.1 and
that a spacetime with timelike bounda®y which is globally 2.2 apply equally well t@,-. This procedure, first discussed
hyperbolic admits a Cauchy surfaeé and is homeomorphic by Jacobson and Venkataramdfi], allows one, by the
to RXV’'. (This can be shown by directly modifying the methods of this paper, to study the topology of cuts on the

proof of proposition 6.6.8 iN19]. Many of the locally
anti—de Sitter and related mod¢B—-11,13,14 which have

future event horizor{= 9l ~(Z) of the formal " (Zx) N'H.
By taking K sufficiently far to the future, this procedure en-

been constructed have DOCs which admit Cauchy surfaceables one to consider cuts ¢ well to the future of the

of this sort.

initial formation of the black hole, where one has a greater

The proof of the PTC is a consequence of the followingexpectation that the intersection &f with d1 *(Z) will be

basic result.

Theorem 2.1. LetMC M’ be as described above, and as-
sume the following conditions hold.

(i) M'=MUZ is globally hyperbolic.

(i) There is a componeri, of Z which admits a compact
spacelike cut

(iii ) For each point p inM nearZ, and any future complete
null geodesic s»>n(s) in M starting at p
JoRic(n',7")ds=0.

ThenZ, cannot communicate with any other componeri,of
i.e., ' (Zo) N (1\Ty) = 2.

reasonabléi.e., a surface Seg/7] and Secs. IV and V below
for further discussion of this point. In what follows, it is
worth keeping in mind thaf may refer to the portion of scri
to the future of a cut.
Proof of theorem 2.1The global hyperbolicity ofAM’ im-
plies that Z, is strongly causal as a spacetime in its
own right and that the setsJ"(x,Zy)NJ (y,Zo)
[CIT(x,M")NI™(y,M")] for x,y e T, have compact clo-
sure inZy. This is sufficient to imply thatZ, is globally
hyperbolic as a spacetime in its own right. Assumptioh
then implies thafZ, is foliated by compact Cauchy surfaces.
Now suppose thal ™ (Z;) meets some other component
7, of Z: i.e., suppose there exists a future-directed causal
curve from a pointpe Z, to a pointqeZ;. Let 3, be a

Condition (i) is a modified form of the average null en- Cauchy surface fof, passing througlp. Push,, slightly in
ergy condition(ANEC). This term usually refers to a condi- the normal direction tdZ, to obtain a compact spacelike
tion of the same form aii ) except that the integral is taken surface, contained inM. Let V be a compact spacelike
over geodesics complete to both past and future. Note that Hypersurface with boundary spannidg and>. By proper-
one assumes that the Einstein equations with cosmologicéies of the conformal factor, we are assured, for suitable
constantR,,— 3R 0.+ Aga,=87T,, hold, then for any pushes, thak is null mean convexBy this we mean that the

null vectorX, Ric(X,X) =R, X3XP=87T,,X3X". Then the
integrand Ricg’,%’) in (i) could be replaced by

future-directed null geodesics issuing orthogonally fram
which are “inward pointing” with respect td, (i.e., which

T(%n',n'). Clearly, the presence and sign of the cosmologipoint away fromV) have negative divergence.
cal constant are irrelevant to whether or not a spacetime sat- Under the present suppositiod; (V) meetsZ,. At the

isfying the Einstein equations will satisfy conditidif ).
For the next theorem, WA’ is not connected, lef de-

note a single component &fM’'. Let D=1"(Z)N I~ (Z) be

the domain of outer communications.®f with respect tdZ.

same timeJ* (V) cannot contain all ofZ;. If it did, there
would exist a past inextendible causal curveZinstarting at
ge Z; contained in the compact sét (V)NJ~(q), contra-
dicting the strong causality of1’. HencedJd™ (V) meetsZ; ;

Assume thatD does not meet any other components oflet g, be a point ingd™(V)NZ;. Since M’ is globally hy-

dM’. Note that if the conditions of theorem 2.1 hold, this

latter assumption is automatically satisfied. Using in additionwhich

the fact thatZ is timelike, it follows thatD is connected and
the closure ofD in M’ containsZ. ThenD’:=DUZ is a
connected spacetime with boundary, wiiD'=7 and
D=D'\T.

