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Scattering by a Reissner-Nordstro¨m black hole: The dipole radiation
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The coupled gravitational and electromagnetic dipole perturbations of the Reissner-Nordstro¨m solution are
studied and the relation between the energy of the incident, reflected, and absorbed electromagnetic waves is
obtained. The effect on the polarization of the dipole electromagnetic waves is also discussed and it is shown
that the radial functions appearing in the solution of the perturbation equations satisfy differential relations
analogous to the Teukolsky-Starobinsky identities.@S0556-2821~99!04620-2#

PACS number~s!: 04.20.Jb, 04.40.Nr
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I. INTRODUCTION

The linear perturbations of the Reissner-Nordstro¨m ~RN!
solution have been the subject of many investigations~see,
e.g., Refs.@1–9#!. In spite of the coupling of the gravitationa
and electromagnetic perturbations produced by the ba
ground electromagnetic field, the symmetry of the RN so
tion allows us to decompose the perturbations into indep
dent multipoles, characterized by the integersj andm, and to
reduce the perturbation equations for each multipole to o
dimensional Schro¨dinger-type equations.

A very convenient way of studying the perturbations
the RN solution is based on the use of expressions for
complete metric and vector potential perturbations in ter
of a set of complex potentials that obey a system of f
first-order partial differential equations@10,11,7#. As shown
in Refs. @9,12#, by means of this approach one can eas
derive many results associated with this problem; in parti
lar, for each multipole withj >2, one can explicitly demon
strate the conservation of the energy of the combined gr
tational and electromagnetic radiation, find the express
for the energy reflection and transmission coefficients
the correct conversion factors of the energy of gravitatio
radiation into energy of electromagnetic radiation, and v
versa, as well as the effect on the polarization of the wa
and differential identities of Teukolsky-Starobinsky type.

An interesting fact is that the differential equations arisi
in the treatment of the perturbations of the RN solution
means of the complex potentials mentioned above coin
with those obtained using other approaches, such as the
based on the perturbations of the Newman-Penrose quan
~see Ref.@3# and Sec. IV! and the one based on the dire
integration of the linearized Einstein-Maxwell equations@4#.

As pointed out in Refs.@7,13#, the multipoles withj 51,
corresponding to the dipole perturbations, require a sepa
treatment, which is related to the fact that there is no dip
gravitational radiation~though the metric and the curvatu
are perturbed!. In this paper we extend the results of Re
@3,9,12# to the dipole perturbations. Specifically, we find e
pressions for the energy of the dipole electromagnetic ra
tion that is reflected and absorbed by a RN black hole, sh
0556-2821/99/60~10!/104032~6!/$15.00 60 1040
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ing that the energy is conserved. We show that, as in the
of the multipoles withj >2, the electric charge of the blac
hole makes that a circularly polarized incident wave be
flected as an elliptically polarized wave and we obtain d
ferential identities satisfied by the radial functions appear
in the solution of the perturbation equations. We follow t
notation employed in Ref.@9#, which differs only slightly
from that of Refs.@6,7# ~mainly in those symbols used t
denote the spin coefficients or the tetrad vectors!.

II. REDUCTION OF THE PERTURBATION EQUATIONS

As shown in Refs.@10,11#, the metric and vector potentia
perturbations of a solution of the Einstein-Maxwell equ
tions, such that the background electromagnetic field is a
braically general and one of its principal null directions
geodetic and shear-free~as the RN solution!, in a frame such
that w1 is the only nonvanishing component of the bac
ground electromagnetic field andk5s50, are given by

hmn52$ l ml n@~d13b1ā2t!M182l̄M08#1mmmn~D13«

2 «̄2r!M082 l (mmn)@~D13«1 «̄2r1 r̄ !M18

1~d13b2ā2t2p̄ !M08#%1c.c., ~1!

bm5 1
2 @ l m~d12b1t!cE2mm~D12«1r!cE#1c.c.,

~2!

up to gauge transformations, with the complex scalar pot
tials M08 ,M18 ,cE governed by the equations

2w1@~D12g1m!cE2~d14b12t!cG#

5~3C222F11!M18 ,

2w1@~ d̄12a1p!cE2~D14«12r!cG#

5~3C212F11!M08 ,

~ d̄13a1b̄2 t̄ !M182~D13g2ḡ1m̄ !M08

52w1cG,
©1999 The American Physical Society32-1
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~D13«1 «̄13r2 r̄ !M182~d13b2ā13t1p̄ !M08

54w1cE, ~3!

where cG is an auxiliary complex potential that does n
enter explicitly in Eqs.~1! and ~2!.

