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Quasilocal energy for rotating charged black hole solutions in general relativity
and string theory
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We explore the~non-!universality of Martinez’s conjecture, originally proposed for Kerr black holes, within
and beyond general relativity. The conjecture states that the Brown-York quasilocal energy at the outer horizon
of such a black hole reduces to twice its irreducible mass, or equivalently, toAA/2Ap, whereA is its area. We
first consider the charged Kerr black hole. For such a spacetime, we calculate the quasilocal energy within a
two-surface of constant Boyer-Lindquist radius embedded in a constant stationary-time slice. Keeping with
Martinez’s conjecture, at the outer horizon this energy equalsAA/2Ap. The energy is positive and monotoni-
cally decreases to the ADM mass as the boundary-surface radius diverges. Next we perform an analogous
calculation for the quasilocal energy for the Kerr-Sen spacetime, which corresponds to four-dimensional
rotating charged black hole solutions in heterotic string theory. The behavior of this energy as a function of the
boundary-surface radius is similar to the charged Kerr case. However, we show that it does not approach the
expression conjectured by Martinez at the horizon.@S0556-2821~99!06018-X#

PACS number~s!: 04.20.Cv, 05.30.Ch, 97.60.Lf
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I. INTRODUCTION

A geometric theory of gravity, such as general relativi
is known to lack a meaningful notion of local energy dens
@1–3#. This is essentially due to the absence of an unamb
ous prescription for decomposing the spacetime metric
‘‘background’’ and ‘‘dynamical’’ components. The low
energy effective field theory for heterotic string theory is
exception. Such theories, however, admit several alterna
prescriptions for computing quasilocal energies~see Refs.
@3,4# and the references therein!. In Ref. @3#, Brown and
York ~BY! introduced a way to define the quasilocal ener
~QLE! of a spatially bounded system in general relativity
terms of the total mean curvature of the boundary. In t
paper, we first apply this definition to the case of a charg
Kerr family of black hole spacetimes, which represent rot
ing, charged black hole solutions in general relativity. Ne
we apply it to study the behavior of quasilocal energy of
Kerr-Sen family, which represents rotating, charged bla
hole solutions in heterotic string theory@5#. Since the static,
charged~or neutral! solution is a special case of this family
the QLE of such a solution is obtained in the limit of va
ishing angular momentum~or charge!. We perform these cal
culations in the regime of the slow-rotation approximatio
where the expressions for the QLE are obtainable in clo
form.

The motivation for the analysis in this paper is as follow
It is of interest to explore the form of the classical laws
black hole mechanics and the ensuing picture of black h
thermodynamics in alternative theories of gravity such t
they can be compared with the corresponding scenario
general relativity. But the study of the thermodynamical la
entails the knowledge of the energy and entropy associ
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with these spacetimes. Moreover, equilibrium thermodyna
ics of a black hole~specifically, in the case of an asymptot
cally flat solution!, requires that it be put in a finite-size
‘‘box,’’ just as one does in general relativity@7#. Thus, such
a study requires the knowledge of the quasilocal energy
these ‘‘finite-sized’’ systems. Moreover, in a study of th
quasilocal energy corresponding to different types of tw
boundaries embedded in constant stationary-time slice of
Kerr spacetime~in the slow-rotation approximation!, Mar-
tinez has conjectured that the QLE approaches twice the
reducible mass of such a black hole. In this paper, we st
the ~non-!universality of this conjecture. We find that it re
mains valid for the charged Kerr black hole. In the case
the Kerr-Sen black hole, however, we show that the Q
evaluated on a two-surface of constant Boyer-Lindquist
dius embedded in a constant stationary-time slice does
approach the expression conjectured by Martinez at the
rizon.

