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Exact inhomogeneous cosmologies whose source is a radiation-matter mixture
with consistent thermodynamics
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We derive a new class of exact solutions of Einstein’s equations providing a physically plausible hydrody-
namical description of cosmological matter in the radiative era, between nucleosynthesis and decoupling. The
solutions are characterized by the Lemaıˆtre-Tolman-Bondi metric with a viscous fluid source, subjected to the
following conditions: ~a! the equilibrium state variables satisfy the equation of state of a mixture of an
ultrarelativistic and a nonrelativistic ideal gases, where the internal energy of the latter has been neglected,~b!
the particle numbers of the mixture components are independently conserved,~c! the viscous stress is consis-
tent with the transport equation and entropy balance law of extended irreversible thermodynamics, with the
coefficient of shear viscosity provided by kinetic theory. The satisfaction of~a!, ~b!, and ~c! restricts initial
conditions in terms of an initial value functionD i

(s) , which in the limit of small density contrasts becomes the
average of spatial gradients of the fluctuations of photon entropy per baryon in the initial hypersurface. For
D i

(s)Þ0 and choosing the phenomenological coefficients of the ‘‘radiative gas’’ model, we have an interactive
photon-baryon mixture under local thermal equilibrium, with radiation dominance and temperatures character-
istic of the radiative era (106 K.T.103 K). Constraints on the observed anisotropy of the microwave
cosmic radiation and the condition that decoupling occurs atT5TD'43103 K yield an estimated value
uD i

(s)u'1028 which can be associated with a bound on promordial entropy fluctuations. The Jeans mass at
decoupling is of the same order of magnitude as that of baryon dominated perturbation models ('1016M ().
@S0556-2821~99!07818-2#

PACS number~s!: 04.40.Nr, 04.20.Jb, 04.25.Nx, 98.80.Hw
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I. INTRODUCTION

The radiative era of cosmic evolution comprises the
riod from the end of primeval nucleosynthesis to the dec
pling of matter and radiation~see Refs.@1–11#!. A gross
description of cosmological matter sources in this period
given by an interactive mixture of ideal relativistic and no
relativistic gases~‘‘radiation’’ and ‘‘matter’’ ! in local ther-
mal equilibrium~LTE!.

The standard approach to this type of matter source
either a Friedmann-Lemaiˆtre-Robertson-Walker~FLRW!
spacetime with equilibrium kinetic theory distribution
@5–7#, gauge invariant perturbations on a FLRW backgrou
@4–6,8–10#, or various types of hydrodynamical mode
@12–14# which, in general, fail to incorporate a physical
plausible description of the interaction between matter
radiation. Even if we argue that the universe is ‘‘almo
FLRW’’ or ‘‘almost in thermal equilibrium,’’ the small de-
viations from equilibrium are extremely important,@1,2,4–
6,8,9#, to account for most interesting phenomena of cosm
evolution: nucleosynthesis, structure formation, abunda
of relic gases, etc. Models with perfect fluid sources, whet
hydrodynamic@12,13#, or based on kinetic theory@15#, nec-
essarily assume a quasistatic adiabatic and reversible e
tion and thus, fail to incorporate into the resulting pictu
even small deviations from equilibrium.
0556-2821/99/60~10!/104023~15!/$15.00 60 1040
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Dissipative sources have been incorporated numeric
within a purely FLRW geometry@16# or following a pertur-
bative approach@17#. However, the literature still lacks a
alternative hydrodynamical treatment, based on inhomo
neous exact solutions of Einstein’s equations with dissipa
sources and fully complying with the thermodynamics o
radiative gas within a transient regime. Ideally, such ex
models should include all dissipative agents~heat flux, bulk,
and shear viscosity! and should be consistent with the the
retical framework of extended irreversible thermodynam
~see Refs.@17–29#!, thus satisfying suitable transport equ
tions complying with causality, with phenomenological c
efficients given by kinetic theory for this type of sourc
Since this general treatment would be mathematically
tractable, we aim at the best possible approach based
exact solutions of Einstein’s equations. Therefore, we h
made the following simplifying assumptions:~a! the matter
source is a fluid with shear viscosity but without heat co
duction nor bulk viscosity,~b! the equilibrium state variable
satisfy the equation of state of a mixture of relativistic a
nonrelativistic ideal gases, where the internal energy
pressure of the latter have been neglected,~c! the particle
numbers of each mixture components is independently c
served,~d! we exclude dark matter and/or exotic particl
and assume instead a tight coupling between photons~radia-
tion! and baryons and electrons~matter!, hence there is a
common temperature for the mixture~LTE!, while the mi-
©1999 The American Physical Society23-1
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croscopical interaction models are the various processe
radiative transfer@2,6,8,23,25–27#: Thomson scattering, bre
hmstrallung, free-free absortion, etc. Although this type
interactions involve mostly photons and electrons, the
namics of the matter component is governed by the bary
since the latter provide most of the rest mass content of n
relativistic matter~without dark matter!.

Restrictions~b! and~c! are easy to justify: since the rati
of photons to baryons is such a large number ('109), we
can truly ignore the pressure of nonrelativistic matter. Al
after nucleosynthesis, in the temperature rangeT,106, mat-
ter creation and anhilitation processes balance each othe
effectively cease to be dynamically important@5,6#. On the
other hand, the lack of heat conduction@restriction ~a!# is
more difficult to justify. It can be associated with an ad
batic ~zero heat flux! but still irreversible evolution~nonzero
viscosity!, and can be a reasonable approximation on spe
conditions. For example, for a radiative gas at higher te
peratures shear viscosity dominates over heat conduc
but the latter becomes significant as the mixture cools@2#.
The lack of bulk viscosity is a better approximation: it
negligible for a radiative gas in the temperature ran
103 K,T,106 K that we are interested in@2,17,21,23,25#,
becoming important for higher temperatures~the mid relativ-
istic regime wherekBT'mc2 @17,28,29#!. However, we ac-
cept that ignoring these dissipative fluxes weakens the sc
and validity of the models, but we argue that this is comp
sated by the simplification of the field equations, leading
exact forms for the equilibrium state variables and shear
cosity that still satisfy~under the restrictions mentioned!
thermodynamically consistent relations.

The models we present are based on the spherically s
metric Lemaıˆtre-Tolman-Bondi metrics, usually associat
with dust sources@30,31#. However, this metric is compat
ible with a comoving fluid source with zero heat flux b
with anisotropic stresses, which we describe as shear vis
ity. Obviously, the lack of heat flux and four-accelerati
necessarily implies a very special shear viscous tensor w
divergence exactly balances the nonzero spatial gradien
the equilibrium pressure. Considering this metric and t
source, we impose on the equilibrium state variables
equation of state for a mixture of ideal gases@under the re-
striction ~b!#. The field equations can be solved up to
quadrature, without having to make any assumption on
form of the shear viscous pressure. The latter, as well a
equilibrium state variables can be determined from the s
tion of the quadrature, up to two initial value functions th
can be identified with the initial energy densities of the m
ter and radiation components. We consider only the case
would be equivalent to spacelike sections of zero curvat
A generalization of this class of exact solutions to the m
general Szekeres-Szafron metrics admitting no isome
has been published recently@32#, while the study of a non-
relativistic ideal gas is considered in Ref.@33#.

