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We explore thénonJuniversality of Martinez's conjecture, originally proposed for Kerr black holes, within
and beyond general relativity. The conjecture states that the Brown-York quasilocal energy at the outer horizon
of such a black hole reduces to twice its irreducible mass, or equivalentl}ﬁlm\/;, whereA is its area. We
first consider the charged Kerr black hole. For such a spacetime, we calculate the quasilocal energy within a
two-surface of constant Boyer-Lindquist radius embedded in a constant stationary-time slice. Keeping with
Martinez’s conjecture, at the outer horizon this energy equal®\/7. The energy is positive and monotoni-
cally decreases to the ADM mass as the boundary-surface radius diverges. Next we perform an analogous
calculation for the quasilocal energy for the Kerr-Sen spacetime, which corresponds to four-dimensional
rotating charged black hole solutions in heterotic string theory. The behavior of this energy as a function of the
boundary-surface radius is similar to the charged Kerr case. However, we show that it does not approach the
expression conjectured by Martinez at the horiZ&0556-282199)06018-X

PACS numbg(s): 04.20.Cv, 05.30.Ch, 97.60.Lf

[. INTRODUCTION with these spacetimes. Moreover, equilibrium thermodynam-
ics of a black holgspecifically, in the case of an asymptoti-
A geometric theory of gravity, such as general relativity, cally flat solution, requires that it be put in a finite-sized
is known to lack a meaningful notion of local energy density“box,” just as one does in general relativify]. Thus, such
[1-3]. This is essentially due to the absence of an unambigu? study requires the knowledge of the quasilocal energy of
ous prescription for decomposing the spacetime metric intéhese “finite-sized” systems. Moreover, in a study of the
“background” and “dynamical” components. The low- quasnocal energy corrgspondmg to d!fferent _typeslof two-
energy effective field theory for heterotic string theory is noPoundaries embedded in constant stationary-time slice of the
exception. Such theories, however, admit several alternati&e!" Spacetime(in the slow-rotation approximationMar-
prescriptions for computing quasilocal energiese Refs. tinez has conjectured that the QLE approaches twice the ir-

[3,4] and the references therginin Ref. [3], Brown and reducible mass of such a black hole. In this paper, we study

. . . the (non-universality of this conjecture. We find that it re-
York (BY) introduced a way to define the quasilocal energymai§1s va)1lid for the )::harged Kerjr black hole. In the case of

(QLE) of a spatially bounded system in general relativity " the Kerr-Sen black hole, however, we show that the QLE
terms of the total mean curvature of the boundary. In this

f v this definiti h fach (gvaluated on a two-surface of constant Boyer-Lindquist ra-
paper, we first apply this definition to the case of a charged; s empedded in a constant stationary-time slice does not

