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Exact inhomogeneous cosmologies whose source is a radiation-matter mixture
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Roberto A. Sussman
Instituto de Ciencias Nucleares UNAM, Apartado Postal 70-543itteDF, 04510, Mgico

Diego Pava
Departamento de Bica, Facultad de Ciencias, Universidad Antoma de Barcelona, E-08193 Bellaterra, Spain
(Received 31 August 1998; revised manuscript received 12 April 1999; published 25 Octobgr 1999

We derive a new class of exact solutions of Einstein’s equations providing a physically plausible hydrody-
namical description of cosmological matter in the radiative era, between nucleosynthesis and decoupling. The
solutions are characterized by the LétreiTolman-Bondi metric with a viscous fluid source, subjected to the
following conditions: (a) the equilibrium state variables satisfy the equation of state of a mixture of an
ultrarelativistic and a nonrelativistic ideal gases, where the internal energy of the latter has been nébjected,
the particle numbers of the mixture components are independently cons@vit viscous stress is consis-
tent with the transport equation and entropy balance law of extended irreversible thermodynamics, with the
coefficient of shear viscosity provided by kinetic theory. The satisfactiot@of(b), and (c) restricts initial
conditions in terms of an initial value functi(mi(s) , which in the limit of small density contrasts becomes the
average of spatial gradients of the fluctuations of photon entropy per baryon in the initial hypersurface. For
Afs);&o and choosing the phenomenological coefficients of the “radiative gas” model, we have an interactive
photon-baryon mixture under local thermal equilibrium, with radiation dominance and temperatures character-
istic of the radiative era (FOK>T>10® K). Constraints on the observed anisotropy of the microwave
cosmic radiation and the condition that decoupling occur§affp~4x10® K yield an estimated value
|A®|~10"8 which can be associated with a bound on promordial entropy fluctuations. The Jeans mass at
decoupling is of the same order of magnitude as that of baryon dominated perturbation meti@éi&V).
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[. INTRODUCTION Dissipative sources have been incorporated numerically
within a purely FLRW geometry16] or following a pertur-
The radiative era of cosmic evolution comprises the pebative approach17]. However, the literature still lacks an
riod from the end of primeval nucleosynthesis to the decoualternative hydrodynamical treatment, based on inhomoge-
pling of matter and radiatiorisee Refs[1-11]). A gross Neous exact solutions of Einstein’s equations with dissipative
description of cosmological matter sources in this period issources and fully complying with the thermodynamics of a
given by an interactive mixture of ideal relativistic and non-radiative gas within a transient regime. Ideally, such exact
relativistic gaseg“radiation” and “matter”) in local ther- ~Models should include all dissipative age(itsat flux, bulk,
mal equilibrium(LTE). an(_j shear viscosityand should t_)e consistent with the thep-
The standard approach to this type of matter source i%encal framework of extendled _|rreve(S|bIe thermodynamics
cither a Friedmann-Lerfmia-Robertson-Walker(FLRW) see Refs[17-29), thus satisfying suitable transport equa-

spacetime with equilibrium kinetic theory distributions tions comp!ymg with .cau.sallty, with phenomenologmal co-
fficients given by kinetic theory for this type of source.

[5-7], gauge '”Va”?‘”t perturbations on a FLRV_V backgrouncgince this general treatment would be mathematically un-
[4_6’8_10’. or various types_ of hydrodynamlcal quels, tractable, we aim at the best possible approach based on
[12—14 which, in general, fail to incorporate a physically oy ot solutions of Einstein's equations. Therefore, we have
plausible description of the interaction between matter angl,5qe the following simplifying assumption@) the matter
radiation. Even if we argue that the universe is “almostggyrce s a fluid with shear viscosity but without heat con-
FLRW” or “almost in thermal equilibrium,” the small de-  gyction nor bulk viscosity(b) the equilibrium state variables
viations from equilibrium are extremely importarf, 2,4—  satisfy the equation of state of a mixture of relativistic and
6,8,9], to account for most interesting phenomena of cosmigonrelativistic ideal gases, where the internal energy and
evolution: nucleosynthesis, structure formation, abundancgressure of the latter have been neglectellthe particle

of relic gases, etc. Models with perfect fluid sources, whethenumbers of each mixture components is independently con-
hydrodynamid 12,13, or based on kinetic theof{15], nec-  served,(d) we exclude dark matter and/or exotic particles
essarily assume a quasistatic adiabatic and reversible evoland assume instead a tight coupling between phdi@mka-

