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Who's afraid of naked singularities? Probing timelike singularities with finite energy waves
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To probe naked spacetime singularities with waves rather than with particles we study the well posedness of
initial value problems for test scalar fields with finite energy so that the natural function space of initial data is
the Sobolev space. In the case of static and conformally static spacetimes we examine the essential self-
adjointness of the time translation operator in the wave equation defined in the Hilbert space. For some
spacetimes the classical singularity becomes regular if probed with waves while stronger classical singularities
remain singular. If the spacetime is regular when probed with waves we may say that the spacetime is
“globally hyperbolic.” [S0556-282199)00620-7

PACS numbds): 04.20.Dw, 04.20.Cv, 04.5@h, 04.62:+v

[. INTRODUCTION fore the cosmic censorsHiphould be drastically changed as
In general relativity a singular spacetime is defined byClarke[5] has advocated.
geodesic incompletenegd]. However, sometimes such a  We shall be concerned with a wave propagation dictated
definition gives a very weak singularity which seems almosty the Klein-Gordon equation in a curved spacetime with
harmless from a physica| point of view. For examp|e’ atimelike Singularities. OnIy for illustration in the introduction
spacetime from which a single point is taken out is a singulatve use the simplest case; the Klein-Gordon equation in (1
spacetime because there is a geodesic curve which terminateésl)-dimensional Minkowski spacetime, —@; +dZ)f=0
at the point outside of the spacetime with a finite affine time defined in a suitable region of the spacetirtféor a general
A stronger “physical singularity” appears for example at the case, see the following sections. .
center of a spherically symmetric black hole, where the cur- For the |n|t|al_value problem we introduce the following
vature scalar diverges and therefore the resultant infinite tidd]r™m on a function space on eath const hypersurface:
force will tear off any physical object. The classification of 2 1 £2\ 172
singularities is yet under way but has not been complgzéd ||f||:=(—f dx|f|?+ —f dx|— ) , (1.2
The standard definition of a spacetime singularity is 2 2 dx
physmally based on a probe with classical point p?”'c'e_s- Inwhereq2 is a positive constant. We call the function space
this paper we shall discuss a wave probe of timelike singu;, 1
larities which was initiated by Walf3] and later developed H={f]||f]|<o<} the So_bolev space oH'. The _Sobolev
. ; ) norm has been used in the standard formulation of well-
by Horowitz and Marolf[4]. The idea of the probe with

. . . . 1 osed initial value problems in a general globally hyperbolic
waves rather than with classical particles is motivated b)g P g g y "vp

X : . acetimd1]. We note that in general the well posedness of
quantum field theory because everything should be describe}, injtial value problem requires continuous dependence of

by quantum fields. The wave may propagate through thgg|ytions on initial data, in addition to the existence and the
would-be singularity with a definite and unique way. For yniqueness of solutiori§]. However, the main issue we will
example, in the case of the hydrogen atom the wave functiogddress in this paper is to see the uniqueness of solutions of
is finite at the origin, which is a classical singularity. It is 3 wave equation in a nonglobally hyperbolic spacetime, so
known that if the space is geodesically complete the Laplachereafter we say that the initial value problem is well-posed
ian operator has a self-adjoint extension and the extension ighen the wave propagation is uniquely determined in the
unique so that the wave propagation is well defined. Thavhole spacetimé.

converse is not always true. If the geodesic completeness is It is known that the norm is bounded above by the field
replaced by the well posedness of initial value problems foenergy so that the finiteness of the energy implies the finite-
test fields the concept of the global hyperbolicity and there-

. ) o ) 2To show the existence of solutions and to establish an appropri-
TEm§'| address: akihiro@yukawa.kyoto-u.ac.jp ate continuous relation between initial data and solutions, Sobolev
lEma” address: ahosoya@th.phys.titech.ac.jp ~ norms containing higher order derivatives are chosen to define a
Here we refer to the “physical formulation” of the strong cosmic topology on the space of initial data. However, to prove the unique-
censorship rather than the “precise formulation” in Wald’s book ness of solutions of second order linear hyperbolic equations, it is
[6]. If our wave approach can be extended to the initial value probsufficient to adoptH® as our Sobolev spadé], which is larger than
lem of the Einstein equations the notion of the cosmic censorshipi™ with norms containingn(>1)th order derivatives. Our results
will substantially change. in this paper hold also folH™>?1),
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ness of the norni7]. Since we cannot afford to prepare an operators in the Hilbert spac&ec. Il B. In Sec. Il we
infinite energy field configuration as initial data, the functiondemonstrate how we can probe singularities with waves in

space is naturally limited by the conditidn: Minkowski spacetime with a single point removed and give
an intuitive justification of the choice of the Sobolev space as
|[f]]<oe. (1.2 the Hilbert space. Section IV supplies several examples of

static spacetimes with timelike singularities. We explicitly

The corresponding natural inner product in our Hilbert Spacey ow that many of the classical singularities become wave

is defined as regular, while a single example is wave singular. Section V
9 1 df* dg is the extensions of the discussion of the previous sections to

(f,g):zif dxf*g+ EJ dxd— ax’ (1.3 scalar fields with general nonminimal coupling and to con-

X ax formally static spacetimes. In Sec. VI we discuss how to

so that]|f[|2=(f,f) characterize wave-singular naked singularities in our ap-

eproach and propose a notion of hair of naked singularities.
ection VIl is devoted to summary and discussion. In the
ppendix some mathematical materials on the essentially
self-adjointness are given for the sake of the reader’s conve-

atz(]S:_Ad), (14) nience.