Once the field equations have been integrated, we defi
set of initial value functions that gauge the deviation fro
homogeneity of the average of initial density contrasts. T
terms involving various gradients of metric functions can
given in terms of these gauges, so that in the limit when
10402
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latter vanish a FLRW spacetime can always be obtained
the homogeneous~and reversible! subcase. In Sec. VII we
derive the conditions that the models must satisfy in orde
be consistent with the theoretical framework of irreversib
extended thermodynamics, in the case where shear visc
is the only dissipative agent and the coefficient of shear
cosity is that given by kinetic theory for the radiative g
@2,23,25–27,29#. This leads to an entropy balance law and
suitable transport equation for shear viscosity that is satis
for a specific functional form of the relaxation time. Cond
tions are given so that the latter quantity behaves as a re
ation parameter for an interactive cosmological mixture
matter and radiation. These conditions of thermodynam
consistency are then explicitly tested on the models, lead
to a set of restrictions on the initial conditions~the latter
given in terms of the gauges of initial density constras!.
The most relevant result is that thermodynamical consiste
constrains an initial value adimensional functionD i

(s) , which
in the limit of small density contrasts is approximately t
average gradient of the photon entropy per baryon along
initial hypersurfacet5t i . An analogy is provided with the
theory of perturbations on a FLRW background, where
D i

(s)50 is formally analogous to the definition of initial
adiabatic perturbations in the sincronous gauge@4,6,9,10#.
The constraints on the observed anisotropy of the microw
cosmic background, as well as the condition that decop
occurs atT5TD'43103 K, leads to the estimated valu
uD i

(s)u'1028. Since initial conditions of the radiative er
should be traced to previous periods of cosmic evoluti
this constraint can be related to maximal bounds on entr
fluctuations in primordial perturbations. Finally, we compu
the Jeans mass associated with the thermodynamically
sistent models, leading to a value similar to that obtained
baryon dominated perturbation models:MJ'1016M ( .

II. INTERACTING MIXTURE OF RADIATION
AND NON-RELATIVISTIC MATTER

A radiation-matter mixture can be described by a mixtu
of two ideal gases: one an ultrarelativistic gas of mass
particles, the other a nonrelativistic ideal monatomic g
with m being the mass of the particles. This is characteriz
by the total matter energyr and pressurep:

r5mc2n(m)1
3

2
n(m)kBT(m)13n(r )kBT(r ), ~1a!

p5n(m)kBT(m)1n(r )kBT(r ), ~1b!

wherekB is Boltzmann’s constant andn,T are particle num-
ber densities and temperatures of the two components,
tiguished by the superindices~m! ~matter! and~r! ~radiation!.
If there is local thermal equilibrium~LTE! between the com-
ponents, the latter interact and evolve with the same te
perature:T(r )5T(m)5T. If the components are decouple
each gas evolves with a different temperature.

Assuming LTE, ifn(m)!n(r ), but the ratiomc2/kBT is not
negligible, then Eq.~1! can be approximated by
3-2
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EXACT INHOMOGENEOUS COSMOLOGIES WHOSE . . . PHYSICAL REVIEW D60 104023
r'mc2n(m)13n(r )kBT, ~2a!

p'n(r )kBT, ~2b!

an equation of state describing a radiation dominated mix
in which the presence of nonrelativistic matter is dynam
cally important. If we assume nonrelativistic matter to
made up of baryons~with m being a protonic mass! and since
the ratio of baryons to photonsn(m)/n(r )'1029 is a small
number, the equation of state~2! is a reasonable approxima
tion in the temperature range 103<T<106 K, characteristic
of the ‘‘radiative era’’ from the end of nucleosynthesis to t
transition between radiation to matter dominance, includ
the recombination and decoupling eras. At such temp
tures, it is also safe to assume@1,3–6# that electrons and
photons interact mostly through Thomson scattering
creation and annihilation processes~bremsstrahlung and
free-free absorption! roughly compensated one another
that particle number densities of the components of the m
ture satisfy independent conservation laws. Once the de
pling of the matter-radiation mixture takes place at ab
T'43103 K, the assumption of LTE is no longer valid an
interaction between components ceases. Equation of stat~1!
can also be approximated by a form similar to Eq.~2! with
the internal energy of radiation taking approximately t
Stefan-Boltzmann lawr (r )5aBT4, whereaB denotes the ra-
diation constant. However, out of thermal equilibrium t
Steffan-Boltzmann law is incompatible with the ideal g
equation of state.

Having in mind the conditions justifying Eq.~2!, we will
describe a matter-radiation mixture evolving along adiab
but irreversible processes by the fluid tensor

Tab5ruaub1phab1Pab, ~3!

hab5c22uaub1gab, uaPab50, Pe
a50,

wherer,p satisfy Eq.~2!, ua is the four-velocity shared by
radiation and matter,Pab is the shear viscous pressure tens
~a symmetric traceless tensor! which arises because of th
matter-radiation interaction, and particle number densi
satisfy the conservation laws

~n(m)ua! ;a50, ~n(r )ua! ;a50. ~4!

As mentioned previously, bulk viscosity is negligible with
the temperature range we are interested in@23,2,25–28#,
while even if neglection of heat conduction can be justifi
for relativistic temperatures@2#, it does weaken the scope o
the models. However, this restriction is compensated by
obtention of exact solutions that are still thermodynamica
consistent.

III. THE LEMAI ˆTRE-TOLMAN-BONDI METRICS

Consider Eq.~3! as the source of the Lemaıˆtre-Tolman-
Bondi ~LTB! metric ansatz, usually associated with sphe
cally symmetric Lemaıˆtre-Tolman-Bondi dust solution
@30,31#
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ds252c2dt21
Y82

12F
dr21Y2@du21sin2~u!df2#, ~5!

where Y5Y(t,r ), F5F(r ), and a prime denotes partia
derivative with respectr. Just as in the LTB dust solutions
we assume the coordinates in Eq.~5! to be comoving and the
four-velocity of the fluid source to beua5cd t

a , a geodesic

vector field, sinceu̇a[ua;bub50. Other kinematic invariants
associated with Eq.~5! are the scalar expansionQ[u;a

a , and
the shear tensorsab[u(a;b)2(Q/3)hab , given in the coor-
dinates of Eq.~5! by

Q5
Ẏ8

Y8
1

2Ẏ

Y
, ~6a!

sb
a5diag@0,22s,s,s#, s[

1

3 S Ẏ

Y
2

Ẏ8

Y8
D , ~6b!

while the most general form ofPb
a for the metric~5! is given

by

Pb
a5diag@0,22P,P,P#, ~6c!

whereẎ[uaY,a5Y,t andP5P(t,r ) is an arbitrary function.
Notice that a comoving and nonaccelerating four-veloc
does not implyp850, as in the perfect fluid case (Gu

u2Gr
r

50). As revealed by the momentum balance law:hcaT ;b
ab

50, applied to the viscous fluid source~3!, we have

ha
b~p,b1Pbc;dhcd!50 ⇒ ~p22P!816P

Y8

Y
50

~7a!

showing how the divergence of the shear viscous tensor
actly balances the nonzero pressure gradient. The energy
anceuaT ;b

ab 50, is given by

ṙ1~r1p!Q1sabP
ab50 ⇒ ṗ1

4

3
Qp16sP50

~7b!

illustrating how the termsabP
ab56sP can be understood

as an interaction term responsible for local energy excha
between matter and radiation.

Integration of the conservation laws~4! for ~5! yields

n(m)5ni
(m)S Yi

Y D 3 Yi8/Yi

Y8/Y
, n(r )5ni

(r )S Yi

Y D 3 Yi8/Yi

Y8/Y
, ~8!

whereni
(m) ,ni

(r ) depend only onr and are the particle num
ber densities of nonrelativistic matter and radiation, eva
ated along a suitable initial hypersurface labeled byt5t i .
The subindexi affixed to any quantity, asYi , will denote
henceforth initial value functions~functions oft,r evaluated
alongt5t i). It is important to state that our initial condition
do not refere to present cosmic time~usually labeled ast
5t0), and so we will not use the subindex 0.
3-3
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The spherically symmetric LTB metrics~5! are contained
within a larger class of more general metrics~the Szekeres-
Szafron metrics@30,31#!, admitting in general no isometries
The integration of the field equations for Eq.~5!, given a
source~3! satisfying Eq.~2!, is examined in the next section
For the case of more general Szekeres-Szafron metrics
Ref. @32#.