Using the null tetrad employed in Refs.@3,6,7#, Eqs.~3!
admit separable solutions of the form@7#

cG5~N~r !/r !22Yjm~u,w!e2 ivt,

cE5A2G~r !21Yjm~u,w!e2 ivt,

M0852Qg~r !22Yjm~u,w!e2 ivt,

M185A2Q~n~r !/r !21Yjm~u,w!e2 ivt, ~4!

whereQ is the electric charge of the black hole,sYjm are
spin-weighted spherical harmonics@14#, j andm are integers
with j >1, andumu< j . Since sYjm50 for j ,usu, in the case
wherej 51 only cE andM18 do not vanish. Then, from Eqs
~3! one obtains the radial equations

r 3S ] r2 iv
r 2

x D n

r 3
5

2G

r
,

x2

r 3 S ] r1 iv
r 2

x D r 3G

x
5S 3M2

2Q2

r D2n,

~5!

wherex[r 222Mr 1Q2 andM is the mass of the black hol
described by the RN solution. Making use of the definitio

q1[6M , q2[2
2Q2

3M
, ~6!

and

Y(2)[q1

n

r 3
, X(2)[

r 3G

x
, ~7!

in terms of the variabler * defined bydr* /dr5r 2/x, Eqs.
~5! can be rewritten as

S d

dr*
2 iv DY(2)5

x2

r 8

2q1

r
X(2) ,

S d

dr*
1 iv DX(2)5

r 4

x S 11
q2

r DY(2) . ~8!

~The functionsY(2) andX(2) are the analogues of the func
tions X22 andY21 introduced by Chandrasekhar@3,6#.!

The solution of Eqs.~8! can be expressed in terms of
single radial function Z(1) or Z(2) which obey the
Schrödinger-type equations@7,15#

S 2
d2

dr
*
2

1V(6)D Z(6)5v2Z(6), ~9!
10403
s

where

V(6)[6q2

d f

dr*
1q2

2f 212 f , ~10!

f [
x

r 3~r 1q2!
. ~11!

It can be shown that

Y(2)5V(6)Z(6)1~W(6)12iv!S d

dr*
1 iv DZ(6), ~12!

X(2)57q2Z(6)1 f 21S d

dr*
1 iv DZ(6), ~13!

where

W(6)[2
d

dr*
ln f 7q2f , ~14!

satisfy Eqs.~8! provided thatZ(6) obeys Eq.~9!. Equations
~10! and ~11! yield the expressions

V(1)5
x~2r 416Mq2r 218Mq2

2r 13Mq2
3!

r 6~r 1q2!2
,

V(2)5
2x

r 6
~r 212Q2!. ~15!

Since the potentialsV(6) are of short range, the auxiliar
functions Z(6) have the asymptotic behaviorse6 ivr

* for
r * →` ~i.e., r→`) and r * →2` ~the horizon of the black
hole!. Assuming that there are no waves emerging from
horizon, the functionsZ(6) must have the asymptotic form

Z(6)→A(6)e2 ivr
* 1B(6)eivr

* ~r * →1`!,

→C(6)e2 ivr
* ~r * →2`!. ~16!

Since the potentialsV(6) are real, it follows from Eq.~9! that
uA(6)u22uB(6)u25uC(6)u2. Hence, the amplitudes

R(6)[
B(6)

A(6)
, T(6)[

C(6)

A(6)
~17!

satisfy the relations

uR(6)u21uT(6)u251. ~18!

We shall show below that, as in the cases considered in R
@3,6#, the two potentialsV(1) and V(2) lead to the same
reflection and transmission coefficients@see Eq.~29! below#.

