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Who’s afraid of naked singularities? Probing timelike singularities with finite energy waves
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To probe naked spacetime singularities with waves rather than with particles we study the well posedness of
initial value problems for test scalar fields with finite energy so that the natural function space of initial data is
the Sobolev space. In the case of static and conformally static spacetimes we examine the essential self-
adjointness of the time translation operator in the wave equation defined in the Hilbert space. For some
spacetimes the classical singularity becomes regular if probed with waves while stronger classical singularities
remain singular. If the spacetime is regular when probed with waves we may say that the spacetime is
‘‘globally hyperbolic.’’ @S0556-2821~99!00620-7#

PACS number~s!: 04.20.Dw, 04.20.Cv, 04.50.1h, 04.62.1v
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I. INTRODUCTION

In general relativity a singular spacetime is defined
geodesic incompleteness@1#. However, sometimes such
definition gives a very weak singularity which seems alm
harmless from a physical point of view. For example,
spacetime from which a single point is taken out is a singu
spacetime because there is a geodesic curve which termi
at the point outside of the spacetime with a finite affine tim
A stronger ‘‘physical singularity’’ appears for example at t
center of a spherically symmetric black hole, where the c
vature scalar diverges and therefore the resultant infinite t
force will tear off any physical object. The classification
singularities is yet under way but has not been completed@2#.

The standard definition of a spacetime singularity
physically based on a probe with classical point particles
this paper we shall discuss a wave probe of timelike sin
larities which was initiated by Wald@3# and later developed
by Horowitz and Marolf@4#. The idea of the probe with
waves rather than with classical particles is motivated
quantum field theory because everything should be descr
by quantum fields. The wave may propagate through
would-be singularity with a definite and unique way. F
example, in the case of the hydrogen atom the wave func
is finite at the origin, which is a classical singularity. It
known that if the space is geodesically complete the Lap
ian operator has a self-adjoint extension and the extensio
unique so that the wave propagation is well defined. T
converse is not always true. If the geodesic completenes
replaced by the well posedness of initial value problems
test fields the concept of the global hyperbolicity and the

*Email address: akihiro@yukawa.kyoto-u.ac.jp
†Email address: ahosoya@th.phys.titech.ac.jp
1Here we refer to the ‘‘physical formulation’’ of the strong cosm

censorship rather than the ‘‘precise formulation’’ in Wald’s bo
@6#. If our wave approach can be extended to the initial value pr
lem of the Einstein equations the notion of the cosmic censor
will substantially change.
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fore the cosmic censorship1 should be drastically changed a
Clarke @5# has advocated.

We shall be concerned with a wave propagation dicta
by the Klein-Gordon equation in a curved spacetime w
timelike singularities. Only for illustration in the introductio
we use the simplest case; the Klein-Gordon equation in
11)-dimensional Minkowski spacetime, (2] t

21]x
2) f 50

defined in a suitable region of the spacetime.~For a general
case, see the following sections.!

For the initial value problem we introduce the followin
norm on a function space on eacht5const hypersurface:

uu f uuªS q2

2 E dxu f u21
1

2E dxUd f

dxU
2D 1/2

, ~1.1!

whereq2 is a positive constant. We call the function spa
H5$ f uuu f uu,`% the Sobolev space orH1. The Sobolev
norm has been used in the standard formulation of w
posed initial value problems in a general globally hyperbo
spacetime@1#. We note that in general the well posedness
an initial value problem requires continuous dependence
solutions on initial data, in addition to the existence and
uniqueness of solutions@3#. However, the main issue we wil
address in this paper is to see the uniqueness of solution
a wave equation in a nonglobally hyperbolic spacetime,
hereafter we say that the initial value problem is well-pos
when the wave propagation is uniquely determined in
whole spacetime.2

It is known that the norm is bounded above by the fie
energy so that the finiteness of the energy implies the fin

-
ip

2To show the existence of solutions and to establish an appro
ate continuous relation between initial data and solutions, Sob
norms containing higher order derivatives are chosen to defin
topology on the space of initial data. However, to prove the uniq
ness of solutions of second order linear hyperbolic equations,
sufficient to adoptH1 as our Sobolev space@1#, which is larger than
Hm with norms containingm(.1)th order derivatives. Our result
in this paper hold also forHm(.1).
©1999 The American Physical Society28-1



n
on

ac

ik
ha

te
e
tia
l

ia
ol
n

ed
s
d
ing
bi-
th
tim

e
e
a

tio
c
ic
b

t
c
e
e

I
e

o

in
ve
as
of

ly
ave

V
s to
n-
to

ap-
ies.
the
ally
ve-

f

t

en-

-

o
tio
c

AKIHIRO ISHIBASHI AND AKIO HOSOYA PHYSICAL REVIEW D 60 104028
ness of the norm@7#. Since we cannot afford to prepare a
infinite energy field configuration as initial data, the functi
space is naturally limited by the condition:3

uu f uu,`. ~1.2!

The corresponding natural inner product in our Hilbert sp
is defined as

~ f ,g!ª
q2

2 E dx f* g1
1

2E dx
d f*

dx

dg

dx
, ~1.3!

so thatuu f uu25( f , f ).
We shall confine ourselves mainly to the case of timel

singularities in static or conformally static spacetimes so t
the wave equation becomes of the form

] t
2f52Af, ~1.4!

where A is an operator which contains spatial coordina
and spatial derivatives only. In this case the well-posedn
of the initial value problem is translated into the essen
self-adjointness of the operatorA because of the spectra
theorem@8#. Namely, we prepare a smooth and nice init
data at some spatial hypersurface by choosing the Sob
spaceH1 as the Hilbert space. The wave will propagate a
eventually hit the timelike singularity and will be scatter
off in someway. The point of the essential self-adjointnes
that any unwanted singular modes which are not containe
the domain of the initial data will not appear after scatter
so that the initial value problem is well-posed with no ar
trariness in the choice of the boundary conditions and
prediction is unique. In such a case we say that the space
is ‘‘wave regular.’’

