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Extreme Kerr throat geometry: A vacuum analog of AdS,x S?
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We study the near-horizon limit of a four-dimensional extreme rotating black hole. The limiting metric is a
completely nonsingular vacuum solution, with an enhanced symmetry groupRS(P(1). We show that
many of the properties of this solution are similar to the AdS?> geometry arising in the near-horizon limit
of extreme charged black holes. In particular, the boundary at infinity is a timelike surface. This suggests the
possibility of a dual quantum mechanical description. A five-dimensional generalization is also discussed.
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PACS numbegs): 04.70.Bw, 04.50+h

I. INTRODUCTION the boundary of AdSis one dimensional, one expects the
dual theory to have a conformal quantum mechanical de-
There is growing evidence in support of the conjecturescription. Unfortunately, despite much effofd,5] the
that string theory with asymptotically anti-de SitigdS)  AdS,-CFT, correspondence is still poorly understood. We
boundary conditions is completely described by a dual conwill not be able to describe the dual theory in our case,
formal field theory(CFT) [1]. One of the features of AdS although we will make some comments in Sec. V.
spacetime that makes this correspondence possible is that the Since the AdS-CFT duality is better understood in higher
(conforma) boundary at infinity is a timelike surface. In dimensions, it is natural to ask whether spacetimes analogous
many applications, one can imagine the dual CFT residingo higher-dimensional AdS arise in the near-horizon limits of
on this timelike boundary. For this reason, the AdS-CFTrotating black holes in higher dimensions. Several scientists
correspondence is often called holograpfi¢ In contrast, have studied the near-horizon geometry of rotating charged
asymptotically flat boundary conditions lead to a boundary ablack holes andp-branes[6,7,8,9. However, in all these
infinity consisting of two null surface@ogether with a point  cases, the charge plays an essential role, and most solutions
at spatial infinity. It is far from clear what form a holo- are asymptotically AdS. What about higher-dimensional ana-
graphic description will take in this case. logs of the Kerr solution10]? If the spacetime has only one
We describe below some vacuum spacetimes witttomponent of angular momentum nonzero, then there is no
asymptotic structure similar to AdS spacetime. They are obextremal black hole in more than five dimensions. A given
tained by taking the near-horizon geometry of extreme rotatmass black hole can have arbitrarily large angular momen-
ing black hole solutions. In four dimensions, there is a onetum. If all components of the angular momentum are non-
parameter family of solutions labeled by the total angularzero, then there is an extremal limit, but we expect that the
momentumJ. These vacuum spacetimes are completely nonnear-horizon geometry will still resemble AgSThis is be-
singular and can be used to construct classical solutions to atause the effective cosmological constant in these vacuum
string theories. One simply takes the product with a Ricci flatsolutions can be thought of as arising from the off-diagonal
internal space to obtain a 10er 115 dimensional solution. terms in a Kaluza-Klein reduction of the metric. This always
Since the curvature is bounded everywhere and small foproduces a two-form Maxwell field which can act like a cos-
large J, the @’ (or M theory corrections should be small. mological constant in two dimensions only. To obtain AdS
One advantage over the AdS solutions is that there are n@gr n>2 one would need a higher-rank form, which does not
background Ramond-Ramond fields, so string propagation iarise naturally in a vacuum solution.
these backgrounds is straightforward. However, an obvious |n the next section we derive the near-horizon limit of the
disadvantage is that these solutions do not admit covariantlgxtreme Kerr solution and show that it has enhanced sym-
constant spinors and, hence, are not supersymmetric. Thaetry. We also discuss geodesics and find that timelike geo-
effect of quantum corrections remains to be investigated. desics with sufficiently large angular momentum can escape
It is tempting to speculate that there is some type of duaio infinity. However, just like radial null geodesics in AdS
CFT description of string theory on spacetimes which asspacetime, they do so in finite coordinate time, but with in-
ymptotically approach these vacuum solutions. Starting witHinite affine parameter. This shows that the throat solution is
the four-dimensional Kerr solution, one obtains a vacuunyeodesically complete and has a timelike boundary.
solution which resembles Ad8S”. It has a symmetry group ~ The possibility of viewing the vicinity of the extreme
SL(2R)xU(1) and a timelike boundary at infinity. Since Kerr horizon as a complete vacuum spacetime in its own
right was suggested by the results of Bardeen and Wagoner
[11] (see alsd12]). They studied the exterior metric of a

*Email address: jbardeen@itp.ucsb.edu uniformly rotating disk in the extreme relativistic limit. If the

TEmail address: gary@cosmic.physics.ucsb.edu relativistic limit (infinite redshift from the center of the disk

For a discussion of obtaining this as a limit of the AdS-CFTis taken before taking the limit of infinite affine distance
correspondence, s¢8]. from the disk, the asymptotic geometry is the throat of an
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extreme Kerr black hole rather than an asymptotically flatThe total mass isM, and the angular momentum i
spacetime. =Ma, which we will assume is positiveThe extremal limit
In Sec. lIl, we discuss the propagation of a massless scaorresponds t@a?=M?, soA=(F—M)? and the event hori-
lar test field in this background. Most modes have discreteon is aff =M. The area of the extremal horizon is
frequencies and are confined. However, a few modes with
large azimuthal angular momentum can propagate to infinity. A=87M?=87]J. (2.4
We will argue that this can lead to an analog of superradi- ) . )
ance where a wave can scatter and return with more energig“e valge ofw at the horizon is called the.angular velocity of
than it started with. When back reaction is included, thethe horizon gnd, in the extremal case, is simply 1/2M.
throat solution is definitely unstable. We give a general ar>iNcegrr=p /A, it is clear that the spatial distance to the
gument(independent of superradiandbat nearby solutions extremal horizon in a constamtsurface is infinite. In anal-
will be singular. This argument also shows that AdS? is  0gy to the extreme charged black holes, we wish to extract
unstable, but not higher-dimensional AdS spacetime§5)Jn the limiting geometry as one moves down this throat.