IV. INTEGRATION OF THE FIELD EQUATIONS

Einstein’s field equations for Eqs.~5! and ~3! are

kr52
@Y~Ẏ21Fc2!#8

Y2Y8
52G t

t , ~9a!

kp52
@Y~Ẏ21Fc2!12Y2Ÿ#8

3Y2Y8
5

1

3
~2G u

u 1G r
r !,

~9b!

kP5
Y

6Y8
FY~Ẏ21Fc2!12Y2Ÿ

Y3 G 85
1

3
~G u

u 2G r
r !,

~9c!

wherek[8pG/c2. Imposing on Eqs.~9a! and~9b! the equa-
tion of state~2!, using Eq.~8! and integrating with respect t
r yields the following constraint:

2Y~Ẏ21Fc2!1Y2Ÿ2kmc2E ni
(m)Yi

2Yi8dr5l~ t !,

~10!

wherel(t) is an arbitrary integration function. It is impor
tant to remark that Eq.~10! follows only from Eqs.~9a! and
~9b! without involving Eq.~9c!, i.e., it was not necessary t
make any assumption regarding the form ofP in order to
obtain Eq.~10!. A second integration of the field equation
necessarily requires settingl(t)50 in Eq. ~10!, leading to

Ẏ25
k

Y FM1WS Yi

Y D G2Fc2, ~11!

where

M5E r i
(m)Yi

2Yi8dr, r i
(m)[mc2ni

(m) , ~12a!

W5E r i
(r )Yi

2Yi8dr, r i
(r )[3ni

(r )kBTi , ~12b!

so thatr i
(m) ,r i

(r ) respectively define the initial densities o
the nonrelativistic and relativistic components of the m
ture.

In the remaining of the paper we restrict ourselves toF
50, similar to the choice of spacelike sections of zero c
vature in FLRW geometry, leaving the caseFÞ0 for a fu-
ture analysis. An explicit integral of Eq.~11! in this case is
given by
10402
ee
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2
Am~ t2t i !5Ay1e~y22e!2A11e~122e!, ~13a!

where

m[
kM

Yi
3

, e[
W

M
, y[

Y

Yi
. ~13b!

It is possible to invert Eq.~13a!, thus obtainingy5y(t,r ) as
a complicated, but closed analytic form, where ther depen-
dence is contained in the functionsm,e appearing in Eq.
~13b!. However it turns out to be more convenient to u
Eqs.~11! and ~13! to simplify the field equations and radia
gradients ofy in order to express all state and geomet
variables in terms ofy and suitable initial value functions
related to those of Eqs.~12! and ~13b!.

V. THE STATE VARIABLES

From Eq.~8! and Eqs.~11!–~13! it is possible to obtain
the state variablesn(m),n(r ),T,r (m),r (r ),p,P. However, be-
fore doing so it is useful to define the averaged initial de
sities

^r i
(m)&[

E r i
(m)d~Yi

3!

Yi
3

5
3M

Yi
3

,

^r i
(r )&[

E r i
(r )d~Y0

3!

Yi
3

5
3W

Yi
3

, ~14!

averaged over the volumeYi
3 . Since the solutions allow for

an arbitrary rescaling of the radial coordinate, without loss
generality we can selectYi5rRi , whereRi is a characteris-
tic constant length scale. Therefore, the volumeYi

3 , evalu-
ated from the symmetry centerr 50, to an arbitrary fluid
layer r, can be characterized invariantly as the volume of
orbits of the rotation group SO(3) in the hypersurfacet
5t i . In the Newtonian limit, the distanceYi becomes the
radius of the circular keplerian orbit in the field of Eq.~5!.

Together with the averaged initial densities, we shall d
fine the quantitiesD i

(m) ,D i
(r ) given by

D i
(m)5

E @r i
(m)#8Y0

3dr

3M
5

r i
(m)

^r i
(m)&

21

⇒ r i
(m)5^r i

(m)&@11D i
(m)#, ~15a!

D i
(r )5

E @r i
(r )#8Yi

3dr

3W
5

r i
(r )

^r i
(r )&

21

⇒ r i
(r )5^r i

(r )&@11D i
(r )#, ~15b!
3-4
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whose interpretation as effective initial density contrasts
discussed in the following section. Using Eqs.~14! and~15!
we can rewritem,e in Eq. ~13b! as

m5
k

3
^r i

(m)&5
kr i

(m)

3~11D i
(m)!

, e5
^r i

(r )&

^r i
(m)&

5
r i

(r )

r i
(m)

11D i
(m)

11D i
(r )

.

~16!

The state variablesn(m),n(r ),r,p,P now follow by inserting
Eq. ~11! into Eqs.~8! and ~9!, while T is obtained with the
help of Eq.~2!. This yields the following forms:

n(m)5
ni

(m)

y3G
, n(r )5

ni
(r )

y3G
, ~17a!

T5
Ti

y
C, ~17b!

r5r (m)1r (r )5F r i
(m)

y3
1

r i
(r )

y4
CG 1

G
, ~17c!

p5
r i

(r )

3y4

C

G
, ~17d!

P5
r i

(r )

6y4

F

G
, ~17e!

where the functionsG, C, andF are given by

G[
Y8/Y

Yi8/Yi

C[11
~12G!

3~11D i
(r )!

, F[11
~124G!

3~11D i
(r )!

.

~18!

The solutions characterized by Eqs.~2!,~4!,~5!–~18! be-
come determinate onceG above is obtained in terms ofy
from Eq. ~13! for given initial value functionsr i

(m) , r i
(r )

~re-expressed in terms of the quantitiesD i
(m) ,D i

(r ) ,e). This
transforms Eq.~18! into

G5113AD i
(m)13BD i

(r ) , ~19a!

C512
AD i

(m)1BD i
(r )

11D i
(r )

, ~19b!

F5
24AD i

(m)1~124B!D i
(r )

11D i
(r )

, ~19c!

where

A5
1

3y2 F y224ey28e22
Ay1e

A11e
~124e28e2!G ,

~20a!
10402
s
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y2 F y12e2~112e!
Ay1e

A11e
G , ~20b!

with D i
(m) ,D i

(r ) given by Eq.~15!. The kinematic parameter
s,Q follow by inserting Eq.~11! with y5Y/Yi and Eq.
~19a! into Eqs.~6a! and ~6b!:

s52
AmAy1e@A,yD i

(m)1B,yD i
(r )#

y2@113~AD i
(m)1BD i

(r )!#
, ~21!

Q

3
5

AmAy1e@11~3A1yA,y!D i
(m)1~3B1yB,y!D i

(r )#

y2@113~AD i
(m)1BD i

(r )!#
,

~22!

whereA,y ,B,y are the derivatives ofA,B in Eq. ~20! with
respect toy. Given a set of initial conditions specified b
e,D i

(m) ,D i
(r ) , Eqs. ~17! and ~19!–~22! provide fully deter-

mined forms of the state and geometric variables as funct
of y and the chosen initial conditions.

The solutions presented so far contain a FLRW particu
case, obtained by setting in Eqs.~11! and ~12! ni

(m)5n̄i
(m) ,

ni
(r )5n̄i

(r ) , and Ti5T̄i , where n̄i
(m) ,n̄i

(r ) ,T̄i are arbitrary
positive constants. Under this parameter specialization,
~13! holds with Y5R(t) f (r ) @so thaty5R(t)# and Eq.~5!
becomes a FLRW metric. This leads to

^r i
(m)&5 r̄ i

(m) , ^r i
(r )&5 r̄ i

(r ) , G5C51, F50,

wherer̄ i
(m)5mc2n̄i

(m) , r̄ i
(r )53n̄i

(r )kBT̄i , so thatT5T(t), r
5r(t), p5p(t), andP50, with Eq.~3! becoming a perfect
fluid tensor wherer andp satisfy ~2!. The FLRW limit can
also be characterized byD i

(m)5D i
(r )50, and so, from Eq.

~11!, Eqs.~21! and~22! becomes50 andQ/35 ẏ/y5Ṙ/R.
Another limit is that of LTB dust solutions, obtained by se
ting Ti50 in Eqs.~12b! and ~11!, so that Eq.~17! becomes
T5p5P50 andr5mc2n(m).

