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Extreme Kerr throat geometry: A vacuum analog of AdS23S2

James Bardeen* and Gary T. Horowitz†

Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
~Received 19 May 1999; published 26 October 1999!

We study the near-horizon limit of a four-dimensional extreme rotating black hole. The limiting metric is a
completely nonsingular vacuum solution, with an enhanced symmetry group SL(2,R)3U(1). We show that
many of the properties of this solution are similar to the AdS23S2 geometry arising in the near-horizon limit
of extreme charged black holes. In particular, the boundary at infinity is a timelike surface. This suggests the
possibility of a dual quantum mechanical description. A five-dimensional generalization is also discussed.
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I. INTRODUCTION

There is growing evidence in support of the conjectu
that string theory with asymptotically anti–de Sitter~AdS!
boundary conditions is completely described by a dual c
formal field theory~CFT! @1#. One of the features of AdS
spacetime that makes this correspondence possible is tha
~conformal! boundary at infinity is a timelike surface. I
many applications, one can imagine the dual CFT resid
on this timelike boundary. For this reason, the AdS-C
correspondence is often called holographic@2#. In contrast,
asymptotically flat boundary conditions lead to a boundary
infinity consisting of two null surfaces~together with a point
at spatial infinity!. It is far from clear what form a holo-
graphic description will take in this case.1

We describe below some vacuum spacetimes w
asymptotic structure similar to AdS spacetime. They are
tained by taking the near-horizon geometry of extreme ro
ing black hole solutions. In four dimensions, there is a o
parameter family of solutions labeled by the total angu
momentumJ. These vacuum spacetimes are completely n
singular and can be used to construct classical solutions t
string theories. One simply takes the product with a Ricci
internal space to obtain a 10-~or 11-! dimensional solution.
Since the curvature is bounded everywhere and small
large J, the a8 ~or M theory! corrections should be smal
One advantage over the AdS solutions is that there are
background Ramond-Ramond fields, so string propagatio
these backgrounds is straightforward. However, an obvi
disadvantage is that these solutions do not admit covaria
constant spinors and, hence, are not supersymmetric.
effect of quantum corrections remains to be investigated

It is tempting to speculate that there is some type of d
CFT description of string theory on spacetimes which
ymptotically approach these vacuum solutions. Starting w
the four-dimensional Kerr solution, one obtains a vacu
solution which resembles AdS23S2. It has a symmetry group
SL(2,R)3U(1) and a timelike boundary at infinity. Sinc

*Email address: jbardeen@itp.ucsb.edu
†Email address: gary@cosmic.physics.ucsb.edu
1For a discussion of obtaining this as a limit of the AdS-CF

correspondence, see@3#.
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the boundary of AdS2 is one dimensional, one expects th
dual theory to have a conformal quantum mechanical
scription. Unfortunately, despite much effort@4,5# the
AdS2-CFT1 correspondence is still poorly understood. W
will not be able to describe the dual theory in our ca
although we will make some comments in Sec. V.

Since the AdS-CFT duality is better understood in high
dimensions, it is natural to ask whether spacetimes analog
to higher-dimensional AdS arise in the near-horizon limits
rotating black holes in higher dimensions. Several scient
have studied the near-horizon geometry of rotating char
black holes andp-branes@6,7,8,9#. However, in all these
cases, the charge plays an essential role, and most solu
are asymptotically AdS. What about higher-dimensional a
logs of the Kerr solution@10#? If the spacetime has only on
component of angular momentum nonzero, then there is
extremal black hole in more than five dimensions. A giv
mass black hole can have arbitrarily large angular mom
tum. If all components of the angular momentum are no
zero, then there is an extremal limit, but we expect that
near-horizon geometry will still resemble AdS2. This is be-
cause the effective cosmological constant in these vacu
solutions can be thought of as arising from the off-diago
terms in a Kaluza-Klein reduction of the metric. This alwa
produces a two-form Maxwell field which can act like a co
mological constant in two dimensions only. To obtain Adn
for n.2 one would need a higher-rank form, which does n
arise naturally in a vacuum solution.

In the next section we derive the near-horizon limit of t
extreme Kerr solution and show that it has enhanced s
metry. We also discuss geodesics and find that timelike g
desics with sufficiently large angular momentum can esc
to infinity. However, just like radial null geodesics in Ad
spacetime, they do so in finite coordinate time, but with
finite affine parameter. This shows that the throat solution
geodesically complete and has a timelike boundary.

The possibility of viewing the vicinity of the extrem
Kerr horizon as a complete vacuum spacetime in its o
right was suggested by the results of Bardeen and Wag
@11# ~see also@12#!. They studied the exterior metric of
uniformly rotating disk in the extreme relativistic limit. If the
relativistic limit ~infinite redshift from the center of the disk!
is taken before taking the limit of infinite affine distanc
from the disk, the asymptotic geometry is the throat of
©1999 The American Physical Society30-1
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extreme Kerr black hole rather than an asymptotically
spacetime.

In Sec. III, we discuss the propagation of a massless
lar test field in this background. Most modes have discr
frequencies and are confined. However, a few modes w
large azimuthal angular momentum can propagate to infin
We will argue that this can lead to an analog of superra
ance where a wave can scatter and return with more en
than it started with. When back reaction is included,
throat solution is definitely unstable. We give a general
gument~independent of superradiance! that nearby solutions
will be singular. This argument also shows that AdS23S2 is
unstable, but not higher-dimensional AdS spacetimes. In@5#
another argument for the instability of AdS23S2 is given,
and it is suggested that the dual theory may describe o
‘‘ground states’’ of string theory, and not finite energy exc
tations. The same may be true in our case as well. Alte
tively, the instability may simply indicate that the addition
any amount of energy produces a black hole. The dual the
could perhaps describe these black states as well.