We introduce the BY quasilocal energy in Sec. II. We u
this definition in Sec. III to find the QLE of the charged Ke
black hole. Similarly, in Sec. IV we evaluate the QLE of th
Kerr-Sen black hole. We present our observations on
results of these sections and discuss the status of Martin
conjecture for these two cases in Sec. V. Finally, in the A
pendix we derive the integral expression for the QLE as
ciated with a certain class of quasilocal two-surfaces emb
ded in an axisymmetric spatial three-slice. This expressio
extensively used in this paper for the QLE computations
different spacetimes mentioned above. We follow the c
ventions of Ref.@1# and employ geometrized unitsG51
5c.

II. BROWN-YORK QUASILOCAL ENERGY

The BY derivation of the quasilocal energy, as applied
a four-dimensional~4D! spacetime solution of Einstein grav
ity can be summarized as follows. The system one consid
is a 3D spatial hypersurfaceS bounded by a 2D spatial sur
©1999 The American Physical Society27-1
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face B in a spacetime region that can be decomposed
product of a 3D hypersurface and a real line-interval rep
senting time. The time-evolution of the boundaryB is the
surface 3B. One can then obtain a surface stress-tensor
3B by taking the functional derivative of the action wit
respect to the 3D metric on3B. The energy surface density
the projection of the surface stress-tensor normal to a fam
of spacelike surfaces such asB that foliate 3B. The integral
of the energy surface density over such a boundaryB is the
quasilocal energy associated with a spacelike hypersurfaS
whoseorthogonal intersection with3B is the boundaryB.
Here we assume that there are no inner boundaries, such
the spatial hypersurfacesS are complete. In the case whe
horizons form, one simply evolves the spacetime inside
well as outside the horizon. Under these conditions, the Q
is defined as:

E5
1

8p R
B
d2xAs~k2k0!, ~2.1!

where s is the determinant of the 2-metric onB, k is the
trace of the extrinsic curvature ofB, and k0 is a reference
term that is used to normalize the energy with respect t
reference spacetime, not necessarily flat. To compute
QLE for asymptotically flat solutions, we will choose th
reference spacetime to be flat as well. In that case,k0 is the
trace of the extrinsic curvature of a two-dimensional surfa
embedded in flat spacetime, such that it is isometric toB.

Interestingly, the foregoing analysis can be applied in
straightforward way to compute QLE of spatial sections
solutions of scalar-tensor theories as well. This is beca
for spacetime dimensions higher than two, a scalar-ten
theory can be cast in the ‘‘Einstein-Hilbert’’ form by pe
forming a conformal transformation. The solutions of th
conformally related action are given by the Einstein-fra
metrics, which themselves are related to solutions of
scalar-tensor theory by a conformal transformation. It w
shown in Ref.@4# that the quasilocal mass~QLM!, which is
a construct related to QLE, is invariant under such a tra
formation. When there is a timelike Killing vector fieldjm

on the boundary3B, such that it is also hypersurface form
ing, one can define an associated conserved QLM for
bounded system@6,3#:

M5E
B
d(D21)xAsN«, ~2.2!
10402
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where N is the lapse function related tojm by jm5Num.
Further, ifj•u521, thenN51 and consequently the QLM
is the same as the QLE. Unlike QLE, the quasilocal mas
independent of any foliation of the bounded system. Mo
over, owing to its conformal invariance, a frame of conv
nience can be chosen for the computation of QLM witho
affecting its value. The QLE, in general, is not a conform
invariant. Thus, the frame in which it is evaluated needs
be clearly specified. In this paper, all computations of
QLE will be carried out in the Einstein frame. This is th
frame in which Sen analyzed the properties of his rotat
charged black hole solution.

III. QLE FOR CHARGED KERR BLACK HOLES

The charged Kerr solution in general relativity represe
the spacetime of a rotating, charged black hole. Its space
metric and electromagnetic vector potential are given by@9#

ds252S D2a2 sin2

S Ddt22
2a sin2 u~r 21a22D!

S
dtdf

1F ~r 21a2!22Da2 sin2 u

S Gsin2 udf2

1
S

D
dr21Sdu2, ~3.1!