We now state the following topological censorship theo-

rem, applicable to asymptotically locally AdS spacetimes.

perbolic, it is causally simple; cf. proposition 6.6.1[it9],
remains valid in the present setting. Hence
3 (V)=J"(V)\I"(V), which implies that there exists a
future-directed null curvepC dJ* (V) that extends from a
point onV to qq. (Alternatively, one can prove the existence
of this curve from results di21], which are also valid in the
present setting. It is possible thaty meetsZ several times
before reaching)y. Consider only the portiom, of » which
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extends from the initial point of; on V up to, but not in-
cluding, the first point at whichy meetsZ.
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rems 2.1 and 2.2 still hold, and moreover they do not require
the compactness conditiofii). The proof of theorem 2.1

By properties of achronal boundaries and the conformatinder these new assumptions involves the construction of a

factor, 7, is a future complete null geodesic.ivt emanating
from a point onV. Since 7, cannot entet *(V), it follows
that (1) n, actually meetd/ at a pointpg of X, (2) 79 meets
3 orthogonally atpg, and(3) 7q is inward pointing with
respect toZ, (i.e., 5y points away fromV). Since 7, is
future complete, the energy conditigii) and null mean
convexity of Y, imply that there is a null focal point t&
along 7. But beyond the focal point;yy must enter
I (2)[CI7(V)], contradictingn,C 33 (V). [ |
Proof of theorem 2.Zhe proof is an application of theorem
2.1, together with a covering space argument.p=xZ. The
inclusion mapi:Z— D’ induces a homomorphism of funda-
mental groupsi, :I1,(Z,p)—11,(D’,p). The image G
=i, (I14(Z,p)) is a subgroup ofl;(D’,p). Basic covering

complete null ling(globally achronal null geodesievhich is
incompatible with the energy conditions. The results in this
setting are rather general, and in particular the proofs do not
use in any essential way thatis timelike. We also mention
that the global hyperbolicity assumption in theorem 2.2 can
be weakened in a fashion similar to what was done in the AF
case in[16].

We now turn our attention to a characterization of topo-
logical censorship which will allow us to more easily explore
the consequences of topological censorship for black hole
topology.

Ill. ALGEBRAIC CHARACTERIZATION
OF TOPOLOGICAL CENSORSHIP

space theory guarantees that there exists an essentially The main result of this section is a restatement of the

unique covering spac®’ of D' such thatwr, (I1,(D’,P))
=G=i,(I1,(Z,p)), wherem: D' D' is the covering map
and7(p) =p. EquipD’ with the pullback metrier* (g’) so
that D' — D' is a local isometry. We note that whéhis

simply connected]’ is the universal cover oD’, but in
general it will not be. In a somewhat different contéxe.,
whenD' is a spacetime without boundary afids a space-

like hypersurface D’ is known as the Hawking covering
spacetime: cf[19,22.

The covering spacetin®’ has two basic properties:(a)
The component of 7=~ %(Z) which passes through is a
copy of 7' ie. m,|3:7—Z is an isometry, and(b)
i, (I1.(Z,p)=11,(D',p), wherei:Z—D’.

Property(b) says that any loop i’ based ap can be
deformed through loops basedfato a loop inZ based ap.

properties of a spacetime satisfying the PTC in a language
amenable to algebraic topological considerations.

Let D andZ be as in Sec. |. The®' =DUZ is a space-
time with boundary, withgD'=Z. The inclusion map
i:Z—D’ induces a homomorphism of fundamental groups
i, I{(Z)—11(D"). Then we have the following.

Proposition 3.1.If the PTC holds forD’, then the group
homomorphism, :11,(Z)—1I1,(D") induced by inclusion is
surjective.

Remark.Note that the fundamental groups BfandD’ are
trivially isomorphic, I1,(D)=11,(D'). Hence proposition
3.1 says roughly that every loop M is deformable to a loop
in Z. Moreover, it implies thall,(D) is isomorphic to the
factor groupll(Z)/keri, . In particular, ifZ is simply con-
nected, then so i®.

This property is an easy consequence of the defining prop- Our proof relies on the following straightforward lemma

erty 7, (I1,(D’,p))=i, (I1,(Z,p)) and the homotopy lifting
property. In turn, propertyb) easily implies that any curve
in D’ with end points oY is fixed end point homotopic to a

curve inZ.
Now let y be a future-directed causal curve T with
end points orZ. Assumey extends fronke ZtoyeZ. Lety

be the lift of y into D’ starting afkeZ. Note that the hy-
potheses of theorem 2.1, witht=D:=7 (D), M'=D’,
andZ,=7, are satisfied. Hence the future end pginof 5
must also lie orZ. Then we know tha¥ is fixed end point

homotopic to a curve iff. Projecting this homotopy down to
D', it follows thaty is fixed end point homotopic to a curve
in Z, as desired. |

in topology

Lemma 3.2Let N be a manifold ands an embedded sub-
manifold with inclusion mapping: S— N. If in the universal
covering space olN the inverse image df by the covering
map is connected, thanp :11,(S)—1I,(N) is surjective.

