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Scattering by a Reissner-Nordstran black hole: The dipole radiation
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The coupled gravitational and electromagnetic dipole perturbations of the Reissner-Nordstntion are
studied and the relation between the energy of the incident, reflected, and absorbed electromagnetic waves is
obtained. The effect on the polarization of the dipole electromagnetic waves is also discussed and it is shown
that the radial functions appearing in the solution of the perturbation equations satisfy differential relations
analogous to the Teukolsky-Starobinsky identit{€30556-282(199)04620-7

PACS numbd(s): 04.20.Jb, 04.40.Nr

[. INTRODUCTION ing that the energy is conserved. We show that, as in the case
of the multipoles withj=2, the electric charge of the black
The linear perturbations of the Reissner-Nordsti&RN)  hole makes that a circularly polarized incident wave be re-
solution have been the subject of many investigatime, flected as an elliptically polarized wave and we obtain dif-
e.g., Refs[1-9)). In spite of the coupling of the gravitational ferential identities satisfied by the radial functions appearing
and electromagnetic perturbations produced by the bacKD the solution of the perturbation equations. We follow the
ground electromagnetic field, the symmetry of the RN solunotation employed in Ref.9], which differs only slightly
tion allows us to decompose the perturbations into indeperffom that of Refs.[6,7] (mainly in those symbols used to
dent multipoles, characterized by the integeasdm, and to  denote the spin coefficients or the tetrad veqtors
reduce the perturbation equations for each multipole to one-
dimensional Schidinger-type equations. Il. REDUCTION OF THE PERTURBATION EQUATIONS
A very convenient way of studying the perturbations of . . .
the RN solution is based on the use of expressions for the As shown in Refs[10,11], the metric and vector potential

complete metric and vector potential perturbations in term .erturbat|ons of a solution of the Emstem—ngvyeII equa-
of a set of complex potentials that obey a system of fou ions, such that the background electromagnetic field is alge-

' o . ; braically general and one of its principal null directions is
first-order partial differential equatioj40,11,7. As shown ; LN
in Refs. [9p12] by means of t?ﬂs ap?aroachﬂone can eaSingeodetlc and shear-fréas the RN solutiop in a frame such

derive many results associated with this problem; in particu:[hat ¢ is the only nonvanishing component of the back-

lar, for each multipole withj =2, one can explicitly demon- 9round electromagnetic field and=o=0, are given by
strate the conservation of the energy of the combined gravi;
tational and electromagnetic radiation, find the expression #
for the energy reflection and transmission coefficients and
the correct conversion factors of the energy of gravitational

,=2{1,1,[(6+3B+a— 1My —AMg/]+m,m,(D +3e

_8__[))'\/'01_I(#my)[(D+38+8__p+;)M1/

radiation into energy of electromagnetic radiation, and vice +(6+3B—a—7—m)Mg ]} +c.c., 1

versa, as well as the effect on the polarization of the waves

and differential identities of Teukolsky-Starobinsky type. b,=3[1,,(8+2B+ 7)¢e—m,(D+2e+p) gl +c.C.,
An interesting fact is that the differential equations arising 2)

in the treatment of the perturbations of the RN solution by
means of the complex potentials mentioned above coincidgp to gauge transformations, with the complex scalar poten-
with those obtained using other approaches, such as the otigls Mo, ,M 1, governed by the equations
based on the perturbations of the Newman-Penrose quantities
(see Ref[3] and Sec. 1Y and the one based on the direct 2¢1[(A+2y+p)he—(6+4B+27) Yc]
integratiqn of the I!nearized Einstein-Ma{(weII quayi(ﬁn}; =(3W,— 20, )M,

As pointed out in Refs[7,13], the multipoles withj=1,
corresponding to the dipole perturbations, require a separate

treatment, which is related to the fact that there is no dipole 2¢al(o+ 2atm)ihe— (D +48+2p) Y]

gravitational radiatior(though the metric and the curvature =(3V,+2d)My/,

are perturbed In this paper we extend the results of Refs.