Aa52
Qr

S
@~dt!a2a sin2 u~df!a#, ~3.2!

where

S5r 21a2 cos2u, ~3.3!

D5r 21a21Q222Mr . ~3.4!

The above fields define a black hole solution with massM,
chargeQ, and specific angular momentuma.

A. Unreferenced QLE for charged Kerr black holes

Consider a constant stationary-time hypersurfaceS em-
bedded in the charged Kerr spacetime with the metric~3.1!.
Define the two-surfaceB to be a surface with some consta
value for the Boyer-Lindquist radial coordinate,r 5r 0, em-
bedded inS. The line-element on this surface in the slow
rotation approximation, i.e.,a!r 0, is:
ds2'r 0
2S 11

a2

r 0
2 cos2 u Ddu21r 0

2H 11
a2

r 0
2 F11S 2M

r 0
2

Q2

r 0
2 D sin2 uG J sin2 u df2. ~3.5!

Terms of orderO(a4/r 0
4) and higher have been neglected.

We now calculate the unreferenced QLE within the two-surfaceB, defined byr 5r 0. We assume thatr 0>r 1 , wherer 1

represents the outer horizon of the charged Kerr black hole. Using Eq.~A6! of the Appendix, the unreferenced QLE« for the
surfacer 5r 0 can be written explicitly as
7-2



QUASILOCAL ENERGY FOR ROTATING CHARGED . . . PHYSICAL REVIEW D60 104027
«52
r 0

2
A12

2M

r 0
1

a21Q2

r 0
2 E

0

p

du sinuH 12
a2

2r 0
2 Fcos2 u1S M

r 0
2

Q2

r 0
2 D sin2 uG1OS a4

r 0
4 D J , ~3.6!
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where we have retained only terms of leading order in
parametera/r 0. The above integration can be performed in
straightforward way to yield

«52r 0A12
2M

r 0
1

a21Q2

r 0
2

3F12
a2

6r 0
2 S 11

2M

r 0
2

Q2

r 0
2 D 1OS a4

r 0
4 D G . ~3.7!

Note that in the limitQ→0, the above expression simplifie
to

«52r 0A12
2M

r 0
1

a2

r 0
2 F12

a2

6r 0
2 S 11

2M

r 0
D1OS a4

r 0
4 D G ,

~3.8!

which is the unreferenced QLE of the neutral Kerr black h
@10#. It also has the expected limit whena→0, in which case
Eq. ~3.7! gives

«52r 0A12
2M

r 0
1

Q2

r 0
2 , ~3.9!

which is the unreferenced QLE of the Reissner-Nordstr
black holes@3#.

Note that no approximations have been made inside
square-root appearing in«. As r 0→`, we have«→M2r 0,
which is divergent. This prompts the need for a subtract
term to renormalize the unreferenced QLE. Below, we co
pute such a reference term.

B. Reference term

To obtain the reference term in the QLE expression,
~2.1!, we first find a 2D surface isometric to Eq.~3.5!, which
is embeddable in a flat 3D slice with the line element

ds25dR21R2dQ21R2 sin2 Q dF2, ~3.10!

whereR, Q, F are the spherical polar coordinates. Let t
desired 2D surface in the flat slice be characterized byR
5 f (Q), wheref is a function of the azimuthal angleQ and
the parameters (M ,a,r 0). Its intrinsic metric is obtained
from Eq. ~3.10! as follows. We assume thatQ5Q(u) and
F5f. Then, on the two-surfaceB, we find thatR is a
function ofu, i.e.,R5R(u), say. Hence, the line-element o
B is

ds25@Ṙ21R2Q̇2#du21R2 sin2 Qdf2, ~3.11!

where an overdot denotes derivative with respect tou.
10402
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Requiring the above line-element to be isometric to E
~3.5! implies that the following couple of equations b
obeyed:

Ṙ21R2Q̇25r 0
2F11

a2

r 0
2

cos2 QG , ~3.12!

and

R2 sin2 Q5r 0
2 sin2 uF11

a2

r 0
2 S 11

2M

r 0
sin2 u2

Q2

r 0
2

sin2 u D G .