Proof. Strictly speaking, we are dealing with pointed spaces
(S,p) and (N,p), for some fixed poinp € S, and we want to
show thati, :I1,(S,p)—1I;(N,p) is onto. Let[cy] be an
element oflI{(N,p): i.e., letcy be a loop inN based ap.

Let N be the universal covering space Nf with covering
map 7:N—N. Choosep e N such thatm(P)=p. LetT, be
the lift of ¢, starting aff; then, %, is a curve inN extending

RemarksSince many examples of locally AdS spacetimes—from P to a pointg with 7(d)=p. Sincep,ge = *(S) and
for example, those constructed by identifications of AdS7 '(S) is path connected, there exists a cugyen 7~ *(S)
[9-11,13,14—do not obey the generic condition, our aim from P to §. The projected curve,=(T,) is a loop inS
was to present a version of the PTC which does not requireased atp, i.e., [c;]eI1,(S,p). Since N is simply con-

it. However, if one replaces the energy conditi@n by the
generic condition and the ANEQ”_Ric(n’,»')ds=0
along any complete null geodesse- 7(s) in D, then theo-

nected,C, is fixed end point homotopic t6,. But this im-
plies thatcg is homotopic tac, through loops based gt i.e.,
i.([c1])=[col, as desired. |
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Proof of proposition 3.1We letN be the universal covering Cclosely related to that of the horizons. For example, if each
spacetime of\:=D' with projection NN, Then N horizon has a region with product topology, this topology is

~ = ~ _ . . . determined by that of a good cut passing through this region.
— — 1
=DUI, whereD=m (D) is the universal covering space- aq gemonstrated by Jacobson and Venkatarafivgrior as-

time of D andZ= ffl(z) is the boundary oN. ymptotically flat spacetimes, the PTC constrains the topol-
Every point inD belongs to the inverse image by of  ogy of good cuts of the horizons by the closure of a Cauchy
some point inD, and every point irD lies on some causal surface for the domain of outer communications to be two-

curve beginning and ending & so every point irD lies on  Spheres.

some causal curve beginning and endingZorBy the PTC Now it is possible that a black hole horizon admits two
and basic lifting properties, no such curve can end on a difgOOd cuts by spacelike hypersurfaces, one entirely to the

~ . future of the other, such that the cuts are not homeomorphic.
ferent connected component®than it began on. Therefore

) ' This can only happen if null generators enter the horizon
if we label these connected componentsdyythe open sets between the two cuts. Physically, such a situation corre-

I"(Z,)N17(Z,) are a disjoint open cover ab. But D is  sponds to a black hole with transient behavior, such as that
connected, sa can take only one value, whengeis con-  induced by formation from collapse, collision of black holes,
nected. It follows thatD’ satisfies the conditions of lemma or absorption of matter. Jacobson and Venkataramani ob-
3.2 with S=7 and therefore, :I1,(Z)—11,(D’) is surjec- served that their theorem could also be applied to such situ-
tive. Thusi, :11,(Z)—1I1,(D) is surjective. B  ations for certain spacelike hypersurfaces that cut the hori-
All known locally anti—de Sitter black holes and related zons sufficiently far away from regions of black hole
spacetimes are in accordance with proposition 3.1. We corformation, collision, or matter absorption. Precisely, when
clude this section with the following simple corollary to the domain of outer communications is globally hyperbolic
proposition 3.1. to the future of a cut off and if the PTC holds on this
o subdomain, then the PTC will constrain the topology of this
_Cor(_)llary 3.3.1f the PTC holds forD’, thenD is orientable subdomain, of its Cauchy surface, and ultimately of good
if Zis. cuts of the horizons. Thus, though the PTC does not deter-
mine the topology of arbitrary embedded hypersurfaces or
the cuts they make on the horizons, it does do so for hyper-
surfaces homeomorphic to Cauchy surfaces for these subdo-
mains that make good cuts of the horizons. Such subdomains
can be found for black hole horizons that settle down at late
times.
Below we provide a generalization of these results appli-
cable to a more general set of spacetimes satisfying the PTC
IV. APPLICATION TO BLACK HOLE TOPOLOGY than asymptotically flat spacetimes. This generalization is
The boundary of the region of spacetime visible to ob-based on _the observation tha_t if one can continuously p_ush
servers af by future-directed causal curves is referred to as@ny 100p in the DOC down into an appropriate spacelike
the event horizon. This horizon is a set of one or more nulurface that cuts the horizons in spacelike two-manifolds, it
surfaces, also called black hole horizons, generated by nufp!lows from proposition 3.1 that the fundamental group of
geodesics that have no future end points, but possibly haJde spacelike surface is related to thafZofn the mtelrests of .
past end points. The topology of these black hole horizons i& cle_ar presentation that_carefully treats all technical det{;uls,
constrained in spacetimes obeying the PTC because, as w#§ first prove the following results for globally hyperbolic
seen in Sec. I, the topology of the domain of outer commu-four-dimensional spacetimes W|th_t|melﬂ<é and, we em-
nications is constrained by the PTC—intuitively, causalPhasize, for any globally hyperbolic subdomain correspond-
curves that can communicate with observerg aannot link N9 to the future of a cut of. We then provide the results for
with these horizons in a nontrivial way: rather, they only the case of globally hyperbolic, asymptotically flat space-
carry information about the nontriviality of curves @n times. From the method of proof of these two cases, it is
Useful though this description is, it does not characterizénanifestly apparent that these theorems can be easily gener-
the topology of these horizons themselves, but rather thalized to a wider class of spacetimes that satisfy the PTC. We