[3,9,1_2 to the dipole perturbation_s. Specifically, we fi_nd ex- (6+3a+B—1My —(A+3y— v+ m)My»
pressions for the energy of the dipole electromagnetic radia-

tion that is reflected and absorbed by a RN black hole, show- =2¢1¢g,
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(D+3e+e+3p—p)My —(5+3B—a+3r+m)My

=41, 3

where ¢ is an auxiliary complex potential that does not

enter explicitly in Eqs(1) and (2).
Using the null tetrad employed in RefS,6,7], Egs.(3)
admit separable solutions of the foifrm]

Pe=(N(IT) Y m(6,0)e ',
Ye=2G(r)_1Yjm(6,0)e ',
Mo =2Qg(r)_,Yjm(6,0)e ",

M1 =\2Q(N(r)/1) _1Ym(B,0)e ", (4)

whereQ is the electric charge of the black holgY;,, are
spin-weighted spherical harmonick4], j andm are integers
with j=1, and|m|<j. SinceY;,=0 for j<|s|, in the case
wherej=1 only ¢z andM, do not vanish. Then, from Egs.
(3) one obtains the radial equations

(5)

wherey=r2—2Mr + Q? andM is the mass of the black hole
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where
. df
V&) =+q,—+q5f2+2f, (10)
dr,
=t (11)
r*(r+ds)
It can be shown that
+ + + . d H +
Y(oy=VEZE) £ (W 4 21 w) g e z™), (12
*
a1 L e
X(,)=+q22—+f d +lw Z_, (13)
*
where
. d
W) =— —In fFq,f, (14)

dr,

satisfy Eqs.(8) provided thatz(*) obeys Eq/(9). Equations
(10) and(11) yield the expressions
x(2r*+6Mq,r2+8Masr +3Mq3)

v+
ro(r+qy)?

V(‘)=2r—:(r2+2Q2). (15)

described by the RN solution. Making use of the definitions ~ Since the potentialy'(™) are of short range, the auxiliary

1 ’ 2 3M ’ ()
Y_ —q X_ —r (;)
( ) lr3’ ( ) X !

in terms of the variable, defined bydr, /dr=r?/y, Egs.
(5) can be rewritten as

d | x* 29,
(E—'w)Y():r—g T X
d o a
(E‘Hw X(_)—; 1+T Y(_). (8)

functions Z(*) have the asymptotic behavioes"'“"+ for
r,—o (i.e.,,r—o) andr, — —c (the horizon of the black
hole). Assuming that there are no waves emerging from the
horizon, the functiong(*) must have the asymptotic forms

Z(i)_)A(i)efiwr*_i_B(i)eiwr* (r*_)+oo),

—CHe (1, ——o0), (16)
Since the potentialg*) are real, it follows from Eq(9) that

|AG)|2—|B(M))2=|C(*)|2. Hence, the amplitudes

(=) c®)
(F)= H=
A’ Al®) (7
satisfy the relations
|IR)|24 | T(H)]2=1. (18)

(The functionsY_ andX_, are the analogues of the func- We shall show below that, as in the cases considered in Refs.

tions X_, andY _, introduced by Chandrasekhig,6].)

[3,6], the two potentialsv(*) and V(*) lead to the same

The solution of Eqs(8) can be expressed in terms of a reflection and transmission coefficieftee Eq(29) below].

single radial functionZ(*) or Z(*) which obey the
Schralinger-type equations7,15]

d2
( — 7+v(i) Z(F) = 271 9)

dr

*

IIl. ENERGY AND POLARIZATION OF THE DIPOLE
RADIATION

Making use of Egs(2), (4), (6), and(7), we find that the
componentspy and ¢, of the dipole electromagnetic pertur-
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bations with respect to the original tetrétistinguished by a
superscript B are given by[7]