~3.13!

Assuming thatṘ2.O(a4/r 0
4) ~this condition will be justified

a posteriori!, the above equations can be combined to yi
the following first-order ordinary differential equation:

dQ

sinQ
5

du

sinu F12
a2

2r 0
2
sin2 uS 11

2M

r 0
2

Q2

r 0
2 D G ,

~3.14!

which is easily solved to give:

sinQ5sinuF11
a2

2r 0
2 S 11

2M

r 0
2

Q2

r 0
2 D cos2 uG . ~3.15!

Putting this back in Eq.~3.13!, we findR(u). In the resulting
expression, using Eq.~3.15! to substitute foru in terms ofQ,
we finally get

f ~Q!5r 0F11
a2

2r 0
2 sin2 Q2

a2

2r 0
2 S 2M

r 0
2

Q2

r 0
2 D cos2 QG .

~3.16!

The two-surfaceR5 f (Q) then describes an oblate sphero
which bulges out near the equator~i.e., nearQ5p/2). Note
that the above equations can be used to prove that ind
Ṙ2.O(a4/r 0

4).

C. Referenced QLE for charged Kerr black hole

In the slow-rotation approximation the intrinsic metric o
B, as embedded in flat space, is

ds2'r 0
2F11

a2

r 0
2sin2 Q2

a2

r 0
2 S 2M

r 0
2

Q2

r 0
2 D cos2 QG

3~dQ21sin2 Q dF2!. ~3.17!

The extrinsic curvaturek0 of this surface embedded in fla
space can be evaluated using the method detailed in the
pendix. This in turn can be used to compute the renorm
ization integral in the QLE~2.1!:

«052r 0F11
a2

3r 0
2 S 11

M

r 0
2

Q2

2r 0
2D G . ~3.18!
7-3
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The referenced QLE is, therefore, obtained to be

E5r 0F12A12
2M

r 0
1

a21Q2

r 0
2 G1

a2

6r 0
F2S 11

M

r 0
2

Q2

2r 0
2D

1S 11
2M

r 0
2

Q2

r 0
2 DA12

2M

r 0
1

a21Q2

r 0
2 G . ~3.19!

As r 0→`, we have

E→r 0H 12F12S M

r 0
2

a21Q2

2r 0
2 D G J →M1OS 1

r 0
D ,

~3.20!

which is indeed the Arnowitt-Deser-Misner~ADM ! mass
@11# of the charged Kerr spacetime.

Near the outer horizonr 05r 1 , the energy is

E~r 05r 1!5r 1F11
a2

2r 1
2 G . ~3.21!

In this limit,

E~r 05r 1!.F 1

4p
AG1/2

52M irrF11OS a4

r 1
4 D G ~3.22!

to leading order ina/r 1 . Above, we have defined

M irr
2 5

1

2 FMr 12
Q2

2 G ~3.23!

for the charged Kerr black hole, which is the generalizat
of the irreducible mass of a neutral Kerr black hole@12#.

IV. THE KERR-SEN SOLUTION

Consider the following string-inspired low-energy effe
tive action in four dimensions:
10402
n

S52
1

16pE d4xA2detGe2FS 2R1
1

12
HmnrH

mnr

2Gmn]mF]nF1
1

8
FmnFmnD . ~4.1!

Here Gmn is the metric, R is the scalar curvature,Fmn

5]mAn2]nAm is the field strength corresponding to th
Maxwell field Am , F is the dilaton field, and

Hmnr5]mBnr1cyclic permutations2„V3~A!…mnr ,
~4.2!

where Bmn is the antisymmetric tensor gauge field. Abo
we have defined

„V3~A!…mnr5
1

4
~AmFnr1cyclic permutations!, ~4.3!

which is the gauge Chern-Simons term. It must be noted
the above theory is one where 6 of the 10 dimensions h
been compactified to a six-torus. The massless fields ari
from compactification have not been included in the effe
tive action. Only aU(1) component of the full set of non
Abelian gauge fields present in the theory has been inclu
above. Consequently, the corresponding solutions carr
U(1) charge only. The metricGmn used here is the metric
that arises naturally in thes-model, and is related to the
Einstein metricgmn through the relation:

gmn5e2FGmn . ~4.4!