another argument for the instability of Ag8S? is given, To describe this near-horizon geometry, we set

and it is suggested that the dual theory may describe only ¢ )

“ground states” of string theory, and not finite energy exci- F=M+rr T=— D=+ 2
tations. The same may be true in our case as well. Alterna- ’ N ¢=¢ 2MX\ 29

tively, the instability may simply indicate that the addition of 5

any amount of energy produces a black hole. The dual theorgnd take the limitn— 0. The shift from¢ to ¢ makesd/dt

could perhaps describe these black states as well. tangent to the horizon. In other words, the coordinates coro-
Our results can be extended to the general Kerr-Newmatate with the horizon. The result is

solution describing a charged rotating black hole. The near-

horizon limit of this solution is briefly discussed in Sec. IV. 2o 1+co< 6 r2 5 rS 5 2o

In the following section we make some comments about the ds’= 2 - r_gdt +zdritrodd

dual quantum mechanical theory. Perhaps the key observa-

tion is that the area of the event horizon is related to the 2r2sir? 9 r 2

effective cosmological constant of Agd#h a universal way T 1t cod g do+ %dt ' (2.6

that is independent of whether the extreme black hole has
only angular momentum, chargg, or bqth. This suggests thgfhere we have defined2=2M2. This spacetime is no
the quantum mechanical theories which are dual to thesgnger asymptotically flat. We will show that it is similar to
backgrounds are closely related. _ . AdS,xS* in many respects. For example, if one séts0
Finally, in Sec. VI, we discuss the near-horizon limit of (5 7y one sees that the spacetime along the axisesisely
the five-dimensional extreme Kerr solution. The resulting 9eads,. It is clear that by rescaling one can ensure thap,
ometry is more complicated, but qualitatively similar to the o1y appears as an overall factor in front of the metric.
four-dimensional case. The limiting solution resembles ;g easy to see that E¢2.6) has enhanced symmetry. In

AdS,xS3, addition to thed/dt and dld¢ symmetries present in Kerr
spacetime, Eq(2.6) is clearly invariant under —cr, t
Il. KERR THROAT SOLUTION AND ITS PROPERTIES —t/c for any constant. So EQ(ZG) has the dilation sym-

. _ . . o metry of AdS. It is less obvious, but still true, that E(.6)
We begin with the(four-dimensional Kerr metric in s also invariant undefan analog of the global time trans-

Boyer-Linquist coordinates: lation in AdS,. To see this, note that tiet) coordinates are
analogous to Poincamordinates on AdS To find the extra
d?= — 2" d T2+ e?/(d g — wd1)2+ p?(A~1dF2+d 0?) global time translation symmetry, we introduce new coordi-

(2.1) nates which are related t@,t) in the same way that the
global coordinates of AdSare related to the Poincac®or-
dinates. For simplicity, we set=1. Let

where
(1+y?»)Y?sinr
_ 2\1/2 —
p’=T2+a’cos 0, A=T?>-2MT+a? (2.2 r=(1+y9~cosr+y, t= r - @27
and The new axial angle coordinatgis chosen so thag,,=0,
with the result
Ap? cost+ysinT
2v__ 29 _ i —2v —
F2+a?)?—Aa’siP o’ © A sirf ge~>", ¢=¢+log 1+ (1+y?)YPsing| 28
(2.3
w= 2MTa e2v 2We have selG=1 whereG is the four-dimensional Newton's
Ap? = constant.

104030-2



EXTREME KERR THROAT GEOMETRY: A VACUUM . .. PHYSICAL REVIEW D60 104030

In these new coordinates, the throat met@ct) takes the 1+y?
form L=P~c7/r?(p=2(<'p+y'7'), E=—P.dlor= > T— Ly.
(2.1)
1+cos 0 o, dy? 5
ds’= — || T @tyHdr 1+y2 +do Settingg,,,P“P"= — u? yields
2sirt 6 5 y?—4(E+Ly)*+(2u*+L%)(1+y*)=0. (212
+ m(d(p'f-ydT) . (29)

Geodesics with zero angular momentum again behave ex-
actly like geodesics in AdS That is, massive particles feel
an infinite potential barrier and stay confined to finfige
Massless particles can reach infinity, but sirycis propor-
tional to the affine parameter, these geodesics are obviously
complete. One can easily verify that these geodesics reach
infinity in a finite time 7. Timelike geodesics withl?

Note that ther=0 hypersurface coincides withta=0 hy-
persurface and thap= ¢ on this hypersurfacéand also at
infinity, for all time).

The throat solutior{2.9) thus has all of the symmetries of
AdS, plus translations ing: Its isometry group is
SL(2R) X U(1). All geometric quantities depend only én  <2,2/3 are also confined. However, geodesics with
We will show below that the coordinates in EQ.9) (with  >2,42/3 can escape to infinity. This is a qualitatively new
—o<7<o, —w<y<x) cover the entire spacetime. The feature of Eq(2.9) which is not present in AdXS?. Since
surfaces of constant are always spacelike, sois a global  y, Eq.(2.10), is a future-directed timelike vector everywhere,
time function and this spacetime has no closed timeliket follows that —P- x>0, which impliesE+yL>0. Thus a
curves. However, the Killing field/d7 is not timelike every-  geodesic withL>0 can only escape tg= -+, while a
where. It is timelike for allo when y2< 1/3, but asymptoti- geodesic withL<0 can only escape tp= —. Sincey«=y
cally is spacelike for si#>(1+cos 6)/2 or sin6>0.536, asymptotically, these geodesics are also complete and reach
within 32.4° of the equatorial plane. This is a consequence offinity in a finite value of 7. Geodesics withL2=2u2/3
the rotation and is analogous to the ergosphere in the exatisfy y2=8ELy asymptotically. So once again If>0,
treme Kerr solutiori. It will be convenient to define the vec- these geodesics can reagks, but noty=—o. For L
tor field <0, the situation is reversed. These geodesics are also com-
plete and reach infinity in finite.