Kerr family of black hole spacetimes, which represent rotat-ynnrq4ch the expression conjectured by Martinez at the ho-
ing, charged black hole solutions in general relativity. Nextj;on.
we apply it to study the behavior of quasilocal energy of the \we introduce the BY quasilocal energy in Sec. Il. We use
Kerr-Sen family, which represents rotating, charged blackhis definition in Sec. Il to find the QLE of the charged Kerr
hole solutions in heterotic string theof§]. Since the static, plack hole. Similarly, in Sec. IV we evaluate the QLE of the
charged(or neutra) solution is a special case of this family, Kerr-Sen black hole. We present our observations on the
the QLE of such a solution is obtained in the limit of van- results of these sections and discuss the status of Martinez’s
ishing angular momentuttor charge. We perform these cal- conjecture for these two cases in Sec. V. Finally, in the Ap-
culations in the regime of the slow-rotation approximation,pendix we derive the integral expression for the QLE asso-
where the expressions for the QLE are obtainable in closediated with a certain class of quasilocal two-surfaces embed-
form. ded in an axisymmetric spatial three-slice. This expression is
The motivation for the analysis in this paper is as follows.extensively used in this paper for the QLE computations for
It is of interest to explore the form of the classical laws of different spacetimes mentioned above. We follow the con-
black hole mechanics and the ensuing picture of black holgentions of Ref.[1] and employ geometrized uniS=1
thermodynamics in alternative theories of gravity such that=c.
they can be compared with the corresponding scenario in
general relativity. But the study of the thermodynamical laws Il. BROWN-YORK QUASILOCAL ENERGY
entails the knowledge of the energy and entropy associated '
The BY derivation of the quasilocal energy, as applied to
a four-dimensional4D) spacetime solution of Einstein grav-
*Electronic address: shose@iucaa.ernet.in ity can be summarized as follows. The system one considers
TAlso at Physics Department, Yangon University, Myanmar. is a 3D spatial hypersurface bounded by a 2D spatial sur-
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face B in a spacetime region that can be decomposed as w&here N is the lapse function related & by &*=Nu*.
product of a 3D hypersurface and a real line-interval reprefurther, ifé-u=—1, thenN=1 and consequently the QLM
senting time. The time-evolution of the boundaByis the s the same as the QLE. Unlike QLE, the quasilocal mass is
surface ®B. One can then obtain a surface stress-tensor omdependent of any foliation of the bounded system. More-
3B by taking the functional derivative of the action with over, owing to its conformal invariance, a frame of conve-
respect to the 3D metric ofB. The energy surface density is nience can be chosen for the computation of QLM without
the projection of the surface stress-tensor normal to a familaffecting its value. The QLE, in general, is not a conformal
of spacelike surfaces such Bsthat foliate B. The integral  invariant. Thus, the frame in which it is evaluated needs to
of the energy surface density over such a boundiary the  be clearly specified. In this paper, all computations of the
quasilocal energy associated with a spacelike hypersuBace QLE will be carried out in the Einstein frame. This is the
whoseorthogonalintersection with®B is the boundaryB. ~ frame in which Sen analyzed the properties of his rotating
Here we assume that there are no inner boundaries, such thatarged black hole solution.

the spatial hypersurfaces are complete. In the case where

horizons form, one simply evolves the spacetime inside as  lll. QLE FOR CHARGED KERR BLACK HOLES

well as outside the horizon. Under these conditions, the QLE

is defined as: The charged Kerr solution in general relativity represents

the spacetime of a rotating, charged black hole. Its spacetime

1 metric and electromagnetic vector potential are givefdy
E=— 35 d?x o (k—ko), (2.1)
8w Je A—a?sir?\ . 2asin? 6(r2+a?—A)
ds’=— B S— [ S dtd¢
where o is the determinant of the 2-metric d®, k is the
trace of the extrinsic curvature @&, andk, is a reference (r2+a2)2—Aa?sir?
term that is used to normalize the energy with respect to a + S sir? 6d ¢?

reference spacetime, not necessarily flat. To compute the
QLE for asymptotically flat solutions, we will choose the s
reference spacetime to be flat as well. In that cigés the + Kdr2+2d62, (3.9
trace of the extrinsic curvature of a two-dimensional surface
embedded in flat spacetime, such that it is isometriB.to Qr

Interestingly, the foregoing analysis can be applied in a A,=— —[(dt),—asir 6(d¢),], (3.2
straightforward way to compute QLE of spatial sections of 2
solutions of scalar-tensor theories as well. This is becausgynere
for spacetime dimensions higher than two, a scalar-tensor

theory can be cast in the “Einstein-Hilbert” form by per- S =r?+a’cog9, (3.3
forming a conformal transformation. The solutions of this
conformally related action are given by the Einstein-frame A=r?+a*+Q*-2Mr. (3.4

metrics, which themselves are related to solutions of the . ) : .
scalar-tensor theory by a conformal transformation. It was e above fields dgflne a black hole solution with mhiss
shown in Ref[4] that the quasilocal magQLM), which is chargeQ, and specific angular momentuan

a construct related to QLE, is invariant under such a trans-
formation. When there is a timelike Killing vector fielg"

on the boundary’B, such that it is also hypersurface form-  Consider a constant stationary-time hypersurfacem-

ing, one can define an associated conserved QLM for theedded in the charged Kerr spacetime with the mé8it).