hole that their excision leaves in the spacetime. Howeverconclude with a remark about how to provide the correct
one can obtain certain information about these horizons ifechnical statement and proofs for these cases. We will also

one considers the topology of the intersection of certairffomment further on the transient behavior associated with

spacelike hypersurfaces with the horizons in four-Plack hole formation in the Discussion section. ,
dimensional spacetimes, those whose intersection with the L&t/M be aspacetime with timelike infinity and domain
horizons are closed spacelike two-manifolg@od cuts of of outer communication®. AssumeZ is connected and ori-
the horizong For example, if one has a single horizon of

product form, as is the case for a stationary black hole, then

the horizon topology is determined by that of the two- “we remind the reader that the notions of global hyperbolicity and
manifold. Of course, black hole horizons are generally not oiCauchy surfaces for spacetimes with timelikare reviewed at the
product form; however, the topology of any good cut is still beginning of Sec. II.

Proof. In fact, D’ is orientable, for ifD" were not orientable
and 7 were, thenD’ would possess an orientable double
cover containing two copie$; andZ, of Z. Then a curve
from p;eZ; to p,eZ,, where w(py)=7w(py)=pel,
would project to a loop irD’ not deformable tdZ, contrary
to the surjectivity ofi, . |
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entable. LetK be a spacelike cut of, and letZ, be the PTC holds forD).. Then, by proposition 3.k, can be con-
portion of7 to the future oK, Zy=ZN1"(K). Let Dy be the  tinuously deformed through loops ;. to a loopc; in Zy .
DOC with respect to Zx, Dr=1"(Z)NI (Zx) It follows by composition withr thatc,=reoc, can be con-
=17(K)N17(Z). Note thatDy:=DxUI is a connected tinuously deformed through loops i/ to the loop
spacetime with timelike boundary, wit#Dy=Z, and c,=rec, in =, and hence, ([c,])=[co], as desired. B
Dx=Di\Ix. In the following we will assume thaDj- is By corollary 3.3 and the assumptions of theorem ¥.1s
globally hyperbolic and has a Cauchy surfateas in Sec. a connected, orientable, compact three-manifold with bound-
Il. The following theorem is the main result pertaining to the ary whose boundary consists of 1 compact surfacey;,
topology of black holes. i=0,...k. For the following results, which are purely topo-
logical, we assum¥ is any such manifold.
Theorem 4.1. LeD; be the domain of outer communications  All homology and cohomology below are taken over the
to the future of the cut K off as described above. Assume integers. Thejth homology group of a manifol® will be
that Dy is globally hyperbolic and satisfies the PTC. Sup-denoted byH;(P), bj(P):= the rank of the free part of
pose V is a Cauchy surface foby. such that its closure V. H;(P) will denote thejth Betti number ofP, and x(P) will
=V’ in M’ is a compact topological three-manifold with denote the Euler characteristithe alternating sum of the
boundary whose bounda@V (corresponding to the edge of Betti numbers In the case ob;(V) [=b;(Vo)], we will

V' in M’) consists of a disjoint union of compact two- Simply writeb; .
surfaces In general, folV as assumed abovieg=1, b;=0, andb,

andb, satisfy the following inequalities.