For product spacetimes such as AdS? one can re-
move the angular directions and conformally rescale AdS
view infinity as a finite boundary. Then the Killing fields of
) ) o _ . AdS, become conformal symmetries of the boundary. One
x is a future-directed timelike vector everywhere, which iscannot do this for the throat solution since the geometry does
orthogonal to the surfaces of constanand tangent to the ot approach a product metric asymptotically. If one wants
surfaces of constaryt _ o _ to bring infinity in to a finite distance, the best one can do is

There are two boundaries at infinity corresponding/to g rescale the entire metric, although the conformal metric is
= * . Since a surface of constayts always timelike, the g |onger smooth at the boundary. For convenience, we start
limiting surfacesy=*o must be timelike or null. The jith the metric in Poincareoordinates(2.6) (although we
boundary will be timelike if geodesics can reach it in a finitesetroz 1). Multiplying by 142 and settingc= 1/r, the met-
value of . We now show that this is the case. In the processyic pecomes
we will also show that Eq(2.9) is geodesically complete.
Hence the solution is nonsingular, and the coordinates
(7,y,0,¢) cover the entire spacetime.

(2.10

1+co< 6

ds?= [ —dt?+dx®+ x?d 6?]

2
Since we are mostly interested in the asymptotic proper-
ties of the geodesics, it suffices to consider geodesics with 2 sirt 0 )
constantd. This corresponds t6=0, /2. Itis clear that test + 1T oo g Xdo+dy” (2.13

particles moving along the axig=0 will behave exactly as
in AdS,. In particular, timelike geodesics never reach infin- Despite its simple appearance, this conformal metric has a
ity, and null geodesics reach infinity in a finite time. The curvature singularity ak=0. The four Killing fields&* of
equatorial plan@= /2 is a three-dimensional homogeneousggq. (2.6) are

space with symmetry group SLE),XU(1). It is atwisted

product of AdS and a circle of constant radius. Consider a d d d d

geodesic with momentumP= r(3/d7) +y(al ay) + &(dl G=g5 ST HTtETron

d¢), where an overdot denotes a derivative with respect to
an affine parameter. The conserved quantities are

B 1+t2a ta 19
=\ o2t o Var rdg’

(2.19

3This is not exactly the same as the original ergosphere, sitee
is not a Killing field in the full Kerr metric.

Since they are Killing fields of Eq2.6), they are conformal
Killing fields of Eg. (2.13 with action Eg(r’zg,w)
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= (Egrfz)ng (—2§r/r)(rfzgw). The net result is thag; ing. The outgoing wave has more energy than the incoming
and ¢, remain Killing fields of the rescaled metri€z mul-  one. Modes with exactlg=m{},, are on the borderline. No
tiplies the metriq2.13 by 2, and¢, multiplies the metric by energy is absorbed by the black hole. The modes we will
2t. Thus the last three generate the conformal group on atudy in the throat geometry can be thought of as obtained by
line with metric —dt?. This can be realized explicitly by starting with a mode in the extreme Kerr metric satisfying
introducing a cutoff akk= e and shiftingg=¢—t/e. Then ~T=MQy+No. For smallx, most of this wave is reflected
the metric on thex= e surface is essentially the product of a @1d only a small part remains near the horizon. After the
line and a very small sphere. rescaling(2.5), the wave near the horizon remains nonzero in
the limit \—0 and completely decouples from the wave in
the asymptotically flat region.

The form of the throat metric in Poincaa@d global AdS
coordinates becomes identical as the respective radial coor-
dinatesr andy become large, so the asymptotic properties of
the wave solutions are the same in both coordinate systems.
For definiteness, we will use the global coordinates. Since
e metric(2.9) is of the general forni2.1), the wave equa-

IIl. MODES OF A MASSLESS SCALAR FIELD

An important feature of test fields on Ag8S? is that
they naturally obey reflecting boundary conditions at infinity.
(This is true for all modes with a nontrivial dependence on
S%) The wave solutions have a discrete spectrum, with n

oscillatory behavior near infinity. We will show that a simi- tion in this background takes the fort8.1) for a suitable