Our results can be extended to the general Kerr-Newm
solution describing a charged rotating black hole. The ne
horizon limit of this solution is briefly discussed in Sec. IV
In the following section we make some comments about
dual quantum mechanical theory. Perhaps the key obse
tion is that the area of the event horizon is related to
effective cosmological constant of AdS2 in a universal way
that is independent of whether the extreme black hole
only angular momentum, charge, or both. This suggests
the quantum mechanical theories which are dual to th
backgrounds are closely related.

Finally, in Sec. VI, we discuss the near-horizon limit
the five-dimensional extreme Kerr solution. The resulting
ometry is more complicated, but qualitatively similar to t
four-dimensional case. The limiting solution resemb
AdS23S3.

II. KERR THROAT SOLUTION AND ITS PROPERTIES

We begin with the~four-dimensional! Kerr metric in
Boyer-Linquist coordinates:

ds252e2nd t̃21e2c~df̃2vd t̃ !21r2~D21dr̃21du2!,
~2.1!

where

r2[ r̃ 21a2 cos2 u, D[ r̃ 222Mr̃ 1a2 ~2.2!

and

e2n5
Dr2

~ r̃ 21a2!22Da2 sin2 u
, e2c5D sin2 ue22n,

~2.3!

v5
2Mr̃a

Dr2 e2n.
10403
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The total mass isM, and the angular momentum isJ
5Ma, which we will assume is positive.2 The extremal limit
corresponds toa25M2, soD5( r̃ 2M )2 and the event hori-
zon is atr̃ 5M . The area of the extremal horizon is

A58pM258pJ. ~2.4!

The value ofv at the horizon is called the angular velocity
the horizon and, in the extremal case, is simplyv51/2M .
Sincegr̃ r̃5r2/D, it is clear that the spatial distance to th
extremal horizon in a constantt̃ surface is infinite. In anal-
ogy to the extreme charged black holes, we wish to extr
the limiting geometry as one moves down this throat.

To describe this near-horizon geometry, we set

r̃ 5M1lr , t̃ 5
t

l
, f̃5f1

t

2Ml
~2.5!

and take the limitl→0. The shift fromf̃ to f makes]/]t
tangent to the horizon. In other words, the coordinates co
tate with the horizon. The result is

ds25S 11cos2 u

2 D F2
r 2

r 0
2 dt21

r 0
2

r 2 dr21r 0
2du2G

1
2r 0

2 sin2 u

11cos2 u S df1
r

r 0
2 dtD 2

, ~2.6!

where we have definedr 0
2[2M2. This spacetime is no

longer asymptotically flat. We will show that it is similar t
AdS23S2 in many respects. For example, if one setsu50
~or p!, one sees that the spacetime along the axis isprecisely
AdS2. It is clear that by rescalingt, one can ensure thatr 0
only appears as an overall factor in front of the metric.

It is easy to see that Eq.~2.6! has enhanced symmetry. I
addition to the]/]t and ]/]f symmetries present in Ker
spacetime, Eq.~2.6! is clearly invariant underr→cr, t
→t/c for any constantc. So Eq.~2.6! has the dilation sym-
metry of AdS2. It is less obvious, but still true, that Eq.~2.6!
is also invariant under~an analog of! the global time trans-
lation in AdS2. To see this, note that the~r,t! coordinates are
analogous to Poincare´ coordinates on AdS2. To find the extra
global time translation symmetry, we introduce new coor
nates which are related to~r,t! in the same way that the
global coordinates of AdS2 are related to the Poincare´ coor-
dinates. For simplicity, we setr 051. Let

r 5~11y2!1/2cost1y, t5
~11y2!1/2sint

r
. ~2.7!

The new axial angle coordinatew is chosen so thatgwy50,
with the result

f5w1 logU cost1y sint

11~11y2!1/2sintU. ~2.8!

2We have setG51 whereG is the four-dimensional Newton’s
constant.
0-2
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In these new coordinates, the throat metric~2.6! takes the
form

ds25S 11cos2 u

2 D F2~11y2!dt21
dy2

11y2 1du2G
1

2 sin2 u

11cos2 u
~dw1ydt!2. ~2.9!

Note that thet50 hypersurface coincides with at50 hy-
persurface and thatw5f on this hypersurface~and also at
infinity, for all time!.

The throat solution~2.9! thus has all of the symmetries o
AdS2 plus translations in w: Its isometry group is
SL(2,R)3U(1). All geometric quantities depend only onu.
We will show below that the coordinates in Eq.~2.9! ~with
2`,t,`, 2`,y,`) cover the entire spacetime. Th
surfaces of constantt are always spacelike, sot is a global
time function and this spacetime has no closed time
curves. However, the Killing field]/]t is not timelike every-
where. It is timelike for allu when y2,1/3, but asymptoti-
cally is spacelike for sinu.(11cos2 u)/2 or sinu.0.536,
within 32.4° of the equatorial plane. This is a consequenc
the rotation and is analogous to the ergosphere in the
treme Kerr solution.3 It will be convenient to define the vec
tor field

x5
]

]t
2y

]

]w
. ~2.10!

x is a future-directed timelike vector everywhere, which
orthogonal to the surfaces of constantt and tangent to the
surfaces of constanty.

There are two boundaries at infinity corresponding toy
56`. Since a surface of constanty is always timelike, the
limiting surfaces y56` must be timelike or null. The
boundary will be timelike if geodesics can reach it in a fin
value oft. We now show that this is the case. In the proce
we will also show that Eq.~2.9! is geodesically complete
Hence the solution is nonsingular, and the coordina
(t,y,u,w) cover the entire spacetime.