A. Unreferenced QLE for charged Kerr black holes

bounded syster6,3]: Define the two-surfacB to be a surface with some constant
value for the Boyer-Lindquist radial coordinatesr,, em-
M :f d®-Dx/oNe, (2.2) bedd_ed ins,. The Iir_1e—e|_ement on this surface in the slow-
B rotation approximation, i.ea<<ry, is:

2
a

1+ —cog 6
I'o

12
J’__
o

ds’~r2 do?+r2

2M 2
WL
lo Mo

)sinz 6dg?. (3.5

Terms of ordetO(a/r§) and higher have been neglected.

We now calculate the unreferenced QLE within the two-surfacdefined byr =r,. We assume thaty=r, , wherer ,
represents the outer horizon of the charged Kerr black hole. UsingABg.of the Appendix, the unreferenced QlsEor the
surfacer =r, can be written explicitly as
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ro 2M  a’+Q? (7 a’
e=—o\/1-—+—— dosing| 1— ——
2 ) ro 0 2rg

2
rM—Q—z)sinza

o fo

4

a
cog 0+ +0|—
I'o

}, (3.6

where we have retained only terms of leading order in the Requiring the above line-element to be isometric to Eq.
parameten/r,. The above integration can be performed in a(3.5 implies that the following couple of equations be

straightforward way to yield obeyed:
2
\/ M a+Q° R2+ R2O2=1Z 1+ - co2 O (312
e=—To\/1- —+— 0 2 ; :
) ro r0
a2 2M Q2 at and
x| 1— +—— +0O| =] .
gl ol e

2M 2
R?sir? @ =r3sir? ¢ 1+r—sin2 ¢9—Q—25ir12 0)]
Note that in the limitQ— 0, the above expression simplifies 0 To

to (3.13

Assuming thaR?=0(a*/rg) (this condition will be justified

1 &
+ —
3

B 2M  a? a? 2M at a posteriorj, the above equations can be combined to yield
e=—To\/1- N aery R e d s N +O[ =] the following first-order ordinary differential equation:
O 6rg 0 o
(3.8 do _ do [, a2 ” a(1+ 2M Qz)
——=—|1——si —— =,
which is the unreferenced QLE of the neutral Kerr black hole sin® sing 2rg ro r2
[10]. It also has the expected limit whar-0, in which case (3.19
Eq. (3.7) gives which is easily solved to give:
oM 2 a2 2
e=—Tg 1—r—+9[, (3.9 sin® =sin 6 1+? 1+r——?—2>00520 . (3.1H
0 o 0 0 0

o ; : utting this back in Eq3.13, we findR( ). In the resulting
which is the unreferenced QLE of the Reissner NordStrongxpression, using E43.15 to substitute ford in terms of®.,

black holeq 3]. _
Note that no approximations have been made inside th&'® finally get
a? a? (ZM Q?

square-root appearing . Asry—o, we haves—M —ry, )
which is divergent. This prompts the need for a subtraction f(©)=ro/1+ ?S"F@_ o2
term to renormalize the unreferenced QLE. Below, we com- 0 0 (3.16
pute such a reference term. )

The two-surfacé&R = f(0®) then describes an oblate spheroid,

which bulges out near the equatoe., near® = 7/2). Note

that the above equations can be used to prove that indeed
To obtain the reference term in the QLE expression, EqR2~o(a%/r?).

(2.1), we first find a 2D surface isometric to E®.5), which

B. Reference term

is embeddable in a flat 3D slice with the line element C. Referenced QLE for charged Kerr black hole
ds?=dR2+ R2dO2+ R2sir? O dd2, (3.10 In the slow-rotation approximation the intrinsic metric on
B, as embedded in flat space, is
whereR, 0, ® are the spherical polar coordinates. Let the a2 a?(2M Q2
desired 2D surface in the flat slice be characterizedRoy ds?~r3| 1+ —5sirf O — —2(—— > )0052 ®}
=f(0®), wheref is a function of the azimuthal angl®@ and o o\ fo 0
the parametersM,a,ry). Its intrinsic metric is obtained X (d®2+ sir? © dd?). (3.17)

from Eg. (3.10 as follows. We assume th&=0(6) and

®=¢. Then, on the two-surfac8, we find thatR is a  The extrinsic curvaturd, of this surface embedded in flat

function of 9, i.e., R=R(#), say. Hence, the line-element on space can be evaluated using the method detailed in the Ap-