Itar colnfiznem(tar?t htolds for taX|s|>_/|mmetr|c modes r']rt] éhe €*choice of metric components. This wave equation, after mul-
remal Kerr throat geometry. HOWever, as mig N Sus'tiplication by p?, is completely separable, just as it is for the
pected from the behavior of geodesics with large angular

momentum found in Sec. Il, some nonaxisymmetric mode original Kerr metric. Settingt"=Y(y) 0 (0) splits the partial

o ifferential equation into the two ordinary differential equa-
do propagate all the way to infinity and transport energy an ions
angular momentum there. These scattering states have a con-

tinuous spectrum. This behavior is expected be generic for

f all spins. We il it with a discussion of sol dvy], [(e+my)?
waves of all spins. We illustrate it with a discussion of solu- (1+y2) — —+m?—K|Y=0 (3.9
tions of the massless scalar wave equation. dy dy 1+y
The scalar wave equation for a spacetime described by a
metric of the form(2.1) can be written as and
19 oV 1 Jd| oV 1 d de m2
— — |+ - J— — R - 2 oi —
?ﬁf[ o | p?sing 96 Smaﬁﬂ} snode| 5" ag|*| K sEg g™ ST 6|00
e P(F-mw)?~mPe 2W=0, (3.1) 39
assuming harmonic time and axial angle dependence of thEhe separation constakthas been defined so that the angu-
form lar equation is identical to the spheroidal harmonic angular
o equation familiar from solutions on the Kerr background,
W= (F a)eimd)fi?rt. (3.2 with the Kerr frequency set to the unique value implied by
’ Eq. (3.3.
In taking the near-horizon limit2.5), the throat frequency The eigensolutions of Ed3.5 with boundary conditions
is related to the Kerr frequendy by of regularity atd=0 and#= = are the usual Legendre func-
tions form=0, soK=I(l+1). But even for nonzere, the
o—mQy=N\o, (3.3 solutions are fairly close to associated Legendre functions,

_ _ _ since m?sir? @ is rather small compared tl +1) for |
where(}y, is the angular velocity of the horizon. Therefore, =|m|. Numerical calculations of the eigenvalu¢gor a few
as\—0, all finite frequencies in the throat correspond to theof the lowest modes are listed below. We also include the
single frequencys=m(y=m/2M in the exterior. value of K ;=2m?—1/4, which we will see marks the di-

~Modes in the Kerr geometry wittr=m(), are special viding line between the discrete and continuous part of the
since they are totally reflected, and not absorbed by the blackpectrum. In general,

hole. This can be seen from the following argument, which
applies to all Kerr black holes, and not just extremal ones Kim=I(1+1)+cm?, (3.9

(see[13]). Let &#=(a/t)* be the usual stationary Killing

field. The null vector tangent to the horizon of a Kerr blackyherec is roughly in the range 0.13—-0.22 ahegt|m| are
hole isl#=&*+ QH(a/a?é)“. Sincel#¢,=0 on the horizon, integers.

the energy flux entering the black hole is obtained by inte- The radial equation for axisymmetric modes is identical to
grating T, ,§#1"= (&9, V) (179, '¥) over the horizon. This that for AdS. The natural boundary condition at infinity is
is proportional tog(o—mQy). So modes withe>mQ ¥=0. Then¥~|y|~'"1, and normal modes satisfying the
have a positive energy flux into the black hole and corretoundary conditions at botji=+o andy= —c exist for
spond to normal scattering. Modes with<m(}, have a discrete real frequencies,,. Waves are reflected before
negative energy flux and correspond to superradiant scattethey reach infinity.
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TABLE I. Some eigenvalueK of the angular equatiofB.5). To compute the flux of energy and angular momentum,
note that each Killing vector field of the spacetime produces
m I=m I=m+1 Il=m+2 Kerit a conserved flux four-vector when contracted with the
1 2200 6.143 12.133 175 energy—m_oment_um terjsor of the wave. Thg axial K|I.I|ng field
5 6.855 12.664 20.597 775 is the unique Killing field with closed orbits and gives the
i : ’ i M= TH
3 13.995 21629 31.459 17.75 angular_ momentum flux vectar“=T{ . The average rate
(per unit global timer) of angular momentum transport in
the +y direction across a constaptsurface is equal to
The nonaxisymmetric modes are more interesting. The PR
asymptotic solutions fofy|>1 are power lawsY~|y|?, f dﬂdcp(—g)llzTy:f dodesin(1+y?) — —.
with ¢ de dy
(3.10

1/2

(3.7 After averaging over time and taking the limjt—o with

asymptotically Y=A , yi @™ ~V4-K)*-12 o the outgoing

For K>K=2m?—1/4 both exponents are real, qualita- Positive frequency wave solution, the angular momentum
tively like the axisymmetric modes. Only the more rapidly transport rate becomesn(2m?®—1/4—K)¥4A_|?, assuming
decaying solution satisfies the boundary condition, and glothe angular harmonics are normalized. Using the Killing field
bal normal modes exist for discrete frequencies. On the othe¥d7 to define a conserved energy flux, the asymptotic energy
hand, if K<2m?—1/4, the exponents are complex, and thetransport rate igr/m times the angular momentum transport
asymptotic solutions are traveling waves. Positive frequencyate calculated above and for positive frequency waves is
modes are outgoing in phase velocity if &0 and ingoing ~ outward for waves with an outward phase velocity.
if Im @<<0. From Table |, it is clear that fan=1, all eigen- We now come to the key point. Consider a wave with
valuesK are larger tharK;=2m?—1/4, but for all|m| >0, m>0 which starts at largg moving in the negativeyy
>1, at least thé=|m| eigenvalue is less thafi.. This is direction. After scattering off the potential barrier, there will
qualitatively different from AdS since in the absence of be a reflected wave and transmitted wave. In order for the

rotation the condition for confinement K=I(1+1)>m? transmitted wave to have outgoing group velocity, it must

4

— 1.,. K—2 2
a——z_ —2m<+ —

—1/4, which is always satisfied. have incoming phase velocity. Thus there is a incoming flux
In a WKB approximation to the traveling waves, the ef- Of energy fromy= —co. Since this energy is conserved, there
fective wave numbek=(—i/Y)dY/dy is must be a corresponding outgoing flux of energyyate.