tion and thus, fail to incorporate into the resulting picturetion) and baryons and electrorimattey, hence there is a
even small deviations from equilibrium. common temperature for the mixtuteTE), while the mi-
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croscopical interaction models are the various processes tdtter vanish a FLRW spacetime can always be obtained as
radiative transfe[2,6,8,23,25—-2] Thomson scattering, bre- the homogeneou&nd reversible subcase. In Sec. VIl we
hmstrallung, free-free absortion, etc. Although this type ofderive the conditions that the models must satisfy in order to
interactions involve mostly photons and electrons, the dybe consistent with the theoretical framework of irreversible
namics of the matter component is governed by the baryongxtendEd thermodynamics, in the case where shear ViSCOSity
since the latter provide most of the rest mass content of noriS the only dissipative agent and the coefficient of shear vis-
relativistic matter(without dark matter cosity is that given by kinetic theory for the radiative gas
Restrictions(b) and (c) are easy to justify: since the ratio [2:23,25-27,29 This leads to an entropy balance law and a
of photons to baryons is such a large numberl(?), we suitable trgr)sport e_quatlon for shear V|scos_|ty that is satlsfled
can truly ignore the pressure of nonrelativistic matter. Also,for @ specific functional form of the relaxation time. Condi-
after nucleosynthesis, in the temperature rafigel°, mat- t|o_ns are given so that the Iatter_ guantity behgves as a relax-
ter creation and anhilitation processes balance each other agon parameter for an interactive cosmological mixture of
effectively cease to be dynamically importd8t6]. On the mattgr and radiation. The.sga conditions of thermodynamlgal
other hand, the lack of heat conductifrestriction ()] is consistency are t.hefn explicitly t(.as_tt'ad on tht'a.models, leading
more difficult to justify. It can be associated with an adia-t0 @ Sét of restrictions on the initial conditiorithe latter
batic (zero heat flux but still irreversible evolutiofnonzero ~ diven in terms of the gauges of initial density constrasts
viscosity, and can be a reasonable approximation on specifi¢ '€ Mmost relevant result is that thermodynamical consistency
conditions. For examp|e, for a radiative gas at h|gher temCOI’IStI’aInS an initial value adimensional functl@ﬁ) y which
peratures shear viscosity dominates over heat conductiof? the limit of small density contrasts is approximately the
but the latter becomes significant as the mixture cgals average gradient of the photon entropy per baryon along the
The lack of bulk viscosity is a better approximation: it is initial hypersurfacet=t;. An analogy is provided with the
negligible for a radiative gas in the temperature rangeheory of perturbations on a FLRW background, whereby
16° K<T<10° K that we are interested §i2,17,21,23,2%  A{®=0 is formally analogous to the definition of initialy
becoming important for higher temperatufése mid relativ- ~ adiabatic perturbations in the sincronous ga{®,9,1Q.
istic regime wher&gT~mc? [17,28,29). However, we ac- The constraints on the observed anisotropy of the microwave
cept that ignoring these dissipative fluxes weakens the scop@smic background, as well as the condition that decopling
and validity of the models, but we argue that this is compenoccurs atT=Tp~4x10° K, leads to the estimated value
sated by the simplification of the field equations, leading tdAi(S)|~10‘8. Since initial conditions of the radiative era
exact forms for the equilibrium state variables and shear visshould be traced to previous periods of cosmic evolution,
cosity that still satisfy(under the restrictions mentioned this constraint can be related to maximal bounds on entropy
thermodynamically consistent relations. fluctuations in primordial perturbations. Finally, we compute
The models we present are based on the spherically synthe Jeans mass associated with the thermodynamically con-
metric Lematre-Tolman-Bondi metrics, usually associated sistent models, leading to a value similar to that obtained for
with dust source$30,31]. However, this metric is compat- baryon dominated perturbation modelg;~10'M .
ible with a comoving fluid source with zero heat flux but
with anisotropic stresses, which we describe as shear viscos-
ity. Obviously, the lack of heat flux and four-acceleration
necessarily implies a very special shear viscous tensor whose
divergence exactly balances the nonzero spatial gradient of A radiation-matter mixture can be described by a mixture
the equilibrium pressure. Considering this metric and thisof two ideal gases: one an ultrarelativistic gas of massless
source, we impose on the equilibrium state variables thearticles, the other a nonrelativistic ideal monatomic gas
equation of state for a mixture of ideal gagesder the re- with m being the mass of the particles. This is characterized
striction (b)]. The field equations can be solved up to aby the total matter energy and pressure:
guadrature, without having to make any assumption on the
form of the shear viscous pressure. The latter, as well as all 3
equilibrium state variables can be determined from the solu- p=mc?n(M+ En(m)kBT(m)+3n(’)kBT(r), (13
tion of the quadrature, up to two initial value functions that
can be identified with the initial energy densities of the mat-
ter and radiation components. We consider only the case that p=nMkgT(™+nOkgT®, (1b)
would be equivalent to spacelike sections of zero curvature.
A generalization of this class of exact solutions to the morevherekg is Boltzmann’s constant and T are particle num-
general Szekeres-Szafron metrics admitting no isometrieBer densities and temperatures of the two components, dis-
has been published recenfl$2], while the study of a non- tiguished by the superindicés) (mattey and(r) (radiation.
relativistic ideal gas is considered in RE33]. If there is local thermal equilibriunLTE) between the com-
Once the field equations have been integrated, we define@onents, the latter interact and evolve with the same tem-
set of initial value functions that gauge the deviation fromperature:T")=T(M=T. If the components are decoupled,
homogeneity of the average of initial density contrasts. Theeach gas evolves with a different temperature.
terms involving various gradients of metric functions can be  Assuming LTE, ifn{™<n("), but the rationc?/kgT is not
given in terms of these gauges, so that in the limit when thenegligible, then Eq(1) can be approximated by

II. INTERACTING MIXTURE OF RADIATION
AND NON-RELATIVISTIC MATTER
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~mcn(™+ 30k, T, (2a) Y'?
P ® A=~ AP+ T—=dr?+ Y2[dP+ si(9)d ], (5)
p~nkgT, (2b)

whereY=Y(t,r), F=F(r), and a prime denotes partial
an equation of state describing a radiation dominated mixturéerivative with respect. Just as in the LTB dust solutions,
in which the presence of nonrelativistic matter is dynami-we assume the coordinates in E§). to be comoving and the
cally important. If we assume nonrelativistic matter to befour-velocity of the fluid source to ba®=cé?, a geodesic
made up of baryon&with mbeing a protonic mas@nd since e field, sincel,=u,,u?=0. Other kinematic invariants

i Min(N~10"9 j ) X .
B oasonaie . 25500 Wil EG) et Sclr expansin-— . an
' q bp the shear tensar,p,=U4.p)— (@/3)h,y,, given in the coor-

tion in the temperature range 0T<10f K, characteristic .
of the “radiative era” from the end of nucleosynthesis to thedlnates of Eq(5) by
transition between radiation to matter dominance, including

the recombination and decoupling eras. At such tempera- @:Y_, ﬁ (63)
tures, it is also safe to assunhg,3—6 that electrons and Y Y

photons interact mostly through Thomson scattering but )

creation and annihilation processébremsstrahlung and a 1Y Y
free-free absorptionroughly compensated one another so op=diad 0,~20,0,0], T=3\v v | (6b)

that particle number densities of the components of the mix-
ture satisfy independent conservation laws. Once the decoyghile the most
pling of the matter-radiation mixture takes place at abourby
T~4x10® K, the assumption of LTE is no longer valid and
interaction between components ceases. Equation of(4jate I12=diad 0,— 2P,P,P], (60)
can also be approximated by a form similar to E). with
the internal energy of radiation taking approximately the
Stefan-Boltzmann lay ) =agT*, whereag denotes the ra-
diation constant. However, out of thermal equilibrium the
Steffan-Boltzmann law is incompatible with the ideal gas
equation of state.

Having in mind the conditions justifying E@2), we will

general form dI{ for the metric(5) is given

whereYEuaY,az Y andP=P(t,r) is an arbitrary function.
Notice that a comoving and nonaccelerating four-velocity
does not implyp’ =0, as in the perfect fluid cas@@—G{
=0). As revealed by the momentum balance IMATab;b
=0, applied to the viscous fluid sour¢®), we have

describe a matter-radiation mixture evolving along adiabatic Y’
but irreversible processes by the fluid tensor hg(p,b+ Hbc;dth):o = (p—zp)’+6p7:0
Tab:puaub+ phab+ Hab, (3) (7&)

showing how the divergence of the shear viscous tensor ex-
actly balances the nonzero pressure gradient. The energy bal-
anceu,T?°, =0, is given by

hab=c~2uauP+ g3, U, I13P=0, II12=0,

wherep,p satisfy Eq.(2), u? is the four-velocity shared by
radiation and mattel] 2" is the shear viscous pressure tensor 4
(a symmetric traceless tensomhich arises because of the pt+(p+p)®+0,I13°=0 = p+ §®p+ 60P=0
matter-radiation interaction, and particle number densities

satisfy the conservation laws (7b)

illustrating how the termo,, I13°=60P can be understood
as an interaction term responsible for local energy exchange
between matter and radiation.