We would like to emphasize the relevance of the pres
work to quantum field theory in curved spacetime. It will b
natural to expand a quantum field in terms of the norm
modes which belong to the Sobolev space rather thanL2. We
assign the coefficients of the mode expansion as annihila
and creation operators. The quantum states are constru
by applying the creation operators to the vacuum state wh
is defined by the condition that the vacuum is annihilated
all the annihilation operators.4 This construction implies tha
if the initial value problem is well posed the vacuum expe
tation value of the energy momentum tensor should be w
behaved near the would-be singularities so that the field
ergy is finite.

The organization of the rest of the paper is as follows.
Sec. II we propose a natural choice of the function spac
which the initial value problem is explored~Sec. II A! and
we recapitulate the criterion of essential self-adjointness

3The difference between ours and that of Ref.@4# is in the defini-
tion of the norm and therefore of the Hilbert space. In the case
quantum mechanics the natural Hilbert space is the linear func
space with the square integrabilityL2, because of the probabilisti
interpretation of the wave function.

4The constructed quantum states belong toL2 class in the Fock
space.
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operators in the Hilbert space~Sec. II B!. In Sec. III we
demonstrate how we can probe singularities with waves
Minkowski spacetime with a single point removed and gi
an intuitive justification of the choice of the Sobolev space
the Hilbert space. Section IV supplies several examples
static spacetimes with timelike singularities. We explicit
show that many of the classical singularities become w
regular, while a single example is wave singular. Section
is the extensions of the discussion of the previous section
scalar fields with general nonminimal coupling and to co
formally static spacetimes. In Sec. VI we discuss how
characterize wave-singular naked singularities in our
proach and propose a notion of hair of naked singularit
Section VII is devoted to summary and discussion. In
Appendix some mathematical materials on the essenti
self-adjointness are given for the sake of the reader’s con
nience.

II. THE FUNCTION SPACE OF INITIAL DATA

A. Finite energy field configuration

We consider an (n12)-dimensional static spacetime o
the metric form

ds252V2dt21hi j dxidxj , ~2.1!

with a timelike Killing vector fieldjm5(] t)
m.

We choose a function space on eacht5const hypersur-
faceS as

H5$ f uuu f uu,`% ~2.2!

with the Sobolev normuu f uu being given by

uu f uu2ª
q2

2 E
S
dSV21f * f 1

1

2ES
dSVhi j Di f * D j f ,

~2.3!

whereq2 is a positive constant andDi denotes the covarian
derivative with respect to the induced metrichi j on S. Here
dS5dn11xAh is the natural volume element onS. The
norm is bounded above by a positive constant times the
ergy integralE,

uu f uu2,const3E, ~2.4!

where

EªE
S
dSnmjnTmn@ f #, ~2.5!

with nm being the unit normal toS. Here the energy momen
tum tensor is given by

Tmn@ f #ª
1

2
~¹m f * ¹n f 1¹n f * ¹m f !

2
1

2
gmn~¹s f * ¹s f 1m2f * f !. ~2.6!

For nm5V21(] t)
m the energyE is expressed by

f
n

8-2
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E5
1

2ES
dS~V21] t f * ] t f 1m2V f* f !

1
1

2ES
dSVhi j Di f * D j f , ~2.7!

which motivated us to choose the norm given by Eq.~2.3!.
The finiteness of the norm,uu f uu,`, is required because w
can prepare only a finite energy configuration of the fiel5

This leads us to the Sobolev space as the function spacH
on S. The energyE is conserved because the energy mom
tum tensorTmn satisfies the conservation law¹nTmn50 and
jm satisfies the Killing equationL jds250. Then the inner
product is naturally defined by

~ f ,g!ª
q2

2 E
S
dSV21f * g1

1

2ES
dSVhi j Di f * D jg.

~2.8!

We will consider the massless case only because it is kn
that the initial value problem is well posed formÞ0 if it is
for m50 @4#.

B. Uniqueness of the time translation operator

Let us briefly recapitulate the mathematics on the ess
tial self-adjointness of a linear operatorA on the Hilbert
spaceH. For precise definitions see the Appendix, in whi
we collect relevant mathematical materials.

The wave equation of a massless test scalar field,hf
50, reduces to

] t
2f52Af, ~2.9!

whereAª2VDiVDi is a positive symmetric operator onH
if the domain ofA is suitably chosen, e.g.,C0

`(S), a set of
smooth functions with compact support onS, so that it is
dense inH. In other words we see, by a simple computati

~A f ,g!5~ f ,Ag!1E
]S

dSi$~A1q2! f * V] ig

2V] i f * ~A1q2!g% ~2.10!

so thatA is symmetric if f ,gPC0
`(S) and therefore the sur

face term above vanishes. In most cases this choice of
domain is not very restrictive.

The domain ofA can be further extended by relaxing th
boundary condition so that the extended domain coinci
with the domain of its adjoint operator. The extended ope
tor in this manner is said to be self-adjoint and its eigenv

5Of course, the converse is not necessarily true. That is,uu f uu2

,` does not mean that the energy is finite in general. Howeve
our present analysis of the spacetime with a timelike~conformal!
Killing vector, the Sobolev space implies the finiteness of the fi
energy.
10402
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ues are real and positive. Then, for each self-adjoint ex
sionAE , the time evolution of the field is uniquely given b
@3#

f~ t !5cos~AE
1/2t !f~0!1AE

21/2sin~AE
1/2t !ḟ~0!, ~2.11!

with f(0), ḟ(0)PD(AE) being any initial data. In this
sense the self-adjoint extensionAE is a time translation op-
erator.

If there are many possibilities of the self-adjoint exte
sions, we have to choose one of them by imposing a part
lar boundary condition, which is normally imposed by som
physical requirement. In the case of naked singularities
do not have any criterion to choose the boundary conditi
Therefore, if the self-adjoint extension is unique, there
mains no ambiguity in the choice of the boundary conditio
A symmetric operatorA which has a unique self-adjoint ex
tension is called essentially self-adjoint.