III. ENERGY AND POLARIZATION OF THE DIPOLE
RADIATION

Making use of Eqs.~2!, ~4!, ~6!, and~7!, we find that the
componentsw0 andw2 of the dipole electromagnetic pertu
2-2
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bations with respect to the original tetrad~distinguished by a
superscript B! are given by@7#

w0
B5

1

A2
F S ] r2 iv

r 2

x D 2 x

r 3
X(2)G 21Y1me2 ivt, ~19!

w2
B5

1

A2

x

r 5
X(2) 1Y1me2 ivt

2
q2

4A2r 2F S ] r2 iv
r 2

x D r 2Y(2)G 21Y1meivt, ~20!

with m50,61.
On the other hand, from Eqs.~9!–~14! one finds that if

r * →` andZ(6)→e2 ivr
* , then

Y(2)→2
q1K (7)

2v2r 5
e2 ivr

* , X(2)→
iK (7)

2v
e2 ivr

* , ~21!

where

K (6)[272ivq2 , ~22!

while, if r * →` andZ(6)→eivr
* ,

Y(2)→24v2eivr
* , X(2)→2ivr 2eivr

* . ~23!

Finally, if r * →2` andZ(6)→e2 ivr
* ,

Y(2)→
x2

r 1
8

3
K (7)~2q1 /r !e2 ivr

*

4@2 iv1~Mr12Q2!/r 1
3 #@2 iv12~r 12M !/r 1

2 #
,

X(2)→
K (7)e2 ivr

*

2@2 iv1~Mr 12Q2!/r 1
3 #

, ~24!

where r 1[M1(M22Q2)1/2 @cf. Ref. @6#, Chap. 5, Eqs.
~285! and ~286!#. Note that, sincer 1

2 22Mr 11Q250,
(Mr 12Q2)/r 1

3 5(r 12M )/r 1
2 .

Thus, according to Eqs.~16!, ~19!–~21!, ~23!, and~24! we
find that, whenr * →`,

rw0
B→2 iA2vK (7)A(6)e2 iv(t1r

*
)
21Y1m , ~25!

2rw2
B→ iA2v@2B(6)e2 iv(t2r

*
)
1Y1m

22ivq2B(6)eiv(t2r
*

)
21Y1m#. ~26!

Similarly, whenr * →2`

xw0
B→2 iA2vr 1K (7)C(6)e2 iv(t1r

*
)
21Y1m . ~27!

These equations imply that if a given dipole perturbation
expressed in terms of functionsZ(1) and Z(2), which have
the asymptotic forms~16!, then the coefficientsA(6),B(6),
andC(6) must be related by
10403
s

A(1)K (2)5A(2)K (1), B(1)5B(2),

C(1)K (2)5C(2)K (1), ~28!

hence, using Eqs.~17! and ~22!,

uR(1)u5UR(2)
K (2)

K (1)U5uR(2)u, T(1)5T(2) ~29!

~assumingv real! ~see Refs.@3,6#!.
Making use of Eqs.~25!–~27! one finds that the flux of

energy per unit time of the dipole electromagnetic radiat
coming from infinity is given by

dEin

dt
5

1

8pE lim
r→`

urw0
Bu2dV5

v2

4p
uK (7)A(6)u2 ~30!

and thetime-averagedflux of energy per unit time of the
outgoing dipole electromagnetic radiation is

K dEout

dt L 5K 1

2pE lim
r→`

urw2
Bu2dVL 5

v2

4p
uK (7)B(6)u2.

~31!

The flux of energy per unit time across the event horizon
the dipole electromagnetic radiation is@Ref. @6#, Chap. 8, Eq.
~258!#

dEhole

dt
5

1

8pE lim
r→r 110

uxw0
Bu2

2Mr 12Q2
dV5

v2

4p
uK (7)C(6)u2.

~32!

Thus, by virtue of Eqs.~17!, ~18!, and ~30!–~32! we con-
clude that

dEin

dt
5 K dEout

dt L 1
dEhole

dt
. ~33!

Furthermore, the energy reflection and transmission coe
cients are given by

^dEout/dt&
dEin /dt

5UB(6)

A(6)U2

5uR(6)u2,

dEhole/dt

dEin /dt
5UC(6)

A(6)U2

5uT(6)u2, ~34!

respectively, i.e., these coefficients coincide with the refl
tion and transmission coefficients of either of the Sch¨-
dinger equations~9!.

By contrast with the multipole electromagnetic radiati
with j >2, which gives rise to multipole gravitational radia
tion of the same orderj and conversely, the dipole electro
magnetic radiation cannot be converted into gravitational
diation, since there is no dipole gravitational radiation, a
the energy of the electromagnetic radiation alone is c
served.