Integration of the conservation law4) for (5) yields

(nMu?)..=0, (nMud).,=0. )
As mentioned previously, bulk viscosity is negligible within
the temperature range we are interested48,2,25-28
while even if neglection of heat conduction can be justified
for relativistic temperaturel], it does weaken the scope of n(m = ni(m)
the models. However, this restriction is compensated by the

obtention of exact solutions that are still thermodynamically

consistent. wheren{™ n{") depend only orr and are the particle num-

ber densities of nonrelativistic matter and radiation, evalu-
ated along a suitable initial hypersurface labeledtby; .
The subindex affixed to any quantity, a¥;, will denote

Consider Eq.3) as the source of the Lenta-Tolman- henceforth initial value functionfunctions oft,r evaluated
Bondi (LTB) metric ansatz, usually associated with spheri-alongt=t;). It is important to state that our initial conditions
cally symmetric Lemare-Tolman-Bondi dust solutions do not refere to present cosmic tinfesually labeled as
[30,3]] =1y), and so we will not use the subindex O.

n®=n{®

Y ) 3Y!1Y,

I (Yi)?)Yi,/Yi
Y'Y’

Y/ oyy'

Y

lIl. THE LEMAI "TRE-TOLMAN-BONDI METRICS
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The spherically symmetric LTB metrid¢$) are contained
within a larger class of more general metritise Szekeres-
Szafron metric$30,31)), admitting in general no isometries.
The integration of the field equations for E), given a
source(3) satisfying Eq.(2), is examined in the next section.

For the case of more general Szekeres-Szafron metrics, see

Ref. [32].

IV. INTEGRATION OF THE FIELD EQUATIONS

Einstein’s field equations for Eq&s) and(3) are

[Y(Y?+Fc?)] .
kp=———"—=-G', 9
1Y v2y’ t ( a)
[Y(Y2+FcH)+2Y2Y) 1, .
Kp=— T =3(2G%+G')),
(9b)
o Y [ Y(Y2+Fe?)+2Y2Y|" 1 ol o
el v B
(90

wherexk=8xG/c?. Imposing on Eqs(9a) and(9b) the equa-
tion of state(2), using Eq.(8) and integrating with respect to
r yields the following constraint:

2Y(Y2+Fc?) +Y2Y - chzf n{™y2y!dr=x(t),
(10

where\(t) is an arbitrary integration function. It is impor-
tant to remark that Eq10) follows only from Eqgs.(9a) and
(9b) without involving Eq.(9¢), i.e., it was not necessary to
make any assumption regarding the formPfin order to
obtain Eq.(10). A second integration of the field equations
necessarily requires settingt) =0 in Eq.(10), leading to

v2=SIMrw M —Fc? (12)
Y Y ’
where
M:j piMy2y!dr, pM=mcn{™, (12a
W= f pY2Y!dr, p=3n"kgT;,  (12b

so thatp{™,p{") respectively define the initial densities of

the nonrelativistic and relativistic components of the mix-

ture.
In the remaining of the paper we restrict ourselves-to

=0, similar to the choice of spacelike sections of zero cur-

vature in FLRW geometry, leaving the caBe: 0 for a fu-
ture analysis. An explicit integral of Eqll) in this case is
given by

PHYSICAL REVIEW D 60 104023

g\/ﬁ(t—ti)= Wt e(y—2e)—J1+e(1-2¢), (133
where

kM

B W
Yi?’, M’

(13b

Y
2 €= Y=v-
I

It is possible to invert Eq(13a), thus obtaining/y=y(t,r) as

a complicated, but closed analytic form, where thdepen-
dence is contained in the functions,e appearing in Eq.
(13b). However it turns out to be more convenient to use
Egs.(11) and(13) to simplify the field equations and radial
gradients ofy in order to express all state and geometric
variables in terms ofy and suitable initial value functions
related to those of Eq$12) and(13b).

V. THE STATE VARIABLES

From Eq.(8) and Egs.(11)—(13) it is possible to obtain
the state variablesa™ n®™ T p(™M () p P. However, be-
fore doing so it is useful to define the averaged initial den-
sities

f pMdYD) gy

Y vE

(p™)=

f pld(Y0) g
Y3 ve

(p")=

(14)

averaged over the volumé®. Since the solutions allow for
an arbitrary rescaling of the radial coordinate, without loss of
generality we can seledt;=rR;, whereR; is a characteris-
tic constant length scale. Therefore, the volu¥fg evalu-
ated from the symmetry center=0, to an arbitrary fluid
layerr, can be characterized invariantly as the volume of the
orbits of the rotation group SO(3) in the hypersurface
=t;. In the Newtonian limit, the distanc¥; becomes the
radius of the circular keplerian orbit in the field of E).

Together with the averaged initial densities, we shall de-
fine the quantitiea\(™ ,A(") given by

[ tomrvgar o
1

. WM (M)
= pi(m)=<pi(m)>[l+Ai(m)], (15a
[torviar o
NG -
' SW (")
= pi(r)=<pi(r)>[1+Ai(r)], (15b

104023-4
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whose interpretation as effective initial density contrasts is

discussed in the following section. Using E¢$4) and (15)
we can rewriteu, € in Eq. (13b) as

M:£<p(m)>: Kp'(m) — <Pi(r)> :ﬂ 1+Ai(m)
3V T 1AMy T pmy T pm g A0
(16)

The state variables™ ,n(" p,p,P now follow by inserting
Eq. (11 into Egs.(8) and(9), while T is obtained with the
help of Eq.(2). This yields the following forms:

(m) n(®)
nM=—"— n=—— (178
y3F y3l"
T=—v, (17b)
(m) (r)
Pi pi 1
— (m) (0 _
p=p"+tp y? +y4‘1’ T (179
(r)
pi’ ¥
p= 3_y4 T (17d
(r)
_hi @
~ T (179
where the function$’, ¥, and® are given by
Y'IY (1-T) (1-4I")
l=—— ¥v=1+———, &=1+—-—7-—.
Y1V 3(1+A0) 3(1+A0)
(18)

The solutions characterized by Ed®),(4),(5)—(18) be-
come determinate oncE above is obtained in terms of
from Eq. (13) for given initial value functlonso(m) p(r)
(re-expressed in terms of the quantltmgn) A(’) ,€). This
transforms Eq(18) into

I'=1+3AAM+3BA", (199
=1 AA+BAT (19b
- 1+A0
—4AA™ +(1-4B)A"
O= , (190
1+A"
where
1 VYy+e
A=— y2—46y—8€2—y—(1—46—862) ,
3y? Vite
(209

PHYSICAL REVIEW &0 104023

Vy+e
Vitel

with A{™ A given by Eq.(15). The kinematic parameters
0,0 follow by inserting Eqg.(11) with y=Y/Y; and Eq.
(199 into Eqgs.(6a) and(6b):

o Vuy+eAAM+B A0] -
Y [1+3(AAM+BAM)]

(1+2¢)

:—2 y+26_ (20b)

Ayt el1+(3A+yA)A™ +(3B+yB)A"]
y1+3(AAM+BA")]

(22

w

whereA | ,B , are the derivatives oA,B in Eq. (20) with
respect toy. Given a set of initial conditions specified by
e,AM A" Egs.(17) and (19)—(22) provide fully deter-
mined forms of the state and geometric variables as functions
of y and the chosen initial conditions.