VI. DENSITY CONTRASTS AND REGULARITY
CONDITIONS

Since the radial dependence of all state and geome
variables is sensitive toD i

(r ) andD i
(m) defined in Eq.~15!, it

is important to provide an interpretation for these quantiti
From Eqs.~14! and~15!, it is evident thatD i

(r ) andD i
(m) are

effective ‘‘gauges’’ of the deviation ofr i
(m) ,r i

(r ) from their
volume averages for every closed interval in the range of
integration variabler along the initial hypersurfacet5t i .
The signs of these quantities characterize initial density p
files, with ‘‘density lumps’’ as these densities decrea
(@r i

(m)#8,0, @r i
(r )#8,0) or ‘‘density voids’’ as they in-

crease (@r i
(m)#8.0, @ri

(r)#8.0). Also, with the help of Rolle’s
theorem applied to Eq.~14! we find thatD i

(r ) and D i
(m) , as

adimensional functions ofr, are constrained by the maxima
density contrasts in terms of
3-5
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uD i
(m)u<

r i
(m)max

r i
(m)min

21,

uD i
(r )u<

r i
(r )max

r i
(r )min

21,

where the superindices ‘‘max’’ and ‘‘min’’ respectively in
dicate the maximal and minimal values ofr i

(m) ,r i
(r ) in any

interval 0<r along the hypersurfacet5t i . Small initial den-
sity contrasts obviously imply

r i
(m)max'r i

(m)min , r i
(m)'^r i

(m)& ⇒ uD i
(m)u!1,

~23a!

r i
(r )max'r i

(r )min , r i
(r )'^r i

(r )& ⇒ uD i
(r )u!1, ~23b!

m'
k

3
r i

(m) , e'
r i

(r )

r i
(m)

'
3ni

(r )

ni
(m)

kBTi

mc2
'1029

kBTi

mc2
,

~23c!

allowing us to consider a formal analogy betweenD i
(r ) and

D i
(m) and energy density ‘‘exact’’ initial perturbations. Th

is further reinforced from the definitions in Eq.~15!, and by
remarking that the FLRW ‘‘background’’ follows by ‘‘turn-
ing the perturbations off,’’ that is, settingD i

(m)5D i
(r )50.

An important restriction that the solutions must satisfy
the following regularity condition

G[
Y8/Y

Yi8/Yi

.0, ~24!

which prevents negative densitiesn(r ),n(m), as well as the
occurrence of a shell crossing singularity@35#. This singular-
ity is characterized by unphysical behavior becauseG ap-
pears in the denominator of Eqs.~17a!, ~17c!, ~17d!, and
~17e!, but does not appear in~17b!. Therefore, ifG50, the
densities, pressure and viscous pressure diverge withT finite
~in general!, a totally unacceptable situation that can
avoided by considering only the range of evolution of t
models to spacetime seccions witht>t i satisfying Eq.~24!.
The fulfilment of Eq.~24! depends on the functionsA,B and
on the magnitudes of the initial density contrasts gauged
D i

(r ) andD i
(m) . This will be examined further ahead togeth

with the conditions for thermodynamical consistency.

VII. THERMODYNAMICAL CONSISTENCY

The models derived and presented in the previous sect
must be compatible with a suitable thermodynamical form
ism. For this purpose, it is advisable to leave aside the ‘‘c
ventional’’ theory of irreversible thermodynamics@36,37#,
whose transport equations are unphysical as they vio
relativistic causality of the dissipative signals as well as s
bility of the equilibrium states~see, e.g., Refs.@18,19,24#!.
We shall consider instead ‘‘extended irreversible thermo
namics’’ ~EIT! @20–23#, a theory free of such serious draw
backs@24#, and so a more adequate theoretical framework
10402
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the models. According to EIT, the entropy of a system aw
from thermodynamical equilibrium depends not only on t
‘‘conserved’’ ~equilibrium! variables~i.e., particle number
densities, energy density and so on!, but also into the non-
equilibrium fluxes~i.e., heat flux, and bulk and shear diss
pative stresses!. This theory is supported by kinetic theory o
gases, information theory, and by the theory of hydrod
namical fluctuation—see Ref.@23# for a detailed description
When shear viscosity is the only dissipative agent, the c
responding generalized entropys of radiation plus matter
obeying the usual balance law with non-negative divergen
up to second order inPab takes the form

s5s(e)1
a

nT
PabP

ab, ⇒ ~snua! ;a>0, ~25!

wheres(e) is obtained from the integration of the equilibrium
Gibbs equationn5n(r )1n(m) anda is a phenomenologica
coefficient to be specified later. The evolution of the visco
pressure is, in turn, governed by the transport equation

tṖcd ha
chb

d1PabF11
1

2
ThS t

Th
ucD

;c
G12hsab50,

~26!

whereh andt are the coefficient of shear viscosity and t
relaxation time of shear viscosity, respectively. The form
as well as other related quantities can be obtained by a v
ety of means@2# including kinetic theory, statistical mechan
ics, or both@25–28#. The relaxation timet, is related to and
larger than the mean collision time between particles an
may, in principle, be estimated by collision integrals pr
vided the interaction potential is known. As a physical ref
ence to infere the form these coefficients might take, c
sider the ‘‘radiative gas,’’ withp,r satisfying Eq.~1! @or the
approximation~2!#. For the radiative gas the forms ofh,a in
terms of the relaxation time of the dissipative processt are

h (rg)5
4

5
p(r )t, a (rg)52

t

2h (rg)
52

5

8p(r )
, ~27!

where p(r ) is either n(r )kBT or aBT4 and the subscript
‘‘( rg)’’ emphasizes that these quantities are specific to
radiative gas.

We verify now the compatibility of Eqs.~13!–~22! with
Eqs. ~25!–~27!. Integrating the equilibrium Gibbs equatio
and substituting Eq.~27! into Eq. ~25!, we obtain

s5
4aBTi

3

3ni
(r )

1kBlnFni
(r )

n(r ) S T

Ti
D 3G2

15k

8 S P

p D 2

5
4aBTi

3

3ni
(r )

1kBlnFC3

G G2
15k

32 S F

C D 2

, ~28!

where the approximation:n5n(m)1n(r )'n(r ) was used and
the initial value ofs(e) has been set to be the equilibriu
entropy per photon. Equation~28! reflects the fact that we
are neglecting the contribution of the entropy due to non
3-6
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EXACT INHOMOGENEOUS COSMOLOGIES WHOSE . . . PHYSICAL REVIEW D60 104023
ativistic particles, a justified approximation since the lat
are much less abundant than the photons.

Ideally, the transport equation~26! should be satisfied fo
h having the form~27!, associated to the radiative gas, a
the relaxation time,t, given by collision integrals obtaine
from kinetic theory. However, as mentioned in the Introdu
tion, and in order to obtain exact expressions for all therm
dynamical parameters, we will assumeh given by Eq.~27!
and deducet from the fulfilment of Eq.~26!. This yields

t5
2CF

s

9

4
@11D i

(r )#2

~4/5!@314D i
(r )1~13/32!G#21~171/256!G2

.

~29!

While there is no need to justifyh given by Eq.~27!, this
form of t is acceptable as long as Eq.~29! satisfies the re-
quirement of a relaxation parameter: it must be a posi
quantity and must comply with a positive entropy producti
law ṡ>0. It is desirable thatt should somehow relate o
approach its definition as a collision integral and that
behavior be qualitatively analogous to a suitable mean c
sion time, therefore it should be an increasing~decreasing!
function if the fluid is expanding~collapsing!. Evaluatingṡ
from Eq. ~28! and comparing with Eq.~29!, we obtain the
following relation betweenṡ andt:

ṡ5
15kB

4t S P

p D 2

5
15kB

16t S F

C D 2

, ~30!

consistent with the general relation@22# (nsua) ;a
5PabP

ab/(2hnT) associated with Eqs.~25! and~26!. As a
consequence of Eq.~30!, ṡ.0 andt.0 imply each other.
Also, from the form of Eq.~29!, necessary and sufficien
conditions for positivet,ṡ,p,T can be given by

C.0, ~31a!

sF,0, ~31b!

while the condition ensuring concavity and stability ofs can
be phrased for an expanding fluid configuration as the
quirement thatṡ decreases for increasingt ( ṫ.0⇔ s̈,0).
From Eqs.~30!,~31!, this follows as

ṫ.0,
s̈

ṡ
5

2sG

3CF

^r i
(r )&

r i
(r ) F11

^r i
(r )&

3r i
(r ) G2

ṫ

t
,0. ~31c!