We shall confine ourselves mainly to the case of timelik
singularities in static or conformally static spacetimes so thai
the wave equation becomes of the form

where A is an operator which contains spatial coordinates Il. THE FUNCTION SPACE OF INITIAL DATA
and spatial derivatives only. In this case the well-posedness
of the initial value problem is translated into the essential
self-adjointness of the operatdx because of the spectral ~ We consider anr{+2)-dimensional static spacetime of
theorem([8]. Namely, we prepare a smooth and nice initial the metric form

data at some spatial hypersurface by choosing the Sobolev o -

spaceH? as the Hilbert space. The wave will propagate and ds*= —Vdt +hijdxdx, 2.7

eventually hit the timelike singularity and will be scattered.With a timelike Killing vector fieldé#= (d,).

off in someway. The point of the essential self-adjointness is We choose a function space on edehconst hypersur-
that any unwanted singular modes which are not contained iPaceE as P g

the domain of the initial data will not appear after scattering

so that the initial value problem is well-posed with no arbi- H={f]||f||] <} (2.2

trariness in the choice of the boundary conditions and the

prediction is unique. In such a case we say that the spacetinwith the Sobolev nornj|f|| being given by

is “wave regular.” 5 L
We would like to emphasize the relevance of the present 2. q° kg T T

work to quantum field theory in curved spacetime. It will be 1F]1%=3 LdEV i ZLdEVhIDif Dif,

natural to expand a quantum field in terms of the normal (2.3

modes which belong to the Sobolev space rather tfaive

assign the coefficients of the mode expansion as annihilatiowhereqg? is a positive constant arfd; denotes the covariant

and creation operators. The quantum states are constructé@rivative with respect to the induced methig on X. Here

by applying the creation operators to the vacuum state whicH= =d""x\h is the natural volume element ob. The

is defined by the condition that the vacuum is annihilated bynorm is bounded above by a positive constant times the en-

all the annihilation operatofsThis construction implies that ergy integralE,

if the initial value problem is well posed the vacuum expec-

A. Finite energy field configuration

tation value of the energy momentum tensor should be well- ||]|?<const<E, 24
behaved near the would-be singularities so that the field eNihere
ergy is finite.
The organization of the rest of the paper is as follows. In
Sec. Il we propose a natural choice of the function space in E:= LdEn”g”TW[f], (2.9

which the initial value problem is explore@ec. Il A) and

we recapitulate the criterion of essential self-adjointness ofiih ~ being the unit normal t& . Here the energy momen-
tum tensor is given by

3The difference between ours and that of Ré.is in the defini- ,_1 * *

tion of the norm and therefore of the Hilbert space. In the case of T‘“’[f]'_Z (VL PV IV, VL)
quantum mechanics the natural Hilbert space is the linear function
space with the square integrability’, because of the probabilistic

. Tfx 2f%
interpretation of the wave function. 2 gW(V PV +mie). 2.6
“The constructed quantum states belond_foclass in the Fock
space. For n*=V~1(g,)* the energ)E is expressed by
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1 -1 * 2\/ %
E=§ EdE(V o f* o f +maVErf)
1 .
+=| d2VhID;f*D;f, (2.7
2)s !

which motivated us to choose the norm given by Ef3).
The finiteness of the nornh|f|| <<, is required because we
can prepare only a finite energy configuration of the freld.
This leads us to the Sobolev space as the function space
onZ. The energ)E is conserved because the energy momen-
tum tensorT#" satisfies the conservation law, T#”=0 and

&* satisfies the Killing equatior fdszzo. Then the inner
product is naturally defined by

FIG. 1. A conformal diagram of a spacetime with a timelike
q? 1 . singularity at the center.
(f,g)==7f dEV‘lf*ngEf d=Vh'D;f*Djg.
: : (2.9 ~uesare real and positive. Then, for each self-adjoint exten-
' sionAg, the time evolution of the field is uniquely given by

We will consider the massless case only because it is knowk?]
that the initial value problem is well posed for#0 if it is

for m=0 [4]. #(t)=cog AY%) (0) + Az YZsin(AYR) ¢(0), (2.11)

B. Uniqueness of the time translation operator with ¢(0), #(0)eD(Ag) being any initial data. In this

Let us briefly recapitulate the mathematics on the essers€nS€ the self-adjoint extensiée is a time translation op-

tial self-adjointness of a linear operatér on the Hilbert €rator.

spaceH. For precise definitions see the Appendix, in which _ T there are many possibilities of the self-adjoint exten-
we collect relevant mathematical materials. sions, we have to choose one of them by imposing a particu-

The wave equation of a massless test scalar field, lar b(_)undary pondition, which is normally impqsed b).' some
_ physical requirement. In the case of naked singularities we
0, reduces to o o
do not have any criterion to choose the boundary condition.
3t2¢:_A¢' (2.9  Therefore, if the self-adjoint extension is unique, there re-
mains no ambiguity in the choice of the boundary conditions.
whereA:=—VD/VD; is a positive symmetric operator ¢t A symmetric operatoA which has a unique self-adjoint ex-

if the domain ofA is suitably chosen, e.gG%(S), a set of ~teNsion is called essentially self-adjoint.
smooth functions with compact support &) so that it is The well-posedness of the initial value problem of Eq.

dense irH. In other words we see, by a simple computation(z'g) is now turned into the essential self-adjointness of the
' ' operatorA, which can be tested by considering solutions of

the equations
(Atg)=(1Ag+ | dS{(a+a)vag
% A* y==*iy, (2.12
— Vg f*(A+9?)g} (2.10
and showing that such solutions do not belong to our Hilbert
so thatA is symmetric iff,g e C5(2) and therefore the sur- space[8].
face term above vanishes. In most cases this choice of the

domain is not very restrictive. . ll. SPACE WITH A SINGLE POINT REMOVED
The domain ofA can be further extended by relaxing the _ _
boundary condition so that the extended domain coincides A. Solution of the wave equation

with the domain of its adjoint operator. The extended opera- | et us consider a rather artificial model of a timelike sin-

tor in this manner is said to be self-adjoint and its eigenvalgularity which can be fully analyzed. Namely, we consider a
spacetime which is locally flat but with a single spatial point
removed so that the spacetime has a timelike singularity as

SOf course, the converse is not necessarily true. Thaf|igz  illustrated in Fig. 1 and the topology iR¢—{0}) xR. Our

<o does not mean that the energy is finite in general. However, iProblem in this section is to see the well posedness of the

our present analysis of the spacetime with a timelig@enforma) initial value problem of the Klein-Gordon equation

Killing vector, the Sobolev space implies the finiteness of the field 5

energy. —dip+ Ap=0, (3.2
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in this spacetime, which hopefully enhances our understand-
ing of the wave probe for more general timelike singularities
in the subsequent sections and partially supports the choice
of the Sobolev space.