The solutions presented so far contain a FLRW particular

case, obtained by setting in Eq4.1) and (12) n{™=n{™
nD=n{" and T,=T;, where n(™ n{" T, are arbitrary
positive constants. Under this parameter specialization, Eq.
(13) holds withY=R(t)f(r) [so thaty=R(t)] and Eq.(5)
becomes a FLRW metric. This leads to

(p(™y=p{", =0,

wherep{™M=mcn(™, p(V=3nVk,T,, so thatT=T(t), p
=p(t), p=p(t), andP=0, with Eq.(3) becoming a perfect
fluid tensor wherep andp satisfy(2). The FLRW Ilimit can
also be characterized hy(™=A{"=0, and so, from Eq.
(11), Egs.(21) and(22) becomeo=0 and®/3=y/y=R/R.
Another limit is that of LTB dust solutions, obtained by set-
ting T;=0 in Egs.(12b and(11), so that Eq(17) becomes
T=p=P=0 andp=mc*n(™

VI. DENSITY CONTRASTS AND REGULARITY
CONDITIONS

Since the radial dependence of all state and geometric
variables is sensitive tA{” andA(™ defined in Eq(15), it
is important to provide an interpretation for these quantities.
From Eqs.(14) and(15), it is evident thatA(" andA{™ are
effective “gauges” of the deviation op{™ ,p,r) from their
volume averages for every closed interval in the range of the
integration variabler along the initial hypersurfacé=t;.
The signs of these quantities characterize initial density pro-
files, with “density lumps” as these densities decrease
([p{™]' <0, [p{"]'<0) or “density voids” as they in-
crease [[p{™]’>0, [p"]'>0). Also, with the help of Rolle’s
theorem applied to Eq14) we find thatA{"” andA(™, as
adimensional functions af, are constrained by the maximal
density contrasts in terms of

104023-5
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A(m) <pi(m)max_
| i |\ (m)min ’
i
(rymax
p.
(r) ! _
|Ai |< (r)min '

where the superindices “max” and “min” respectively in-

dicate the maximal and minimal values pf™ ,p{" in any
interval O<r along the hypersurfade=t;. Small initial den-
sity contrasts obviously imply

p{mIm p{mmn (M (M | A(M] <1,

(233

PO p O o0 (p0) = AL <1, (23b)
Lm0 kT o okaTy
3m p{™ ™ me mc’

(239

allowing us to consider a formal analogy betwe:kai?i) and

A™ and energy density “exact” initial perturbations. This

is further reinforced from the definitions in E(L5), and by

remarking that the FLRW “background” follows by “turn-

ing the perturbations off,” that is, setting{™=A("=0.

PHYSICAL REVIEW D 60 104023

the models. According to EIT, the entropy of a system away
from thermodynamical equilibrium depends not only on the
“conserved” (equilibrium) variables(i.e., particle number
densities, energy density and so),ohut also into the non-
equilibrium fluxes(i.e., heat flux, and bulk and shear dissi-
pative stressgsThis theory is supported by kinetic theory of
gases, information theory, and by the theory of hydrody-
namical fluctuation—see Rdi23] for a detailed description.
When shear viscosity is the only dissipative agent, the cor-
responding generalized entrogyof radiation plus matter
obeying the usual balance law with non-negative divergence,
up to second order ifI2® takes the form

o
s=s®+ ﬁ_HabHab, = (snuf).,=0, (25)

wheres(® is obtained from the integration of the equilibrium
Gibbs equatiom=n{+n(™ and « is a phenomenological
coefficient to be specified later. The evolution of the viscous
pressure is, in turn, governed by the transport equation

THCd hghg-l—l_[ab +27]0’ab:O,

1+ Tyl
2Ty

,C

(26)

where » and r are the coefficient of shear viscosity and the
relaxation time of shear viscosity, respectively. The former

An important restriction that the solutions must satisfy isas well as other related quantities can be obtained by a vari-

the following regularity condition

Y'Y

r=——
/1Y,

>0, (24)

which prevents negative densitie§”,n(™  as well as the
occurrence of a shell crossing singulafi8b]. This singular-
ity is characterized by unphysical behavior becalisap-
pears in the denominator of Eqél7a, (170, (17d), and
(17e, but does not appear if17b). Therefore, if=0, the
densities, pressure and viscous pressure divergeTfitiite

(in general, a totally unacceptable situation that can be

ety of meang$2] including kinetic theory, statistical mechan-
ics, or both[25—-28. The relaxation timer, is related to and
larger than the mean collision time between particles and it
may, in principle, be estimated by collision integrals pro-
vided the interaction potential is known. As a physical refer-
ence to infere the form these coefficients might take, con-
sider the “radiative gas,” wittp,p satisfying Eq.(1) [or the
approximation2)]. For the radiative gas the forms gf« in
terms of the relaxation time of the dissipative processe

T 5

—_— = 2
2749 8p™ @0

4 (r)
T TP e T T

avoided by considering only the range of evolution of the

models to spacetime seccions witht; satisfying Eq.(24).
The fulfilment of Eq.(24) depends on the functios B and

where p(" is either n(VkgT or agT* and the subscript
“(rg)” emphasizes that these quantities are specific to the

on the magnitudes of the initial density contrasts gauged byadiative gas.

A andA(™ . This will be examined further ahead together

with the conditions for thermodynamical consistency.

VIl. THERMODYNAMICAL CONSISTENCY

We verify now the compatibility of Eqs13)—(22) with
Egs. (25—(27). Integrating the equilibrium Gibbs equation
and substituting Eq(27) into Eq. (25), we obtain

4agT? n/T\3 15(P)\?2
The models derived and presented in the previous sections S=——m TKe W(?) —?(—)
must be compatible with a suitable thermodynamical formal- 3n; n ! P
ism. For this purpose, it is advisable to leave aside the “con- 2a.T3 W3 15K/ P2
ventional” theory of irreversible thermodynami¢86,37, =21 kgln| — __<_) (28)
whose transport equations are unphysical as they violate 3n{" I 32\v)’

relativistic causality of the dissipative signals as well as sta-

bility of the equilibrium stategsee, e.g., Refd18,19,24).  where the approximatiom=nm+n(~n( was used and
We shall consider instead “extended irreversible thermodythe initial value ofs(® has been set to be the equilibrium
namics” (EIT) [20—23, a theory free of such serious draw- entropy per photon. Equatiof28) reflects the fact that we
backs[24], and so a more adequate theoretical framework foare neglecting the contribution of the entropy due to nonrel-
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ativistic particles, a justified approximation since the latterwhere ® follows from Eq. (22). Such comparison should
are much less abundant than the photons. provide an insight into the time scales associated with the
Ideally, the transport equatid26) should be satisfied for mixture interaction and decoupling. However, strictly speak-
7 having the form(27), associated to the radiative gas, anding, the criterion for interaction and decoupling in cosmo-
the relaxation timey, given by collision integrals obtained logical gas mixtures is not given by comparingndt, but
from kinetic theory. However, as mentioned in the Introduc-by comparing the latter with the timescales associated with
tion, and in order to obtain exact expressions for all thermothe various reaction rates of the radiative processes involved,
dynamical parameters, we will assumegiven by Eq.(27) particularly the photon mean collision tint¢ obtained from
and deducer from the fulfilment of Eq.(26). This yields Thomson scatterinfp,6]. Hence, we can consider this relax-
ation time as approximately gauging the interactivity of the

9 (N2 matter mixture by demanding that for a range of the evolu-
—Pd Z[1+Ai ] tion of the mixture, approximating its interactive range, we
T= G 5 >+ must have
0 (4/5[3+4A;"+(13/32I']°+(171/256T
(29 <ty (32b