So that, if Eqs.~24!, ~31a!, and ~31b! hold, then Eq.~31c!
reduces toṫ.0. Sincet is a thermodynamic relaxation pa
rameter, it is important to compare it with another natu
timescale of the models: the Hubble expansion time defi
by

tH5
3

Q
, ~32a!
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where Q follows from Eq. ~22!. Such comparison should
provide an insight into the time scales associated with
mixture interaction and decoupling. However, strictly spea
ing, the criterion for interaction and decoupling in cosm
logical gas mixtures is not given by comparingt and tH but
by comparing the latter with the timescales associated w
the various reaction rates of the radiative processes invol
particularly the photon mean collision timetg obtained from
Thomson scattering@5,6#. Hence, we can consider this rela
ation time as approximately gauging the interactivity of t
matter mixture by demanding that for a range of the evo
tion of the mixture, approximating its interactive range, w
must have

t,tH ~32b!

while, as the mixture evolves and the components decou
eventually

t.tH . ~32c!

Sincet in Eqs.~27! and~29! must behave qualitatively simi
lar to tg @29#, the comparison in Eqs.~32b!,~32c! should
yield qualitatively analogous results as a similar comparis
betweentH andtg . The temperature associated with the pa
sage from Eqs.~32b! and ~32c! @obtained from Eq.~17b!#
should approximate the decoupling temperature obtained
the conditiontg5tH . This point is examined in Sec. XI.

Equations~31!,~32!, together with the regularity condition
~24!, provide the necessary and sufficient conditions fo
theoretically consistent thermodynamical description of
solutions within the framework of EIT and kinetic theor
applied to the radiative gas. We examine the effect of th
conditions in the following section.

VIII. THERMODYNAMICALLY CONSISTENT MODELS

A. Conditions „24… and „31a…

From Eqs.~19a! and~19b!, the fulfilment of Eqs.~24! and
~31a! is equivalent to the following condition:

2
1

3
,AD i

(m)1BD i
(r ),11D i

(r ) . ~33!

From Eq. ~20!, since the functionsA and B diverge asy
→0 there are necessarily values ofy for which Eq. ~33! is
violated. However, from Eqs.~19a!,~19b! we haveG i5C i
51, and the range ofy we are interested isy>1. As shown
by Figs. 1~a! and 1~b!, displaying the implicit plots ofG
50 and C50 for an initial temperatureTi'106 K @from
Eq. ~23c!, e'103#, there are no zeros ofG and C for y
>1, uD i

(m)u<1 and uD i
(r )u<1. Therefore, Eq.~33! holds in

the range of interest for a large class of initial conditions

B. Conditions „31b…, „31c…, and „32…

For the examination of these conditions we will assu
that Eq.~33! holds for y>1, uD i

(m)u<1, anduD i
(r )u<1 @see

Figs. 1~a! and 1~b!#. Then, with the help of Eqs.~19!–~22!,
condition ~31b! is equivalent to
3-7
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FIG. 1. The equationsG50 andC50. Implicit plots of the solution ofG50 ~a! andC50 ~b!, in terms ofD i
(m) , D i

(r ) , and log10(y),
with G,C given by Eq.~19!. The grid marks the initial surfacey51, and is not intersected by the surfacesG50,C50, illustrating thatG
andC have no zeroes in the evolution rangey.1 for density contrasts bound by21<D i

(m)<1 and21<D i
(r )<1. We have considered

ni
(r )/ni

(m)'109, m to be the mass of a proton andTi'106 K, hence we have made the approximation~23c!: e'1023Ti'103. These~and
the remaining! plots were obtained with the help of the symbolic computing packageMAPLE V @38#.
i-

of
-

-

f

ti-
i-
of
C[4AA,y@D i
(m)#21~4B21!B,y@D i

(r )#2

1@4AB,y1~4B21!A,y#D i
(m)D i

(r ),0. ~34a!

An insight into this expression follows by looking at its in
tial value

Ci5
2D i

(r )

2~11e!
@D i

(r )1eD i
(m)# ~34b!

and its asymptotical behavior asy@1

C'
4e@D i

(s)#2

9y2
1

4lD i
(s)

A11ey5/2
1

35

9

elD i
(s)

A11ey7/2

2
l1@D i

(s)#2124l2D i
(r )D i

(s)19@D i
(r )#2

24~11e!y4
1

64

63

e2lD i
(s)

A11ey9/2

2
e

18

l1@D i
(s)#2124l2D i

(r )D (s)19@D i
(r )#2

~11e!y4

2
55

8

e3lD i
(s)

A11ey11/2
1O~y26!, ~34c!

where

D i
(s)[

3

4
D i

(r )2D i
(m) , ~35!
10402
and

l[D i
(m)l223e~112e!D i

(r ) ,

l1[128e12e312e4, l2[8e214e21.

As shown by Eq.~34c!, the quantityD i
(s) defined in Eq.~35!

plays a fundamental role with regards to the fulfilment
Eqs. ~31b! and ~31c!. This suggest classifying initial condi
tions in terms ofD i

(s) . We shall examine Eqs.~31b!, ~31c!,
and ~32! for each caseD i

(s)50 andD i
(s)Þ0 separately.

1. The caseD i
„s…50

From Eq. ~34c!, the conditionD i
(s)50 is necessary and

sufficient for havingC,0 asymptotically. In fact, substitut
ing D i

(s)50 into Eq. ~34a!, leads to the following dramatic
simplification ofC:

C52
@D i

(r )#2~3y14e!

8~11e!y5
, ~36!

so thatD i
(s)50 is a sufficient condition for the fulfilment o

Eqs. ~24!, ~31a!, and ~31b! along the rangey>1, for uD i
(r )u

<1 anduD i
(m)u,1.

Condition ~31c! is also satisfied, sincet increases mo-
notonously along the fluid world lines, behaving asympto
cally as t'y3/2. Hence, those models whose initial cond
tions satisfyD i

(s)50 can be characterized as the subclass
3-8
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models complying with the conditions of thermodynamic
consistency in the asymptotic range ofy. This point is con-
sistent with the fact thatD i

(s)50 is a necessary and sufficie

condition for havinguPu/p5uFu/(2C)→0 and ṡ→0 as y
→`, so that the fluid layers evolve towards an asympto
equilibrium state. However, usingtH53/Q calculated by in-
sertingD (s)50 into Eq. ~22!, we havet/tH,1 for all the
evolution of the fluid, thus failing to comply with Eqs
~32b!,~32c!. This is illustrated by Fig. 2, and implies that th
relaxation timet cannot be associated with a radiation mat
mixture whose components interact and then decouple.

2. The caseD „s…Þ0

If D (s)Þ0, condition ~31b! cannot hold along the ful
range ofy @because of Eq.~34c!#, but might hold along a
restricted range of physical interest 1<y<y* for which the
mixture could be in the interactive stage. This situation is
incompatible with the thermodynamical arguments of
previous section, since the phenomenology of the radia
gas model strictly applies if the mixture components intera
The fact that condition~31b! can hold for 1<y<y* follows
from evaluating the sign ofCi given by Eq.~34b!, a quantity
that can be negative~so that t i.0) for a wide range of

FIG. 2. The ratio of relaxation vs Hubble times for the ca
D i

(s)50. This plot displays the ratiot/tH , as a function of log10(y)
and log10(uD i

(r )u) @denoted as ‘‘log(Dr)’’#, wheret is the relaxation
time andtH53/Q is the Hubble expansion time, given by Eqs.~22!
and ~29! under the conditionD i

(s)50. This ratio is less than unity
for all y, anduD i

(r )u,1 thus violating Eqs.~32b! and ~32c!.
10402
l

c

r

t
e
e
t.