§V:|—|Ei, (29 Lemma 4.3.For V as above, ther(a) b, ==K , g, and

i=0 (b) by=k.
whereX, is onZ and theX;, i=1,... k, are on the event Proof. The boundary surfaces,,=,, ... ,2, clearly deter-
horizon. Then mine k linearly independent two-cycles iN, and hence

(b) holds. To prove (a) we use the formula,x(V)
K =1x(dV), valid for any compact, orientable, odd-
izl gi<Jo, ©) dimensional manifold. This formula, together with the ex-
pressions y(V)=1—b;+b, and x(dV)=3F, x(Z)=

k . . .
where g=the genus oF;, j=0,1,..k. In particular, if 3, 2(k+1)—22_, gi, implies the equation

is a two-sphere, then so is eagh, i=1,...k. K
Remark 1Many known examples of locally AdS black hole b, = b2+i20 gi—k. @)
spacetimes have black hole horizons with genus equal of that

of scri[9-11,13. In fact, for these exampley, is a product  The inequality(a) now follows immediately from(b). N
space. L
Remark 2Theorem 4.1 has been stated for spacetimes withrémma 44 If the group hqmomorphlsml* 'H,l(EO) )
timelike Z. An analogous version for asymptotically flat —>H1(kV) induced by mclusmn IS on'Fo, then the inequality
spacetimes holds as well, but differs slightly in technical(3: 2i-19i=do, holds. In particular, i, is a two-sphere,
details. The AF case will be considered later in the sectionthen so is eack;, i=1,... k.

Theorem 4.1 is established in a series of lemmas. LemMa, ¢ \ve yse the fact that the first integral homology group

4.2 connects the fundamental group of the Cauchy surface tg 4 space is isomorphic to the fundamental group modded

that of Z. It is the only lemma that uses the conditions thatout by its commutator subgroup. Hence modding out by the

the spacetime is globally hyperbolic and satisfies the PTC[:ommutator subgroups @1 (3,) andIl,(V), respectively,

The remaining lemmas are based purely on algebraic topo hduces fromi, a surjective homomorphism froki, () to

ogy and are in fact applicable to any three-manifold WithHl(V). It follows that the rank of the free part of (V)
compact boundary. cannot be greater than that ldf;(2,), i.e.,

Lemma 4.2Let the setting be as in theorem 4.1. Then the _

group homomorphism,, :l_gll(zo)%Hl(V) induced by in- b1=b1(20)=20o. ©®

clusioni:Xy—V is onto. Combining this inequality with the inequalitig) in lemma

o . 4.3 yields the inequality3). SinceV is orientable, so are its

Proof. Let Z? be a timelike vector field o) tangent taZy . boundary components. E,, is a two-sphere, then ead,

Let r:Dg—V' be the continuous projection map sendingj=1 ...k, is forced by(3) to have genus zero and, hence, is a

each pointp e Dy to the unique point iV’ determined by  two-sphere. |

the integral curve oZ? throughp. Note thatr (Zx) ==,. Proof of theorem 4.1The proof follows immediately from
Fix pe 2. All loops considered are basedmtLetcy be  lemmas 4.2 and 4.4. |

a loop inV. By deformingc, slightly we can assume, is in Next we show that the condition on in lemma 4.4

V'. Since D; satisfies the hypotheses of theorem 2.2, thecompletely determines the homology \¢f
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Proposition 4.51f i, :I1,(Z,)—11,(V) is onto, then the in- ated and torsion free, we haveH,(V)=H?3(V)
tegral homologyH, (V,Z2) is torsion free and, hence, is com- =H,(V,dV), where we have again made use of Poincare
pletely determined by the Betti numbers. Furthermorelefschetz duality. Hencb,=rankH(V,dV). To show that
the inequalities in lemma 4.3 become equalitigs) rank Hi(V,dV)<k, we refer again to the long exact se-
b,=3K , g; and(b) b,=k. quence (7). By excision, Hy(dV,Zg)=Hy(dV\Zy,J)

i . i i =Ho(dV\Zg). Hence, by the injectivity of 4,
Proof. We first prove thatl, (V,Z2) is tqrsmn free. Since&/ rankH(V,dV)<rank Ho(dV,3,) =the number of compo-
has a boundaryii;(V) =0. Also,Ho(V) is one copy o2 as  pents ofg\\S,=k. This completes the proof of proposition

V is connected. Thus we need to show tidf(V) and 45 u
Ha(V) are free. The conclusion of proposition 4.5 applies to the spacelike
Claim 1. Hy(V) is free. three-surface with boundaby of theorem 4.1. Thus we have

To prove claim 1 we recall the classic result thatcompletely determined the homology of the Cauchy surfaces
Hn—1(N") is free for an orientable closedmanifoldN". To ¢ Dy

make use of this, leV' be a compact orientab}e three-  \we now consider the asymptotically flat case with null
manifold without boundary containing (e.g., takeV’ to be infinity Z=7+UZ". For this case, lek be a spacelike cut of
the double o), and letB=V"\V. _ Z-, and letZy be the portion ofZ to the future ofK,
Assume thatV is a nontrivial torsion element iRl (V). T«=INJ*(K). Let Dy be the domain of outer of commu-
Now view W as an element ifi,(V'). SupposeN=0in  pications with respect toZc, De=1"(Z)NI (L)
H,(V'). ThenW=0 in H,(V',B). By excision,H,(V',B) —1*(K)N1~(Z*). Here Dj:==D UI" is a connected