While there is no need to justifyy given by Eq.(27), this  while, as the mixture evolves and the components decouple,
form of 7 is acceptable as long as E@9) satisfies the re- eventually

quirement of a relaxation parameter: it must be a positive

quantity and must comply with a positive entropy production >y (329

law s=0. It is desirable that should somehow relate or «. . . .
approach its definition as a collision integral and that itsSInceT in Eqs.(27) and(29) must behave qualitatively simi

behavior be qualitatively analogous to a suitable mean coIIi!ar o t, [29], the comparison in Eqs32b),(329 should
sion time, therefore it should be an increasiggcreasing yield qualitatively analogous results as a similar comparison

o e ) . R betweert, andt, . The temperature associated with the pas-
function if the fluid is expgndlngcollapsmg. Evaluayngs sage from Eqs(32b and (320 [obtained from Eq(17b)]
from Eq. (28) and comparing with Eq(29), we obtain the  should approximate the decoupling temperature obtained by
following relation betweers and 7: the conditiont, =ty . This point is examined in Sec. XI.

Equationg31),(32), together with the regularity condition
(24), provide the necessary and sufficient conditions for a
theoretically consistent thermodynamical description of the
solutions within the framework of EIT and kinetic theory
consistent with the general relatiorf22] (nswf)., applied to the radiative gas. We examine the effect of these
=11,,I12%/(27nT) associated with Eq$25) and(26). As a  conditions in the following section.

consequence of Eq30), s>0 and >0 imply each other.
Also, from the form of Eq.(29), necessary and sufficient VIll. THERMODYNAMICALLY CONSISTENT MODELS

conditions for positiver,é,p,T can be given by A. Conditions (24) and (31a)

From Eqs(19a and(19b), the fulfilment of Eqs(24) and
(319 is equivalent to the following condition:

- 15kg
S= 47

=]
p

(30

2 18k (@2
160 W)

V>0, (313

oc®<0, (31b 1
- §<AAi(m)+ BAN<1+A", (33
while the condition ensuring concavity and stabilitysodan
be phrased folr an expanding fluid configgration"as the reprom Eq. (20), since the functionsA and B diverge asy
quirement thas decreases for increasing (7>0<s<0). -0 there are necessarily valuesyofor which Eq.(33) is
From Eqs.(30),(31), this follows as violated. However, from Eqs19a,(19b) we havel’;,=V;
=1, and the range of we are interested ig=1. As shown
(p") by Figs. 1a) and 1b), displaying the implicit plots ofl"
3p0 —-<0. 819 0 andWw=0 for an initial temperaturd;~10° K [from
Eq. (230, e~10°], there are no zeros df and ¥ for y

(m) (r) i
So that, if Eqs.(24), (318, and (31b) hold, then Eq(319  =1. [A{™[<1 and[A;”|<1. Therefore, Eq(33) holds in
. . . . . the range of interest for a large class of initial conditions.
reduces tor>0. Sincer is a thermodynamic relaxation pa-

rameter, it is important to compare it with another natural »

timescale of the models: the Hubble expansion time defined B. Conditions (31b), (319), and (32)

by For the examination of these conditions we will assume
that Eq.(33) holds fory=1, |A(™|<1, and|A("|<1 [see
Figs. 1@ and 1b)]. Then, with the help of Eq419)—(22),
condition(31b) is equivalent to

s 20T (p{")

.> -=
0 S aue 0

3
tH_61 (323
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(b)

FIG. 1. The equation =0 and¥ =0. Implicit plots of the solution of =0 (a) and¥ =0 (b), in terms ofA{™, A" and log(y),
with T, ¥ given by Eq.(19). The grid marks the initial surfacg=1, and is not intersected by the surfades 0, =0, illustrating thatl"
and¥ have no zeroes in the evolution range 1 for density contrasts bound byl< Ai(m)sl andflsAi(’)sl. We have considered

n{D/n{M~10°,

m to be the mass of a proton afig=10° K, hence we have made the approximatiiBo): e~10 °T;~10®. These(and

the remaining plots were obtained with the help of the symbolic computing packeget v [38].

C=4AA[A{M]?+(4B—1)B [A("]?

+[4AB,+(4B—1)A,JAMAN<0. (349

An insight into this expression follows by looking at its ini-

tial value

—AM

T 2(1+e)

C, [AM+eA(™ (34b)

and its asymptotical behavior s> 1

4€[ AP

ANAP® 35 enA®
+ +—
9y? Vit+ey®? 9 J1+ey™?

_MIAPT 20 AP OIANT 64 ANAP

-|-_
241+ €)y* 63 1+ ey®?
€ )\l[Ai(S)]z-i-24}\2Ai(r)A(5)+g[Ai(l’)]2
18 (1+e)y*
55 €\A( . N
T8 T Y ) (349
where
(s) 3 (r) (m)
AT=ZATAT (35

and
A=AM\,—3e(1+26)A",

A=1-8e+2e3+2€* N\,=8e’+4e—1.

As shown by Eq(340), the quantityA(® defined in Eq(35)
plays a fundamental role with regards to the fulfilment of
Egs.(31b and(31g. This suggest classifying initial condi-
tions in terms ofA(® . We shall examine Eqg31b), (310),
and(32) for each case\(®=0 andA(®+0 separately.

1. The caseA®¥=0

From Eq.(340), the conditionA(®=0 is necessary and
sufficient for havingC<0 asymptotically. In fact, substitut-
ing Ai(s)=0 into Eq. (3439, leads to the following dramatic
simplification ofC:

A(r) 2
o [80F(y+ae o6
8(1+e€)y®

so thatA{® =0 is a sufficient condition for the fulfilment of
Egs.(24), (31a, and(31b) along the rangg=1, for |A{")|
<1 and|A{™|<1.

Condition (310 is also satisfied, since increases mo-
notonously along the fluid world lines, behaving asymptoti-
cally as r~y®2 Hence, those models whose initial condi-
tions satisfyA(®=0 can be characterized as the subclass of
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acceptable situatiorgor example, ifA{" andA{™ have the
same sigh However, ay increasesr either changes sign or
diverges positively, depending on the zeroesdofand o.
Since we are assuming that E¢&4) and(314a hold, the sign

of 7, as given by Eq.(29), depends only on the quotient
®/o, and so the behavior afis strongly related to the signs
and zeroes of these functions. 4f>0 and, asy increases,
there is a zero ofp for o # 0, thenr passes from positive to
negative, but if the zero ofr appears first, them diverges
positively. A zero of® (with o#0) might be compatible
with Eq. (31b (7>0), but violates Eq(31¢ and so is un-
acceptable. However, a zero @f(with ® # 0) is acceptable,
since 7 would diverge positivel(asy—y, ) and so would
be a positive and increasing function along the rangeyl
<y, . In order to verify if this type of evolution is possible,
it is necessary to gather information on the zero®ando-.
Since these expressions are cumbersome, it is convenient to
examine their zeros graphically, and so we have plotted in
Figs. 3a) and 3b) the solutions of the implicit equations
®=0 ando=0, in terms ofA{™ | A{" and log(y), while
Fig. 4 displays the sectors in the plang™ ,A("” where®