acceptable situations~for example, ifD i
(r ) andD i

(m) have the
same sign!. However, asy increases,t either changes sign o
diverges positively, depending on the zeroes ofF and s.
Since we are assuming that Eqs.~24! and~31a! hold, the sign
of t, as given by Eq.~29!, depends only on the quotien
F/s, and so the behavior oft is strongly related to the sign
and zeroes of these functions. Ift i.0 and, asy increases,
there is a zero ofF for sÞ0, thent passes from positive to
negative, but if the zero ofs appears first, thent diverges
positively. A zero ofF ~with sÞ0) might be compatible
with Eq. ~31b! (t.0), but violates Eq.~31c! and so is un-
acceptable. However, a zero ofs ~with FÞ0) is acceptable,
sincet would diverge positively~as y→y* ) and so would
be a positive and increasing function along the range 1<y
<y* . In order to verify if this type of evolution is possible
it is necessary to gather information on the zeros ofF ands.
Since these expressions are cumbersome, it is convenie
examine their zeros graphically, and so we have plotted
Figs. 3~a! and 3~b! the solutions of the implicit equation
F50 ands50, in terms ofD i

(m) , D i
(r ) and log10(y), while

Fig. 4 displays the sectors in the planeD i
(m) ,D i

(r ) whereF
50 ands50 occur. As these figures reveal, sufficient co
ditions for the desired evolution are given by

D i
(s).0 for D i

(r ).0, ~37a!

D i
(s),0 for D i

(r ),0. ~37b!

Therefore, ifD i
(s)Þ0, conditions~37! are sufficient for the

satisfaction of Eqs.~31b! and ~31c! along the range 1<y
<y* , wherey* is a zero ofs. Conditions~32! are satisfied
under the restrictions~37!. This will be discussed furthe
ahead in Sec. X.

IX. INITIAL CONDITIONS AND EXACT INITIAL
PERTURBATIONS

The behavior of the quantityD i
(s) given by Eq.~35! de-

termines the set of initial conditions that characterize
thermodynamical consistency of the models. Since this qu
tity plays such an important role, it must be related to
physically significant property along the initial hypersurfa
t5t i . From Eq. ~35!, using Eqs.~12!, ~14!, and ~15!, we
obtain

D i
(s)5

3

4
D i

(r )2D i
(m)5

1

4
1

@ log~W3/4/M !#8

@ log~Yi
3!#8

5
d@ logS i #

d@ logYi
3#

,

~38a!

where

S i[
^r i

(r )&3/4

^r i
(m)&

. ~38b!

In order to provide an interpretation for~38!, we remark
@from Eqs.~17!, ~19!, and~28!# that the entropy per photon
along the initial hypersurface
3-9
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FIG. 3. The equationsF50 ands50. Implicit plots of the solution ofF50 ~a! ands50 ~b!, in terms ofD i
(m) , D i

(r ) , and log10(y).
The ‘‘wall’’ where the surfacess50 andF50 occur for values greater thany5102 corresponds to the line34 D i

(r )5D i
(m) ~or D i

(s)50). The
plots also illustrate that the values ofD i

(r ) , D i
(m) where a zero ofs occurs are clearly distinct from those associated with a zero ofF, leading

to conditions~37!. The vertical heighty5102 is displayed in~a! and~b!, illustrating that the values ofD i
(r ) ,D i

(m) with 102,y* ,103 are very
close toD i

(s)50.
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si5
4aBTi

3

3n0
(r )

2
15

32
kBFF i

C i
G2

5
4aBTi

3

3ni
(r )

2
15

32
kBF D i

(r )

11D i
(r )G 2

is very close to its equilibrium value, since its off equilib
rium correction is proportional to@D i

(r )#2, a very small quan-
tity since D i

(r ) is already assumed to be small. Therefo
using the approximations associated with small density c
trasts@Eqs.~23a!–~23c!#, we obtain

r i
(r )'3aBTi

4 , S0}
^aBTi

4&3/4

mc2^ni
(m)&

}
^si&

^ni
(m)&

'K si

ni
(m)L ,

~39!

implying thatS i is proportional to the ratio of the average
of photon entropy and baryon number density, which~for
small density contrasts! is roughly equivalent to the average
ratio of these quantities. Hence, conditionD i

(s)50 roughly
means an initial hypersurface with constant averages of p
ton entropy per baryon, while condition~37! roughly means
@see Eqs.~20!# that the sign of the spatial gradient of th
average of photon entropy per baryon must agree with
sign of the gradient of the initial photon energy density: ar
increases alongt5t i , it must increase for a density voi
(@r i

(r )#8.0) and decrease for a density lump (@r i
(r )#8,0).
10402
,
n-

o-

e

The assumption of small density contrasts leads to a n
ral comparison with the theory of perturbations of a FLR
background, in the isochronous gauge and considerin
mixture of radiation and nonrelativistic matter, see Re
@4–6,8–10#. Under these assumptions, matter and radiat
densities are given by

r (m)5 r̄ (m)@11d (m)#, ~40a!

r (r )5 r̄ (r )@11d (r )#, ~40b!

wherer̄ (m),r̄ (r ) are the respective densities in a FLRW bac
ground andd (m)!1, d (r )!1 are the perturbations. Th
gauge invariant quantity

d (s)5
3

4
d (r )2d (m), ~41a!

which formally resembles Eq.~35!, defines the fluctuations
of photon entropy per baryon and leads to the classifica
of perturbations as

Adiabatic d (s)50, ~41b!
3-10
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Isocurvatured (s)5d (m)F11
3r (m)

4r (r ) G . ~41c!

In order to establish a comparison with perturbation theo
consider defining the initial densities along the lines of E
~40!:

r i
(m)5 r̄ i

(m)@11d i
(m)# ⇒ ^r i

(m)&5 r̄ i
(m)@11^d i

(m)&#,
~42a!

r i
(r )5 r̄ i

(r )@11d i
(r )# ⇒ ^r i

(r )&5 r̄ i
(r )@11^d i

(r )&#,
~42b!

where r̄ i
(m) ,r̄ i

(r ) are now the constant values of the initi
densities in a FLRW background andud i

(m)u!1,ud i
(r )u!1 are

exact initial perturbations. Inserting Eq.~42! into Eq. ~38!
leads to

FIG. 4. Allowed values ofD i
(r ) ,D i

(r ) for s50. The figure dis-
plays the planeD i

(r ) ,D i
(r ) associated with Fig. 3. The regions fo

which a zero ofs occurs forFÞ0 are shown with a gray shadow
while the blank regions are ‘‘forbidden’’ areas corresponding
zeroes ofF. The values ofD i

(r ) ,D i
(r ) in the gray areas comply with

conditions~37! and so satisfy conditions~31a!, ~31b!, and ~31c!.
The level curve log10(y)52.4 has been qualitatively sketched. Th
curve is extremely close ('1028) to the diagonal line correspond
ing to 3

4 D i
(r )5D i

(m) , marked by the letter A~the letter B marks the
line D i

(r )52D i
(m) . By following the analogy with perturbation

theory ~see Sec. VIII!, the line A can be associated with ‘‘adia
batic’’ initial conditions, while ‘‘isocurvature’’ initial conditions
would be characterized by the horizontal axisD i

(r )50. However,
the values ofy5yD for the latter condition are much smaller tha
y5102.4 for all uD i

(m)uÞ0 @see Fig. 3~b!#. Hence, initial conditions
with D i

(s)Þ0 and leading to the right decoupling temperature@close
to the level curve log10(y)52.4# cannot be termed ‘‘isocurvature,’
but rather ‘‘quasiadiabatic’’ initial conditions.
10402
,
.