Since we are mostly interested in the asymptotic prop
ties of the geodesics, it suffices to consider geodesics
constantu. This corresponds tou50, p/2. It is clear that test
particles moving along the axisu50 will behave exactly as
in AdS2. In particular, timelike geodesics never reach infi
ity, and null geodesics reach infinity in a finite time. Th
equatorial planeu5p/2 is a three-dimensional homogeneo
space with symmetry group SL(2,R)3U(1). It is a twisted
product of AdS2 and a circle of constant radius. Consider
geodesic with momentumP5 ṫ(]/]t)1 ẏ(]/]y)1ẇ(]/
]w), where an overdot denotes a derivative with respec
an affine parameter. The conserved quantities are

3This is not exactly the same as the original ergosphere, since]/]t
is not a Killing field in the full Kerr metric.
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L5P•]/]w52~ ẇ1yṫ !, E52P•]/]t5
11y2

2
ṫ2Ly.

~2.11!

SettinggmnPmPn52m2 yields

ẏ224~E1Ly!21~2m21L2!~11y2!50. ~2.12!

Geodesics with zero angular momentum again behave
actly like geodesics in AdS2. That is, massive particles fee
an infinite potential barrier and stay confined to finiteuyu.
Massless particles can reach infinity, but sincey is propor-
tional to the affine parameter, these geodesics are obvio
complete. One can easily verify that these geodesics re
infinity in a finite time t. Timelike geodesics withL2

,2m2/3 are also confined. However, geodesics withL2

.2m2/3 can escape to infinity. This is a qualitatively ne
feature of Eq.~2.9! which is not present in AdS23S2. Since
x, Eq.~2.10!, is a future-directed timelike vector everywher
it follows that 2P•x.0, which impliesE1yL.0. Thus a
geodesic withL.0 can only escape toy51`, while a
geodesic withL,0 can only escape toy52`. Sinceẏ}y
asymptotically, these geodesics are also complete and r
infinity in a finite value of t. Geodesics withL252m2/3
satisfy ẏ258ELy asymptotically. So once again ifL.0,
these geodesics can reachy5`, but not y52`. For L
,0, the situation is reversed. These geodesics are also c
plete and reach infinity in finitet.

For product spacetimes such as AdS23S2, one can re-
move the angular directions and conformally rescale AdS2 to
view infinity as a finite boundary. Then the Killing fields o
AdS2 become conformal symmetries of the boundary. O
cannot do this for the throat solution since the geometry d
not approach a product metric asymptotically. If one wa
to bring infinity in to a finite distance, the best one can do
to rescale the entire metric, although the conformal metri
no longer smooth at the boundary. For convenience, we s
with the metric in Poincare´ coordinates~2.6! ~although we
setr 051). Multiplying by 1/r 2 and settingx51/r , the met-
ric becomes

ds25S 11cos2 u

2 D @2dt21dx21x2du2#

1
2 sin2 u

11cos2 u
~xdf1dt!2. ~2.13!

Despite its simple appearance, this conformal metric ha
curvature singularity atx50. The four Killing fieldsj i

m of
Eq. ~2.6! are

j15
]

]f
, j25

]

]t
, j35t

]

]t
2r

]

]r
,

j45S 1

2r 2 1
t2

2 D ]

]t
2tr

]

]r
2

1

r

]

]f
. ~2.14!

Since they are Killing fields of Eq.~2.6!, they are conformal
Killing fields of Eq. ~2.13! with action Lj(r

22gmn)
0-3
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JAMES BARDEEN AND GARY T. HOROWITZ PHYSICAL REVIEW D60 104030
5(Ljr
22)gmn5(22j r /r )(r 22gmn). The net result is thatj1

andj2 remain Killing fields of the rescaled metric,j3 mul-
tiplies the metric~2.13! by 2, andj4 multiplies the metric by
2t. Thus the last three generate the conformal group o
line with metric 2dt2. This can be realized explicitly by
introducing a cutoff atx5e and shiftingf5f̂2t/e. Then
the metric on thex5e surface is essentially the product of
line and a very small sphere.

III. MODES OF A MASSLESS SCALAR FIELD

An important feature of test fields on AdS23S2 is that
they naturally obey reflecting boundary conditions at infini
~This is true for all modes with a nontrivial dependence
S2.) The wave solutions have a discrete spectrum, with
oscillatory behavior near infinity. We will show that a sim
lar confinement holds for axisymmetric modes in the e
tremal Kerr throat geometry. However, as might be s
pected from the behavior of geodesics with large angu
momentum found in Sec. II, some nonaxisymmetric mo
do propagate all the way to infinity and transport energy a
angular momentum there. These scattering states have a
tinuous spectrum. This behavior is expected be generic
waves of all spins. We illustrate it with a discussion of so
tions of the massless scalar wave equation.

The scalar wave equation for a spacetime described
metric of the form~2.1! can be written as

1

r2

]

] r̃ FD ]C

] r̃ G1
1

r2 sinu

]

]u Fsinu
]C

]u G
1@e22n~ s̃2mv!22m2e22c#C50, ~3.1!

assuming harmonic time and axial angle dependence of
form

C5C~ r̃ ,u!eimf̃2 i s̃ t̃ . ~3.2!

In taking the near-horizon limit~2.5!, the throat frequencys
is related to the Kerr frequencys̃ by

s̃2mVH5ls, ~3.3!

whereVH is the angular velocity of the horizon. Therefor
asl→0, all finite frequencies in the throat correspond to t
single frequencys̃5mVH5m/2M in the exterior.

Modes in the Kerr geometry withs̃5mVH are special
since they are totally reflected, and not absorbed by the b
hole. This can be seen from the following argument, wh
applies to all Kerr black holes, and not just extremal on
~see@13#!. Let jm5(]/] t̃ )m be the usual stationary Killing
field. The null vector tangent to the horizon of a Kerr bla
hole is l m5jm1VH(]/]f̃)m. Sincel mjm50 on the horizon,
the energy flux entering the black hole is obtained by in
grating Tmnjml n5(jm]mC)( l n]nC) over the horizon. This
is proportional tos̃(s̃2mVH). So modes withs̃.mVH
have a positive energy flux into the black hole and cor
spond to normal scattering. Modes withs̃,mVH have a
negative energy flux and correspond to superradiant sca
10403
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ing. The outgoing wave has more energy than the incom
one. Modes with exactlys̃5mVH are on the borderline. No
energy is absorbed by the black hole. The modes we
study in the throat geometry can be thought of as obtained
starting with a mode in the extreme Kerr metric satisfyi
s̃5mVH1ls. For smalll, most of this wave is reflected
and only a small part remains near the horizon. After
rescaling~2.5!, the wave near the horizon remains nonzero
the limit l→0 and completely decouples from the wave
the asymptotically flat region.