B is pendix. This in turn can be used to compute the renormal-
ization integral in the QLE2.1):

d2=[R2+ R202]d#%+ R?sir? ©@d#?,  (3.1D)

0 a® M Q?
g'=—ro| 1+ —| 1+ ———||. (3.18
where an overdot denotes derivative with respedi.to 3rg "o 2rg
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The referenced QLE is, therefore, obtained to be

2M  a?+Q?
1— \/1——+ 2Q +
o ro

a2

E=r —
0 6r,

M 2
SRS
ro 2rg

2M Q7 2M  a?+Q?
+ 1+——Q—2 \/1——+ ZQ . (3.19
o r§ lo ro
As ro—, we have
M a?+Q? 1
E—roil—|1—|—-— > —M+0|—/,
o 2rg ro
(3.20

which is indeed the Arnowitt-Deser-MisnéADM) mass
[11] of the charged Kerr spacetime.
Near the outer horizony=r , , the energy is

a2
E(ro=ry)=r |1+ —|. (3.21)
2re
In this limit,
11/2 4
E(ro=r )= EA_ =2M;,| 1+0O E (3.22
to leading order ira/r . . Above, we have defined
1 Q?
|\/|§r:§_|\/|r+—7 (3.23

for the charged Kerr black hole, which is the generalization

of the irreducible mass of a neutral Kerr black hple].

IV. THE KERR-SEN SOLUTION

PHYSICAL REVIEW D 60 104027

1 1
= Ay — - _ mor
S 1677J d*x{—deGe R+ 12H,¢er
nv 1 nv
-G"9,P9,0+ gF;wF . 4.1

Here G,, is the metric,R is the scalar curvaturef-,,
=d,A,—3d,A, is the field strength corresponding to the
Maxwell field A,,, @ is the dilaton field, and

Huw=27

B, +cyclic permutations (Q23(A))

M uvr s

whereB,,, is the antisymmetric tensor gauge field. Above
we have defined

1
(Q3(A)) o =£—1(AMF,,r +cyclic permutationg (4.3

which is the gauge Chern-Simons term. It must be noted that
the above theory is one where 6 of the 10 dimensions have
been compactified to a six-torus. The massless fields arising
from compactification have not been included in the effec-
tive action. Only aU(1) component of the full set of non-
Abelian gauge fields present in the theory has been included
above. Consequently, the corresponding solutions carry a
U(1) charge only. The metriG,, used here is the metric
that arises naturally in the--model, and is related to the
Einstein metricg,,, through the relation:

9.,=¢ *G (4.4

pv:
Finally, the action was truncated to contain only those terms
that contain two or less number of derivatives.

Sen showed that the above theory has rotating charged

Consider the following string-inspired low-energy effec- black hole solutions given by the following field configura-

tive action in four dimensions:

(r’+a’cos 6—2mr)(r®+a*cos 0)

tion [5]:

o
4mracosH’-§(r2+ a’cog 6)sir? 6

ds?=

2
o
r’+a?cog 6+ 2mrsinhz§)

r’+a?co< 6

T P T 21 (r2 4 a2 2.
i reel LA U a?cog #)dé

2 2 H
a2 sint® (r’+a®cos #)sir? 0

o
r2+a?co 9+ 2mr sinhz5

d=—In ,
r+a%cod ¢

—dtde

o

r’+a’cos 9+ 2mrsinhz§
o
(r2+a?)(r’+a?cog 6)+2mra?sir? 6+4mr(r?+ az)sinhzi

> 5d¢?, (4.58
( r’+a?cog 6+2mr sinr?§>

(4.5b
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2mrasinha sir? 0
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Ay=-— = (4.50
r+a?co 6+ 2mrsinhz§
2mr sinha
A= po (4.50
r+a?co< 0+ 2mrsinhZ?
o
2mrasin|‘FEsin2 0
Biy= ~. (4.50
r2+a?co< 0+ 2mrsinhZ§
The other components &, andB,,, vanish. The Einstein metridséze‘q’ds2 is given by
o o
2mr cosi— v 4mracoshH—sir? ¢
=—|1= 2, 142 2
ds? 1 v dt?+ Fdri+Ydo N dtde
o 2
r2+a2+ 2mrsinhZ§ —Ta?sirt 9
+ sirféd¢?, (4.6)

Y

where
. o
Y=r2+a’co 6+2mr smr?f,

'=r?+a%—-2mr.