Since we started with an incoming waveyat «, the only

(oc+my)? 12 way this is possible is if the reflected wave carries more
1+y? +m _K} : (3.8 energy than the initial wave. In this sense, waves in the

throat geometry exhibit superradiance.
The group velocity is then Another way to understand the difference in sign between
the group velocity and phase velocity is to consider a local
observer who is at rest with respect to the constasurfaces
and, hence, has a four-velocity proportionaltcEq. (2.10.
Such a zero-angular-momentum obseri2AMO) at con-
The phase velocity is just/k. So, form>0, the phase ve- stanty=y, and 6 would assign a frequency to the wave
locity and group velocity have opposite signs for large nega-

L1
—(1+y2)1/2

24312
do_ (1YY

k o+my

(o+my)?
1+y?

112
m?— K} . (39

tive y. Form<0, they have opposite signs for large positive _ o+my (3.1
y. This has an important consequence, which we now ex- TZAMOT (1 1 y2) (14 co 6)/2]72 ‘
plain.

SinceK is always larger tham?, the expression inside At large positivey, with negativem or large negativey,
the brackets in Eq(3.8) always changes sign arouné  with positive m, the ZAMO would assign a negative fre-
+my=0. This means that the wave encounters a potentiajuency to the wave, and according to him, the direction of
barrier and the WKB approximation breaks down. An initial the phase velocity is the same as the group velocity. The
wave witho>0 andm>0 moving in the negativg direc-  local timelike Killing field tangent to the ZAMO’s world line
tion will be partly reflected and partly transmitted throughis d/d7—yq d/de. If this were used to define the energy flux,
this barrier. We now have to discuss the physical boundaryhe energy flux would be in the same direction as the group
conditions on these waves. First, note that all modes vanishelocity.
at infinity. Even whena is complex, we still haveY Quantum mechanically, the full extreme Kerr metric radi-
~|y|~Y2. But since the volume element on a surface of con-ates particles even though its Hawking temperature is zero.
stanty is proportional tdy| asymptotically, there can still be The emitted particles all lie in the superradiant regithe
a nonzero flux of energy and angular momentum to infinity.<mQQ [14]. Since the modes we consider correspond to
We demand that the transmitted wave should be purely out=mQ,;, one might wonder if this implies that the throat
going, where “outgoing” is defined with respect to the metric will be quantum mechanically stable. However, the
physical group velocity. fact that the throat solution itself exhibits superradiance sug-
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gests that it will decay quantum mechanically also. Presumframe-dragging angular velocity. Expandiagto first order
ably, if one starts with an SL(R) X U(1) invariant vacuum inT—M, we now obtain
state, these symmetries will be preserved. It is then far from

clear what the solutiof2.9) could decay into. This question 0= a 2aM TF-M) (4.1)
requires further investigation. rg rg : '

Classically, the question of stability to linearized pertur-
bations is the question of whether there are unstable quaso the coefficient ofdt in Eq. (2.6) is 2aM/rg instead of
normal modes obeying outgoing wave boundary conditiond/rg. The near-horizon limit is now
at both infinities. Our expectation, in the absence of a de-
tailed investigation, is that no such unstable quasinormal
modes exist, based on the known stability of Kerr black ds’=

a? r2 r )
—r—zsmzﬁ —r—zdtzﬂL r—zderrrodtﬁl2
holes[15]. On the other hand, when back reaction is taken 0

0

into account, the throat geometry is unstable, and nearby 5 a? -1 2arM  \?
solutions are singular. This follows from the singularity theo- +rgsir? 6| 1— FS'”Z o dé+ 2 dt) .
rems[16] since the constanty(r) two-spheres are margin- 0 0

ally trapped. A generic perturbation will cause the orthogo- (4.2

nal null geodesics to start converging, creating trapped

. _ . . 2
surfaces and geodesic incompleteness. If the nearby solfNotice that whera=0, this metric reduces to A¢8S’, as

tions are all black holes, then this instability need not be £XPected. The change in the coefficient of the off-diagonal

serious problem. But since the singularity theorems do no\g;rm carr_ies over to the qhange of the coefficient in front of
prove the existence of event horizons, one does not yet kno e logarithm in the relatioi2.8) between¢ and ¢. Other-

if more serious singularities can arise. In order to apply thigViS€; the transformation to the global Adoordinates re-

instability argument, one only needs to ensure that thén@ins the same, and the above changes carry over to the

nearby spacetimes satisfy Einstein’s equation with mattemetrlc_of the t.hroat geomet|(32.9) in the global coordinates. _
obeying the weak energy condition. The same argument ap- An mter_estmg point along the Kerr-Newman sequence is
plies to AdSxS? and shows that this spacetime is also un-when confinement of modes of scalar waves starts to break
stable.(For another argument to this effect, $68) How-  dowWn. In the4 anulzar_ harmonic equatigm 5’_'”2‘9 IS re-
ever, this argument does not apply to products of higherPlaced by &%/rg)m sir’ 6, and a rough estimate of the
dimensional AdS spacetimes and spheres, since the niimallest separation constant for a givens

geodesics orthogonal to the sphere consist of an entire light 4
cone in AdS spacetime, which is expanding. So, in the K =|m|(|m|+1)+0.8a—m2. 4.3
higher-dimensional case, the spheres are not marginally mn ro

trapped and, e.g., AdS S° is stable.