The form of the throat metric in Poincare´ and global AdS2
coordinates becomes identical as the respective radial c
dinatesr andy become large, so the asymptotic properties
the wave solutions are the same in both coordinate syste
For definiteness, we will use the global coordinates. Si
the metric~2.9! is of the general form~2.1!, the wave equa-
tion in this background takes the form~3.1! for a suitable
choice of metric components. This wave equation, after m
tiplication byr2, is completely separable, just as it is for th
original Kerr metric. SettingC5Y(y)Q(u) splits the partial
differential equation into the two ordinary differential equ
tions

d

dy F ~11y2!
dY

dyG1F ~s1my!2

11y2 1m22KGY50 ~3.4!

and

1

sinu

d

du Fsinu
dQ

du G1FK2
m2

sin2 u
2

1

4
m2 sin2 uGQ50.

~3.5!

The separation constantK has been defined so that the ang
lar equation is identical to the spheroidal harmonic angu
equation familiar from solutions on the Kerr backgroun
with the Kerr frequency set to the unique value implied
Eq. ~3.3!.

The eigensolutions of Eq.~3.5! with boundary conditions
of regularity atu50 andu5p are the usual Legendre func
tions for m50, soK5 l ( l 11). But even for nonzerom, the
solutions are fairly close to associated Legendre functio
since 1

4 m2 sin2 u is rather small compared tol ( l 11) for l
>umu. Numerical calculations of the eigenvaluesK for a few
of the lowest modes are listed below. We also include
value of Kcrit[2m221/4, which we will see marks the di
viding line between the discrete and continuous part of
spectrum. In general,

Klm' l ~ l 11!1cm2, ~3.6!

where c is roughly in the range 0.13–0.22 andl>umu are
integers.

The radial equation for axisymmetric modes is identical
that for AdS2. The natural boundary condition at infinity i
C50. ThenC;uyu2 l 21, and normal modes satisfying th
boundary conditions at bothy51` and y52` exist for
discrete real frequenciess ln . Waves are reflected befor
they reach infinity.
0-4
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The nonaxisymmetric modes are more interesting. T
asymptotic solutions foruyu@1 are power lawsY;uyua,
with

a52
1

2
6S K22m21

1

4D 1/2

. ~3.7!

For K.Kcrit[2m221/4 both exponents are real, qualit
tively like the axisymmetric modes. Only the more rapid
decaying solution satisfies the boundary condition, and g
bal normal modes exist for discrete frequencies. On the o
hand, if K,2m221/4, the exponents are complex, and t
asymptotic solutions are traveling waves. Positive freque
modes are outgoing in phase velocity if Ima.0 and ingoing
if Im a,0. From Table I, it is clear that form51, all eigen-
values K are larger thanKcrit52m221/4, but for all umu
.1, at least thel 5umu eigenvalue is less thanKcrit . This is
qualitatively different from AdS2, since in the absence o
rotation the condition for confinement isK5 l ( l 11).m2

21/4, which is always satisfied.
In a WKB approximation to the traveling waves, the e

fective wave numberk5(2 i /Y)dY/dy is

k56
1

~11y2!1/2F ~s1my!2

11y2 1m22KG1/2

. ~3.8!

The group velocity is then

ds

dk
56

~11y2!3/2

s1my F ~s1my!2

11y2 1m22KG1/2

. ~3.9!

The phase velocity is justs/k. So, form.0, the phase ve-
locity and group velocity have opposite signs for large ne
tive y. For m,0, they have opposite signs for large positi
y. This has an important consequence, which we now
plain.

SinceK is always larger thanm2, the expression inside
the brackets in Eq.~3.8! always changes sign arounds
1my50. This means that the wave encounters a poten
barrier and the WKB approximation breaks down. An init
wave withs.0 andm.0 moving in the negativey direc-
tion will be partly reflected and partly transmitted throu
this barrier. We now have to discuss the physical bound
conditions on these waves. First, note that all modes va
at infinity. Even whena is complex, we still haveY
;uyu21/2. But since the volume element on a surface of co
stanty is proportional touyu asymptotically, there can still be
a nonzero flux of energy and angular momentum to infin
We demand that the transmitted wave should be purely
going, where ‘‘outgoing’’ is defined with respect to th
physical group velocity.

TABLE I. Some eigenvaluesK of the angular equation~3.5!.

m l5m l5m11 l 5m12 Kcrit

1 2.200 6.143 12.133 1.75
2 6.855 12.664 20.597 7.75
3 13.995 21.629 31.459 17.75
10403
e

-
er

y

-

x-

al
l

ry
sh

-

.
t-

To compute the flux of energy and angular momentu
note that each Killing vector field of the spacetime produc
a conserved flux four-vector when contracted with t
energy-momentum tensor of the wave. The axial Killing fie
is the unique Killing field with closed orbits and gives th
angular momentum flux vectorJm5Tw

m . The average rate
~per unit global timet! of angular momentum transport i
the 1y direction across a constant-y surface is equal to

E du dw~2g!1/2Tw
y 5E du dw sinu~11y2!

]C

]w

]C

]y
.

~3.10!