First we assume that our function spd¢en? isL?, i.e.,

H={ ¢>’ L|¢|2d3x<oo}, (3.2

and that the tentative domaiR(A) of the LaplacianA is
C5(2). Later we consider the case that=H? instead ofl2

and see what is the difference. We do not claim that this
analysis is new but we demonstrate this because we believe
that this is the most illustrative explicit model in which the

choice of the Hilbert space is highlighted. _ FIG. 2. A conformal diagram of a spacetimd=3 xR with
Separating the time variabkeand the angular variables s _ ~R3 and 3,.,~R®-{0} so that a timelike singularity
0,(,0 we ma.y write SO|utI0nS n the fOI‘m emerges at the center aftee 0.
Aim=e" K (1) Y)m( 0, 0)= e—iktm\(lm( 0,¢) operator but there is a systematic way to get the most general
r

boundary condition, which is powerful for less simpler cases.
(3.3 e defer the demonstration of that method to the following
subsections. Let us concentrate on theave solutions I(
=0). The most generdb-wave solution which satisfies the
above boundary condition is spanned by

with Y|,(6,¢) being the spherical harmonics. The reduced
wave equation reads

o°F 10+ DF +K2F,=0 (3.4) in(k
— =0, _ sin(kr
dr2 r2 I Fk: n(k )

+acogkr) (3.9

and theL? norm squared dx®| ¢|? reduces to
with a being the constant in Eq3.8). In this case we say
||F||2= fwdr|F|2 3.5 that the self-adjoint extension is not unique so that the La-
0 ' placian with the initial domairD(A)=Cg(R3—{0}) is not
essentially self-adjoint and therefore the initial value prob-

up to an unimportant constant multiple. lem is not well-posed. In the case Bf~R? we have instead
The behavior of the radial function near the origin is ei-
ther ;
sin(kr
Fe= nekr) , (3.10
Fi~r' T (f~rh, (3.6) k
or which contains no arbitrary parameter so that the Laplacian
0 - with the domain spanned hy,’s of Eq. (3.10 is the only
Gi~r— (g1 ). (37 self-adjoint extensiofi Therefore the Laplacian with the ini-

tial domainCg(R®) is essentially self-adjoint.
This difference may be slightly more dramatic if we con-
sider a spacetimi =3 X R:

All the F’s belong to the Hilbert spac®. The modegj (|
=1) are not square integrablerat 0 and therefore are not
normal modes. The modg_,~ const@, -y~ constf) is the
only mode which requires further care. This mode is square 3

integrable at =0. In the case ok ~R? this mode does not _[R"={0} for t=0,
belong to our Hilbert space becausd1/r)=—4m8%(x) is T RS for t<O.
not in L2 class. However, in the case &f~R3—{0} this

mode is allowed unless one further imposes a boundary CorNamer
dition atr=0. However, the boundary condition to be im- ’
posed is not unique. Actually a boundary condition

(3.1

a timelike singularity emerges for0 as depicted
in Fig. 2. In such a spacetime the normal modes do not
match att=0 unlessa=0 so that the initial value problem is

aF' —F=0 (3.9 ill posed.
is possible at the origim=0, wherea is an arbitrary real
parameter. In this sort of simple model one can immediately ®The extended domain spanned By's of Eq. (3.10 is the H*

convince oneself that this is the most general boundary corelosure ofCj(R?), and the corresponding self-adjoint extension is
dition at the origin for the self-adjointness of the Laplacianthe Friedrichs extensiof8].
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B. A systematic method of self-adjoint extension

PHYSICAL REVIEW D 60 104028

propagates with no trace of the would-be singularity at the

From the previous subsection we see that the problem Jrigin. Of course, this is because the spacetime is almost

the function space?(R®—{0}) for the field ¢ reduces to the
problem ofL2(0°) for the reduced radial wave functidh
Let us study the solutionB . e L?(0,%) of the equations

d?F.

=+
@z =P

(3.12

which are reduced from the equatiof@s12) concentrated on
the Swave again. The solutions are

1+i
J—lzexp( —Tzlr), (3.13
G p(11i ) 314
+=e —1r . .
- X \/E

It is clear that the solution§.. are not inL?(0») class,
while F.. are.

The prescription to find the most general boundary condi-

tion is to compose

F=Fq(r)+F.(r)+UF.(r), (3.19
where Fqo(r) e C;(0%) satisfies the boundary condition
Fo(0)=F((0)=0 at the origin.U is the isometry of the
space{F. } into the spacéF_} with respect to thé.2(0,)
norm, i.e.,UF, (r)=¢e'"*#_(r). An elementary computation
shows that

F'(0)  —(1+D)/\2—€“1-i)/\2
FO) o (310

is a real number which we set equalao?. This is what we
alluded to before.

C. Sobolev space instead df?

Let us now change the Hilbert space frarA(R®—{0})
space to the Sobolev spaké(R3—{0}). We shall look for
the solutions for which the integral

fxdrr2|f’i(r)|2= jwdrrz E(Ft(r))
0 0

dr r
is convergent. However, we can see from 13 that the
integral (3.17) is divergent forF.. . Thereforef. do not
belong to the Sobolev spa¢t!(R*—{0}) so that there re-

2

(3.17

Minkowski. In a general wave-regular spacetime, the wave
would be distorted and scattered by strong curvature there in
a definite and unique way.