The well-posedness of the initial value problem of E
~2.9! is now turned into the essential self-adjointness of
operatorA, which can be tested by considering solutions
the equations

A* c56 ic, ~2.12!

and showing that such solutions do not belong to our Hilb
space@8#.

III. SPACE WITH A SINGLE POINT REMOVED

A. Solution of the wave equation

Let us consider a rather artificial model of a timelike si
gularity which can be fully analyzed. Namely, we conside
spacetime which is locally flat but with a single spatial po
removed so that the spacetime has a timelike singularity
illustrated in Fig. 1 and the topology is (R32$0%)3R. Our
problem in this section is to see the well posedness of
initial value problem of the Klein-Gordon equation

2] t
2f1nf50, ~3.1!

in

d

FIG. 1. A conformal diagram of a spacetime with a timelik
singularity at the center.
8-3
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in this spacetime, which hopefully enhances our understa
ing of the wave probe for more general timelike singularit
in the subsequent sections and partially supports the ch
of the Sobolev space.

First we assume that our function spaceH on S is L2, i.e.,

H5H fU E
S
ufu2d3x,`J , ~3.2!

and that the tentative domainD(n) of the Laplaciann is
C0

`(S). Later we consider the case thatH5H1 instead ofL2

and see what is the difference. We do not claim that t
analysis is new but we demonstrate this because we be
that this is the most illustrative explicit model in which th
choice of the Hilbert space is highlighted.

Separating the time variablet and the angular variable
u,w we may write solutions in the form

f lm5e2 ikt f l~r !Ylm~u,w!5e2 ikt
Fl~r !

r
Ylm~u,w!

~3.3!

with Ylm(u,w) being the spherical harmonics. The reduc
wave equation reads

d2Fl

dr2
2

l ~ l 11!Fl

r 2
1k2Fl50, ~3.4!

and theL2 norm squared*dx3ufu2 reduces to

uuFuu25E
0

`

druFu2 ~3.5!

up to an unimportant constant multiple.
The behavior of the radial function near the origin is

ther

F l;r l 11 ~ f l;r l !, ~3.6!

or

G l;r 2 l ~gl;r 2 l 21!. ~3.7!

All the Fl ’s belong to the Hilbert spaceH. The modesGl( l
>1) are not square integrable atr 50 and therefore are no
normal modes. The modeGl 50; const(gl 50;const/r ) is the
only mode which requires further care. This mode is squ
integrable atr 50. In the case ofS'R3 this mode does no
belong to our Hilbert space becausen(1/r )524pd3(x) is
not in L2 class. However, in the case ofS'R32$0% this
mode is allowed unless one further imposes a boundary
dition at r 50. However, the boundary condition to be im
posed is not unique. Actually a boundary condition

aF82F50 ~3.8!

is possible at the originr 50, wherea is an arbitrary real
parameter. In this sort of simple model one can immedia
convince oneself that this is the most general boundary c
dition at the origin for the self-adjointness of the Laplaci
10402
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operator but there is a systematic way to get the most gen
boundary condition, which is powerful for less simpler cas
We defer the demonstration of that method to the followi
subsections. Let us concentrate on theS-wave solutions (l
50). The most generalS-wave solution which satisfies th
above boundary condition is spanned by

Fk5
sin~kr !

k
1acos~kr ! ~3.9!

with a being the constant in Eq.~3.8!. In this case we say
that the self-adjoint extension is not unique so that the
placian with the initial domainD(n)5C0

`(R32$0%) is not
essentially self-adjoint and therefore the initial value pro
lem is not well-posed. In the case ofS'R3 we have instead

Fk5
sin~kr !

k
, ~3.10!

which contains no arbitrary parameter so that the Laplac
with the domain spanned byFk’s of Eq. ~3.10! is the only
self-adjoint extension.6 Therefore the Laplacian with the ini
tial domainC0

`(R3) is essentially self-adjoint.
This difference may be slightly more dramatic if we co

sider a spacetimeM5S3R:

S'H R32$0% for t>0,

R3 for t,0.
~3.11!

Namely, a timelike singularity emerges fort>0 as depicted
in Fig. 2. In such a spacetime the normal modes do
match att50 unlessa50 so that the initial value problem i
ill posed.

6The extended domain spanned byFk’s of Eq. ~3.10! is the H1

closure ofC0
`(R3), and the corresponding self-adjoint extension

the Friedrichs extension@8#.

FIG. 2. A conformal diagram of a spacetimeM5S3R with
S t,0'R3 and S t.0'R32$0% so that a timelike singularity
emerges at the center aftert50.
8-4
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B. A systematic method of self-adjoint extension

From the previous subsection we see that the problem
the function spaceL2(R32$0%) for the fieldf reduces to the
problem ofL2(0,̀ ) for the reduced radial wave functionF.
Let us study the solutionsF6PL2(0,̀ ) of the equations

2
d2F6

dr2 56 iF 6 , ~3.12!

which are reduced from the equations~2.12! concentrated on
the S-wave again. The solutions are

F65expS 2
16 i

A2
r D , ~3.13!

G65expS 17 i

A2
r D . ~3.14!

It is clear that the solutionsG6 are not inL2(0,̀ ) class,
while F6 are.

The prescription to find the most general boundary con
tion is to compose

F5F0~r !1F1~r !1UF1~r !, ~3.15!

where F0(r )PC0
`(0,̀ ) satisfies the boundary conditio

F0(0)5F08(0)50 at the origin.U is the isometry of the
space$F1% into the space$F2% with respect to theL2(0,̀ )
norm, i.e.,UF1(r )5eiaF2(r ). An elementary computation
shows that

F8~0!

F~0!
5

2~11 i !/A22eia~12 i !/A2

11eia
~3.16!

is a real number which we set equal toa21. This is what we
alluded to before.

C. Sobolev space instead ofL 2

Let us now change the Hilbert space fromL2(R32$0%)
space to the Sobolev spaceH1(R32$0%). We shall look for
the solutions for which the integral

E
0

`

drr 2u f 68 ~r !u25E
0

`

drr 2U d

dr S F6~r !

r D U2

~3.17!

is convergent. However, we can see from Eq.~3.13! that the
integral ~3.17! is divergent forF6 . Therefore f 6 do not
belong to the Sobolev spaceH1(R32$0%) so that there re-
mains no room to relax our boundary condition. That is,
Laplacian operator with the initial domainC0

`(R32$0%) is
essentially self-adjoint.