— 1 r2\2
B (r?,—lw—) i)((,)
X/ r3

QDOZE

Yie ' (19

5 1 x
‘102\/55

X( )1Y1me it

r2 .
)r \(= )} Yim€'“ (20

Al

with m=0,*1.
On the other hand, from Eq$9)—(14) one finds that if
r,—oo andZ(*)—e '« then

q K™ iKY
Y(_)_>_ szrse * X(_)—> o e * (21)
where
KH)=2%2iwg,, 22)
while, if r, —o andz(*) - elors,
Y(,)—>—4w2eiwr*' X(,)—>2iwr2ei“’r*_ (23)
Finally, if r, ——o andZ(*)—e 1"«
2
Y-
=)
r+
y K(F)(2q,/r)e o
A —iw+(Mr,—Q3)/r3[—iw+2(r.—M)/r2]’
K(Fgior,
X(y— ' (24
) 2 —iw+(Mr —Q?)/r3]

where r . =M+ (M?—Q?)2 [cf. Ref.[6], Chap. 5, Egs.
(285 and (286)]. Note that, sincer? —2Mr, +Q?=
(Mr.=Q*)/ri=(r —M)/r?.

Thus, according to Eq$16), (19)—(21), (23), and(24) we
find that, whernr, — oo,

Feb— —i20K(MA®e 0t+1) Ly, (25
2r 2 i\2w[2BHe 10t Y,
~2i0g,BPe T Y] (26)
Similarly, whenr, — —
XPE— —i2wr [KOCHe ot 1y, o (27)
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ANKEO =aACKE®) - g =),
CHKE=cHIKH), (28)
hence, using Eq€417) and (22),
K()
|R(+)|= R(*)K(H =|R(7)|, TH =7C) (29

(assumingw real) (see Refs[3,6]).

Making use of Eqs(25—(27) one finds that the flux of
energy per unit time of the dipole electromagnetic radiation
coming from infinity is given by

dE,, : ? .
it =8 I|m|r<p0|2dQ——|K(*)A( )2 (30

and thetime-averagedilux of energy per unit time of the
outgoing dipole electromagnetic radiation is

dEoy /1
dt | \2x

The flux of energy per unit time across the event horizon of
the dipole electromagnetic radiation[Ref.[6], Chap. 8, Eq.
(258)]

B w?
lim [r 8[2dQ ) = ——|KBE)2,
r—o 2 47T

(31)

dEhoIe: i
dt 8

| xeol?
im ———
r—>r++02Mr+_Q

2
w
—— |k(F) ()2
- IKECP2
(32

Thus, by virtue of Eqs(17), (18), and (30)—(32) we con-
clude that

d Ehole
dt

(33

dEin dEout
dt _< at | *

Furthermore, the energy reflection and transmission coeffi-
cients are given by

2

(dEou/dt) BT )
dE,/dt  |A(®) =R
dEq/dt |C]?
hole _ :|T(t)|2, (34)
dE,/dt | A(®)

respectively, i.e., these coefficients coincide with the reflec-
tion and transmission coefficients of either of the Sehro
dinger equationg9).

By contrast with the multipole electromagnetic radiation
with j=2, which gives rise to multipole gravitational radia-
tion of the same orderand conversely, the dipole electro-
magnetic radiation cannot be converted into gravitational ra-
diation, since there is no dipole gravitational radiation, and
the energy of the electromagnetic radiation alone is con-

These equations imply that if a given dipole perturbation isserved.

expressed in terms of functio®™ andZ(~), which have
the asymptotic formg16), then the coefficientd\(*), B(*),
and C™) must be related by