It is physically assuring to see that the removed point is
completely of no effect if the initial field configuration has a
finite energy. This also supports that our choice of the Hil-
bert space is physically sensible.

IV. WAVE PROBE IN STATIC SPACETIMES
A. Spherically symmetric static spacetimes

To illustrate the test of the essential self-adjointness of the
operatorA in Eqg. (2.9) in curved spacetimes, we first study
the well-known spherically symmetric spacetimes. In a gen-
eral (n+2)-dimensional spherically symmetric static space-
time, the metric is given by

ds?=—V2dt*+V2dr?+ R%dQ,,. (4.
Here we assume that? is a positive function ofr for 0
<r<« and is singular at=0 so that the causal structure of
the spacetime is as shown in Fig. 1. Provided
=f(r)Y(Q), the equation$2.12 reduce to

o
Iw—o,

4.2

where the prime denotes the derivative with respectdad
c is the angular momentum quantum number. The norr of
is given by

? 1
||f||2:q7j d,udI'RnV72|f|2+ EJ dearV2|f’|2,
4.3

wheredyu is the volume element on the umitsphere ¢
=dudrvV_IR").

For the essential self-adjointness Af the norms of the
solutions of the equation@.2) should be divergent for each
¢ and each sign of the imaginary term. We can easily verify
that the norm|f|| is divergent forc>0 if it is for c=0, so
we will examine the essential self-adjointness for the
=0 (S-wave case.

1. Negative mass Schwarzschild spacetime

The four-dimensional negative mass Schwarzschild met-
ric is given by

mains no room to relax our boundary condition. That is, the

Laplacian operator with the initial domai@g(R3*—{0}) is
essentially self-adjoint.

Consider now the previous spacetime modél=3 X R
(3.11) and the solutions of the field equatidB.1) in the
Sobolev spac#i(2). It is now clear that the self-adjointly

2M
v2=1+7, R=r, (M>0), (4.4

and a timelike singularity is located at the centerO. Near
the singularity, the equatiorg.2) become

extended domain of the Laplacian agrees in both regions of

the spacetime. Therefore the initial value problem is well-

posed in the whole spacetinv Actually the spherical wave

1
"+ Ff’=0, 4.5
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since the other terms are less singular or even regular atwave regular while that of the over extreme Reissner-
=0. Then the two independent solutiofis- const andg Nordstran spacetime is not. The tendency that the over ex-
=Inr are obtained. For the latter solution, the second term ofreme Reissner-Nordstm spacetime is more singular than
the norm square®.3) behaves as the negative mass Schwarzschild spacetime sounds natural
because the curvature is more divergent for the over extreme
Reissner-Nordstra spacetime.

This reminds us of the well-known examples in quantum
mechanics: the Coulomb potential and the? potential
Thus the operatoA on this spacetime is essentially self- problems in three-dimensional space. The former is essen-

~f drr2v2|g’|2~Inr|g—. (4.6)
0

adjoint, hence the spacetime is wave regular. tially self-adjoint and the latter is not if the 2 potential is
One might worry that our analysis does not involve theattractive and too stronig].
+i part and only one of the two solutions for E@.5) is One might guess from the two examples above that the

verified not to be in the Hilbert space. One may be unhappyuasilocal mass give(in the four-dimensional cagdy
about the lack of intuition in the test being not completely
convinced by the demonstration in Sec. Ill. Here, we should
remark that the solutiofi which well behaves near the sin-
gularity r =0 is divergent at infinity = so that the Sobo-
lev norm is divergent. The point is that if one of the inde- would be finite ag —0 in the wave-regular cases while it is
pendent solutions fails to behave well near the singularityinfinite in wave-singular cases. However, this is not the case
there are no ways for the other solution to meet the conditioin other models as we shall see below. We shall propose an
at infinity because there is not available other independerihtuitive criterion for the wave-regularity in Sec. IV C.
solution to superpose. In general, if the metric functions of the meti(é.1) be-

It is amusing to note that this also holds for the higher-have as
dimensional §=3) negative mass Schwarzschild space-

R
Miocal= — E{g”V(&MR)(o?VR)—l} 4.9

times. Note also that if. 2 were chosen as the Hilbert space, R~rP,  VZR"~rk (4.10
the operatorA would not be essentially self-adjoint in this
case[4]. near the singularity =0, the equation$4.2) for Swave (c
=0) become
2. Reissner-Nordstnm spacetime
For the four-dimensional over extreme Reissner- £+ Ef’zo, (4.1
Nordstran metric, r
2M Q2 under the conditiomp>k—1, which holds for all our ex-
VZ=1— -+t R=r, (Q°=M?), (47  amples. Then, the solutions dre const andy=Inr(k=1) or
r

r1=k(k#1). Since the norm squared.3 for the solution

_ 1k P _ ; ;
where Q denotes the electriémagneti¢ charge. Near the 9=r (and similarly forg=Inr) is estimated as

timelike singularity atr =0, the equationg4.2) for the S
wave (c=0) becomef”=0 (V?R*~Q?) andf behaves as ||g||2~f drr*k*z(””*k”)Jrf drr*k~f drr X,
f~r or a constant. Then, the norm squardd3) is finite. (412

Thus, the classical singularity remains wave-singular. d&-or

>0 modes, the norms are d.|verge_nt. This lmpl|e§ t_hat On.lythe singularity turns out to be wave regular for the clse
the Swave can fall into the singularity. Our analysis is basi- _ 1 g |ocally flat example discussed in Sec. Il is the case
2, the (+2)-dimensional negative mass Schwarzschild

cally local in time so that our wave approach to singularityk:
probe can also work in the case that timelike singularities arQ otric is the casek=1 and the (+2)-dimensional
r-Nordstrm metrick=—n+2.

hidden behind horizons by extending the analysis in Reissne
straightforward way.
Higher-dimensional generalizations of the Reissner-