Consider now the previous spacetime model:M5S3R
~3.11! and the solutions of the field equation~3.1! in the
Sobolev spaceH1(S). It is now clear that the self-adjointly
extended domain of the Laplacian agrees in both region
the spacetime. Therefore the initial value problem is we
posed in the whole spacetimeM. Actually the spherical wave
10402
of
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propagates with no trace of the would-be singularity at
origin. Of course, this is because the spacetime is alm
Minkowski. In a general wave-regular spacetime, the wa
would be distorted and scattered by strong curvature ther
a definite and unique way.

It is physically assuring to see that the removed poin
completely of no effect if the initial field configuration has
finite energy. This also supports that our choice of the H
bert space is physically sensible.

IV. WAVE PROBE IN STATIC SPACETIMES

A. Spherically symmetric static spacetimes

To illustrate the test of the essential self-adjointness of
operatorA in Eq. ~2.9! in curved spacetimes, we first stud
the well-known spherically symmetric spacetimes. In a g
eral (n12)-dimensional spherically symmetric static spac
time, the metric is given by

ds252V2dt21V22dr21R2dVn . ~4.1!

Here we assume thatV2 is a positive function ofr for 0
,r ,` and is singular atr 50 so that the causal structure o
the spacetime is as shown in Fig. 1. Providedc
5 f (r )Y(V), the equations~2.12! reduce to

f 91
~V2Rn!8

V2Rn
f 82

c

V2R2
f 6 i

f

V4
50, ~4.2!

where the prime denotes the derivative with respect tor and
c is the angular momentum quantum number. The normf
is given by

uu f uu25
q2

2 E dmdrRnV22u f u21
1

2E dmdrRnV2u f 8u2,

~4.3!

wheredm is the volume element on the unitn sphere (dS
5dmdrV21Rn).

For the essential self-adjointness ofA, the norms of the
solutions of the equations~4.2! should be divergent for eac
c and each sign of the imaginary term. We can easily ve
that the normuu f uu is divergent forc.0 if it is for c50, so
we will examine the essential self-adjointness for thec
50 (S-wave! case.

1. Negative mass Schwarzschild spacetime

The four-dimensional negative mass Schwarzschild m
ric is given by

V2511
2M

r
, R5r , ~M.0!, ~4.4!

and a timelike singularity is located at the centerr 50. Near
the singularity, the equations~4.2! become

f 91
1

r
f 850, ~4.5!
8-5
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since the other terms are less singular or even regularr
50. Then the two independent solutionsf 5const andg
5 lnr are obtained. For the latter solution, the second term
the norm squared~4.3! behaves as

;E
0
drr 2V2ug8u2; lnr u0→`. ~4.6!

Thus the operatorA on this spacetime is essentially se
adjoint, hence the spacetime is wave regular.

One might worry that our analysis does not involve t
6 i part and only one of the two solutions for Eq.~4.5! is
verified not to be in the Hilbert space. One may be unha
about the lack of intuition in the test being not complete
convinced by the demonstration in Sec. III. Here, we sho
remark that the solutionf which well behaves near the sin
gularity r 50 is divergent at infinityr 5` so that the Sobo-
lev norm is divergent. The point is that if one of the ind
pendent solutions fails to behave well near the singula
there are no ways for the other solution to meet the condi
at infinity because there is not available other independ
solution to superpose.

It is amusing to note that this also holds for the high
dimensional (n>3) negative mass Schwarzschild spac
times. Note also that ifL2 were chosen as the Hilbert spac
the operatorA would not be essentially self-adjoint in th
case@4#.

2. Reissner-Nordstro¨m spacetime

For the four-dimensional over extreme Reissn
Nordström metric,

V2512
2M

r
1

Q2

r 2
, R5r , ~Q2>M2!, ~4.7!

where Q denotes the electric~magnetic! charge. Near the
timelike singularity atr 50, the equations~4.2! for the S
wave (c50) becomef 950 (V2R2;Q2) and f behaves as
f ;r or a constant. Then, the norm squared~4.3! is finite.
Thus, the classical singularity remains wave-singular. Foc
.0 modes, the norms are divergent. This implies that o
theS-wave can fall into the singularity. Our analysis is ba
cally local in time so that our wave approach to singular
probe can also work in the case that timelike singularities
hidden behind horizons by extending the analysis in
straightforward way.

Higher-dimensional generalizations of the Reissn
Nordström solution are given by@9,10#

V2512
C

r n21
1

D2

r 2(n21)
, R5r , ~4.8!

with the parametersC andD being proportional to the mas
and the charge, respectively. It is remarked that the sin
larities in the higher-dimensional (n>3, D2Þ0) solutions
are also wave singular.

To summarize the two examples above, the timelike s
gularity in the negative mass Schwarzschild spacetime
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wave regular while that of the over extreme Reissn
Nordström spacetime is not. The tendency that the over
treme Reissner-Nordstro¨m spacetime is more singular tha
the negative mass Schwarzschild spacetime sounds na
because the curvature is more divergent for the over extr
Reissner-Nordstro¨m spacetime.

This reminds us of the well-known examples in quantu
mechanics: the Coulomb potential and ther 22 potential
problems in three-dimensional space. The former is ess
tially self-adjoint and the latter is not if ther 22 potential is
attractive and too strong@8#.

One might guess from the two examples above that
quasilocal mass given~in the four-dimensional case! by

M local52
R

2
$gmn~]mR!~]nR!21% ~4.9!

would be finite asr→0 in the wave-regular cases while it
infinite in wave-singular cases. However, this is not the c
in other models as we shall see below. We shall propose
intuitive criterion for the wave-regularity in Sec. IV C.