After averaging over time and taking the limity→` with
asymptotically Y5A1yi (2m221/42K)1/221/2 for the outgoing
positive frequency wave solution, the angular moment
transport rate becomesm(2m221/42K)1/2uA1u2, assuming
the angular harmonics are normalized. Using the Killing fie
]/]t to define a conserved energy flux, the asymptotic ene
transport rate iss/m times the angular momentum transpo
rate calculated above and for positive frequency waves
outward for waves with an outward phase velocity.

We now come to the key point. Consider a wave withs
.0, m.0 which starts at largey moving in the negativey
direction. After scattering off the potential barrier, there w
be a reflected wave and transmitted wave. In order for
transmitted wave to have outgoing group velocity, it mu
have incoming phase velocity. Thus there is a incoming fl
of energy fromy52`. Since this energy is conserved, the
must be a corresponding outgoing flux of energy aty5`.
Since we started with an incoming wave aty5`, the only
way this is possible is if the reflected wave carries mo
energy than the initial wave. In this sense, waves in
throat geometry exhibit superradiance.

Another way to understand the difference in sign betwe
the group velocity and phase velocity is to consider a lo
observer who is at rest with respect to the constant-t surfaces
and, hence, has a four-velocity proportional tox, Eq. ~2.10!.
Such a zero-angular-momentum observer~ZAMO! at con-
stanty5y0 andu would assign a frequency to the wave

sZAMO5
s1my0

@~11y0
2!~11cos2 u!/2#1/2. ~3.11!

At large positivey0 with negativem or large negativey0
with positive m, the ZAMO would assign a negative fre
quency to the wave, and according to him, the direction
the phase velocity is the same as the group velocity. T
local timelike Killing field tangent to the ZAMO’s world line
is ]/]t2y0 ]/]w. If this were used to define the energy flu
the energy flux would be in the same direction as the gro
velocity.

Quantum mechanically, the full extreme Kerr metric rad
ates particles even though its Hawking temperature is z
The emitted particles all lie in the superradiant regimes̃
,mVH @14#. Since the modes we consider correspond tos̃
5mVH , one might wonder if this implies that the throa
metric will be quantum mechanically stable. However, t
fact that the throat solution itself exhibits superradiance s
0-5
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gests that it will decay quantum mechanically also. Presu
ably, if one starts with an SL(2,R)3U(1) invariant vacuum
state, these symmetries will be preserved. It is then far fr
clear what the solution~2.9! could decay into. This questio
requires further investigation.

Classically, the question of stability to linearized pertu
bations is the question of whether there are unstable qu
normal modes obeying outgoing wave boundary conditi
at both infinities. Our expectation, in the absence of a
tailed investigation, is that no such unstable quasinor
modes exist, based on the known stability of Kerr bla
holes@15#. On the other hand, when back reaction is tak
into account, the throat geometry is unstable, and nea
solutions are singular. This follows from the singularity the
rems@16# since the constant (y,t) two-spheres are margin
ally trapped. A generic perturbation will cause the orthog
nal null geodesics to start converging, creating trapp
surfaces and geodesic incompleteness. If the nearby s
tions are all black holes, then this instability need not b
serious problem. But since the singularity theorems do
prove the existence of event horizons, one does not yet k
if more serious singularities can arise. In order to apply t
instability argument, one only needs to ensure that
nearby spacetimes satisfy Einstein’s equation with ma
obeying the weak energy condition. The same argument
plies to AdS23S2 and shows that this spacetime is also u
stable.~For another argument to this effect, see@5#.! How-
ever, this argument does not apply to products of high
dimensional AdS spacetimes and spheres, since the
geodesics orthogonal to the sphere consist of an entire
cone in AdS spacetime, which is expanding. So, in
higher-dimensional case, the spheres are not margin
trapped and, e.g., AdS53S5 is stable.

The instability of the throat geometry may not be a se
ous obstacle to constructing a dual quantum mechan
theory since it has been argued in the case of AdS23S2 that
the dual theory may describe just the ‘‘ground states’’
string theory with these boundary conditions@5#. We will see
in Sec. V that a similar argument applies to our throat geo
etry.

IV. EXTENSION TO EXTREME KERR-NEWMAN
THROATS

While our main interest is in vacuum solutions, we no
that our results can easily be generalized to include the e
range of extreme Kerr-Newman solutions describing rotat
and charged black holes. Their near-horizon geomet
smoothly interpolate between the solution~2.9! and
AdS23S2. The Kerr-Newman metrics have exactly the sa
form as Eq.~2.1!, except thatD5 r̃ 222Mr 1a21q2, where
q is the electric charge andaM is still the angular momen
tum, and the 2Mr̃ factor inv is replaced byr̃ 21a22D. The
extremal limit corresponds toM25a21q2, and the horizon
is at r̃ 5M with area 4p(M21a2). If we define r 0

2[M2

1a2, the throat metric is similar to Eq.~2.6! with only two
modifications: The factor (11cos2 u)/2 becomes 1
2(a2/r 0

2)sin2 u, and there is a different coefficient in th
10403
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frame-dragging angular velocity. Expandingv to first order
in r̃ 2M , we now obtain

v5
a

r 0
22

2aM

r 0
4 ~ r̃ 2M !, ~4.1!

so the coefficient ofrdt in Eq. ~2.6! is 2aM/r 0
4 instead of

1/r 0
2. The near-horizon limit is now

ds25S 12
a2

r 0
2 sin2 u D F2

r 2

r 0
2 dt21

r 0
2

r 2 dr21r 0
2du2G

1r 0
2 sin2 uS 12

a2

r 0
2 sin2 u D 21S df1

2arM

r 0
4 dtD 2

.

~4.2!

Notice that whena50, this metric reduces to AdS23S2, as
expected. The change in the coefficient of the off-diago
term carries over to the change of the coefficient in front
the logarithm in the relation~2.8! betweenf andw. Other-
wise, the transformation to the global AdS2 coordinates re-
mains the same, and the above changes carry over to
metric of the throat geometry~2.9! in the global coordinates

An interesting point along the Kerr-Newman sequence
when confinement of modes of scalar waves starts to br
down. In the angular harmonic equation1

4 m2 sin2 u is re-
placed by (a4/r 0

4)m2 sin2 u, and a rough estimate of th
smallest separation constant for a givenm is

Kmin5umu~ umu11!10.8
a4

r 0
4 m2. ~4.3!