This metric describes a black hole solution with ma&s
chargeQ, angular momentund, and magnetic dipole mo-
mentu given by

m .
M=E(1+cosha), Qzﬁsmha,
4.7
J ma(1+ ha) ! inh
=— cosha), =-—masinha.
2 N

which correspond to the outer and inner horizons, respec-
tively. The area of the outer event horizon with the metric
given in Eq.(4.6) is found to be

)2 JZ

N - I

Equation(4.9) shows that the horizon disappears unless

QZ
- 2M

2
M-t

A=87mM oM

M

2

|J|sM2—7. (4.12

Thus the extremal limit of the black hole corresponds to
|J] =M —Q?%2M. In this limit, A—8|J|. (We note that
rotating black hole solutions in a related theory of dilaton
gravity were also found in Ref8].)

This is often called the Kerr-Sen black hole solution. The

location of the horizon is given by the coordinate singulari-
ties, which occur on the surfaces

r’—2mr+a?=0. (4.9
This has the following two roots:
Q2 \/ Q2 2 JZ
= —+ 2_ = _ — + R _—=
r=mxym-—a=M oM = M oM Ve
(4.9

A. Unreferenced QLE for Kerr-Sen black hole

Consider a constant stationary-time hypersurfacem-
bedded in the Kerr-Sen spacetime with the me{ddba.
Define the two-surfac® to be the surface with some con-
stant value for the Boyer-Lindquist radial coordinater g,
embedded irx.. The line element on this surface in the slow-
rotation approximation, i.ea<<ry, is:

a’co 0
i

dsz=l’SK 1+

p; }d02+ 2°d¢?, (4.12
0
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where higher have been neglected.
2 ma2 N We now calculate the unreferenced QLE within the two-
z=roVksing] 1+ —5—+ ——cosif—sir? 0, surfaceB, defined byr =r,. We assume thaty=r , , where
2rok - ToK 2 r . represents the outer horizon of the Kerr-Sen black hole.

(4.13 Using Eq.(A6) of the Appendix, the integrad for the sur-
and k= 1+ (2m/rg)sint? o/2. Terms of ordeO(a’/rg) and  facer=r, can be written explicitly as

ok’ 2m a2 m a m2a? @ @ a*
A il f désing| 1- —; (co§ 0+ — costf—-| + —,—— sink?-- cost—-sir* 6+ O —4) :
o 2rgx Fok 2] 2rg?k’ 2 2 o
(4.19
wherex’ =1+ (m/ry)sint? o/2. On performing the above integration we get
rok’ 2m a2 a2 2m? @ at
g=— —— ——+—|1-——| 1+ —cosit5 — sinfP— cosR— | + 0 = (4.15
\/; rO ro 6r0K rOK 2 roKK’ 2 2 0

which is the unreferenced QLE for Kerr-Sen black hole. ing the line-element(3.11) to be isometric to Eq(4.12

In the limit «— 0, the expressiof4.15 gives yields the following first-order ordinary differential equation:
] , . rovk . a%cog 6 419
2m a a 2m a : = .
e=—To\/1- —+ 11— —| 1+ —+0| = || |. sin® — z 2rix
L 6r0 lo o

(4.16  This equation is easily solved to give:

This is the unreferenced QLE of the neutral Kerr black hole

2
[10]. It also has the expected limit wher-0, in which case sin®=singl 1+ 52 1+ i_rmcosﬁg) co 9}_
Klo 0
rok’ 2m a2 (4.20
e=——=\/1-—+—, (4.17
Vi o g As in the case of the charged Kerr black hole, the above

expression can be used to find
which is the unreferenced QLE of the static, charged dila-

tonic black holeg4]. a2 ma2 o

As r,—, we haves—M —r, which is again divergent. 9(0)=kro| 1+ =—si’ ® — —— cosif—cog @}.
Below, we compute the reference term required to renormal- 2K kro 2
ize this QLE. (42D

The two-surfaceR=g(®) once again describes an oblate

spheroid.
To obtain the reference term in the QLE expression, Eq.