=0 ando=0 occur. As these figures reveal, sufficient con-
ditions for the desired evolution are given by

0.6
0.58
0.56 4
0.54
0.52

taultH

0.5
0.48
0.46
0.44

0.42
-8

A®>0 for A(V>0, (379

FIG. 2. The ratio of relaxation vs Hubble times for the case AP<0 for Al"<0. (37
A®=0. This plot displays the ratie/t,,, as a function of logy(y)
and logo(|A("]) [denoted as “log(Dr), wherer is the relaxation  Therefore, ifA{®+0, conditions(37) are sufficient for the
time andty =3/ is the Hubble expansion time, given by E82)  satisfaction of Eqs(31b) and (310 along the range £y
and (29) under the conditiom\(¥=0. This ratio is less than unity <y, , wherey, is a zero ofos. Conditions(32) are satisfied
for all'y, and|A{”|<1 thus violating Eqs(32b) and (320). under the restriction$37). This will be discussed further
ahead in Sec. X.

models Complying with the conditions of thermodynamical IX. INITIAL CONDITIONS AND EXACT INITIAL
consistency in the asymptotic rangeyofThis point is con- PERTURBATIONS

sistent with the fact tha (¥ =0 is a necessary and sufficient
condition for having|P|/p=|®|/(2¥)—0 ands—0 asy
—o0, 50 that the fluid layers evolve towards an asymptoti
equilibrium state. However, usirtg,=3/0 calculated by in-
sertingA®®=0 into Eq.(22), we haver/ty<1 for all the
evolution of the fluid, thus failing to comply with Egs.
(32b),(320. This is illustrated by Fig. 2, and implies that the
relaxation timer cannot be associated with a radiation matter®
mixture whose components interact and then decouple.

The behavior of the quantits(® given by Eq.(35) de-
ctermines the set of initial conditions that characterize the
thermodynamical consistency of the models. Since this quan-
tity plays such an important role, it must be related to a
physically significant property along the initial hypersurface
t=t;. From Eg.(35), using Egs.(12), (14), and (15), we
tain

Ai(s)ngi(r)_Ai(mEE*‘ [log(W34M)]’ _ d[log2;] ,
4 4 [log(Y)]”  dllogY?]
(389

2. The caseA®+0

If A®+0, condition (31b) cannot hold along the full
range ofy [because of Eq(340], but might hold along a
restricted range of physical interes&y <y, for which the
mixture could be in the interactive stage. This situation is not ( _(r)>3/4
incompatible with the thermodynamical arguments of the 3= Pi
previous section, since the phenomenology of the radiative (pi(
gas model strictly applies if the mixture components interact.

The fact that conditiori31b) can hold for k=y=<y, follows In order to provide an interpretation fdB88), we remark
from evaluating the sign d; given by Eq.(34b), a quantity  [from Egs.(17), (19), and(28)] that the entropy per photon
that can be negativéso that7;>0) for a wide range of along the initial hypersurface

where

- (38b)
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2.5 2.5

log(y) 157 log(y) 151

0.5 0.5

02

— 4 0 s
(a) (b)

FIG. 3. The equationd=0 ando=0. Implicit plots of the solution ofb=0 (a) ando=0 (b), in terms of A{™ , A{", and log(y).
The “wall” where the surfacesr=0 and® =0 occur for values greater than=10? corresponds to the lingA (=A™ (or A{®=0). The
plots also illustrate that the values &f” , A{™ where a zero ofr occurs are clearly distinct from those associated with a zefb, déading
to conditi(zr;s(?,?). The vertical heighy= 107 is displayed in@) and(b), illustrating that the values af("” ,A{™ with 10?<y, <10® are very
close toA;®=0.

4aBTi3 15 [®,]? 4aBTi3 15 Ai(r) 2 The asspmptio_n of small density contrasts leads to a natu-
S=— 32" ¥ | = a2 3% e ral comparison with the theory of perturbations of a FLRW
3ng i 3n; 1+A background, in the isochronous gauge and considering a

mixture of radiation and nonrelativistic matter, see Refs.
is very close to its equilibrium value, since its off equilib- [4—6,8—10. Under these assumptions, matter and radiation
rium correction is proportional tpA("]?, a very small quan- densities are given by
tity since Ai(r) is already assumed to be small. Therefore,

using the approximations associated with small density con- p(m):ﬁm)[1+ sm7, (409
trasts[Egs. (239—(23¢)], we obtain
(aTH¥ (s) | s p=p"[1+ 5], (40)
p=BagT!, Sqr ol )
mc*(n{™) (n{™) | n{™

wherep™ p(") are the respective densities in a FLRW back-
(39
ground and 5M<1, §"<1 are the perturbations. The

implying that3,, is proportional to the ratio of the averages 92U9€ Invariant quantity
of photon entropy and baryon number density, whitbr
small density contraskss roughly equivalent to the averaged
ratio of these quantities. Hence, conditidt®=0 roughly
means an initial hypersurface with constant averages of pho-

ton entropy per baryon, while conditiq87) roughly means ) , .
[see Eqs(20)] that the sign of the spatial gradient of the which formally resembles E(35), defines the fluctuations

average of photon entropy per baryon must agree with tth photon e!'\tropy per baryon and leads to the classification
sign of the gradient of the initial photon energy densityras ©f Perturbations as

increases along=t;, it must increase for a density void

([p{"]">0) and decrease for a density lump{’]’ <0). Adiabatic 5=0, (41b)

3
5(5)225(0_ Sm (419
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. 1+§<5-m> (9
. B S A;Ni<§5_(r>_5,(m)>
Conl™ 14(s™) vPoayPiat o
d
~— (), 429
) (429