The m2 term in the radial equation is replaced b
(2a2/r 0

2)m2, so confinement is broken when

4a2M2

r 0
4 1

2a2

r 0
2 .

Kmin

m2 . ~4.4!

This happens first form2@1, whena2/M2'0.242. The criti-
cal points for other types of fields~e.g., electromagnetic o
gravitational perturbations! will differ somewhat from this.

V. SEARCHING FOR A HOLOGRAPHIC DUAL

In light of the growing evidence in favor of the AdS/CF
correspondence, it is natural to speculate that string the
on spacetimes that approach Eq.~2.9! will have a dual holo-
graphic description. Since the boundary at infinity is effe
tively one dimensional and SL(2,R) is the conformal group
of a line, one expects the dual theory to be a conform
quantum mechanical system. We have already pointed
several ways in which Eq.~2.9! is qualitatively similar to
AdS23S2, which is the near-horizon geometry of an e
tremely charged four-dimensional black hole. So one mi
expect that the dual theories might be similar, with the SU~2!
symmetry of S2 broken to U~1! in the vacuum case, breakin
supersymmetry as well. Unfortunately, AdS23S2 is currently
the least well understood example of the AdS/CFT cor
0-6
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spondence. We currently have little information about
structure of this quantum mechanical system.

Let us first try to follow the procedure used to discov
the original AdS/CFT duality. Starting with the extrem
black hole, we can decrease the string couplingg to obtain a
weakly coupled string description of the black hole stat
The fact that the entropy of an extreme Kerr black hole
independent of Newton’s constant and simply given by
angular momentum~which we still assume is positive!, S
52pJ, strongly suggests that it has a simple microsco
description. In fact, it may ultimately be simpler than t
Reissner-Nordstro¨m solution which requires four differen
charges from the fundamental string standpoint. Since an
treme Kerr black hole has no Ramond-Ramond fie
present, the states at weak coupling must be ordinary exc
states of the string. Unfortunately, the lack of supersymme
makes it difficult at present to give a precise identification
the states.4 One can instead use the correspondence princ
@18# to roughly describe these states as follows. Since an
lar momentum is quantized, we want to keepJ fixed as we
slowly decrease the string coupling. The mass of the bl
hole isGM25J, and its horizon radius isr 15GM, where
G is the four-dimensional Newton’s constant. The corresp
dence principle says that the black hole makes a transitio
an excited string state when its horizon size is of order
string scale. Setting the mass of the black hole equal to
mass of an excited string state at this point yields

Mbh;
l s

G
;

AN

l s
;Ms , ~5.1!

whereN is the string level. SinceG;g2l s
2, this implies that

g;N21/4 at the transition point. The black hole entropy
then

Sbh;GM2;Mr 1;Ml s;AN. ~5.2!

Since GM25J and J is fixed, the appropriate weakl
coupled string states are states withN;J2 and angular mo-
mentumJ. ~This was also noticed in@19#.! The number of
such states is approximatelyeAN, which agrees with the en
tropy of the black hole.

States withN;J2 and angular momentumJ are far from
extremal string states. The minimum mass string state ca
ing angular momentumJ has N5J, but there is only one
such state, so it could never reproduce the entropy of
black hole. One might ask what happens if one starts wi
string state with less energy than the states correspondin
the extreme black hole and increases the coupling. It app
that there might be the danger of forming a naked singu
ity. But, of course, this is not what happens. IfN,J2, then
M l s,J, but the minimum size of the string isr min5J/M, so
r min.ls. This means that the string cannot form a black h
at the string scale, but only at a larger scale correspondin

4When charges are present, one can give a precise counting o
states of certain extreme charged and rotating black holes,
when they are far from the supersymmetric state@17#.
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a larger value of the string coupling. Setting the masses e
at this transition point, the resulting black hole will have
Schwarzschild radius at leastr 15J/M5a, which would
again correspond to an extreme Kerr black hole.

In terms of trying to construct a dual theory, the obvio
problem is that these excited string states are not stable.
not clear how to take an appropriate limit to decouple
bulk string states and extract the dynamics of the states
given levelN;J2.

A clue to the correct description may be the followin
Consider the form of the solution~4.2!. The area of the ho-
rizon at r 50 is A54pr 0

2, where r 0
252a21q2. Thus the

extreme black hole entropy is related to the radius of cur
ture of the AdS2 space along the axis in a universal wa
which is independent of the ratio of charge to angular m
mentum. This suggests that there may be a unified desc
tion of string theory with these boundary conditions.

It was pointed out in@5# that the energy above extremalit
E of a near-extremal Reissner-Nordstro¨m black hole scales
with temperature likeE52p2Q3T2l p , where l p is the
Planck length. The fact thatl p enters this formula means tha
one cannot takel p→0 keepingE,Q,Tfixed. It is easy to see
that the same thing is true for the entire family of nea
extreme Kerr-Newman solutions. For simplicity, we restr
ourselves here to the pure Kerr case. Including factors
Newton’s constant, the Hawking temperature is

T5
~G2M22a2!1/2

4pGM@GM1~G2M22a2!1/2#
. ~5.3!

In the extremal limit,GM5a. Let GM5a1e, and define
E5M2(a/G)5e/G. Then we have T5(2GMe)1/2/
4pG2M2, soE58p2T2G2M3. But GM25J, so

E58p2J3/2T2l p . ~5.4!