Nordstran solution are given by9,10] B. Other spacetimes
We shall consider some less known but hopefully more
Vil 1 C N D? R— 48 physical solutions of the Einstein equations coupled to mat-
- F (2(n-1)’ =h (48 ter fields. The first two solutions below exhibit null naked

singularities for some parameter regions. We shall remark on

with the parameter€ andD being proportional to the mass the null naked singularities from our point of view.

and the charge, respectively. It is remarked that the singu-

larities in the higher-dimensionah&3, D?#0) solutions

are also wave singular. The Wyman solution is a static solution of the four-
To summarize the two examples above, the timelike sindimensional Einstein equations coupled to a minimally

gularity in the negative mass Schwarzschild spacetime isoupled scalar fieli11]. The metric is given by

1. The Wyman solution

104028-6
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V2: 1_2_77 m/n: p m/
r pt2y '
1-m/in
R2:r2(1_2r_7]) :pl—m/ﬂ(p+2ﬂ)l+m/7]’

(4.13

where = Jm?+ ¢ with a scalar charge-, som/»<1 and
p:=r—2m. A curvature singularity is located at=0. Since
V2R?~p, this is the case of the metric functio&10 with
k=1 and thus the spacetime is wave regular.

2. Charged dilaton solution

PHYSICAL REVIEW D 60 104028

||g||2~J drr2r‘4+J drr2v?r =6 (4.20

diverges. Hence the central singularity is wave regular.

C. A simple criterion of wave-regularity
for spherically symmetric cases

We may give an intuitive but not necessarily mathemati-
cally rigorous explanation of the wave regularity and a
simple criterion in what case the classical singularity be-
comes wave-regular. Take the example of static and spheri-
cally symmetric spacetimes. We can see that if we introduce
a new radial coordinat¥ as

The four-dimensional charged dilaton solution is given by

[10]

r r (1-a?)/(1+a?)
2_ + -
Y —<1—7)(1—7) , (4.149

2a2/(1+a?)

: (4.19

with a2 being a positive parameter in the model. Consider

the extremal case,=r_. In the casea’>1, the central
singularity atp:=r —r . =0 becomes timelike, while it is null
for a®<1. For anya®>1, R?V?~p? this is the case of the
metric functiong4.10 with k=2 and the singularity is wave
regular. The first term of the norm squareti1l?) diverges
for a®<3 so that we would reproduce the result in Rdl.if
we chose thé.? function space as our Hilbert space.

3. String solution

The five-dimensional string solution given by

ds?=V2(—dt?+dz?) +dr?+r2d02, (4.1

M -1
v2:(1+ T) , (4.1

has a curvature singularity at the centex0, which corre-
sponds to a straight string. The operafowhich appears in
the wave equation] = —V~2(92+A) =0 is expressed as

aV? 2 c
veand L SR CRE:

r

A= —aﬁ—vz{ 9e+

dr
X= ] R

(4.21

the equations in the test of the essential self-adjointness look
similar to

d?f
W—cRZ”*szfiiRZ"f:o, (4.22
and the essential part of the Sobolev norm is
fl|2= f dX df|* 4.2
I7112= | dX 55 - (423

Therefore the problem becomes similar to the quantum me-
chanics in a semi-infinite regiofexcept the normif the
variableX e (a,) for r e (0,°) with a being a finite num-
ber. As is well known in that case the essential self-
adjointness becomes nontrivial. On the other hand, if the
variableX e (—«,) for r € (0,%), such a “half-space prob-
lem” would not appear. For the wave-regular case such as
the negative mass Schwarzschild metric the rang® ek-
tends to— o0 as the singularity =0 is approached while it is
finite for the over extreme Reissner-Nordstronetric, which
is the wave-singular case. Indeed this holds for all the cases
given by the metric function$4.10. This may suggest that
the variableX in the wave mechanics plays a role similar to
the affine parameter in the particle mechanics and that for a
wave in a wave-regular spacetime the singularity is effec-
tively infinitely far away.

As a by-product of the above observation we can see that
if R?<% asr—0 and the singularity is null, i.efdrv—2

wherec is the angular momentum quantum number on the_, asr—0, then the singularity is wave regular because

unit two-sphere. By the separation of the variablgs
=f(r)e’*?Y(Q), the equationsA* +i) =0 reduce to

3
"+ Ff’=0, for S wave,

(4.19

nearr=0. In this region, the solutions arfe= const andg
=r~2, and the norm squared for

fdrV 2R "—o. This can be checked in the Wyman solu-
tion replacingo by io so that the parameten/»>1 and
therefore the singularity is null, though the scalar field be-
comes a ghost and the model becomes unphysical. In the
charged dilaton model, the singularity becomes null &6r

=<1 and is wave regular. The wave regularity of the null
singularity was also asserted in R¢4] but with different
reasoning.
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V. GENERALIZATIONS larities can be formed as a final product of spherical dust
collaps€g13]. As the wave approach to fully dynamical cases
is still far reaching for us at present, we will present a simple
So far, the examples of timelike singularities have beemodel to mimic such a dynamical problem on the basis of
probed with minimally coupled massless scalar fields. Oneur study of the timelike singularity in conformally static
can think of probing singularities with other fields such asspacetimes.
spinor, vector, tensor fields, or metric perturbations. Our pro-
cedure of probing singularity is immediately generalized to 1. Self-similar case
each case by replacing the inner prod({218), hence the
norm, in an appropriate way for the probing field.
For example, when probing a timelike singularity with a
massless scalar field coupled to the scalar curvature,