Finally, the action was truncated to contain only those ter
that contain two or less number of derivatives.

Sen showed that the above theory has rotating char
black hole solutions given by the following field configur
tion @5#:
ds252
~r 21a2 cos2 u22mr!~r 21a2 cos2 u!

S r 21a2 cos2 u12mr sinh2
a

2 D 2 dt22

4mra cosh2
a

2
~r 21a2 cos2 u!sin2 u

S r 21a2 cos2 u12mr sinh2
a

2 D 2 dtdf

1
r 21a2 cos2 u

r 21a222mr
dr21~r 21a2 cos2 u!du21H ~r 21a2!~r 21a2 cos2 u!12mra2 sin2 u14mr~r 21a2!sinh2

a

2

14m2r 2 sinh4
a

2 J ~r 21a2 cos2 u!sin2 u

S r 21a2 cos2 u12mr sinh2
a

2 D 2 df2, ~4.5a!

F52 ln

r 21a2 cos2 u12mr sinh2
a

2

r 21a2 cos2 u
, ~4.5b!
7-4
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Af52
2mra sinha sin2 u

r 21a2 cos2 u12mr sinh2
a

2

, ~4.5c!

At5
2mr sinha

r 21a2 cos2 u12mr sinh2
a

2

, ~4.5d!

Btf5

2mra sinh2
a

2
sin2 u

r 21a2 cos2 u12mr sinh2
a

2

. ~4.5e!

The other components ofAm andBmn vanish. The Einstein metricdsE
2[e2Fds2 is given by

dsE
252S 12

2mr cosh2
a

2

Y
D dt21

Y

G
dr21Ydu22

4mra cosh2
a

2
sin2 u

Y
dtdf

1F S r 21a212mr sinh2
a

2 D 2

2Ga2 sin2 u

Y
G sin2udf2, ~4.6!
-

he
ri
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to
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-

-

where

Y5r 21a2 cos2 u12mr sinh2
a

2
,

G5r 21a222mr.

This metric describes a black hole solution with massM,
chargeQ, angular momentumJ, and magnetic dipole mo
mentm given by

M5
m

2
~11cosha!, Q5

m

A2
sinha,

~4.7!

J5
ma

2
~11cosha!, m5

1

A2
masinha.

This is often called the Kerr-Sen black hole solution. T
location of the horizon is given by the coordinate singula
ties, which occur on the surfaces

r 222mr1a250. ~4.8!

This has the following two roots:

r 5m6Am22a25M2
Q2

2M
6AS M2

Q2

2M D 2

2
J2

M2[r 6 ,

~4.9!
10402
-

which correspond to the outer and inner horizons, resp
tively. The area of the outer event horizon with the met
given in Eq.~4.6! is found to be

A58pM FM2
Q2

2M
1AS M2

Q2

2M D 2

2
J2

M2G . ~4.10!

Equation~4.9! shows that the horizon disappears unless

uJu<M22
Q2

2
. ~4.11!

Thus the extremal limit of the black hole corresponds
uJu→M2Q2/2M . In this limit, A→8puJu. ~We note that
rotating black hole solutions in a related theory of dilat
gravity were also found in Ref.@8#.!