As discussed in Ref.@9# ~see also Ref.@16#!, Eq. ~25!
corresponds to an incident circularly polarized wave, wh
the presence of both factorse2 ivt and eivt in Eq. ~26! im-
2-3
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plies that the reflected wave is elliptically polarized. Th
change in the polarization of the electromagnetic waves
consequence of the existence of a nonvanishing backgro
electromagnetic field; in the case of the Schwarzschild s
tion, a circularly polarized electromagnetic wave gives r
to a circularly polarized reflected wave@16#.

IV. DIFFERENTIAL IDENTITIES

As in the case of the radial functions appearing in
study of the perturbations of the RN solution withj >2,
there exist differential identities involving the radial fun
tions X(2) and Y(2) defined above. Making use of th
Einstein-Maxwell equations and the Ricci and Bianchi ide
tities, in the case of a solution of the Einstein-Maxwell equ
tions such that the background electromagnetic field is a
braically general and one of its principal null directions
geodetic and shear-free, in a frame such thatw1 is the only
nonvanishing component of the background electromagn
field and k5s50 ~hence,C05C150), one obtains the
decoupled system of equations@11#

~ d̄24a1p!~C0!B2~D22«24r!~C̃1!B

5~3C222F11!~ k̃ !B,

~D24g1m!~C0!B2~d22b24t!~C̃1!B

5~3C212F11!~ s̃ !B,

~D23«1 «̄23r2 r̄ !@w1~ s̃ !B#2~d23b2ā23t1p̄ !

3@w1~ k̃ !B#5w1~C0!B,

~ d̄23a1b̄2 t̄ !@w1~ s̃ !B#2~D23g2ḡ1m̄ !@w1~ k̃ !B#

52w1~C̃1!B, ~35!

where

~C̃1!B[@2w1~C1!B23C2~w0!B#/2w1 ,

~ k̃ !B[~k!B1~D22«2r!@~w0!B/2w1#, ~36!

~ s̃ !B[~s!B1~d22b2t!@~w0!B/2w1#,

and a symbol similar to (w0)B denotes the first-order varia
tion of the corresponding null tetrad component, which m
not coincide with the component with respect to the ba
ground null tetrad of the first-order variation of the electr
magnetic field, denoted above byw0

B . The difference be-
tween, e.g., (w0)B andw0

B comes from the variations of th
metric, which lead to variations of the null tetrad.

In the case of the RN solution, Eqs.~35! admit separable
solutions of the form@12#

~C0!B5A2F~r ! 2Yjm~u,w!e2 ivt,

~C̃1!B5H~r ! 1Yjm~u,w!e2 ivt,
10403
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~ k̃ !B52 f ~r ! 1Yjm~u,w!e2 ivt,

~ s̃ !B5A2h~r ! 2Yjm~u,w!e2 ivt. ~37!

When j 51, only (C̃1)B and (k̃)B can be different from zero
and substituting Eqs.~37! into Eqs.~35! we obtain

S ] r2 iv
r 2

x D ~r 4H !5S 3M2
2Q2

r D2r f ,

S ] r1 iv
r 2

x D S x2

r 5
f D 5

2xH

r 3
, ~38!

or, making use of the definitions

Y(1)[q1

x2

r 5
f , X(1)[r 4H, ~39!

we have

S d

dr*
1 iv DY(1)5

x2

r 8

2q1

r
X(1) ,

S d

dr*
2 iv DX(1)5

r 4

x S 11
q2

r DY(1) . ~40!

~The functionsY(1) andX(1) are the analogues of the func
tions Y11 andX12 introduced by Chandrasekhar@6#.! Thus,
for v real, the pair of functions (Y(1) ,X(1)) satisfies the
same equations as (Y(2),X(2)) @see Eqs.~8!#.

Since the potentials~4! generate the complete perturb
tions by means of Eqs.~1! and~2!, we can write (C̃1)B and
(k̃)B in terms ofcE andM18 and obtain expressions equiva
lent to those given by Eqs.~37!. In fact, making use of the
formulas

~CACDE!B52 1
4 hm

mCACDE1 1
2 h(AC

R8S8FDE)R8S8

1 1
2 ¹ (A

R8¹C
S8hDE)R8S8 , ~41!

wherehABC8D8 is the spinor equivalent of the metric pertu
bation,FABC8D8 andCABCD are the Ricci and Weyl spinor
of the background solution, and

~GACDE8!
B52 1

2 ¹ (A
R8hC)DR8E82

1
2 GAC

RS8hRDS8E8 ,
~42!