A. Probes with other fields

Dynamical problems such as the formation of naked sin-
gularities can be made tractable by assuming self-similarity
and the nature of naked singularities have been investigated
should adopt the inner product respecting the stress tens 4]. Self-similar spacetimes also have attracted attention in
c ! . i bnnection with the critical behavior in gravitational collapse
T fqr the field [see_ Eq.(3.190 in Ref. [12]]. The field ;4 have been studied in detail by many authi@fg. Prob-
equation in the case iS-{+¢R)¢=0, so the operator ing timelike singularities especially in self-similar space-
A=—VDVD, - §V2R (5.1) times therefore is an interesting issue concerning the cosmic

censorship. A technical advantage of self-similar metrics is

should be examined for the essential self-adjointness, whef@at they can be written in the conformally static form so that
¢ is a numerical factor an@ the scalar curvature. In the W€ can straightforwardly apply our procedure developed for

case of the Wyman solution, the equatiodé i) ¢=0 re- the static spacetime in the previous sections to the self-
duce neap=0 to similar spacetimes when probing with conformally coupled

scalar fields.
1 y £ o2 For a massless scalar field, there is a nonstatic spherically
e ] (?,z > _) (5.2  symmetric solution discovered by Robefts5]. As one of
p p 2y the models of naked singularities in self-similar spacetimes,

) ] . we will analyze the timelike singularity in the Roberts solu-
and the solutons are given by f=4e""  {ion whose metric can be written in the conformally static
+Be v (4, Be C). After some calculation, it is ob- form
served that the Sobolev norms for the solutions logarithmi-
cally diverge neap=0. Thus, the singularity of the Wyman d§=e2”d§2=e2”{—dn2+dr2+ R?(r)d0?},
solution is also wave regular when probed with the scalar
field coupled to the scalar curvature. As is well known, in the 1
conformally coupled scalar field case, that i&=(d Rz(f)==z{1+ p—(1-pe *}e*-1), (3
—2)/4(d—1) for any spacetime dimensiah the field equa-
tion is invariant under the conformal transformations of theywherep is an integration constant and,)* is the homothe-
metric and the field,gw(x)egw(x)=C2(x)gw(x), o) tic vector. For the value €p<1, the curvature singularity
_>g: c@ 2y Sincewa transforms aS?CV:(;Z*dT;w located atr =0 becomes timelike and the global structure is
the corresponding inner product is conformally invariant.identical to that of the negative mass Schwarzschild space-
Thus, the calculation is as simple as that in the static caséme. By using this solution the problem of self-similar scalar
when singularities in conformally static spacetimes arefield collapse has been discusg4éé,17].
probed with conformally coupled scalar fields. This will be  When probing the singularity with a conformally coupled
seen in the following subsections. scalar field, we can carry out the previous analysis with re-

Generalizations to the probes with spin 1/2 and 1 fieldspect to the static metrids® instead ofds?. Since near
are similar. Explicit expressions @, for such fields canbe =0, R2~r, this is the case of the metric functiof4.10

found, for example, in Ref.12]. with k=1. Thus, the norm square@.12 logarithmically
diverges so that the singularity is wave regular for the con-
B. Conformally static spacetimes formally coupled scalar field.

In the previous section, we have examined the would-be; conformally flat spacetimes with emerging naked singularity
naked singularities in static spacetimes, which can be re- ) o o i
garded as regular if they are not detectable by waves, i.e., if More physical situations of gravitational collapse require
the initial value problem for the field is well posed. How- that the spacetime contains a regular initial spacelike hyper-
ever, physically more interesting cases which can confrongurface on which the collapsing matter has a compact sup-
with the cosmic censorship are such dynamical spacetimé_gort- We can construct a spacetime Whlch has a regular ini-
that naked singularities emerge after gravitational collapsdi@l hypersurfac&  and a timelike singularity being formed
For example, to get insights into the problem of the final fatein the future ofEtO. For example, let us consider a confor-
of gravitational collapse, the Tolman-Bondi solution hasmally flat metric
been extensively studied by many people. It has been re-
vealed that for some initial data shell-focusing naked singu- ds?=C?{—dt?+dr?+r2dQ?}, (5.4
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with a conformal factor which behaves near the cemter , 1
=0 as (9p+ ;&P) t//=0, (58)
rP (t=0), . . . . .
C2~ (5.5  hearthe singularity=0. In this region, the solution behaves
rP+1 (t<0), asf=const org=Inp and the norm squared becomes

wherep>—2 andC?(r=01)—0 sufficiently smoothly as

t—0. Then, the spacetime has a timelike curvature singular- ||¢||2~f dpp1_2”1|lﬂ|2+f dppld,pl%. (5.9
ity at the center =0 for t=0 as depicted in Fig. 2. How-
ever, for sufficiently remote past, there are regular hypersur- Lo . .
faces 3,. Therefore we can take an initial regular For the solutiong=Inp, the second term logarithmically di-

hypersurfac at somet,<0 and construct the Hilbert V€'9€S: thus the singulanty is wave regular. .
yp eSto 0 For ;=(0,0,1), the spacetime is flat and, if the angle
space o, .

coordinatep has a deficit, the lingp=0 becomes a cone
Since all the hypersurfaces are isomorphic to the initial  singularity, which thus expresses a thin cosmic string in a

hypersurface&; up to a conformal factor, the Hilbert spaces |ocally flat spacetime. Also in this case the spacetime is wave

of a conformally coupled scalar field ab, are the same, regular.

even whert, intersects the central singularity. Therefore the

spacetime is wave regular for the conformally coupled scalay,; AR OF WAVE-SINGULAR NAKED SINGULARITIES

field.” Timelike singularities of the type examined above turn

out to be also wave regular when probed with the Maxwell In the previous sections, we have seen that most of the

field since it is conformally invariant and Maxwell's equa- timelike “singularities” are wave regular and that the singu-

tions are reduced to that of a massless Klein-Gordon fieldarity of the Reissner-Nordstno spacetime is the only ex-

under a suitable gauge condition. ception in our examples. In the wave-singular case, since
probing waves feel the existence of the singularity in some
C. Cylindrically symmetric case sense, we naively expect that the waves scattered by the

) . ) singularity will inform us of some feature of the singularity.
So far, we have studied spherically symmetric examplesyjere, we shall discuss how to characterize wave-singular
whose central singularities are thus considered to be poinf;aked singularities.