A. Unreferenced QLE for Kerr-Sen black hole

Consider a constant stationary-time hypersurfaceS em-
bedded in the Kerr-Sen spacetime with the metric~4.5a!.
Define the two-surfaceB to be the surface with some con
stant value for the Boyer-Lindquist radial coordinater 5r 0,
embedded inS. The line element on this surface in the slow
rotation approximation, i.e.,a!r 0, is:

ds25r 0
2kF11

a2 cos2 u

r 0
2k Gdu21z2df2, ~4.12!
7-5
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where

z5r 0Ak sinuH 11
a2

2r 0
2k

1
ma2

r 0
3k2 cosh2

a

2
sin2 uJ ,

~4.13!

andk511(2m/r 0)sinh2 a/2. Terms of orderO(a4/r 0
4) and
ol

ila

.
a

Eq

n

i
l

t

is

is
u
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higher have been neglected.
We now calculate the unreferenced QLE within the tw

surfaceB, defined byr 5r 0. We assume thatr 0>r 1 , where
r 1 represents the outer horizon of the Kerr-Sen black ho
Using Eq.~A6! of the Appendix, the integral« for the sur-
face r 5r 0 can be written explicitly as
«52
r 0k8

2k A12
2m

r 0
1

a2

r 0
2E0

p

du sinuF12
a2

2r 0
2k

S cos2 u1
m

r 0k
cosh2

a

2 D1
m2a2

2r 0
4k2k8

sinh2
a

2
cosh2

a

2
sin2 u1OS a4

r 0
4 D G ,

~4.14!

wherek8511(m/r 0)sinh2 a/2. On performing the above integration we get

«52
r 0k8

Ak
A12

2m

r 0
1

a2

r 0
2 F12

a2

6r 0
2k

S 11
2m

r 0k
cosh2

a

2
2

2m2

r 0
2kk8

sinh2
a

2
cosh2

a

2 D 1OS a4

r 0
4 D G , ~4.15!
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which is the unreferenced QLE for Kerr-Sen black hole.
In the limit a→0, the expression~4.15! gives

«52r 0A12
2m

r 0
1

a2

r 0
2H 12

a2

6r 0
2 F11

2m

r 0
1OS a4

r 0
4 D G J .

~4.16!

This is the unreferenced QLE of the neutral Kerr black h
@10#. It also has the expected limit whena→0, in which case

«52
r 0k8

Ak
A12

2m

r 0
1

a2

r 0
2
, ~4.17!

which is the unreferenced QLE of the static, charged d
tonic black holes@4#.

As r 0→`, we have«→M2r 0, which is again divergent
Below, we compute the reference term required to renorm
ize this QLE.

B. Two-surface isometric toB embedded in flat space

To obtain the reference term in the QLE expression,
~2.1!, we first find a 2D surface isometric to Eq.~4.12!,
which is embeddable in a flat 3D slice with the line eleme

ds25dR21R2dQ21R2 sin2 Q dF2. ~4.18!

The equation for the desired 2D surface in the flat slice
denoted byR5g(Q), whereg is a function of the azimutha
angleQ and the parameters (M ,a,r 0) of the surface inS. Its
intrinsic metric is obtained from Eq.~4.18!. We assume tha
Q5Q(u) andF5f. Then, on the two-surfaceR is a func-
tion of u, i.e.,R5R(u), say. Hence, the line-element on it
given by Eq.~3.11!.

Similar to the case of the charged Kerr black hole d
cussed in Sec. III B, even for the Kerr-Sen spacetime, req
e

-

l-

.

t

s

-
ir-

ing the line-element~3.11! to be isometric to Eq.~4.12!
yields the following first-order ordinary differential equatio

Q̇

sinQ
5

r 0Ak

z F11
a2 cos2 u

2r 0
2k G . ~4.19!

This equation is easily solved to give:

sinQ5sinuF11
a2

2kr 0
2 S 11

2m

kr 0
cosh2

a

2 D cos2 uG .
~4.20!

As in the case of the charged Kerr black hole, the abo
expression can be used to find

g~Q!5Akr 0F11
a2

2kr 0
2 sin2 Q2

ma2

k2r 0
3 cosh2

a

2
cos2 QG .