As discussed in Refl9] (see also Ref[16]), Eq. (25)
corresponds to an incident circularly polarized wave, while
the presence of both factoes ' ande'“! in Eq. (26) im-
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plies tha}t the reflegted_ wave is elliptically polgrlzed. Thls (;)Bzzf(r)mm( 0,0)e 1ot

change in the polarization of the electromagnetic waves is a

consequence of the existence of a nonvanishing background

electromagnetic field; in the case of the Schwarzschild solu- (0)B= \/Eh(r) 2ij(0,go)e_i“’t. (37)
tion, a circularly polarized electromagnetic wave gives rise

to a circularly polarized reflected way&6]. Whenj =1, only (@) and ()€ can be different from zero

and substituting Eqg37) into Egs.(35) we obtain
IV. DIFFERENTIAL IDENTITIES 9 qs{ 7 q ( )

As in the case of the radial functions appearing in the o r? 4 2Q?
study of the perturbations of the RN solution wife=2, &r_lw; (r"H)=|3M—-— 2rf,

there exist differential identities involving the radial func-
tions Xy and Y., defined above. Making use of the

Einstein-Maxwell equations and the Ricci and Bianchi iden- o2\ [ x? 2xH
tities, in the case of a solution of the Einstein-Maxwell equa- ﬁr*"“’; PRl R (38)
tions such that the background electromagnetic field is alge-
braically general and one of its principal null directions is ) o
geodetic and shear-free, in a frame such thais the only ~ Of, making use of the definitions
nonvanishing component of the background electromagnetic
field and k=0=0 (hence,¥,=W¥,;=0), one obtains the ¥2
decoupled system of equatiofikl] Y(+)Eq1r—5f, X(+)Er4H, (39
(6—da+m)(Vo)®—(D—2e—4p)(F)"
~ we have
=(3W,—201)(x)°?,
~ 2
(A=4y+u)(Wo)B—(5-28—47)(F,)® 4 o]y =X 20y
dr* (+) r8 r (+)
=(3W¥,+2d 1)) (0)",
36t 53— o (VB (5—3B— 374+ 7 d rt a2
(D—3e+e—3p—p)ei(0)°]—(6—3B—a—37+m) (E_'“’)X(”:} 1+T Yo - (40)

X[@1(k)B]1=01(¥0)°®,
_ _ - _ - (The functionsY,y and X, are the analogues of the func-
(6—3a+B-1)[¢1(0)®]—(A=3y—y+u)[e1(x)®] tions Y. ; andX. , introduced by Chandrasekhid].) Thus,
for w real, the pair of functions((,),X()) satisfies the

— 1 \B it
=2¢2(¥1)", (39 same equations a¥(_,X_,) [see Eqs(8)].
where Since the potential$4) generate the complete perturba-
tions by means of Eqg1) and(2), we can write ;)8 and
(F1)B=[2¢,(¥,)B—3W,(py)B]/2¢, (x)® in terms of g andM, and obtain expressions equiva-
lent to those given by Eq$37). In fact, making use of the
(k)P=(x)®+(D—2e=p)[(90)%/2¢s], ~ (36) formulas
(})BE(O’)B—'— ( o— ZB_ T)[(()DO)B/Z(PI]! (\I,ACDE)B: - %h,u,Mq,ACDE_{— %h(ACR,S,(DDE)RrSr
and a symbol similar to,)® denotes the first-order varia- +3VR Ve hoprs (41)

tion of the corresponding null tetrad component, which may

not coincide with the component with respect to the back- . . . .
i L whereh,gcpr IS the spinor equivalent of the metric pertur-

ground null tetrad of the first-order variation of the electro-, __: o :

magnetic field, denoted above hyf. The difference be- bation, ®xgcrpr andW agcp are the Ricei and Weyl spinors

B B 0 e of the background solution, and
tween, e.g., ¢o)° and ¢, comes from the variations of the
metric, which lead to variations of the null tetrad.