VI. FIVE-DIMENSIONAL THROAT GEOMETRIES

Generalizations of the Kerr metric to more than thr
space dimensions have been discussed thoroughly by M
and Perry@10#. In N space~plus one time! dimensions there
are@N/2# independent planes of rotation in which axial sym
metry can be enforced simultaneously, with the same num
of independent angular momentum parameters. The sp
coordinates reflecting this symmetry consist of@N/2# axial
angles,@(N21)/2# polar angles, and one radial coordina
Extremal vacuum black holes with a nonsingular degene
horizon do not exist in all cases, but when they do, we exp
that the near-horizon limit leads to a complete spacet
with an SL(2,R)3U(1)@N/2# symmetry group. As an illustra
tive example, we work through some of the details for t
5D (N54) case.

In five dimensions, letf̃ and c̃ denote the two axial
angles,a andb the corresponding angular momentum para
eters, and define a mass parameterm with units of length
squared. The physical mass of the black hole isM
53pm/8G5 , and the factor 2M /3 converts angular momen
tum parameters to physical angular momenta. The metri

the
en
0-7
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JAMES BARDEEN AND GARY T. HOROWITZ PHYSICAL REVIEW D60 104030
‘‘Boyer-Lindquist’’ coordinates@Eq. ~3.18! of @10## reduces
to

ds252d t̃21
m

r2 ~d t̃2a sin2 udf̃2b cos2 udc̃ !2

1~ r̃ 21a2!sin2 udf̃21~ r̃ 21b2!cos2 udc̃21r2du2

1
r2r̃ 2

D
dr̃2, ~6.1!

where

r2[ r̃ 21a2 cos2 u1b2 sin2 u,

D[~ r̃ 21a2!~ r̃ 21b2!2m r̃ 2. ~6.2!

The range of the polar angleu is 0<u<p/2. Since no odd
powers of r̃ are present, it is convenient to work withũ
[ r̃ 2 as the radial coordinate, with

gũũ5
r2

4D
. ~6.3!

The horizon is at the outermost zero ofD. This is a double
zero, implying an extremal horizon, ifm5(uau1ubu)2. The
extremal horizon is atũ5uabu. Unless both angular momen
tum parameters are nonzero, the horizon is singular, sincr2

on the horizon is zero atu50 if a50 or at u5p/2 if b
50, andr250 implies a curvature singularity. The thre
volume of the horizon is 2p2uabu1/2(uau1ubu)2.

We focus on the inverse metric tensor, since it is
inverse metric tensor that comes into the Carter-Hamilt
Jacobi formulation of the geodesic equations and the sc
field equation. In particular, note that the coordinate angu

velocities of a ZAMO are given byvf̃5gf̃ t̃ /gt̃ t̃ and vc̃

5gc̃ t̃ /gt̃ t̃ or

vf̃5
am~ ũ1b2!

S
, vc̃5

bm~ ũ1a2!

S
, ~6.4!

where

S[m~ ũ1a2!~ ũ1b2!1Dr2. ~6.5!

The inverse square of the lapse function is

gt̃ t̃52
S

Dr2 . ~6.6!

The axial components of the inverse metric tensor are

gf̃f̃5
gc̃c̃r2

S sin2 u cos2 u
1~vf̃!2gt̃ t̃ , ~6.7!

gc̃c̃5
gf̃f̃r2

S sin2 u cos2 u
1~vc̃!2gt̃ t̃ , ~6.8!
10403
e
-
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r

gf̃c̃52
gf̃c̃r2

S sin2 u cos2 u
1vf̃vc̃gt̃ t̃ .

~6.9!

Also, we note that

~2g!1/25
1

2
r2 sinu cosu ~6.10!

using ũ as the radial coordinate.
The throat limit is obtained by changing the axial coord

nates to be corotating with the horizon and then rescaling
ũ and t̃ coordinates, similar to what was done in Eq.~2.5!.
Specifically,

f̃5f1
a

uabu1a2 t̃, c̃5c1
b

uabu1b2 t̃,

~6.11!

ũ5uabu1l~ uau1ubu!2u, t̃ 5
Auabu

2l
t.

In the limit l→0, r becomes a function ofu only, r2

5uabu1a2 cos2 u1b2 sin2 u, and the components of the in
verse metric become

gtt52
4

r2u2 , guu5
4u2

r2 , guu5
1

r2 , ~6.12!

vf5gft/gtt52
u

2

a

uau UbaU
1/2

,

~6.13!

vc5gct/gtt52
u

2

b

ubu UabU
1/2

,

gff5
ubu1uaucos2 u

uau~ uau1ubu!2 sin2 u
1~vf!2gtt,

~6.14!

gcc5
uau1ubusin2 u

ubu~ uau1ubu!2 cos2 u
1~vc!2gtt,

~6.15!

gfc52
ab

uabu~ uau1ubu!2 1vfvcgtt. ~6.16!

Despite its rather complicated appearance, one imm
ately sees the characteristic structure of AdS2 in Eq. ~6.12!,
with the horizon atu50. Equations~6.14!–~6.16! are all just
functions ofu. This metric has essentially the same set
AdS2-like Killing vector fields as the 4D Kerr throat metric
An almost identical transformation to global time coordina
t, radial coordinatey, in which

u5@~11y2!1/2cost1y#, t5
~11y2!1/2sint

u
,

~6.17!

and new axial angle coordinatesw andx related tof andc
by expressions like such as Eq.~2.8! with appropriate coef-
0-8
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EXTREME KERR THROAT GEOMETRY: A VACUUM . . . PHYSICAL REVIEW D60 104030
ficients in front of the logarithms, gives a globally nonsing
lar metric describing a geodesically complete spacetime.
total number of Killing fields is 5, since there are two ax
Killing fields instead of one.

When the two angular momentum components are eq
the metric simplifies andr252a2 no longer depends onu.
Settinga5b.0, the metric~not the inverse metric! becomes

ds252
a2

2
u2dt21

a2

2

du2

u2 12a2du2

12a2Fsin2 uS df1
u

2
dtD 2

1cos2 uS dc1
u

2
dtD 2G

12a2Fsin2 uS df1
u

2
dtD1cos2 uS dc1

u

2
dtD G2

.