~4.21!

The two-surfaceR5g(Q) once again describes an obla
spheroid.

C. The referenced QLE

In the slow-rotation approximation, Eq.~4.21! implies
that the intrinsic metric onB, as embedded in flat space, i

ds2'Akr 0F11
a2

2kr 0
2 sin2 Q2

ma2

k2r 0
3 cosh2

a

2
cos2 QG

3~dQ21sin2 Q dF2!. ~4.22!

The extrinsic curvaturek0 of this surface embedded in fla
space can be evaluated using the method detailed in the
pendix. This in turn can be used to compute the renorm
ization integral in the QLE~2.1!:
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«05
kE2B

k0AsdQdF52r 0AkF 11
3kr 0

2
S 11

kr 0

D G . ~4.23!

The referenced QLE is, therefore, obtained to be

E5
r 0

k Fk2k8A12
2m

r 0
1

a2

r 0
2G1

a2

6r 0k3/2
F 2kS 11

m cosh2
a

2

kr 0

D 1k8A12
2m

r 0
1

a2

r 0
2S 11

2m

r 0k
cosh2

a

2

2
2m2

r 0
2kk8

sinh2
a

2
cosh2

a

2 D 1OS a4

r 0
4 D G . ~4.24!
e,
i

i-

ry
As r 0→`, we have

E→ r 0

k Fk2k8S 12
m

r 0
D G→m cosh2

a

2
, ~4.25!

which is indeed the ADM mass~4.7! of the Kerr-Sen solu-
tion.

The QLE~4.24! has the correct limit for vanishing charg
namely, fora50. In that case, one obtains the expression
Eq. ~3.19!, which is the QLE for the Kerr black hole. Sim
10402
n

larly, for vanishing rotation, i.e., fora50, Eq.~4.24! reduces
to

E5
r 0

k Fk2k8A12
2m

r 0
G , ~4.26!

which is the QLE for charged black holes in string theo
@3#.

Near the outer horizonr 05r 1 , the energy is
E~r 05r 1!5r 1
F 11

a2

3kr 1
2
S 11

cosh2
a

2

2k
D 1OS a4

r 1
4 D G , ~4.27!

52mH 12
a2

4m2
F 12

1

3k
S 11

cosh2
a

2

2k
D G1OS a4

r 1
4 D J . ~4.28!
s
is
w-

e,
In the limit of vanishing charge, which is given bya50, the
above quantity goes over to

E~r 05r 1!5r 1F11
a2

2r 1
2 1OS a4

r 0
4 D G , ~4.29!

52mF12
a2

8m2 1OS a4

r 0
4 D G . ~4.30!

which are the expected values for the Kerr black hole@10#.
Note that in this latter case,

E~r 05r 1!.F 1

4p
AG1/2

~4.31!
to leading order ina/r 1 . Whether such a relation continue
to hold even after the slow-rotation approximation
dropped, is not known. For the Kerr-Sen black hole, ho
ever,

F 1

4p
AG1/2

5r 1cosh
a

2 F11
a2

2r 1
2 1OS a4

r 1
4 D G , ~4.32!

which is not the same asE(r 05r 1) given in Eq.~4.27! for
such a black hole.

V. DISCUSSION

The Brown-York quasilocal energy of a Kerr black hol
for the type of sliceS and quasilocal surfaceB considered in
this paper, has not been evaluated yet for the exact case~i.e.,
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beyond the slow-rotation approximation!. One of the main
hurdles in this computation is the determination of the tw
surfaceR5 f (Q), isometric toB, to be embedded in a fla
three-slice. It is nevertheless interesting to explore the sl
rotation regime of such black holes in general relativity a
alternative theories of gravity, for the results obtained c
often tell us about the behavior of certain physical quanti
in the exact case. One such quantity is the value of QLE
the ~outer! horizon of such black holes, which for the Ke
black hole approaches twice its irreducible mass. In this
per, we find that this result continues to hold even for
charged Kerr black hole. Thus, within general relativity, th
identity appears to bear a universal quality as far as its
plicability to stationary black hole solutions is concerned