which give the first-order variations of the components of
Weyl curvature and of the spin coefficients, respectively, a
Eqs.~1!, ~2!, ~4!, ~7!, and~36! we find that
2-4
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~C̃1!B5
1

4
~D2«1 «̄1r2 r̄ !~D12«̄1r2 r̄ !~D1«13«̄

1r2 r̄ !M182
3C2

4w1
~D2«1 «̄2 r̄ !~D12«̄1 r̄ !cE

5
Q

2A2q1

~D* D* D* r 2Y(2)! 21Y1meivt

1
3

A2Qr2
~Mr 2Q2!S D* D*

x

r 3
X(2)D 21Y1meivt,

~43!

where

D[] r2 iv
r 2

x
, D* [] r1 iv

r 2

x
. ~44!

Making use of the relation

r 2D* D* D* r 2Y(2)52q1D* D* S x

r 3
X(2)D

24q1D* S x

r 4
X(2)D , ~45!

which follows from Eq.~8!, Eq. ~43! can be rewritten as

~C̃1!B5
q1

2A2Qr4 H r 2~r 1q2!D* D* S x

r 3
X(2)D

1q2r 2D* S x

r 4
X(2)D J 21Y1meivt. ~46!

Similarly, from Eqs.~1!, ~2!, ~4!, ~7!, ~36!, and ~42!, we
obtain

~ k̃ !B5
1

4
~D22«2r!

1

w1
~D2«1 «̄2 r̄ !~D12«̄1 r̄ !cE

5
r

A2Q
S D* D* D*

x

r 2
X(2)D 21Y1meivt. ~47!

@It should be noticed that Eqs.~41! and ~42! involve a spe-
cific choice of the perturbed null tetrad; however, this fa
has no consequence on expressions~46! and ~47!, since the
combinations~36! are invariant under the rotations of th
perturbed null tetrad@11#.# On the other hand, from Eqs.~37!
and ~39! we have, for thej 51 perturbations

~C̃1!B5
1

r 4
X(1) 1Y1me2 ivt, ~ k̃ !B5

2r 5

q1x2
Y(1) 1Y1me2 ivt.

~48!
10403
t

Thus, by comparing Eqs.~47! and ~48!, taking into account
the fact that (Y(1) ,X(1)) and (Y(2) ,X(2)) satisfy complex-
conjugate equations, it follows that

x2

r 4
D* D* D*

x

r 2
X(1)5CY(2) , ~49!

for some constantC and, by suitably normalizing the func
tions Y(6) , X(6) ,

x2

r 4
DDDx

r 2
X(2)5C̃Y(1) , ~50!

whereC̃ is another constant such thatC̃5C̄ for v real.
In a similar manner, from Eqs.~46! and ~48! one finds

that

r 2~r 1q2!D* D*
x

r 3
X(1)1q2r 2D*

x

r 4
X(1)5CX(2)

~51!

and

r 2~r 1q2!DDx

r 3
X(2)1q2r 2Dx

r 4
X(2)5C̃X(1) , ~52!

with the same constants appearing in Eqs.~49! and ~50!.
@Alternatively, one could demonstrate the validity of Eq
~49!–~52! starting from Eqs.~8! and~40!, by a direct proce-
dure analogous to that followed in Ref.@6# to prove the
Teukolsky-Starobinsky identities, which involves man
computations and requires the previous knowledge of
appropriate operators.# Substituting Eq.~52! into Eq. ~51!,
making use of Eqs.~8!, one obtains the relation

CC̃5414v2q2
2 , ~53!

i.e., CC̃5K (1)K (2).

V. CONCLUDING REMARKS

The results of this paper, together with those of Re
@9,12#, show many interesting relations between the qua
ties characterizing the perturbations of the RN solution.
contrast with other approaches, the use of the complex
tentials to express the complete perturbations allows u
obtain these relations in a relatively simple way.~As a matter
of fact, a detailed analysis of the perturbations, similar to t
presented in this paper and in Refs.@9,12#, has not been
obtained by the alternative approaches.!

As in the case of the multipoles withj >2, the equations
for the potentials~3! can be reduced to the same radial equ
tions obtained from the linearized Newman-Penrose eq
tions ~35!, which is useful in finding the differential identi
ties satisfied by the radial functions. For all the multipo
orders, the differential identities found in connection with t
perturbations of the RN solution are more involved than
Teukolsky-Starobinsky identities obtained in the study of
perturbations by massless fields of the type D vacuum sp
times.
2-5
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