where s;<[p{"]¥* and n{" are the photon entropy and
baryon number density of the FLRW background in the hy-
persurfaceg=t;. The right-hand side of Eq42¢) illustrates
that, under the assumptiorid2a—(42b) of a perturbative
treatmentAi‘S) approximately reduces to the radial gradient
of 6 evaluated int=t;. However, the comparison with
perturbations must be handled with caution, since in the case
of Eq. (35 and(36)—(39) we are dealing with quantities and
relations strictly defined in the initial hypersurface, and so
determining initial conditions in terms of averages of initial
value functions. The theory of perturbations, on the other
hand, traces the evolution &f™, 5" for all t. In particular,
we must be specially careful if we borrow the terminology of
FIG. 4. Allowed values o\ A(") for =0. The figure dis- Perturbations in Eq(41) to characterize the caseg¥=0
plays the planeA(" ,A(" associated with Fig. 3. The regions for and A®+0, since in our case a relation such 48)=0
which a zero ofo occurs ford®#0 are shown with a gray shadow, specifies initial conditions and will not be satisfiéd gen-
while the blank regions are “forbidden” areas corresponding toeral) for t>t;. Another delicate point refers to the current
zeroes ofb. The values of\(",A(") in the gray areas comply with use of the term “adiabatic” for the casetlb), meaning
conditions(37) and so satisfy condition€31g, (310, and(319.  perturbations that conserve photon entropy. Strictly speak-
The level curve logy(y) = 2.4 has been qualitatively sketched. This ing, these perturbations should be denoted as “isentropic” or
curve is extremely close<10"°) to the diagonal line correspond- “reversible,” since an adiabatic process need not be isentro-
ing to 3A{"=A("™, marked by the letter Athe letter B marks the pic (or reversiblg. It is quite possible that this conceptual
line A{"=—A{". By following the analogy with perturbation yagueness follows from the fact that most papers in pertur-
theory (see Sec. VIIl, the line A can be associated with “adia- pation theory, either assume thermal equilibrium, or have
batic” initial condltl_ons, while “|SO(_:urvature”_ initial conditions incorporated dissipative processes without the necessary ri-
would be characterized by the horizontal anf)=0. However, gour. Hopefully, recent work17] on these lines might be
the Valffes ofyzy(Dm)for the latter condition are much smaller than helpful to clarify these issues. Raising this point is relevant
y.zlozés)for all [A™]#0 [see Fig. &)]. Hence, initial conditions -0 \ce 'the models presented in this paper assume a fluid
with 4,0 and leading to the right decoupling t(?‘r_nperal[miese ., evolving along adiabatic but irreversikleonisentropi¢ pro-
to the level curve logyy) =2.4] cannot be termed “isocurvature, N o §—
but rather “quasiadiabatic” initial conditions. cesses, therefore initial cond|t|o_ns such&§ =0 [formally
analogous to Eq(41b] do not imply a conserved photon
entropy, but a roughly constant average of photon entropy at
t=t;, but not(in general for t>t;. Never the less, for the
sake of mantaining continuity with currently established ter-
minology, we shall use the formal analogy between E4jb.

In order to establish a comparison with perturbation theory@nd (42) in the examination of the case§” =0 andA(”

consider defining the initial densities along the lines of Eq.* 0- Developing further the comparison with perturbations
(40): on a FLRW background is relevant and interesting. How-

ever, such a task requires a comprehensive and detailed
elaboration and so will be carried on elsewhere.

3p(m)
4p(f) )

Isocurvature 8 = M| 1+ (410

p"=pM[1+0"] = <p§m’>=ﬂm)[1+<6fm)>(], \
42
X. THE CASE A{¥=0, AN INTERACTIVE MIXTURE
pN=p[1+560 = (pMy=pO[1+ (5], From Sec. VIl we know that if Eqs(378,(37b hold,
(42b) then diverges positively ag—y, wherey, is a zero ofo.
We still need to know ifr/ty<1 along the range £y<Y,
where p{™ ,p{" are now the constant values of the initial where the set of values=y<y, are characterized by/t,

densities in a FLRW background aps{™|<1,6(|<1 are =1, approximately marking the decoupling of matter and
exact initial perturbations. Inserting E¢42) into Eq. (38) radiation. A sufficient condition for this type of evolution
leads to follows from evaluating 7/ty]; at the initial hypersurface
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SAO[1+AM][(3+4e)AV—4A0+8(1+¢)] 10(1+€) 5
[(3+4e)AN—4AD(3+4)|[36+47A+16(AF)2]  9(3+4e) [

T

th

where we have eliminate.di(m) from Eg. (35 and assumed plotted in Fig. 6 the implicit equatioor=0, showing a more
Ai(3)<1' Ai(r)<1, ande~10 °T;~10°. Sincer diverges as Precise relation between the orders of magnitude that the
y—Y, but ® remains finite in this limit, the ratior/t,, ~ Occurrence of the zero af for yp~y, ~10** implies for
initially smaller, necessarily becomes larger than unity forl A |AF]. _ o
~ nother constraint the models have to comply with is
1<y<y<y Anoth traint th dels h t ply with
* H H _
The currently accepted value of matter and radiation dethe observational bounds, 6] on the anisotropy of the cos

o . mic microwave radiatiotCMR), given by the maximal pho-
coupling isTp~4x10° K. AssumingT;~10° K, the setof ., temperature contragﬁT/T]Dg% 10‘5.y For y~10%* apnd
valuesy=yp associated with this temperature follow from T.~10°. so thate~1C°. we have A~1.1X10"! and B

| 1 ] .

Eq. (17b by solving fory=yp the equation ~2.2x10° 1, wereA andB are given by Eq(20). Also, from
1P Egs. (17b and (19b), the devia_tion_ from the equilibrium
Tp~4X100= —W(yp ,Ai(s) ,Ai(r)), (43) FLRW form T,,=T;/y aty=yp is given by
Yb
8Teq| [T~ Teq
where ¥ is given by Eq.(19b. Assuming small density | T, D_ Teq Ip
contrasts, Fig. 5 illustrates that this value Tf is closely
associated witlyp~107* Also, it is evident from Fig. &), 1.1x10 1AM +2.2x 10 A"
that having a zero o# for values 18<y, <10° requires a =[V-1]p~~— NG ,
very small deviation fromA(®=0. This is illustrated by the !
approximated sketch of the level curye=yp=10>* that (44)

appears in Fig. 4, implying thaty, andyp lie inaavery ngicating that compliance with the maximal observed tem-
narrow sector of the plana{™ A" very close to the line perature contrast of the CMR constrains the maximal values
Ai(s)zo_ Therefore, for these values we must hwe\v«} of Ai(m) ,Ai(r) to about 10“. Therefore, from Fig. 6, the cor-
~yp . However, it is not clear from Figs.(8) and 4 how responding variation range A(®| is [A(¥|<107%, and so
small the deviation fron\(¥ =0 should be. Hence, we have compatibility with acceptable values af, and the CMR
anisotropy impliegA®|~|A"|2<|A")|.

Under the analogy betweeh™ ,A(") with perturbations
2441 in a FLRW background, the cask(®+0 seems to corre-
spond to isocurvature initial perturbations. However, since
p{M<p(") before decoupling, the latter are characterigzask
aiz] , Eq.(419] by 69~ 6™ and ("< 6, and so, following the

analogy between Eqg$41) and (42) would disqualify A(®
#0 as comparable to an isocurvature initial perturbation. In
fact, the maximal bounds oa(” and A(® obtained in the
previous paragraph yield exactly the opposite behavior. Bor-
rowing the terminology of perturbation theory, the analogy
between Eqs(41) and (42) would characterize “isocurva-
ture” initial conditions byA{”=0. From Figs. 3 and 4, this
condition is not incompatible with Eq$31) and (32), but
yields a decoupling surfacg,~10 with a decoupling tem-
perature much larger than the accepted value. Hence, the
acceptable values of the cadé®+0 cannot be associated
with this type of initial perturbations, but since perturbations
are in general combinations of adiabatic and isocurvature
components and we havd® <A andA®<A{™  a more
accurate analogy foA{™ A(") is that of “quasiadiabatic”
initial perturbations. Following this analogy, and bearing in
mind thatA{™ andA{") are defined for an initial hypersur-