In the case of the RN solution, Eq®5) admit separable (Tacoer)®=— %V(AR’hc)DR'E'_ %FACRS’hRDS'E' )
solutions of the fornj12] (42
(W) B=V2F(r) ;Y |m(6,0)e ', which give the first-order variations of the components of the
~ . Weyl curvature and of the spin coefficients, respectively, and
(P,)B=H(r) 1Y]-m(t9,<p)e_""t, Eqgs.(1), (2), (4), (7), and(36) we find that
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~ g 1 — — _ — _
(¥y) =Z(D—8+s+p—p)(D+28+p—p)(D+s+3s

37, _ o
+P_P)M1’_4_(P1(D_8+8_P)(D+28+P)¢E

Q E—
- < D*D*D*rZY B )_ Y eImt
2\/§q1( () —1Y1m
3 X— | ——
+—\/§Qr2(Mr—Q2) D*:D*r—gx(,) 1Y€,
(43)
where
r2 r2
D=0,—iw—, D'=d+iw—. (44)
X X
Making use of the relation
r2D* D* D*r2Y_y=2q,D* D* ix(,)
r3
X
_4q1D r_4X(_) y (45)

which follows from Eq.(8), Eq. (43) can be rewritten as

~ ft Xo—
(qll)Bzz\/EQr‘l{rz(r—’_qZ)D*D* r—BX(,)
+q,r2D* réx(_) ]_1Ylmei‘"t. (46)

Similarly, from Egs.(1), (2), (4), (7), (36), and(42), we
obtain

- 1 1 _ o
()= (D26 =p) (D —e-+o=p)(D+26+p) U

Y me' et

(47)

—L D* D* D* lX
- r2 (=)

V2Q

[It should be noticed that Eq$41) and (42) involve a spe-

cific choice of the perturbed null tetrad; however, this fact

has no consequence on expressi@He and (47), since the
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Thus, by comparing Eq$47) and (48), taking into account
the fact that (., X(4,) and (Y(_),X(-,) satisfy complex-
conjugate equations, it follows that

X

X
r4D*D*D*r_2x(+):CY(7), (49)

for some constan€ and, by suitably normalizing the func-
tions Yy, X(+),

2
X X ~
APPDEXH=CY ),

(50

whereC is another constant such th@t= C for  real.
In a similar manner, from Eqg46) and (48) one finds
that

X X
r2(r+qy) D* D r—3X(+)+q2r2D* X=X
(51)

and
2 X 23X S
r (r+q2)DD_r3X(_)+q2r D_r4X(_):CX(+), (52)

with the same constants appearing in EGE) and (50).
[Alternatively, one could demonstrate the validity of Eqgs.
(49)—(52) starting from Eqgs(8) and (40), by a direct proce-
dure analogous to that followed in Rdf6] to prove the
Teukolsky-Starobinsky identities, which involves many
computations and requires the previous knowledge of the
appropriate operatosSubstituting Eq.(52) into Eg. (51),
making use of Eqs8), one obtains the relation

CC=4+402%q3, (53

i.e., CC=KMKO),
V. CONCLUDING REMARKS

The results of this paper, together with those of Refs.
[9,12], show many interesting relations between the quanti-
ties characterizing the perturbations of the RN solution. By
contrast with other approaches, the use of the complex po-
tentials to express the complete perturbations allows us to
obtain these relations in a relatively simple wé&s a matter
of fact, a detailed analysis of the perturbations, similar to that
presented in this paper and in Ref9,12], has not been
obtained by the alternative approaches.

As in the case of the multipoles witl=2, the equations
for the potentialg3) can be reduced to the same radial equa-

combinations(36) are invariant under the rotations of the tions obtained from the linearized Newman-Penrose equa-

perturbed null tetrafil1].] On the other hand, from Eq&37)
and (39) we have, for thg =1 perturbations

{ \B —iot ~\B 2r5 —iwt
(V) :r_Ax(+)1Y1me v (k) :FY(Jr)lYlme

11X
(48)

tions (35), which is useful in finding the differential identi-
ties satisfied by the radial functions. For all the multipole
orders, the differential identities found in connection with the
perturbations of the RN solution are more involved than the
Teukolsky-Starobinsky identities obtained in the study of the
perturbations by massless fields of the type D vacuum space-
times.
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