=H,(V,dV), where gV is the manifold boundary o¥. . . R Ty
A . n spacetime with boundary, withD;.=Z" andDy=D;\Z".
HenceW=0 in Hx(V,dV). This means thaW=a sum of We then have the following analogue of theorem 4.1.

boundary components ifl,(V). But a sum of boundary

components cannot be a torsion element. TRé£0 i Thegrem 4.1 Let Dy be the domain of outer communica-
Ha(V'). Moreover, if n\W=0 in Hp(V), thennW=0 in  {ions to the future of the cut K aii- of an asymptotically flat
H,(V'). It follows thatW is a nontrivial torsion element in spacetimeM as described above. Assume thjt is glo-
CH:ﬁ;i\é],)é a:_lc(o\?)trgd#::gn. Hencel,(V) is free. bally hyperbolic and satisfies the PTC. Supposg i¥ a
To prIOV(le claim 2 Wé first consider the relative homologyCaUChy surface foD such that its closure ¥ Vo in M is
sequence for the par> s, a topological three-manifold with boundary, compact outside
o a small neighborhood ofj with boundary components con-

@ B i sisting of a disjoint union of compact two-surfaces:
w—=H(20)—=H1(V)—=H(V,20)—Hy(Z0)=0. (6)

[Here Ho(Z,) is the reduced zeroth-dimensional homology N= |_|2i,

group] Since, as discussed in lemma 4d,is onto, we i=1

have keB=Ima=H(V), which implies 8=0. Hence . .

kero=Im =0, and thusg is injective. This implies that where t.h_eZ' i=1,...k, are on the event horizon. Then
all >;,i=1,...k, are two-spheres. Moreover,,\has the

Hl(V,EO)ZO. .
Now consider the relative homology sequence for thetopology of @ homotopy three-sphere minus k closed

triple VD VD Zy: three-balls.
s H(OV, S 0)—H(V,S0)=0—H,(V,dV) Remark 1In the AF case the asymptotic topology is spheri-
’ ’ ’ cal, which corresponds tg,=0 in inequality(3). But since
—B>H0(<9V,Eo)—>--- _ @) gi=0,i=1, ...k, inequality(3) is satisfied in the AF case,

as well. Again, the topology of the event horizon is con-
Since Ho(4V,S,) is torsion free andd is injective, Strained by the topology at infinity. ,
H,(V,aV) is torsion free. Next, Poincateefschetz duality Remark 2This theorem is a slightly strengthened version of
givesH2(V)=H,(V,dV). HenceH2(V) is torsion free. The the main theorem if7]; it does not assume orientability of

universal coefficient theorem implies that Vo, and we conclude a stronger topology for this Cauchy
surface.