The instability of the throat geometry may not be a seri-The m® term in the radial equation is replaced by
ous obstacle to constructing a dual quantum mechanicgRa?/rg)m?, so confinement is broken when
theory since it has been argued in the case of A0S that

the dual theory may describe just the “ground states” of 432M2+ 2a2>Kmin 44
string theory with these boundary conditidiag. We will see re 2T m? 44
in Sec. V that a similar argument applies to our throat geom-

etry. This happens first fom?s> 1, whena?/M?2~0.242. The criti-

cal points for other types of fielde.g., electromagnetic or
gravitational perturbationswill differ somewhat from this.
IV. EXTENSION TO EXTREME KERR-NEWMAN

THROATS V. SEARCHING FOR A HOLOGRAPHIC DUAL

While our main interest is in vacuum solutions, we note |n light of the growing evidence in favor of the AdS/CFT
that our results can easily be generalized to include the entir€orrespondence, it is natural to speculate that string theory
range of extreme Kerr-Newman solutions describing rotatingn spacetimes that approach E2.9) will have a dual holo-
and charged black holes. Their near-horizon geometriegraphic description. Since the boundary at infinity is effec-
smoothly interpolate between the solutio®.9) and tively one dimensional and SL(R) is the conformal group
AdS, xS The Kerr-Newman metrics have exactly the sameof a line, one expects the dual theory to be a conformal
form as Eq(2.1), except that\ =T?—2Mr +a®+g? where  quantum mechanical system. We have already pointed out
q is the electric charge anaM is still the angular momen-  several ways in which Eq(2.9) is qualitatively similar to
tum, and the MT factor inw is replaced bf*+a®~A. The  AdS,xS? which is the near-horizon geometry of an ex-
extremal limit corresponds tM?=a*+g?, and the horizon tremely charged four-dimensional black hole. So one might
is atT=M with area 4r(M?+a?). If we definerj=M?  expect that the dual theories might be similar, with thé U
+ a2, the throat metric is similar to Eq2.6) with only two  symmetry of $ broken to U1) in the vacuum case, breaking
modifications: The factor (cog6)/2 becomes 1 supersymmetry as well. Unfortunately, AGSS? is currently
—(azlré)sin2 0, and there is a different coefficient in the the least well understood example of the AAS/CFT corre-
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spondence. We currently have little information about thea larger value of the string coupling. Setting the masses equal
structure of this quantum mechanical system. at this transition point, the resulting black hole will have a

Let us first try to follow the procedure used to discover Schwarzschild radius at least, =J/M=a, which would
the original AdAS/CFT duality. Starting with the extreme again correspond to an extreme Kerr black hole.
black hole, we can decrease the string coupgrig obtain a In terms of trying to construct a dual theory, the obvious
weakly coupled string description of the black hole statesproblem is that these excited string states are not stable. It is
The fact that the entropy of an extreme Kerr black hole isnot clear how to take an appropriate limit to decouple the
independent of Newton’s constant and simply given by thebulk string states and extract the dynamics of the states at a
angular momentunfwhich we still assume is positiyeS  given levelN~J2.
=2mJ, strongly suggests that it has a simple microscopic A clue to the correct description may be the following:
description. In fact, it may ultimately be simpler than the Consider the form of the solutiof#.2). The area of the ho-
Reissner-Nordsfra solution which requires four different rizon atr=0 is A=47rr3, wherer§=2a2+q2. Thus the
charges from the fundamental string standpoint. Since an exextreme black hole entropy is related to the radius of curva-
treme Kerr black hole has no Ramond-Ramond fieldgure of the AdS space along the axis in a universal way
present, the states at weak coupling must be ordinary exciteghich is independent of the ratio of charge to angular mo-
states of the string. Unfortunately, the lack of supersymmetrynentum. This suggests that there may be a unified descrip-
makes it difficult at present to give a precise identification oftion of string theory with these boundary conditions.
the state4.One can instead use the correspondence principle |t was pointed out iri5] that the energy above extremality
[18] to roughly describe these states as follows. Since anglE of a near-extremal Reissner-Nordstrdlack hole scales
lar momentum is quantized, we want to keefixed as we  with temperature likeE=272Q%T?,, where I, is the
slowly decrease the string coupling. The mass of the blacklanck length. The fact th#g enters this formula means that
hole isGM?=J, and its horizon radius is, =GM, where  one cannot také,— 0 keepingE,Q,Tfixed. It is easy to see
G is the four-dimensional Newton’s constant. The corresponthat the same thing is true for the entire family of near-
dence principle says that the black hole makes a transition textreme Kerr-Newman solutions. For simplicity, we restrict
an excited string state when its horizon size is of order theurselves here to the pure Kerr case. Including factors of
string scale. Setting the mass of the black hole equal to thRlewton’s constant, the Hawking temperature is
mass of an excited string state at this point yields

(GZMZ_ a2)1/2

(5.1 = 47GM[GM+(G’M?—a®)1?]"

(5.3

In the extremal limit,GM=a. Let GM=a+ ¢, and define
E=M—(a/G)=¢€/G. Then we have T=(2GMe)*?%
47G?M?, soE=87?T2G?M?3. But GM?=], so

whereN is the string level. SincG~gZI§, this implies that
g~N~%* at the transition point. The black hole entropy is

then
Sy~ GM2~Mr , ~Ml~ N, (5.2 E=8720%T2,. (5.4

Since GM?=J and J is fixed, the appropriate weakly

. . VI. FIVE-DIMENSIONAL THROAT GEOMETRIES
coupled string states are states with-J? and angular mo- S0 OAT G

mentumJ. (This was also noticed ifil9].) The number of Generalizations of the Kerr metric to more than three
such states is approximatedy¥, which agrees with the en- space dimensions have been discussed thoroughly by Myers
tropy of the black hole. and Perry10]. In N space(plus one time dimensions there