In general, if the metric functions of the metric~4.1! be-
have as

R;r p, V2Rn;r k, ~4.10!

near the singularityr 50, the equations~4.2! for S wave (c
50) become

f 91
k

r
f 850, ~4.11!

under the conditionnp.k21, which holds for all our ex-
amples. Then, the solutions aref 5const andg5 ln r(k51) or
r 12k(kÞ1). Since the norm squared~4.3! for the solution
g5r 12k ~and similarly forg5 ln r) is estimated as

uuguu2;E drr 2k12(np2k11)1E drr 2k;E drr 2k,

~4.12!

the singularity turns out to be wave regular for the casek
>1. The locally flat example discussed in Sec. III is the ca
k52, the (n12)-dimensional negative mass Schwarzsch
metric is the casek51 and the (n12)-dimensional
Reissner-Nordstro¨m metrick52n12.

B. Other spacetimes

We shall consider some less known but hopefully mo
physical solutions of the Einstein equations coupled to m
ter fields. The first two solutions below exhibit null nake
singularities for some parameter regions. We shall remark
the null naked singularities from our point of view.

1. The Wyman solution

The Wyman solution is a static solution of the fou
dimensional Einstein equations coupled to a minima
coupled scalar field@11#. The metric is given by
8-6
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V25S 12
2h

r D m/h

5S r

r12h D m/h

,

R25r 2S 12
2h

r D 12m/h

5r12m/h~r12h!11m/h,

~4.13!

whereh5Am21s2 with a scalar charges, som/h,1 and
rªr 22h. A curvature singularity is located atr50. Since
V2R2;r, this is the case of the metric functions~4.10! with
k51 and thus the spacetime is wave regular.

2. Charged dilaton solution

The four-dimensional charged dilaton solution is given
@10#

V25S 12
r 1

r D S 12
r 2

r D (12a2)/(11a2)

, ~4.14!

R25r 2S 12
r 2

r D 2a2/(11a2)

, ~4.15!

with a2 being a positive parameter in the model. Consid
the extremal caser 15r 2 . In the casea2.1, the central
singularity atrªr 2r 150 becomes timelike, while it is nul
for a2<1. For anya2.1, R2V2;r2 this is the case of the
metric functions~4.10! with k52 and the singularity is wave
regular. The first term of the norm squared~4.12! diverges
for a2<3 so that we would reproduce the result in Ref.@4# if
we chose theL2 function space as our Hilbert space.

3. String solution

The five-dimensional string solution given by

ds25V2~2dt21dz2!1dr21r 2dV2
2 , ~4.16!

V25S 11
M

r D 21

, ~4.17!

has a curvature singularity at the centerr 50, which corre-
sponds to a straight string. The operatorA which appears in
the wave equationhf52V22(] t

21A)f50 is expressed a

A52]z
22V2H ] r

21S ] rV
2

V2
1

2

r D ] r2
c

r 2J , ~4.18!

wherec is the angular momentum quantum number on
unit two-sphere. By the separation of the variablesc
5 f (r )eikzY(V), the equations (A* 7 i )c50 reduce to

f 91
3

r
f 850, for S wave, ~4.19!

near r 50. In this region, the solutions aref 5const andg
5r 22, and the norm squared forg
10402
r

e

uuguu2;E drr 2r 241E drr 2V2r 26 ~4.20!

diverges. Hence the central singularity is wave regular.

C. A simple criterion of wave-regularity
for spherically symmetric cases

We may give an intuitive but not necessarily mathema
cally rigorous explanation of the wave regularity and
simple criterion in what case the classical singularity b
comes wave-regular. Take the example of static and sph
cally symmetric spacetimes. We can see that if we introd
a new radial coordinateX as

X:5E dr

RnV2 ~4.21!

the equations in the test of the essential self-adjointness
similar to

d2f

dX2 2cR2n22V2f 6 iR2nf 50, ~4.22!

and the essential part of the Sobolev norm is

uu f uu25E dXU d f

dXU
2

. ~4.23!

Therefore the problem becomes similar to the quantum
chanics in a semi-infinite region~except the norm! if the
variableXP(a,`) for r P(0,̀ ) with a being a finite num-
ber. As is well known in that case the essential se
adjointness becomes nontrivial. On the other hand, if
variableXP(2`,`) for r P(0,̀ ), such a ‘‘half-space prob-
lem’’ would not appear. For the wave-regular case such
the negative mass Schwarzschild metric the range ofX ex-
tends to2` as the singularityr 50 is approached while it is
finite for the over extreme Reissner-Nordstro¨m metric, which
is the wave-singular case. Indeed this holds for all the ca
given by the metric functions~4.10!. This may suggest tha
the variableX in the wave mechanics plays a role similar
the affine parameter in the particle mechanics and that f
wave in a wave-regular spacetime the singularity is eff
tively infinitely far away.

As a by-product of the above observation we can see
if R2,` as r→0 and the singularity is null, i.e.,*drV22

→` as r→0, then the singularity is wave regular becau
*drV22R2n→`. This can be checked in the Wyman sol
tion replacings by is so that the parameterm/h.1 and
therefore the singularity is null, though the scalar field b
comes a ghost and the model becomes unphysical. In
charged dilaton model, the singularity becomes null fora2

<1 and is wave regular. The wave regularity of the n
singularity was also asserted in Ref.@4# but with different
reasoning.
8-7
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V. GENERALIZATIONS

A. Probes with other fields

So far, the examples of timelike singularities have be
probed with minimally coupled massless scalar fields. O
can think of probing singularities with other fields such
spinor, vector, tensor fields, or metric perturbations. Our p
cedure of probing singularity is immediately generalized
each case by replacing the inner product~2.8!, hence the
norm, in an appropriate way for the probing field.