(2.1, we first find a 2D surface isometric to E®.12),

which is embeddable in a flat 3D slice with the line element

B. Two-surface isometric toB embedded in flat space

C. The referenced QLE

In the slow-rotation approximation, Eq4.21) implies
ds®=dR?+R2dO?+ R?sir? O dd2. (4.18 that the intrinsic metric oiB, as embedded in flat space, is

2 2
ma @
2t Sir ® — —— costf—cog 0
K2rg 2

The equation for the desired 2D surface in the flat slice is A2~ Jxro 1

denoted byR=g(®), whereg is a function of the azimuthal 0

angle® and the parameterd,a,r) of the surface ir¥. Its

intrinsic metric is obtained from Eq4.18. We assume that X(d®2+ Sin* © dd?). (4.22

®=0(0) and® = ¢. Then, on the two-surfacR is a func-

tion of 6, i.e., R=R(0), say. Hence, the line-element on it is The extrinsic curvaturé, of this surface embedded in flat

given by Eq.(3.11). space can be evaluated using the method detailed in the Ap-
Similar to the case of the charged Kerr black hole dis-pendix. This in turn can be used to compute the renormal-

cussed in Sec. Il B, even for the Kerr-Sen spacetime, requirization integral in the QLE2.1):

104027-6



QUASILOCAL ENERGY FOR ROTATING CHARGED.. ..

PHYSICAL REVIEW [B0 104027

o
1 a2 mcosﬁE
a°=—f2 Kod®dd = —roVk| 1+ —> | 1+ (4.23
KJ2g 3kl )
The referenced QLE is, therefore, obtained to be
HC(
ro 2m a2 2 meosis 2m a? 2m a
E=—|k—k'\[1-—+ 5|+ 2| 1+ +x'\[1- —+—| 1+ —cost-
K fo  r5] 6rox®? KIg Mo rg Mok 2
2m? @ @ a*
- sinkf—=cosif—| +0O — (4.24

As ro—0o, we have

)
E——
K

) m Ha
K—K (1_6 —mcos X (4.25

which is indeed the ADM masgt.7) of the Kerr-Sen solu-

tion.

larly, for vanishing rotation, i.e., faa=0, Eq.(4.24 reduces
to

)

2m
k—k'\[/1-—
K I’O

E=— , (4.26

The QLE(4.249 has the correct limit for vanishing charge, which is the QLE for charged black holes in string theory
namely, forae=0. In that case, one obtains the expression i 3].
Eqg. (3.19, which is the QLE for the Kerr black hole. Simi-

Near the outer horizony=r , , the energy is

t%0[
E(ro= = 1+ o 1+ = 2 +0 ! 4.2
(ro=ry)=ry 32 P E : (4.27)
o
=2 1 —za 1 ! 1 COSHE +0 ! 4.2
—em 4m 3k 2K E (4.28

In the limit of vanishing charge, which is given lay=0, the
above quantity goes over to

a.2

to leading order ira/r, . Whether such a relation continues
to hold even after the slow-rotation approximation is
dropped, is not known. For the Kerr-Sen black hole, how-
ever,

a
E(ro=ry)=r, 1+F+O | (4.29
T rs 1 |2 o a2 4
—A|l = +—+0| — .
LWA} ricoshy |1 2 o} el (4.32
=2m| 1 —a2 (@] o 4.3
—em T gm ra 430 \hich is not the same &B(ro=r.) given in Eq.(4.27) for

which are the expected values for the Kerr black Hdle].
Note that in this latter case,

1 1/2
EA} (4.3))

E(ro=r.)=

such a black hole.