~6.18!

Along a ZAMO world line, df1(u/2)dt50 and dc
1(u/2)dt50.

When one of the angular momenta vanishes, the hori
of the extreme black hole becomes singular. It is a surpris
fact that if one takes the near-horizon limit in this case, o
finds a spacetime with AdS3 symmetry.5 We start with the
general solution~6.1! with b50 and setm5a2 to obtain the
extremal limit. We then shiftf̃5f1 t̃ /a and rescaler̃

5lr , t̃ 5t/l, c̃5c/l, takingl→0. The result is

ds25cos2 uF2
r 2

a2 dt21
a2

r 2 dr21r 2dc2G
1a2Fcos2 du21

sin2 u

cos2 u
df2G . ~6.19!

Strictly speaking,c should have only infinitesimal exten
since c̃ is periodic andc5lc̃. However, we can clearly
extend2`,c,` and obtain a five-dimensional vacuu
solution which has the SO~2,2! symmetries of AdS3. Recall
that 0<u<p/2. The above solution looks like a product
AdS3 and a disk, but is singular atu5p/2. It is not yet clear
whether this singularity justifies throwing this solution aw
as unphysical. There are many examples of singular s
tions which play a prominent role in string theory~e.g., the
metric of mostD-branes!. Yet some singular metrics ar
clearly unphysical~e.g., the negative mass Schwarzschild
lution!. The prominent role of AdS3 in this vacuum solution
justifies further investigation.

Solutions of the geodesic equations in the general me
~6.12!–~6.16! can be obtained by separation of variables
the Hamiltonian-Jacobi formalism@20#. The generating func-
tion S for the canonical transformation to coordinates wh
are constants of the motion obeys an equation derived
substituting ]S/]xa for pa in the expressiongabpapb
52m25]S/]l, wherel is the affine parameter. Sincept

5We thank Kirill Krasnov for pointing this out to us.
10403
-
e

l

al,

n
g
e

u-

-

ic

y

52E, pf5Lf , andpc5Lc are trivial conserved quantities
the equation forS becomes

4u2S ]S

]uD 2

2
4

u2 FE1
u

2

a

uau UbaU
1/2

Lf1
u

2

b

ubu UabU
1/2

LcG2

2
2a22b2

uau~ uau1ubu!
Lf

2 2
2b22a2

ubu~ uau1ubu!
Lc

22
ab

uabu
LfLc

1uabum21S ]S

]u D 2

1
Lf

2

sin2 u
1

uau2ubu
uau1ubu

3LfS Lf1
ab

uabu
LcD sin2 u1b2m2 sin2 u1

Lc
2

cos2 u

1
ubu2uau
uau1ubu

LcS Lc1
ab

uabu
LfD cos2 u1a2m2 cos2 u

~6.20!

and

S52m2l2Et1Lff1Lcc1E Q~u!1/2du

1E R~u!1/2du. ~6.21!

Using a constantK to separate theu dependence of the firs
two lines of Eq.~6.20! from the u dependence of the nex
three lines gives

Q~u!5K2
Lf

2

sin2 u
2

uau2ubu
uau1ubu

LfS Lf1
ab

uabu
LcD

3sin2 u2b2m2 sin2 u2
Lc

2

cos2 u
2

ubu2uau
uau1ubu

3LcS Lc1
ab

uabu
LfD cos2 u2a2m2cos2 u

~6.22!

and

4u2R~u!5
4

u2 FE1
au

2uau UbaU
1/2

Lf1
bu

2ubu UabU
1/2

LcG2

1
2a22b2

uau~ uau1ubu!
Lf

2 1
2b22a2

ubu~ uau1ubu!

3Lc
21

ab

uabu
LfLc2uabum22K. ~6.23!

Geodesics are obtained by setting the partial derivati
of Swith respect tom,E,Lf ,Lc ,K equal to constants~which
reflect initial conditions for the geodesics!. This directly
givesl,t,f,c as functions ofu andu along the geodesic, a
well as the relation betweenu and u. The range of radial
motion of the test particle is whereR(u).0. This extends to
infinity if
0-9
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2uau1ubu
uau1ubu

Lf
2 1

3ab

uabu
LfLc1

2ubu1uau
uau1ubu

Lc
2.K1uabum2.

~6.24!

From Eq. ~6.22! a trajectory atu50 has Lf50 and K
5@2ubu/(uau1ubu)#Lc

21a2m2. A trajectory atu5p/2 has
Lc50 and K5@2uau/(uau1ubu)#Lf

2 1b2m2. In both cases
there are radially unbounded trajectories if the appropr
angular momentum is sufficiently large. The extension
modes of scalar waves is straightforward, and again th
will be some modes with nonzero axial eigenvaluesmf
and/ormc which propagate as oscillating waves to infinit
Superradiant scattering will exist, though the condition
superradiance is more complicated. The qualitative pictur
just as it was in the four-dimensional case.

VII. CONCLUSION

We have explored the near-horizon geometry of an
treme rotating black hole in the hope that it will be useful
extending the remarkable duality between string theory
’

’’
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rg

e
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field theory to the vacuum case. It is not yet clear whet
this will succeed. While the vacuum solutions we have d
cussed have striking similarities to the AdS23S2 geometry
arising in the near-horizon limit of extreme Reissne
Nordström black holes, there are some crucial differenc
These include the fact that in addition to the usual localiz
modes of a test field with discrete frequencies, there are
traveling waves with continuous frequencies that exhibi
type of superradiance. The quantum analog of this supe
diance, and its possible implications for duality, remains
be explored.

Another open question raised by this work is the nature
the singularity in the five-dimensional vacuum solution w
AdS3 symmetry discussed in the previous section. Does
solution have physical interest?
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