like. I_—|er<_—3, as another e_xample, we WiI_I probe a singula_rity of |nthe wave-singular case, the symmetric operAtor the

a cylindrically symmetric spacetime given by the metric  \yaye equation has many different self-adjoint extensions. As

g2 20042 Doad 2 2 discussed in Sec. Il B, each self-adjoint extension corre-

ds’=—p*7dt*+p*72dZ’+ p*3dg® +dp®, (5.6 sponds to a different boundary condijtion at the singularity

. B 5 . and accordingly describes a different time evolution of the

e s ot A 4o WRUE o the Same ] data I othr word, 3 ve:

. S ; . C singular naked singularity has degrees of freedom for the

scribes a cylindrical vacuum spacetime with a timelike Cur'possible choice of the time evolution operator. The degrees
vature singularity along the line=0 for the parameter val- of freedom can be interpreted as the characte; oh#ieof

ues|oj|<1. . . ) ) -
. . the wave-singular naked singularity. Since the self-adjoint
wrig:ne:sCh hypersurfack,, the operator in Eq. (2.9 is extensions are in one-to-one correspondence with the set of

partial isometries between the deficiency subspate®f A
(see the Appendix for the definitipnthe set of isometried
2+ 52 (5.7) describes the degrees of _freeo_lom._ _ o _
205 7 ps ¥ ' ' In general, when probing timelike singularities in static
spacetimes with massless Klein-Gordon waves, we will find
Since|oi| <1, the equation$2.12) reduce to a positive real symmetric operator of the form
=—VD'VD; with domainCg(X). Then the deficiency indi-
cesn,, n_ of A are equal and self-adjoint extensions can
be made. If the naked singularity is wave singular, then
91,_=N#0 and hence the partial isometdyis represented
by an NXN unitary matrix U(N). Then, we say that the
singularity has aJ(N) hair.
Let us consider a wave-singular spacetime which has an
U_X(e Y+ 1%  (for t<0), asymptotically flat region and a static region in a neighbor-
hood of the central timelike singularity. More precisely, we
whereU- and U_, the analytic functions of andt, should be  Will consider such a spacetime that the metric form is given
chosen so tha€2—1 asr—. By taking U’s appropriately, we by Eq. (4.1) and the metric functions behave as E4.10
have regular hypersurfacestat 0 whose most of the portions are with k<<1 nearr =0. Consider the wave probe with a mass-
flat. less Klein-Gordon wave, in particular th&wave, in this

1
— 2 2
A=—pTi d,+ ;ap+ ;

"An everywhere smooth example can be constructed by choosin
the conformal factor as

5 U_xe U? (for t=0),
Ce=
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spacetime. The solutions of the equations* i)y =0
nearr =0 are given by

f.~a.rt k+b,, (6.2)

wherey.=f.(r)Y(Q) anda.., b. are constants. Both.
well behave near=0. On the other hand, in the asymptotic
region, the equationsA* i) . =0 reduce to

I(1+1)

il
r2

2
f’£+7f£+ f.=0, (6.2

and the solutions for theS wave (=0) are exj(l
Fi)r/\2Mr and exg(—1Fi)r/\2}/r. Clearly the former so-
lutions diverge in the asymptotic region and hence do not
belong to the Hilbert space while the latter span the defi- FIG. 3. A spacetime with emerging would-be naked singulari-
ciency subspaces. Therefore the deficiency indices$dy  ties.

mode are (1,1) and the isometryli§1). Thus, the wave-

singular naked singularity of this spacetime hdg(d) hair.  hyperbolic” in the sense that the initial value problem is well
More detailed study will be given in the future work, in posed with the unique boundary value at the classical singu-
which we shall investigate what might occur in such a wavedarity. Clarke [5] gave a sufficient condition for the well

singular spacetime in quantum field theory. posedness of the initial value problem for test fields. How-
ever, it turns out that the curve integrability condition for a
VIl. SUMMARY AND DISCUSSION naked singularity in Ref5] is not satisfied for almost all the

wave-regular cases discussed in the present work. We sus-

We have studied the well posedness of the initial valugect that the condition is too demanding for the well posed-
problem of the scalar wave equation in the case of static anfless of the initial value problem and his theorem can be
conformally static spacetimes with timelike singularities further sharpened.
choosing the Sobolev space as the natural Hilbert space. The The application of the present work to quantum field
physical idea behind the choice is that we can prepare atheory in curved spacetime is most interesting. The normal
initial data only with finite energy. We have examined in modes are solutions of the wave equation and an analog of
detail the essential self-adjointness of the operatan the  the Klein-Gordon inner product exists(f,d,9) — (4;f,9)}
wave equation defined in the Hilbert space in various modelgith (f,g) being the inner product providing the Sobolev
of spacetimes which contain timelike singularities in the CONmorm, which conserves if the spacetime hatanforma)
ventional sense. In spacetimes such as the negative magselike Killing vector.
Schwarzschild spacetime the classical singularity becomes \We may carry out similar analyses to spinor, vector, and
regular if probed with waves while more stronger classicakensor fields. A natural question will be: does the wave-
singularities such as the over extreme Reissner-Nomistro regularity depend on with what fields we probe? At the mo-
spacetime remain singular. ment what we can say is that in principle yes, i.e., it depends

We should comment that the wave regularity of a spaceand it is nothing wrong from the physical point of view. If
time does not guarantee that the spacetime is physically renitial value problems are well-posed for all fields, “naked

alizable. For example, a negative mass Schwarzschild spacemgularities” are harmless and nothing to be afraid of.
time is wave regular but allowance of negative mass

solutions would make Minkowski spacetime unstable as
pointed out by Horowitz and Myef[d.8]. Probably there is a
physics which rules out the negative mass Schwarzschild We are very grateful to Dr. H. Kobayashi and Professor
solution. In contrast, we may say that the over extremeA. Inoue for a number of fruitful discussions. We also would
Reissner-Nordstra spacetime is unphysical on the ground like to thank Dr. T. Harada for informative comments. This
that it is wave singular. work was supported in part by Soryushi Shogakuléai.)