It is known that the mechanical laws of stationary bla
hole solutions in general relativity are extendible also
other alternative theories of gravity, especially ones c
nected with a diffeomorphism invariant Lagrangian. O
such leading alternative to general relativity is a strin
inspired four-dimensional low-energy effective theory. It
of interest to ask if other identities related to black hole m
chanics in general relativity continue to hold for black ho
in string theory. This motivated us to study the status
Martinez’s conjecture in the context of the Kerr-Sen fam
of black holes, which arise as solutions in heterotic str
theory. We first find the QLE of such black holes for
choice of three-sliceS quasilocal surfaceB identical to the
ones used to evaluate the QLE of charged Kerr black ho
This expression is found to have the correct limits when
radial coordinate is made to diverge, or when the charg
made to vanish. However, at the outer horizon, the QLE
such black holes does not reduce to twice its irreduc
mass. It is important to note that the value of the QLE
influenced by the choice of a reference term. In fact, at
outer horizon it is solely this reference term that contribu
to the QLE. It may, therefore, be possible to motivate
alternative reference term that is concomitant with the ap
cability of Martinez’s conjecture even for such black hole
We hope to return to this issue elsewhere.
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APPENDIX

Here we show how to compute the trace of the extrin
curvature,k, corresponding to a closed two-surfaceB embed-
ded in a 3D axisymmetric Riemannian manifold. The res
can then be used in Eq.~2.1! to evaluate the energy integra
appearing in several places in this paper. An analogous
culation is given in Ref.@10#. It is discussed here for the sak
of completeness only.

Consider a 3D axisymmetric spacelike hypersurfaceS de-
scribed by the line element
10402
-

-
d
n
s
at
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e
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s.
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hi j dxidxj5x2dr21y2dq21z2 dw2, ~A1!

wherei 5(r ,q,w), xi denote arbitrary coordinates adapted
the symmetry. The metric coefficientsx, y, andz depend only
on the ‘‘radial’’ and ‘‘azimuthal’’ coordinatesr and q, re-
spectively. An arbitrary 2D axisymmetric surfaceB having
the topology of a two-sphere, and embedded in 3D spacS
is defined by the relationr 5R(q), whereR is a function of
the azimuthal angle and the parameters of the solution
two-dimensional line element is

sabdxadxb5~x2R821y2!dq21z2 dw2, ~A2!

where a prime denotes differentiation with respect to the
ordinateq. The functionsx, y, andz in Eq. ~A2! are evalu-
ated at the two-surfacer 5R(q).

Let ni denote the unit outward-pointing spacelike norm
to B as embedded inS. Its components are

~nr ,nq,nw!5
1

Ay21x2R82
~y/x ,2x R8/y ,0!. ~A3!

The extrinsic curvature of the two-surfaceB as embedded in
S is denoted bykmn . Its tracek can be written as

k52
]m~nmAh!

Ah
, ~A4!

where h denotes the determinant of the three-metrichmn .
Using the coordinate-components of the unit normal~A3! we
find that the trace is

k52
1

xyz
@~a g21/2! ,r2~b g21/2! ,q#U

r 5R(q)

, ~A5!

where a[y2z, b[x2z R8, g[y21x2R82, and d[ lng. Its
proper surface integral yields

1

8pE2B
k As dqdw52

1

4E0

p

dq
1

xy S a ,r2b ,q2
a

2
d ,r

1
b

2
d ,qDU

r 5R(q)

. ~A6!

This integral is evaluated at the surfacer 5R(q). Finally
note that both integrals in Eq.~2.1! are of the general form
~A6!. It is, however, important to note that each one of the
integrals involves different values for the functionsx, y, and
z. Also, the coordinates on the two-surface,q andw, which
appear in these two integrals, may not always have ident
definitions.
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