States withN~ J2 and angular momentudhare far from  are[N/2] independent planes of rotation in which axial sym-
extremal string states. The minimum mass string state carrymetry can be enforced simultaneously, with the same number
ing angular momentund hasN=J, but there is only one of independent angular momentum parameters. The spatial
such state, so it could never reproduce the entropy of theoordinates reflecting this symmetry consist[df/2] axial
black hole. One might ask what happens if one starts with angles,[ (N—1)/2] polar angles, and one radial coordinate.
string state with less energy than the states corresponding Extremal vacuum black holes with a nonsingular degenerate
the extreme black hole and increases the coupling. It appeah®rizon do not exist in all cases, but when they do, we expect
that there might be the danger of forming a naked singularthat the near-horizon limit leads to a complete spacetime
ity. But, of course, this is not what happensN& J?, then  with an SL(2R) x U(1)V2 symmetry group. As an illustra-
M/ s<J, but the minimum size of the string is,;,=J/M, so  tive example, we work through some of the details for the
I'min=>1s. This means that the string cannot form a black holesD (N=4) case.
at the string scale, but only at a larger scale corresponding to |5 five dimensions, letp and ¥ denote the two axial

anglesa andb the corresponding angular momentum param-
eters, and define a mass paramegiewith units of length
“When charges are present, one can give a precise counting of ti§gluared. The physical mass of the black hole Ms
states of certain extreme charged and rotating black holes, ever 37u1/8Gs, and the factor ®1/3 converts angular momen-
when they are far from the supersymmetric sfdfé. tum parameters to physical angular momenta. The metric in
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“Boyer-Lindquist” coordinateq Eq. (3.18 of [10]] reduces
to

ds?=— di2+ ’%(dNt—asinz 6d%— b cog 0d7)?

+(F2+a?)sin? 6d g2+ (F2+b?)cos 6dy?+ p%d 62

+ pTZdeTZ, (6.1
where
p?=T?+a’cod 0+b?sir? 6,
A=(T?+a?)(F?+b?)— ut2. (6.2

The range of the polar angieis 0= #< /2. Since no odd
powers ofT are present, it is convenient to work wiii
=72 as the radial coordinate, with
2
p
W=7 (6.3
The horizon is at the outermost zerokfThis is a double
zero, implying an extremal horizon, ji=(|a|+|b|)2. The

extremal horizon is @i =|ab|. Unless both angular momen-
tum parameters are nonzero, the horizon is singular, gifice

on the horizon is zero a#=0 if a=0 or at==x/2 if b

=0, andp?=0 implies a curvature singularity. The three-

volume of the horizon is 22|ab|Y?(|a|+ |b|)2.

We focus on the inverse metric tensor, since it is the
inverse metric tensor that comes into the Carter-Hamilton-

PHYSICAL REVIEW D60 104030

W 9jip° T
[T/ — ¢ Patt
9 ESﬁeco?eﬂuwg :
(6.9
Also, we note that
1 .
(—9)1/2=§p2 sin@ cos (6.10

usingtU as the radial coordinate.
The throat limit is obtained by changing the axial coordi-
nates to be corotating with the horizon and then rescaling the

T andt coordinates, similar to what was done in ER.5.
Specifically,

~ a -~ - b -
P= Taprazt VTV e p?t
(6.11
~ Vjab
T=|ab|+\(|a|]+]|b|)?u, tz%t.

In the limit A—0, p becomes a function ob only, p?
=|ab|+a?cog #+b?sir? 6, and the components of the in-
verse metric become

Jacobi formulation of the geodesic equations and the scalar

field equation. In particular, note that the coordinate angular

velocities of a ZAMO are given byw?=g?'/g" and ”
=g”/g' or

w;s:w, wazbﬂ%ﬂ"‘), 6.4
where
S =u(TU+a?) (U+b?)+Ap2 (6.5
The inverse square of the lapse function is
= X
g't=-— A_pz' (6.6

The axial components of the inverse metric tensor are

pp_ V¥ 241t
9 S, sir? 0co§¢9+(w g, 6.7
[V U2~ tt

9 S, sin? Oco§0+(w )9, (6.8

4 4u? 1
tt_ _ , uu:_, 06:_, 6.1
g pzuz g p2 g p2 (6.12
u a b1/2
b_ Pt ytt— — — |
6.1
" wt/ 0 ub a1/2 ( 3
@ =9 =T 5 o] b
|b|+|a|cog 0
_ 2t
al(Ja|+ o) Zsi? g (@9
(6.19
|a|+|b|sir? 6
_ I 2ntt
ol([a[+ [b)Zcog e T (@9
(6.15
ab
oy 7 b hatt
9" Tab[(Ja[+ oz T "9 (6.19

Despite its rather complicated appearance, one immedi-
ately sees the characteristic structure of AGSE(. (6.12),
with the horizon ati=0. Equation6.14—(6.16) are all just
functions of 6. This metric has essentially the same set of
AdS,-like Killing vector fields as the 4D Kerr throat metric.
An almost identical transformation to global time coordinate
7, radial coordinatey, in which

1+y?)Y2gjn
u=[(1+y?®¥cosr+y], tz(y)—T,

u
(6.17

and new axial angle coordinatesand y related to¢ and s
by expressions like such as E@®.8) with appropriate coef-
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ficients in front of the logarithms, gives a globally nonsingu- =—E, p,=L,, andp,=L, are trivial conserved quantities,
lar metric describing a geodesically complete spacetime. Ththe equation folS becomes
total number of Killing fields is 5, since there are two axial