We have briefly touched upon the case that the timelikeand also by a grant-in-aid by the Ministry of Science, Sports,
singularity emerges at some point in spacetime in rather arand Culture of JapafA.H., 09640341
tificial models which are the Minkowski spacetime with a
single spatial point removed and the spacetime model WhiCch ppeNDIX: EXTENSIONS OF SYMMETRIC OPERATORS
is conformal to Minkowski spacetime. However, timelike
singularities of general spacetimes without gagnforma) We briefly review some definitions of linear operators on
timelike Killing vector will be more interesting from the a Hilbert space with an inner product,{). An operator on a
view point of the cosmic censorship especially in the case oHilbert space}t is a pair of a linear mapping:H— 7 and
gravitational collapse. In the case that spacetimes with “naits domain of definitionD(A). The pair(A,D(A)) is often
ked singularities” as illustrated by Fig. 3 are found to beabbreviated byA. If an operatorA with D(A) densely de-
wave regular, such spacetimes can be said to be “globall§ined in’H satisfies
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= 1 1
(b AY)=(Ad,p), VY, peDA), (A1) f dx¢*( i ‘;_f) =—i[¢* Y1+ f dX(T* ¢)* .
thenA is calledsymmetricln the case, any vectare H can ° ° (A8)
be approximated by vectors f(A) as close as possible. An
operatorA’ is called arextensiorof A, if D(A)CD(A’) and  Thus, ¢*(1)¢(1)— ¢*(0)4(0)=0. From the boundary
A'y=Ay, Yie D(A). Extensions of an operatérare ob-  condition for , it follows that ¢*(1)=e€'“¢*(0)
tained by the relaxation of the boundary condition(A). =[e '*¢(0)]*, hencep(0)=e'“¢(1). ThereforeD(T *)
Consider sequencds),} C D(A) such that there exist limits =D(T,); T, is self-adjoint. Sincex is arbitrary, it turns out
im,_.¢,=:6eH and lim_..Ay,=:{eH. If, for every thatT has infinitely many different self-adjoint extensions.
such sequence,.e D(A) andAé=¢, then(A,D(A)) is said In general, for a closed symmetric operafgrthe closed
to be closed. If a nonclosed operafohas a closed extension symmetric extensions can be carried out in a more systematic
it is called closable. Every closable operator has a smallestay. Consider solutions oA* ¢ =*i¢. and the set¥..
closed extension, which is called its closure. Consider a symef the solutionsg-. , respectively, which are called the defi-
metric operatofA,D(A)). DefineD(A*) to be the set of all ciency subspaces of. The pair of numbers n(, ,n_)

¢ € 'H for which there existy e H such that :=(dim/C, ,dimKC_) is called the deficiency indices @& If
Ais a closed symmetric operator with the deficiency indices
(p,AP)=(x,¥), YiypeDA). (A2) n,.=n_, thenA has self-adjoint extensions, andnif =n_

=0, A is self-adjoint. LetU be the partial isometrief

Then, sinceD(A) is dense,y is uniquely determined by — K_ . Then, the self-adjoint extensiog can be obtained
e D(A*) and Eq.(A2). An operator(A* ,D(A*)) defined by by taking the domains as
A*p=x for every ¢ e D(A*) is called the adjoint of
(A,D(A)). D(A*) may be larger tham(A), in which case D(Ag):={do+ ¢+ +Ud.[docD(A), ¢. ek }.
A* is a proper extension oh. If (A*,D(A*))=(A,D(A)), (A9)
an operato(A,D(A)) is said to be self-adjoint.

Now let us see an example of extensions of symmetri
operators to self-adjoint ones. Take=L2(0,1) and consider

In the example above, the normalized solutiahs of the
%quationsT* ¢. = +i¢. are

an operatoiT: \/zeix
+(X)= —T—. A10
w0 P e e
Ty=—i ax (A3)

The deficiency subspaces @fare K.={B¢.|BcC} and

_ B _ thus the deficiency indices are (1,1). Then, the partial isom-
DM ={4[¢(0)=¢(1)=0, yeAC[O1]}, (A4) etries are taken ad: K, —K_:¢ —y¢p_, where|y|=1.

where AC[0,1] expresses the set of absolutely continuousTThE iyirg/n;()a(t\r,lvcitﬁ ﬁ}znzg):%mth respectfa=U is given by
functions or{ 0,1] whose derivatives are in*(0,1). It can be v
verified thatT is symmetric. Forg(x)=exp(kx)eD(T*), —
T* ¢= x=kexp(kx)e’H is not an element ofD(T), thus DTy ={got A+ 79| doe DIT), BEC}iAll)
D(T*)DD(T); Tis not self-adjoint. ‘

Next, consider an operatdr, with the same action agin It turns out that the phase factel” is given by
D(T) and with the domain

| (1) 1tye a2
D(T,):={¢l¢(0)=€“y(1), yeAC[O,1]}, (A5) © 790 ety

wherea is a real number. Clearly, this is an extensionTof |t ine closure of a closable symmetric operavris self-

For ¢ e D(T,*), there existsy e H such that adjoint, A is called essentially self-adjoint. In this cagehas

VyeDT,), (6T)=(ni), T.*é=x. (A6) a unique self-adjoint extension. The basic criterion for essen-

tial self-adjointness is to verify that its deficiency indices are
Namely, both zero, namely, the solutions.. of the equations A*
[t . s ample of essentially self-adjoint operators is the Laplacian
- OdX(Ta )" . (A7) operator onL?(R") with the domainC;(R"): a set of
On the other hand, by partial integration the following is extensions of symmetric operators and further examples can
obtained: be found in the text book8].

Fi)¢.-=0 are not in the considering Hilbert space. An ex-
1 dy
*
f . dx¢ ( i dx
smooth functions with compact support. Detailed studies of
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