H2(V)=Hom(H,(V),Z)®Ext(H(V),Z). (8)  Proof of theorem 4.1 The arguments used to prove theorem
4.1 can be easily adapted, with only minor technical changes
The functor Ext—, —) is bilinear in the first argument with involved, to prove in the AF case that eah is a two-
respect to direct sums and EX{(,Z)=Z,. HenceH?(V) sphere. Alternatively, one may argue as follows. By known
cannot be torsion free unless;(V) is. This completes the results on topological censorship in the AF cE5@], Dy is
proof of claim 2 and the proof that, (V) is torsion free. simply connected and, hence, so\ig. It follows that V
It remains to show that the inequalities in lemma 4.3 be-=VU{i® is a compact simply connected three-manifold
come equalities. We provb,=Kk; the equationbl=2ik:0 with  boundary, with boundary componentss;,
g; then follows from Eq.(4). In view of lemma 4.3, itis i=1,... k. Then, according to lemma 4.9, p. 47 in Hempel
sufficient to show thab,<k. SinceH,(V) is finitely gener-  [23], eachZX; is a two-sphere. By attaching three-cells to
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each =;, we obtain a closed simply connected three-slice produces a simply connectdy. The intersection of
manifold, which by well-known result&see[23]) is a homo-  the horizon with this slice iR P?. However, we cannot at-
topy three-sphere. Removing the attached three-cells@and tach this surface t& to produce a manifold with boundary
we obtain thatV, is a homotopy three-sphere minks-1  V by the inclusion map; instead, this map reproduces the
closed balls. | original t=0 slice which has no interior boundary. Note,
Remark.Although the above results were proved assuminchowever, that any spacelike slice that does not pass through
global hyperbolicity, it is clear that the same results will hold this R P? will intersect the horizon at a8®. In fact, this will
for a more general set of spacetimes that satisfy the PTC arigk the generic situation. Moreover, the intersection of such a
for which a version of lemma 4.2 can be proved. Spacetimeslice with the DOC will produce a simply connectad,
that are not globally hyperbolic but satisfy a weaker condi-which is the interior of a closed connected orientableith
tion such as weak cosmic censorship can still admit a proan S? interior boundary.
jection onto a preferred spacelike surface. In particular, one Clearly, this example does not contradict any results of
can generalize the projection given by the integral flow of aSec. IV, which assumes an orientaMewith two or more
timelike vector field on the domain of outer communicationsboundaries. However, it does yield the important lesson that
used to push loops into the Cauchy surface to be a retracéne must construct to apply the theorem, not,. It also
Recall a retract oK onto a subspaca is a continuous map gives an example of a badly behaved cut of the horizon,
r:X—A such that|,=id. Thus, ifV, is a regular retract of again illustrating the usefulness of taking slices to the future
D, that is, if there exists a retractDUZ—VyU 3 such that  of a cut ofZ.
r(Z)C3,, then one can again establish lemma 4.2. For our second example, we construct a toy model of a
black hole spacetime that mimics a special case of topology
change, namely, that of black hole formation from a single
collapse. This model illustrates several features: how a
We wish to emphasize that the results concerning blackhoice of a hypersurface can affect the description of horizon
hole topology in four-dimensional spacetimes obtained irntopology and how some cuts &f give rise to a Cauchy
Sec. IV in no way contradict the numerical findings[@#f]  surface whose edge on the horizon is not a two-manifold.
concerning the existence in principle of temporarily toroidal We begin with a three-dimensional model; later a four-
black holes in asymptotically flat spacetimes. The consisdimensional example will be constructed by treating the
tency of topological censorship with asymptotically flat mod-three-dimensional model as a hyperplane through an axis of
els containing temporarily toroidal black hole horizons hassymmetry in the larger spacetime. Our spacetime can have
been clearly elucidated if25]. The acausal nature of cross- either anti—de Sitter or flat geometry; as both are conformal
over sets, expected to be present in the early formation of th regions of the Einstein static cylinder, we use as coordi-
event horizon, permits slicings of the event horizon in as-hates in the construction below those of the conformally re-
ymptotically flat black hole spacetimes with exofi@., non-  lated flat metriocf. [19], Secs. 5.1 and 52We depictZ as
spherical topologies. See the recent papers in REF8, 27]  timelike in the accompanying figures, but it can equally well
for further discussion. As described in Sec. IV, the method obe null.
topological censorship for exploring the topology of black We begin in three dimensions with a line segmerde-
hole horizons makes use of specific time slices, namelyfined byt=y=0, |x|<I. The futurel *(L) of this line seg-
Cauchy surfaces for the DOC or for the subregion of thement is a sort of elongated cone, whose traces in hyperplanes
DOC to the future of a cut off. Surfaces exhibiting tempo- of constantt have the shape of rectangles with semicircular
rarily toroidal black hole horizons are not such surfacescaps attached to the two short sides. We foliate the spacetime
Moreover, the method requires such a slice to have a norby hyperboloids:
empty edge which meets the horizons@ compact sur-
faces. We elaborate further on these points below.
It is important to keep in mind that not all Cauchy sur- t=a+\r’+b, 9
facesV, for the DOC are interiors of orientable manifolds
with boundaryV corresponding to the intersection of a
spacelike slice with the black hole horizons. Considertthe wherer?=x2+y? and a,b are conveniently chosen param-
=0 slice of theRP® geon. As discussed if5], this space- eters. These hyperboloids cfitn a circle. We now remove
time is constructed from thé=0 slice of Schwarzschild from spacetime all points of*(L) above a hyperplane
spacetime by identifying antipodal points at the throat =d intersecting it to the future. What remains is a black hole
=2M. The maximal evolution of this slice is a spacetime spacetime and has a globally hyperbolic domain of outer
with spatial topologyR P>— pt. Its universal covering space communicationsD (again, cf. Sec. )l The black hole is the
is the maximally extended Schwarzschild spacetime. set of remaining points of* (L). The horizondl ~(Z") is
Thet=0 slice of theRP® geon contains a nonorientable generated by null geodesics that all beginlon
RP? with zero expansion. ThiRP? is not a trapped surface The Cauchy surface fd will have topologyR? and does
as it does not separate the slice into two regions. It is not pariot cross the horizon. Thus, to probe the topology of the
of the DOC as any radially outward directed null geodesichorizon, one needs to consider spacetimes corresponding to
from this surface does not interséttthus, it is clearly part the future of a cut ofZ. However, not every cut of will
of the horizon. The intersection of the DOC with tte O  produce a spacetime with a Cauchy slicing with the correct