V. DISCUSSION

The Brown-York quasilocal energy of a Kerr black hole,
for the type of slice®, and quasilocal surfad® considered in
this paper, has not been evaluated yet for the exact(case
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beyond the slow-rotation approximatiorOne of the main hijdx‘dxj=x2dr2+y2d132+zz de?, (A1)
hurdles in this computation is the determination of the two-

surfaceR=1(®), isometric (0B, to be embedded in a flat wherei = (r,9,¢), X' denote arbitrary coordinates adapted to
three-slice. It is nevertheless interesting to explore the slow; —\LYe), y P

rotation regime of such black holes in general relativity andthe symmetry. The metric coefficienisy, andz depend only

alternative theories of gravity, for the results obtained can’" the “radial” and "azimuthal” coordinates and 9, re-

often tell us about the behavior of certain physical quantitie pe(t:t|ve:y. An fartlltrary iD aX|sy:jnmeg|cd3u(r]|fa}Be3hSV|ng
in the exact case. One such quantity is the value of QLE al ed (f)_po((j)%y (:ha V‘IIO,['.Sp _e;{e,ﬁan Em E. € f'n " s;ia;ce
the (outen horizon of such black holes, which for the Kerr Is defined by the relation=R(%), whereR s a function o

black hole approaches twice its irreducible mass. In this pat-he azimuthal angle and the parameters of the solution. Its

per, we find that this result continues to hold even for thetwo-dlmensmnal line element is
charged Kerr black hole. Thus, within general relativity, this
identity appears to bear a universal quality as far as its ap-
plicability to stationary black hole solutions is concerned. 0 pdX2dX°= (X°R'2+y?)d 9%+ 2% d 2, (A2)

It is known that the mechanical laws of stationary black
hole solutions in general relativity are extendible also t0pere 4 prime denotes differentiation with respect to the co-
other alternative theories of gravity, especially ones CONydinated. The functionsx y, andz in Eq. (A2) are evalu-
nected with a diffeomorphism invariant Lagrangian. One o ¢

) . oI ~~ated at the two-surface=R(9).
_such leading _alterngtwe to general relatl\{lty IS @ string- ) ot ni denote the unit outward-pointing spacelike normal
inspired four-dimensional low-energy effective theory. It is

; ; . o to B as embedded ib.. Its components are
of interest to ask if other identities related to black hole me- B P

chanics in general relativity continue to hold for black holes

in string theory. This motivated us to study the status of FoO e 1 ,
Martinez's conjecture in the context of the Kerr-Sen family (n',n%,n)= \/ﬁ(ylx ~XRy,0. (A3)
of black holes, which arise as solutions in heterotic string y* xR

theory. We first find the QLE of such black holes for a

choice of three-slic& quasilocal surfac® identical to the  The extrinsic curvature of the two-surfaBeas embedded in
ones used to evaluate the QLE of charged Kerr black holes is denoted by, , . Its tracek can be written as

This expression is found to have the correct limits when the

radial coordinate is made to diverge, or when the charge is g (nﬂ\/ﬁ)
made to vanish. However, at the outer horizon, the QLE for K=—t 7 (Ad)
such black holes does not reduce to twice its irreducible \/ﬁ ’

mass. It is important to note that the value of the QLE is

influenced by the choice of a reference term. In fact, at the

outer horizon it is solely this reference term that contributegVere N denotes the determinant of the three-metrjg, .
to the QLE. It may, therefore, be possible to motivate an2Sind the coordinate-components of the unit nortAd) we

alternative reference term that is concomitant with the applifind that the trace is

cability of Martinez’s conjecture even for such black holes.

We hope to return to this issue elsewhere. (A5)

r=R(9)

1
k=——I[(ay ¥, —(By ' ]

Xyz
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APPENDIX + §5,ﬁ> (AB)

Here we show how to compute the trace of the extrinsic r=R(d)

curvaturek, corresponding to a closed two-surfd&embed-

ded in a 3D axisymmetric Riemannian manifold. The resultThis integral is evaluated at the surface R(). Finally
can then be used in E(R.1) to evaluate the energy integrals note that both integrals in Eq2.1) are of the general form
appearing in several places in this paper. An analogous calA6). It is, however, important to note that each one of these

culation is given in Refl10]. It is discussed here for the sake integrals involves different values for the functionsy, and

of completeness only. z Also, the coordinates on the two-surfadeand ¢, which
Consider a 3D axisymmetric spacelike hypersurfaate-  appear in these two integrals, may not always have identical
scribed by the line element definitions.
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