Killing fields instead of one. a2 S A, vl L ublat P
When the two angular momentum components are equal, " au u? 2 |al |a " 21bl|b 4
the metric simplifies ang?=2a? no longer depends o#. _ —
Settinga=b>0, the metrignot the inverse metrjdecomes _ 2a’—b 12— 2b’—a Lz_a_bl_ L
|al([al+[b]) ~¢ [bl(Ja]+[b]) " [ab] ~*~*
a? 2442 a® du? 24 92 2 2
d32=—7u dt+??+2ad0 +| b| 2, " L¢ +|a|_|b|
abIL=T\ 56) T sire " Tal+ 0|
u \2 u |2 )
+2a? sir? 6| dp+ =dt| +cos 6 dz//+—dt> } ab L
2 2 % it i 2,2 g 4
Lyl Lyt Tab) L, |sin? 6+b?u? sin? 0+ =23
+2a? sirt 6 d¢+udt +cog @ d<//+udt)r |b|—|a] b
= = . —la a
2 2 LI e 2 2
+ Al b Lyl L+ ab) Ld))cos’- 6+a’u?cog 6
(6.18
(6.20
Along a ZAMO world line, d¢p+(u/2)dt=0 and d¢ and
+ (u/2)dt=0.
When one of the angular momenta vanishes, the horizon
of the extreme black hole becomes singular. It is a surprising S=—u’\—Et+ Ledp+Lyo+ f 0(0)Yde
fact that if one takes the near-horizon limit in this case, one
finds a spacetime with AdSsymmetry> We start with the "
general solutior{6.1) with b=0 and sefu=a? to obtain the +J’ R(u)““du. (6.22
extremal limit. We then shiftp=p+t/a and rescaler _ .
=\r, T=t/\, P= I\, taking\—0. The result is Using a constanK to separate the dependence of the first
two lines of Eq.(6.20 from the 6 dependence of the next
2 2 three lines gives
r a 9
ds’=cog ¢ —;dt2+ r—zdr2+r2dz,//2 )
@(H)ZK_i_M L +a_b|_
5 , Sifo sif @ |al+|b] %\ "¢ |ab] ¥
+a?/ cosde +co§0d¢ ) (6.19 ,
Ly  [bl-]al

X sir? 6—b2u? sir? — o024 TaltTol
Strictly speaking,is should have only infinitesimal extent, cos'd  [af+]b]
since i is periodic andy=\3. However, we can clearly
extend —oo << and obtain a five-dimensional vacuum
solution which has the S@,2) symmetries of Adg Recall
that O< #< w/2. The above solution looks like a product of (6.22
AdS; and a disk, but is singular #@= /2. It is not yet clear and

whether this singularity justifies throwing this solution away

ab
L+ —L¢) cos #—a’u?cos 4

|abl

XL,

as unphysical. There are many examples of singular solu- 4 au |bl¥2 bu laj¥2 12
tions which play a prominent role in string theo®.g., the 4u’R(u)= —2[E+ >=113l Lot o ln Lw}
metric of mostD-brane$. Yet some singular metrics are u 2|al |a 2[b| |b
clearly unphysicale.g., the negative mass Schwarzschild so- 252— p2 2bh2— g2

+ L2+
|al([al+[b]) ~¢ " |b|(|al+[b])

lution). The prominent role of Adsin this vacuum solution
justifies further investigation.

Solutions of the geodesic equations in the general metric ab
(6.12—(6.16) can be obtained by separation of variables in XL+ WL¢L¢—|ab|M2—K- (6.23
the Hamiltonian-Jacobi formalisf20]. The generating func-
tion Sfor the canonical transformation to coordinates which Geodesics are obtained by setting the partial derivatives

are constants of the motion obeys an equation derived b ; ;
substituting ¢S/9x* for p, in th)e/ expre(lsiong“ﬁ PaPg ?effivcvt'tr:nr,ﬁ?ec%rfgﬁfné ¢f'0|_r¢{rt<eequa| o const.am(s_/vhlch
5 X - 4 geodesjcsThis directly
=~ u"=093/d\, wherel is the affine parameter. SiNGR  giyes) t, 4, as functions o andu along the geodesic, as
well as the relation betweed and u. The range of radial
motion of the test particle is whef(u)>0. This extends to
SWe thank Kirill Krasnov for pointing this out to us. infinity if
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2|al+|b| , 3ab 2|b|+]a| 5 ) fie_ld theory to the vacuum case. It is not yet clear whether
Ta[+ o] “¢" Jap] bt WL¢>K+|ab|M : this will succeed. While the vacuum solutions we have dis-
(6.24) cussed have striking similarities to the AGSS?> geometry
arising in the near-horizon limit of extreme Reissner-

From Eq. (6.22 a trajectory atf=0 hasL,=0 and K Nordstran black holes, there are some crucial differences.
=[2|b|/(|a|+|b|)]L";ﬂL a’u?. A trajectory at@=m=/2 has These include the fact that in addition to the usual localized
L,=0 and K=[2|a|/(|a] +|b|)]Lf/,+ b?42. In both cases mode§ of a test fie_ld with Qiscrete frequenc_ies, there are lalso
there are radially unbounded trajectories if the appropriatéaveling waves with continuous frequencies that exhibit a
angular momentum is sufficiently large. The extension toYPe of superradiance. The quantum analog of this superra-
modes of scalar waves is straightforward, and again thergiance, and its possible implications for duality, remains to
will be some modes with nonzero axial eigenvalueg ~ Pe explored. _ . _ _
and/orm,, which propagate as oscillating waves to infinity. Another open question raised by this work is the nature of
Superradiant scattering will exist, though the condition forthe singularity in the five-dimensional vacuum solution with
superradiance is more complicated. The qualitative picture i4dSs Ssymmetry discussed in the previous section. Does this
just as it was in the four-dimensional case. solution have physical interest?
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