For example, when probing a timelike singularity with
massless scalar field coupled to the scalar curvature,
should adopt the inner product respecting the stress te
Tmn

c for the field @see Eq.~3.190! in Ref. @12##. The field
equation in the case is (h1jR)f50, so the operator

A52VDiVDi2jV2R ~5.1!

should be examined for the essential self-adjointness, w
j is a numerical factor andR the scalar curvature. In th
case of the Wyman solution, the equations (A* 7 i )f50 re-
duce nearr50 to

f 91
1

r
f 81

g

r2
f 50, S g5

j

2

s2

h2D , ~5.2!

and the solutions are given by f 5AeiAg lnr

1Be2 iAg lnr, (A,BPC). After some calculation, it is ob
served that the Sobolev norms for the solutions logarith
cally diverge nearr50. Thus, the singularity of the Wyma
solution is also wave regular when probed with the sca
field coupled to the scalar curvature. As is well known, in t
conformally coupled scalar field case, that isj5(d
22)/4(d21) for any spacetime dimensiond, the field equa-
tion is invariant under the conformal transformations of t
metric and the field,gmn(x)→ḡmn(x)5C2(x)gmn(x), f

→f̄5C(22d)/2f. SinceTmn
c transforms asT̄mn

c 5C22dTmn
c ,

the corresponding inner product is conformally invaria
Thus, the calculation is as simple as that in the static c
when singularities in conformally static spacetimes
probed with conformally coupled scalar fields. This will b
seen in the following subsections.

Generalizations to the probes with spin 1/2 and 1 fie
are similar. Explicit expressions ofTmn for such fields can be
found, for example, in Ref.@12#.

B. Conformally static spacetimes

In the previous section, we have examined the would
naked singularities in static spacetimes, which can be
garded as regular if they are not detectable by waves, i.e
the initial value problem for the field is well posed. How
ever, physically more interesting cases which can confr
with the cosmic censorship are such dynamical spaceti
that naked singularities emerge after gravitational collap
For example, to get insights into the problem of the final f
of gravitational collapse, the Tolman-Bondi solution h
been extensively studied by many people. It has been
vealed that for some initial data shell-focusing naked sin
10402
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larities can be formed as a final product of spherical d
collapse@13#. As the wave approach to fully dynamical cas
is still far reaching for us at present, we will present a sim
model to mimic such a dynamical problem on the basis
our study of the timelike singularity in conformally stat
spacetimes.

1. Self-similar case

Dynamical problems such as the formation of naked s
gularities can be made tractable by assuming self-simila
and the nature of naked singularities have been investig
@14#. Self-similar spacetimes also have attracted attention
connection with the critical behavior in gravitational collap
and have been studied in detail by many authors@15#. Prob-
ing timelike singularities especially in self-similar spac
times therefore is an interesting issue concerning the cos
censorship. A technical advantage of self-similar metrics
that they can be written in the conformally static form so th
we can straightforwardly apply our procedure developed
the static spacetime in the previous sections to the s
similar spacetimes when probing with conformally coupl
scalar fields.

For a massless scalar field, there is a nonstatic spheric
symmetric solution discovered by Roberts@16#. As one of
the models of naked singularities in self-similar spacetim
we will analyze the timelike singularity in the Roberts sol
tion, whose metric can be written in the conformally sta
form

ds25e2hdŝ25e2h$2dh21dr21R2~r !dV2%,

R2~r !ª
1

4
$11p2~12p!e22r%~e2r21!, ~5.3!

wherep is an integration constant and (]h)m is the homothe-
tic vector. For the value 0,p,1, the curvature singularity
located atr 50 becomes timelike and the global structure
identical to that of the negative mass Schwarzschild spa
time. By using this solution the problem of self-similar sca
field collapse has been discussed@16,17#.

When probing the singularity with a conformally couple
scalar field, we can carry out the previous analysis with
spect to the static metricdŝ2 instead ofds2. Since nearr
50, R2;r , this is the case of the metric functions~4.10!
with k51. Thus, the norm squared~4.12! logarithmically
diverges so that the singularity is wave regular for the c
formally coupled scalar field.

2. Conformally flat spacetimes with emerging naked singularity

More physical situations of gravitational collapse requ
that the spacetime contains a regular initial spacelike hyp
surface on which the collapsing matter has a compact s
port. We can construct a spacetime which has a regular
tial hypersurfaceS t0

and a timelike singularity being forme

in the future ofS t0
. For example, let us consider a confo

mally flat metric

ds25C2$2dt21dr21r 2dV2%, ~5.4!
8-8
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with a conformal factor which behaves near the center
50 as

C2;H r p ~t>0!,

r p11 ~t,0!,
~5.5!

where p.22 and C2(r 50,t)→0 sufficiently smoothly as
t→0. Then, the spacetime has a timelike curvature singu
ity at the centerr 50 for t>0 as depicted in Fig. 2. How
ever, for sufficiently remote past, there are regular hyper
faces S t . Therefore we can take an initial regula
hypersurfaceS t0

at somet0,0 and construct the Hilber

space onS t0
.

Since all the hypersurfacesS t are isomorphic to the initia
hypersurfaceS t0

up to a conformal factor, the Hilbert space

of a conformally coupled scalar field onS t are the same
even whenS t intersects the central singularity. Therefore t
spacetime is wave regular for the conformally coupled sc
field.7 Timelike singularities of the type examined above tu
out to be also wave regular when probed with the Maxw
field since it is conformally invariant and Maxwell’s equ
tions are reduced to that of a massless Klein-Gordon fi
under a suitable gauge condition.

C. Cylindrically symmetric case

So far, we have studied spherically symmetric examp
whose central singularities are thus considered to be po
like. Here, as another example, we will probe a singularity
a cylindrically symmetric spacetime given by the metric

ds252r2s1dt21r2s2dz21r2s3dw21dr2, ~5.6!

where the parameterss i satisfy ( is i5( i(s i)
251. This

metric is known as the timelike Kasner solution and d
scribes a cylindrical vacuum spacetime with a timelike c
vature singularity along the liner50 for the parameter val
uesus i u,1.