S i'
s̄i

n̄i
(m)

11
3

4
^d i

(r )&

11^d i
(m)&

⇒ D i
(s)

Yi
3

'
d

dYi
3 K 3

4
d i

(r )2d i
(m)L

'
d

dYi
3 ^d i

(s)&, ~42c!

where s̄i}@r̄ i
(r )#3/4 and n̄i

(r ) are the photon entropy an
baryon number density of the FLRW background in the h
persurfacet5t i . The right-hand side of Eq.~42c! illustrates
that, under the assumptions~42a!–~42b! of a perturbative
treatment,D i

(s) approximately reduces to the radial gradie
of d (s) evaluated int5t i . However, the comparison with
perturbations must be handled with caution, since in the c
of Eq. ~35! and~36!–~39! we are dealing with quantities an
relations strictly defined in the initial hypersurface, and
determining initial conditions in terms of averages of initi
value functions. The theory of perturbations, on the ot
hand, traces the evolution ofd (m),d (r ) for all t. In particular,
we must be specially careful if we borrow the terminology
perturbations in Eq.~41! to characterize the casesD i

(s)50
and D i

(s)Þ0, since in our case a relation such asD i
(s)50

specifies initial conditions and will not be satisfied~in gen-
eral! for t.t i . Another delicate point refers to the curre
use of the term ‘‘adiabatic’’ for the case~41b!, meaning
perturbations that conserve photon entropy. Strictly spe
ing, these perturbations should be denoted as ‘‘isentropic’
‘‘reversible,’’ since an adiabatic process need not be isen
pic ~or reversible!. It is quite possible that this conceptu
vagueness follows from the fact that most papers in per
bation theory, either assume thermal equilibrium, or ha
incorporated dissipative processes without the necessar
gour. Hopefully, recent work@17# on these lines might be
helpful to clarify these issues. Raising this point is releva
because the models presented in this paper assume a
evolving along adiabatic but irreversible~nonisentropic! pro-
cesses, therefore initial conditions such asD i

(s)50 @formally
analogous to Eq.~41b!# do not imply a conserved photo
entropy, but a roughly constant average of photon entrop
t5t i , but not ~in general! for t.t i . Never the less, for the
sake of mantaining continuity with currently established t
minology, we shall use the formal analogy between Eqs.~41!
and ~42! in the examination of the casesD i

(s)50 andD i
(s)

Þ0. Developing further the comparison with perturbatio
on a FLRW background is relevant and interesting. Ho
ever, such a task requires a comprehensive and deta
elaboration and so will be carried on elsewhere.

X. THE CASE D I
„s…Þ0, AN INTERACTIVE MIXTURE

From Sec. VIII we know that if Eqs.~37a!,~37b! hold,
thent diverges positively asy→y* wherey* is a zero ofs.
We still need to know ift/tH,1 along the range 1<y, ỹ,
where the set of valuesy5 ỹ,y* are characterized byt/tH
51, approximately marking the decoupling of matter a
radiation. A sufficient condition for this type of evolutio
follows from evaluating@t/tH# i at the initial hypersurface
3-11
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where we have eliminatedD i
(m) from Eq. ~35! and assumed

D i
(s)!1, D i

(r )!1, ande'1023Ti'103. Sincet diverges as
y→y* but Q remains finite in this limit, the ratiot/tH ,
initially smaller, necessarily becomes larger than unity
1,y, ỹ,y* .

The currently accepted value of matter and radiation
coupling isTD'43103 K. AssumingTi'106 K, the set of
valuesy5yD associated with this temperature follow fro
Eq. ~17b! by solving fory5yD the equation

TD'431035
106

yD
C~yD ,D i

(s) ,D i
(r )!, ~43!

where C is given by Eq.~19b!. Assuming small density
contrasts, Fig. 5 illustrates that this value ofTD is closely
associated withyD'102.4. Also, it is evident from Fig. 3~b!,
that having a zero ofs for values 102,y* ,103 requires a
very small deviation fromD i

(s)50. This is illustrated by the
approximated sketch of the level curvey5yD5102.4 that
appears in Fig. 4, implying thatỹ,y* andyD lie in a a very
narrow sector of the planeD i

(m) ,D i
(r ) , very close to the line

D i
(s)50. Therefore, for these values we must havey* ' ỹ

'yD . However, it is not clear from Figs. 3~b! and 4 how
small the deviation fromD i

(s)50 should be. Hence, we hav

FIG. 5. The decoupling temperatureT5TD543103 K for y
5yD . This figure displays the implicit plot of Eq.~43! in terms of
D i

(m) ,D i
(r ) and log10(y). The values ofy for this temperature value

are clearly shown to be very close toy5yD5102.4.
10402
r

-

plotted in Fig. 6 the implicit equations50, showing a more
precise relation between the orders of magnitude that
occurrence of the zero ofs for yD'y* '102.4 implies for
uD i

(r )u,uD i
(s)u.

Another constraint the models have to comply with
the observational bounds@5,6# on the anisotropy of the cos
mic microwave radiation~CMR!, given by the maximal pho-
ton temperature contrast@dT/T#D'1025. For y'102.4 and
Ti'106, so that e'103, we have A'1.131021 and B
'2.231021, wereA andB are given by Eq.~20!. Also, from
Eqs. ~17b! and ~19b!, the deviation from the equilibrium
FLRW form Teq5Ti /y at y5yD is given by

FdTeq

Teq
G

D

5FT2Teq

Teq
G

D

5@C21#D'2
1.131021D i

(m)12.231021D i
(r )

11D i
(r )

,

~44!

indicating that compliance with the maximal observed te
perature contrast of the CMR constrains the maximal val
of D i

(m) ,D i
(r ) to about 1024. Therefore, from Fig. 6, the cor

responding variation range ofuD i
(s)u is uD i

(s)u,1028, and so
compatibility with acceptable values ofTD and the CMR
anisotropy impliesuD i

(s)u'uD i
(r )u2!uD i

(r )u.
Under the analogy betweenD i

(m) ,D i
(r ) with perturbations

in a FLRW background, the caseD i
(s)Þ0 seems to corre-

spond to isocurvature initial perturbations. However, sin
r (m)!r (r ) before decoupling, the latter are characterized@see
Eq. ~41c!# by d (s)'d (m) andd (r )!d (s), and so, following the
analogy between Eqs.~41! and ~42! would disqualify D i

(s)

Þ0 as comparable to an isocurvature initial perturbation.
fact, the maximal bounds onD i

(r ) and D i
(s) obtained in the

previous paragraph yield exactly the opposite behavior. B
rowing the terminology of perturbation theory, the analo
between Eqs.~41! and ~42! would characterize ‘‘isocurva-
ture’’ initial conditions byD i

(r )50. From Figs. 3 and 4, this
condition is not incompatible with Eqs.~31! and ~32!, but
yields a decoupling surfaceyD'10 with a decoupling tem-
perature much larger than the accepted value. Hence,
acceptable values of the caseD i

(s)Þ0 cannot be associate
with this type of initial perturbations, but since perturbatio
are in general combinations of adiabatic and isocurvat
components and we haveD i

(s)!D i
(r ) andD i

(s)!D i
(m) , a more

accurate analogy forD i
(m) ,D i

(r ) is that of ‘‘quasiadiabatic’’
initial perturbations. Following this analogy, and bearing
mind thatD i

(m) andD i
(r ) are defined for an initial hypersur

face characterized byTi'106 K ~still outside the horizon
for perturbations of all wave numbers!, the bounds on the
magnitude ofD i

(s) can be related to bounds on the amplitu
of ‘‘nearly adiabatic’’ fluctuations of photon entropy pe
3-12
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baryon generated in the earlier, more primordial, inflation
era @4–6,10,34#. Primordial entropy fluctuations have bee
examined in connection with the creation of axions in
inflationary scenario@5,10#. However, these are isocurvatu
perturbations, and so might not be related to entropy fluc
tions associated withD i

(s)Þ0. The study of entropy fluctua
tions in inflationary models is still a highly speculative top
@34#, and its connection with initial conditions in the mode
under consideration should be an exciting subject to exam
in a future paper.

XI. SAHA’S EQUATION AND THE JEANS MASS

As mentioned earlier, it is important to comparet andtH
with the timescale characteristic of the interaction rate of
photons and electrons for Compton and Thomson scatte
~the dominant radiative processes in the temperature rang
interest!

tg5
1

csTne
, tc5

mec
2

kBT
tg , ~45!