V. DISCUSSION
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FIG. 3. Two slicings of the horizon by hyperboloids. Both illus-
trations concentrate on the region near the horizon. The top illus-
e R—— tration is of a hyperboloid that intersects the horizon at two topo-

logical circles. The bottom illustration is of a hyperboloid that lies
to the future of the first. It intersects the horizon at one topological

FIG. 1. A bad cut of the horizon. The surfawg is the Cauchy cjrcle.
surface for the domain of outer communications of the spacetime to
the future of the cuK of Z. The inner boundary of the causal future
of K intersects the horizon at a spacelike line segment. Conse-
quently the closure of/, has topologyR?.

FIG. 4. Entanglement and nonentanglement of curves on black
hole horizons. Each illustration displays a cross section of a cut of
Z. The cutaway reveals a cut of a black hole horizon inside. In the
el I top illustration, the cut off has genus 0, that of the horizon has

genus 1, and, as illustrated, there are curves not deformaBldro

FIG. 2. A good cut of the horizon. The surfagg is the Cauchy the middle illustration, the genus of the cut Bfand that of the
surface for the domain of outer communications of the spacetime thorizon are both 2, and they are linked in such a manner that every
the future of the cuK of Z. The intersection of the inner boundary curve is deformable t@. In the illustration at bottom, the genus of
of the causal future ok with the horizon is nows!. Consequently, the cut ofZ exceeds that of the horizon, and again every curve is
the closure oV intersects the horizon &. deformable taZ.
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properties. Such a bad cut @fis illustrated in Fig. 1. The (3) holds. Anyt=t,>0 hypersurface is a Cauchy surface for
boundary of the causal future of this cut intersects the horithe region ofD that lies in the future of an appropriate cut of
zon at a segmernitof L. The topology of a Cauchy slice for Z. The apparent change of horizon topology from toroidal to
its DOC isR2\I. Its closure intersects the horizonlathus,  spherical was an effect entirely dependent on the choice of
as in theRP® geon above, the closure of this slice has nohypersurface. The only unambiguous description of this
inner boundary, being in this cag®. black hole is that no causal curve was able to link with the
This 3D spacetime corresponds to @4axisymmetric  horizon, i.e., that the PTC was not violated.
spacetime. The correspondence between axisymmetric spa- In the Introduction, we offered the view that the topology
tial hypersurfaces and the/ planes of the spacetime is gen- of the boundary at infinity constrained that of the horizons,
erated by rotating eacky plane about the axis. After this  but one could equally well reverse this picture. Let us con-
rotation, one sees that the line segmertecomes a disk in template a black hole considered as a stationary, causally
the 4D axisymmetric spacetime. The Cauchy surface inwell-behaved, isolated system cut off from the Universe by a
question meets the horizon in a digkclosed two-balland  sufficiently distant boundary. Then we have shown that
has topologyR® minus that disk. The closure of the Cauchy topological censorship requires the genus of the horizon to
surface isR® and again has no internal boundary. Thus thebe a lower bound for that of the boundary. As remarked
results of Sec. IV do not apply to this Cauchy slice. above, this seems an intuitive result; as illustrated in Fig. 4,
A good cut ofZ is illustrated in Fig. 2. This cut intersects when one visualizes placing a gengs surface within a
the horizon at a sphere. The topology of a Cauchy surface fagenusg, “box™” with no possibility of entangling curves, it
its DOC isR%B?, and the intersection of its closure 8.  seems clear thay,=g;. Yet, as is often the case with such
The Cauchy surface in the corresponding four-dimensionahings, the powerful machinery of algebraic topology was
model has topologﬁ?’\? with internal boundarys?. The requwed to prove it. An advantage of using this powerful tool
results of Sec. IV clearly apply in the latter case. is that we were able to completely specify the homology of
Of course, not all spacelike surfaces need be Cauchy Suyyell-be_h_awed exterior regions gf bIack_hoIes and, in virtue of
faces of the spacetime to the future of a cufofhe family ~ Proposition 4.5, to say that all interesting homology of these
of hyperboloids(9), two of which are illustrated in Fig. 3, _exte;nors, save that which is reflected in the t_opology of scri,
provides an example of such surfaces. As recogniz¢@sh IS directly attributable to the presence of horizons.
in a similar model, this family exhibits the formation of a
temporarily toroidal black hole horizon as the paramatar
Eq_. (9) increas_es; these surfe_lces inter_sect the horizon in a ACKNOWLEDGMENTS
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