On each hypersurfaceS t , the operatorA in Eq. ~2.9! is
written as

A52r2s1S ]r
21

1

r
]r1

1

r2s2
]z

21
1

r2s3
]w

2 D . ~5.7!

Sinceus i u,1, the equations~2.12! reduce to

7An everywhere smooth example can be constructed by choo
the conformal factor as

C25HU>3e21/r 2
~ for t>0!,

U,3~e21/r 2
1e21/t2! ~ for t,0!,

where U> and U, , the analytic functions ofr and t, should be
chosen so thatC2→1 as r→`. By taking U ’s appropriately, we
have regular hypersurfaces att,0 whose most of the portions ar
flat.
10402
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S ]r
21

1

r
]rDc50, ~5.8!

near the singularityr50. In this region, the solution behave
as f 5const org5 lnr and the norm squared becomes

uucuu2;E drr122s1ucu21E drru]rcu2. ~5.9!

For the solutiong5 lnr, the second term logarithmically di
verges, thus the singularity is wave regular.

For s i5(0,0,1), the spacetime is flat and, if the ang
coordinatew has a deficit, the liner50 becomes a cone
singularity, which thus expresses a thin cosmic string in
locally flat spacetime. Also in this case the spacetime is w
regular.

VI. HAIR OF WAVE-SINGULAR NAKED SINGULARITIES

In the previous sections, we have seen that most of
timelike ‘‘singularities’’ are wave regular and that the sing
larity of the Reissner-Nordstro¨m spacetime is the only ex
ception in our examples. In the wave-singular case, si
probing waves feel the existence of the singularity in so
sense, we naively expect that the waves scattered by
singularity will inform us of some feature of the singularit
Here, we shall discuss how to characterize wave-sing
naked singularities.

In the wave-singular case, the symmetric operatorA in the
wave equation has many different self-adjoint extensions.
discussed in Sec. II B, each self-adjoint extension co
sponds to a different boundary condition at the singula
and accordingly describes a different time evolution of t
wave for the same initial data. In other words, a wav
singular naked singularity has degrees of freedom for
possible choice of the time evolution operator. The degr
of freedom can be interpreted as the character or thehair of
the wave-singular naked singularity. Since the self-adjo
extensions are in one-to-one correspondence with the se
partial isometries between the deficiency subspacesK6 of A
~see the Appendix for the definition!, the set of isometriesU
describes the degrees of freedom.

In general, when probing timelike singularities in sta
spacetimes with massless Klein-Gordon waves, we will fi
a positive real symmetric operator of the formA
52VDiVDi with domainC0

`(S). Then the deficiency indi-
cesn1 , n2 of A are equal and self-adjoint extensions c
be made. If the naked singularity is wave singular, thenn1

5n25NÞ0 and hence the partial isometryU is represented
by an N3N unitary matrix U(N). Then, we say that the
singularity has aU(N) hair.

Let us consider a wave-singular spacetime which has
asymptotically flat region and a static region in a neighb
hood of the central timelike singularity. More precisely, w
will consider such a spacetime that the metric form is giv
by Eq. ~4.1! and the metric functions behave as Eq.~4.10!
with k,1 nearr 50. Consider the wave probe with a mas
less Klein-Gordon wave, in particular theS wave, in this

ng
8-9
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spacetime. The solutions of the equations (A* 7 i )c650
nearr 50 are given by

f 6;a6r 12k1b6 , ~6.1!

wherec65 f 6(r )Y(V) anda6 , b6 are constants. Bothf 6

well behave nearr 50. On the other hand, in the asymptot
region, the equations (A* 7 i )c650 reduce to

f 69 1
2

r
f 68 1H 6 i 2

l ~ l 11!

r 2 J f 650, ~6.2!

and the solutions for theS wave (l 50) are exp$(1
7i)r/A2%/r and exp$(217i)r/A2%/r . Clearly the former so-
lutions diverge in the asymptotic region and hence do
belong to the Hilbert space while the latter span the d
ciency subspaces. Therefore the deficiency indices forl 50
mode are (1,1) and the isometry isU(1). Thus, the wave-
singular naked singularity of this spacetime has aU(1) hair.
More detailed study will be given in the future work, i
which we shall investigate what might occur in such a wa
singular spacetime in quantum field theory.

VII. SUMMARY AND DISCUSSION

We have studied the well posedness of the initial va
problem of the scalar wave equation in the case of static
conformally static spacetimes with timelike singulariti
choosing the Sobolev space as the natural Hilbert space.
physical idea behind the choice is that we can prepare
initial data only with finite energy. We have examined
detail the essential self-adjointness of the operatorA in the
wave equation defined in the Hilbert space in various mod
of spacetimes which contain timelike singularities in the co
ventional sense. In spacetimes such as the negative
Schwarzschild spacetime the classical singularity beco
regular if probed with waves while more stronger classi
singularities such as the over extreme Reissner-Nordst¨m
spacetime remain singular.

We should comment that the wave regularity of a spa
time does not guarantee that the spacetime is physically
alizable. For example, a negative mass Schwarzschild sp
time is wave regular but allowance of negative ma
solutions would make Minkowski spacetime unstable
pointed out by Horowitz and Myers@18#. Probably there is a
physics which rules out the negative mass Schwarzsc
solution. In contrast, we may say that the over extre
Reissner-Nordstro¨m spacetime is unphysical on the grou
that it is wave singular.

We have briefly touched upon the case that the time
singularity emerges at some point in spacetime in rather
tificial models which are the Minkowski spacetime with
single spatial point removed and the spacetime model wh
is conformal to Minkowski spacetime. However, timelik
singularities of general spacetimes without any~conformal!
timelike Killing vector will be more interesting from the
view point of the cosmic censorship especially in the case
gravitational collapse. In the case that spacetimes with ‘‘
ked singularities’’ as illustrated by Fig. 3 are found to
wave regular, such spacetimes can be said to be ‘‘glob
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hyperbolic’’ in the sense that the initial value problem is w
posed with the unique boundary value at the classical sin
larity. Clarke @5# gave a sufficient condition for the we
posedness of the initial value problem for test fields. Ho
ever, it turns out that the curve integrability condition for
naked singularity in Ref.@5# is not satisfied for almost all the
wave-regular cases discussed in the present work. We
pect that the condition is too demanding for the well pos
ness of the initial value problem and his theorem can
further sharpened.