FIG. 6. The equations50 for y5yD . Implicit plot of the so-
lution to the equations50 in terms of log10(uD i

(s)u) and
log10(uD i

(r )u), denoted as ‘‘log(Ds)’’ and ‘‘log(Dr).’’ This plot il-
lustrates the constraints on the orders of magnitude of these q
tities under the condition that a zero ofs occurs fory5yD'102.4.
For values ofuD i

(r )u'1024, compatible with observed anisotropy o
the CBR, we have the following estimated value:uD i

(s)u'1028.
This can be a constraint on entropy fluctuations in primord
quasiadiabatic perturbations.
10402
y

a-

e

e
ng
of

where sT'6.65310225 cm2 is the Thomson scattering
cross section,me is the electron mass, andne is the number
density of free electrons, a quantity obtained from Sah
equation

Xe
2

12Xe
5F2pmekBT

h2 G 3/2
exp~B0 /kBT!

nB
, ~46!

Xe[
ne

nB
, nB'n(m),

whereXe is the fractional ionization,h is Planck’s constant,
nB is the number density of baryons andB0'13.6 ev is the
binding energy of the hydrogen atom. Combining Eqs.~45!
and ~46! we obtain

tg5
1

2cs
B
n(m) F11S 11

4h3n(m)exp~B0 /kBT!

~2pmekBT!3/2 D 1/2G .

~47!

The recombination process is characterized byXe'1/10 in
Eq. ~46!, so that most free electrons have combined w
protons into neutral atoms, while the decoupling of mat
and radiation strictly follows from the condition:tg5tH , a
condition analogous tot5tH and leading to the ‘‘decoupling
temperature’’ from Eqs.~45! and ~47! with the help of Eqs.
~17b! and ~22!. Since tg must be smaller but qualitatively
similar to t ~increasing ast increases@29#!, a comparison
betweent andtH for near decoupling temperatures should
qualitatively analogous to that betweentg and tH . The time
scalestg and tc can be easily obtained from Eqs.~45!, ~47!,
and ~22! and compared withtH ,t for a set of parameters
characteristic of thermodynamically consistent models d
cussed in the previous section. As shown by Fig. 7, displ
ing the ratios oft,tg ,tc to tH for D i

(r )51024 and 1028

,D i
(s),1024. For D i

(s)'1028 and for near decoupling tem
peratures (103, T,104 K or equivalently 102,y,102.6)
we havetg smaller thant ~but of the order of magnitude!
and overtakingtH along a set of values ofy that closely
match the accepted valueTD'43103 K. This is consistent
with the estimationD i

(s)'1028 obtained in the previous sec
tion ~see Fig. 6!. On the other hand, for higher temperatur
(T'106 K or equivalentlyy'1), the relaxation paramete
t is of the order of magnitud but greater than the Comp
time scale, the dominant radiative process at these temp
tures. It is also possible to show thatXe'1/10 in Eq.~46!
leads to the accepted values of the recombination temp
ture.

To end the discussion, we compute the Jeans mass a
ciated to the initial conditions of the caseD i

(s)Þ0. This mass
is given by@1,3–6#

MJ5
4p

3
mn(m)F 8p2Cs

2

k~r1p!
G3/2

5
4p

3

c4x iG
1/2

Ar i
(r ) F py2C

3GS C1
3

4
x i yD 2G 3/2

, ~48!

n-

l
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where r,p,n(m) are given by Eqs.~2!, ~7!, ~13!, and ~14!,
x i5r i

m/r i
r , C, and G follow from Eq. ~19! and Cs is the

speed of sound, which for the equation of state~2!, has the
form

Cs
25

c2

3 F11
3r (m)

4r (r ) G21

, r (m)5mc2n(m),

r (r )53n(r )kBT.

Evaluating Eq.~48! for y5yD'102.4, e'1/x i'103, and
r i

(r )'aBTi
4'7.53109 ergs/cm3, yields MJ'1049 g m, or

approximately 1016 solar masses. This value coincides w

FIG. 7. Comparison betweent, the time scales of Thomson (tg)
and Compton (tc) scatterings, andtH . The figure depicts the ratio
log10(t/tH), log10(tc /tH), and log10(tg /tH) along the range 0
, log10(y),3 for D i

(m)5(3/4)D i
(r )2D i

(s) with D i
(r )51024 and

1028,D i
(s),1024. The curves that branch out correspond

log10(t/tH) for the displayed values ofD i
(s) . The thick curves are

log10(tc /tH) ~above! and log10(tg /tH) ~below! for the same values
of D i

(s) andD i
(r ) . Notice thatt is much more sensitive to changes

D i
(s) than tg and tc . It is clear from the figure thatt'tg for D i

(s)

'1028 for temperatures near the decoupling temperature, obta
from the conditiontH5tg and closely matchingTD'43103 K
@marked by log10(y)'2.4#. The figure also reveals thatt andtc are
of the same order of magnitude for higher temperatures close
t5t i . This is consistent with the fact that Compton scattering is
dominant radiative process in this temperature range.
10402
the Jeans mass obtained for baryon dominated perturba
models as decoupling is approached in the radiative era

XII. CONCLUSIONS

We have derived a new class of exact solutions of E
stein’s equations providing a physically plausible hydrod
namic description of a radiation-matter~photon-baryon! in-
teracting mixture, evolving along adiabatic but irreversib
thermodynamic processes. The conditions for these mo
to be consistent with the transport equation and entropy
ance law of EIT~when shear viscosity is the only dissipativ
agent! have been provided explicitly, and their effect on in
tial conditions have been given in detail, briefly discussi
the analogy of these conditions with gauge invariant init
perturbations in the isochronous gauge. As far as we
aware, and in spite of their limitations mentioned in the I
troduction, we believe these models are the first exampl
the literature of a self-consistent hydrodynamical approac
matter-radiation mixtures that~a! is based on inhomogeneou
exact solutions of Einstein’s field equations and~b! is ther-
modynamically consistent. We believe these models can
useful theoretical tool in the study of cosmological mat
sources, providing a needed alternative and complemen
the usual approaches based on perturbations or on nume
methods.

The solutions have an enormous potential as model
applications of astrophysical and cosmological interest. C
sider, for example, the following possibilities

~a! Structure formation in the acoustic phase. There is a
large body of literature on the study of acoustic perturbatio
in relation to the Jeans mass of surviving cosmological c
densations. Equations of state analogous to Eq.~2! are often
suggested in this context@1–4,6,10#. Since practically all
work on this topic has been carried on with perturbations
a FLRW background, the exact solutions derived and p
sented here may be viewed as an alternative treatmen
this problem.

~b! Comparison with Perturbation Theory. The models
presented in this paper are based on exact solutions of
stein’s field equations, but their initial conditions and evo
tion can be adapted for a description of ‘‘exact spheri
perturbations’’ on a FLRW background. It would be e
tremely interesting, not only to compare the results of t
approach with those of a perturbative treatment, but to p
vide a physically plausible theoretical framework to exam
carefully how much information is lost in the nonlinear r
gime that falls beyond the scope of linear perturbations.
have studied in this paper only the caseF50 in Eq. ~11!,
thus restricting the evolution to the ‘‘growing mode’’ sinc
all fluid layers expand monotonously. The study of the mo
general case, whereF(r ) in Eq. ~11! is an arbitrary function
that could change sign, would allow a comparison with p
turbations that include also a ‘‘decaying mode’’ related
condensation and collapse of cosmological inhomogenei

~c! Inhomogeneity and irreversibility in primordial den
sity perturbations. The initial conditions of the models with
D i

(s)Þ0 are set for a hypersurface with temperatureTi

'106. These initial conditions can be considered the e

ed

to
e
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product of processes characteristic of previous cosmolog
history, and so the estimated valueuD i

(s)u'1028, related to
the spatial variation of photon entropy fluctuations, can
used as a constraint on the effects of inhomogeneity on
mordial entropy fluctuations that might be predicted by
flationary models at an earlier cosmic time. Also, the dev
tion from equilibrium in the initial hypersurface
~proportional to@D i

(r )#2'uD i
(s)u) might be helpful to under-

stand the irreversibility associated with the physical p
cesses involved in the generation of primordial perturbati
,

e

se

i-
oc

it.
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@34#. These and other applications are worth to be und
taken in future research efforts.
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