The application of the present work to quantum fie
theory in curved spacetime is most interesting. The norm
modes are solutions of the wave equation and an analo
the Klein-Gordon inner product exists;i $( f ,] tg)2(] t f ,g)%
with ( f ,g) being the inner product providing the Sobole
norm, which conserves if the spacetime has a~conformal!
timelike Killing vector.

We may carry out similar analyses to spinor, vector, a
tensor fields. A natural question will be: does the wav
regularity depend on with what fields we probe? At the m
ment what we can say is that in principle yes, i.e., it depe
and it is nothing wrong from the physical point of view.
initial value problems are well-posed for all fields, ‘‘nake
singularities’’ are harmless and nothing to be afraid of.
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APPENDIX: EXTENSIONS OF SYMMETRIC OPERATORS

We briefly review some definitions of linear operators
a Hilbert space with an inner product (•,•). An operator on a
Hilbert spaceH is a pair of a linear mappingA:H→H and
its domain of definitionD(A). The pair„A,D(A)… is often
abbreviated byA. If an operatorA with D(A) densely de-
fined in H satisfies

FIG. 3. A spacetime with emerging would-be naked singula
ties.
8-10
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~f,Ac!5~Af,c!, ;f,cPD~A!, ~A1!

thenA is calledsymmetric. In the case, any vectorvPH can
be approximated by vectors inD(A) as close as possible. A
operatorA8 is called anextensionof A, if D(A),D(A8) and
A8c5Ac, ;cPD(A). Extensions of an operatorA are ob-
tained by the relaxation of the boundary condition onD(A).
Consider sequences$cn%,D(A) such that there exist limits
limn→`cn5:jPH and limn→`Acn5:zPH. If, for every
such sequence,jPD(A) andAj5z, then„A,D(A)… is said
to be closed. If a nonclosed operatorA has a closed extensio
it is called closable. Every closable operator has a sma
closed extension, which is called its closure. Consider a s
metric operator„A,D(A)…. DefineD(A* ) to be the set of all
fPH for which there existsxPH such that

~f,Ac!5~x,c!, ;cPD~A!. ~A2!

Then, sinceD(A) is dense,x is uniquely determined byf
PD(A* ) and Eq.~A2!. An operator„A* ,D(A* )… defined by
A* f5x for every fPD(A* ) is called the adjoint of
„A,D(A)…. D(A* ) may be larger thanD(A), in which case
A* is a proper extension ofA. If „A* ,D(A* )…5„A,D(A)…,
an operator„A,D(A)… is said to be self-adjoint.

Now let us see an example of extensions of symme
operators to self-adjoint ones. TakeH5L2(0,1) and consider
an operatorT:

Tc52 i
dc~x!

dx
, ~A3!

D~T!5$cuc~0!5c~1!50, cPAC@0,1#%, ~A4!

where AC@0,1# expresses the set of absolutely continuo
functions on@0,1# whose derivatives are inL2(0,1). It can be
verified thatT is symmetric. Forf(x)5exp(ikx)PD(T* ),
T* f5x5kexp(ikx)PH is not an element ofD(T), thus
D(T* ).D(T); T is not self-adjoint.

Next, consider an operatorTa with the same action asT in
D(T) and with the domain

D~Ta!ª$cuc~0!5eiac~1!, cPAC@0,1#%, ~A5!

wherea is a real number. Clearly, this is an extension ofT.
For fPD(Ta* ), there existsxPH such that

;cPD~Ta!, ~f,Tac!5~x,c!, Ta* f5x. ~A6!

Namely,

E
0

1

dxf* S 2 i
dc

dxD5E
0

1

dx~Ta* f!* c. ~A7!

On the other hand, by partial integration the following
obtained:
10402
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E
0

1

dxf* S 2 i
dc

dxD52 i @f* c#0
11E

0

1

dx~Ta* f!* c.

~A8!

Thus, f* (1)c(1)2f* (0)c(0)50. From the boundary
condition for c, it follows that f* (1)5eiaf* (0)
5@e2 iaf(0)#* , hencef(0)5eiaf(1). ThereforeD(Ta* )
5D(Ta); Ta is self-adjoint. Sincea is arbitrary, it turns out
that T has infinitely many different self-adjoint extensions

In general, for a closed symmetric operatorA, the closed
symmetric extensions can be carried out in a more system
way. Consider solutions ofA* f656 if6 and the setsK6

of the solutionsf6 , respectively, which are called the defi
ciency subspaces ofA. The pair of numbers (n1 ,n2)
ª(dimK1 ,dimK2) is called the deficiency indices ofA. If
A is a closed symmetric operator with the deficiency indic
n15n2 , thenA has self-adjoint extensions, and ifn15n2

50, A is self-adjoint. LetU be the partial isometriesK1

→K2 . Then, the self-adjoint extensionsAE can be obtained
by taking the domains as

D~AE!ª$f01f11Uf1uf0PD~A!, f1PK1%.
~A9!

In the example above, the normalized solutionsf6 of the
equationsT* f656 if6 are

f6~x!5
A2e7x

A6~12e72!
. ~A10!

The deficiency subspaces ofT are K65$bf6ubPC% and
thus the deficiency indices are (1,1). Then, the partial iso
etries are taken asU:K1→K2 :f1°gf2 , whereugu51.
The symmetric extension with respect togPU is given by
Tg52 id/dx with the domain

D~Tg!ª$fo1b~f11gf2!uf0PD~T!, bPC%.
~A11!

It turns out that the phase factoreia is given by

eia5
f~1!

f~0!
5

11ge

e1g
. ~A12!

If the closure of a closable symmetric operatorA is self-
adjoint,A is called essentially self-adjoint. In this case,A has
a unique self-adjoint extension. The basic criterion for ess
tial self-adjointness is to verify that its deficiency indices a
both zero, namely, the solutionsf6 of the equations (A*
7 i )f650 are not in the considering Hilbert space. An e
ample of essentially self-adjoint operators is the Laplac
operator onL2(Rn) with the domain C0

`(Rn): a set of
smooth functions with compact support. Detailed studies
extensions of symmetric operators and further examples
be found in the text book@8#.
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