FIG. 5. The decoupling temperatufle=Tp=4x10* K for y ~ face characterized by¥,~10° K (still outside the horizon
=yp . This figure displays the implicit plot of Eq43) in terms of ~ for perturbations of all wave numbeyshe bounds on the
A™M A and log(y). The values of for this temperature value magnitude ofA(® can be related to bounds on the amplitude
are clearly shown to be very close ye=yp= 10?4 of “nearly adiabatic” fluctuations of photon entropy per

log (y) 241
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where 01~6.65<10 2° cn? is the Thomson scattering
Cross sectionm, is the electron mass, ang, is the number
density of free electrons, a quantity obtained from Saha’s

o equation
! 2 3/2
Xe _ 27TmekBT eXF( BO /kBT) (46)
1_ Xe h2 nB ’
2.51
n
Xezn_:’ ng~n",

log(y) 2 where X, is the fractional ionizationh is Planck’s constant,
ng is the number density of baryons aBg~13.6 ev is the
binding energy of the hydrogen atom. Combining E@&)

and (46) we obtain
1/21
(47)

ey < The recombination process is characterizedXy=1/10 in
Eq. (46), so that most free electrons have combined with
protons into neutral atoms, while the decoupling of matter
and radiation strictly follows from the condition,=ty, a
condition analogous te=t,, and leading to the “decoupling
temperature” from Eqs(45) and(47) with the help of Egs.
(17b) and (22). Sincet, must be smaller but qualitatively
FIG. 6. The equationr=0 for y=yp . Implicit plot of the so-  similar to 7 (increasing asr increaseg29]), a comparison
lution to the equationo=0 in terms of logy(|A{®]) and  betweenr andt, for near decoupling temperatures should be

1.5

1 4h*n(Mexp(Bo/kgT)
t,= 1 32
2¢co n™ (27rmekgT)

logi(|A"]), denoted as “log(Ds)" and “log(Dr).” This plot il qualitatively analogous to that betwegpandty, . The time
lustrates the constraints on the orders of magnitude of these quagcalest, andt, can be easily obtained from Eq@5), (47),
tities under the condition that a zero efoccurs fory=yp~10%* and (22) and compared witht,, , = for a set of parameters

For values of A{"|~10"*, compatible with observed 2‘;“50”95;3’ of characteristic of thermodynamically consistent models dis-
e o v e e o et e 10 e o i 4 w7 o

. . (N _10-4 8
quasiadiabatic perturbations. ing the ratios ofr,t,,t; to ty for Af’=10"" and 10

<A®<107% ForA®~10"? and for near decoupling tem-

. . . I : < i <y<10~
baryon generated in the earlier, more primordial, |ananonar;Pera’[ureS (1o T<10' K or equivalently 10<y<10*)

. . . we havet. smaller thanr (but of the order of magnitude
_ Y
era [4. 6'1(.)’34' Prlmo_rdlal entropy fluct_uat|ons h_ave t_)een and overtakingty along a set of values of that closely
examined in connection with the creation of axions in an o .
. . ) : match the accepted valllg,~4x 10° K. This is consistent
inflationary scenari$5,10]. However, these are isocurvature

. . . (S)% —8 . . . _
perturbations, and so might not be related to entropy fluctuatwc')t: (tsh:eelf'tlmg“grr?lthe ;t?]ercr)]lz)atr?(ljnigrlﬂ'thr?eftcz\r/:]of;;e(r:es
tions associated witth (¥ # 0. The study of entropy fluctua- '9. ’ '9 peratu

tions in inflationary models is still a highly speculative topic (TI: é?ihz grr dZ?lg}l?]LGt%z; lb)L;tthfe;?(laixt?]tla%ntr?:rgrgriti:)n
[34], and its connection with initial conditions in the models . 9 9 P

under consideration should be an exciting subject to examint me scal_e, the domlr_lant radiative process at_ these tempera-
in a future paper. ures. It is also possible to show thdt~1/10 in Eq.(46)

leads to the accepted values of the recombination tempera-
ture.
XI. SAHA'S EQUATION AND THE JEANS MASS To end the discussion, we compute the Jeans mass asso-

) o ciated to the initial conditions of the caAés)a&O. This mass
As mentioned earlier, it is important to comparandt is given by[1,3—6

with the timescale characteristic of the interaction rate of the

photons and electrons for Compton and Thomson scattering 4r gm2C2 |32
(the dominant radiative processes in the temperature range of MJ:?mn k(ptp)
interesj
A chy 2 my? ¥ 32 4
B 1 B meCZ 45 _? /_(_ypi T v 3 2 ’ ( 8)
t“y_CO"rne' te= kgT Ly (45) 3G| W+ ZXiy
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the Jeans mass obtained for baryon dominated perturbative
models as decoupling is approached in the radiative era.

X1l. CONCLUSIONS
107-9)  1onde)  10(=7) 10:=8)

We have derived a new class of exact solutions of Ein-
stein’s equations providing a physically plausible hydrody-
namic description of a radiation-mattgshoton-baryoj in-

02 fos 05 08 1f 12 fa 15/18 2f 22 fi s log(y)l teracting mixture, evolving along adiabatic but irreversible

0 thermodynamic processes. The conditions for these models
/ /// / to be consistent with the transport equation and entropy bal-
/ ance law of EIT(when shear viscosity is the only dissipative

agenj have been provided explicitly, and their effect on ini-
tial conditions have been given in detail, briefly discussing
the analogy of these conditions with gauge invariant initial
perturbations in the isochronous gauge. As far as we are
aware, and in spite of their limitations mentioned in the In-
troduction, we believe these models are the first example in
=27 the literature of a self-consistent hydrodynamical approach to
matter-radiation mixtures th&) is based on inhomogeneous
exact solutions of Einstein’s field equations il is ther-
modynamically consistent. We believe these models can be a
useful theoretical tool in the study of cosmological matter
sources, providing a needed alternative and complement to
the usual approaches based on perturbations or on numerical
methods.

The solutions have an enormous potential as models in
4 applications of astrophysical and cosmological interest. Con-

sider, for example, the following possibilities

FIG. 7. Comparison between the time scales of Thomson,j (a) Structure formation in the acoustic phasghere is a
and Comptont() scatterings, antl;. The figure depicts the ratios large body of literature on the study of acoustic perturbations
logyo( 7/t1), logio(tc/ty), and logg(t,/ty) along the range O in relation to the Jeans mass of surviving cosmological con-
<log;(y)<3 for A{™=(3/4)A("-A® with A(P=10"* and  densations. Equations of state analogous to(Exare often
10 %<A{P<10"* The curves that branch out correspond tosuggested in this contexti—4,6,1Q. Since practically all
logyo( 7/ty) for the displayed values af(®. The thick curves are work on this topic has been carried on with perturbations on
logao(tc/ty) (above and log(t, /ty) (below for the same values 5 FIRW background, the exact solutions derived and pre-
of A® andA(" . Notice thatr is much more sensitive to changes in gented here may be viewed as an alternative treatment for
A® thant, andt. It is clear from the figure that~t, for A’  iis problem.
~10 8 for temperatures near the decoupling temperature, obtained (b) Comparison with Perturbation Thearyrhe models
from the conditiont,=t, and closely matchingfp~4x10* K presented in this paper are based on exact solutions of Ein-
E)T?r:zega?%’elogroégT)fz':EéT:ifuggufrgrarlﬁohrevteals thatfmdtc "’}re Stein's field equations, but their initial conditions and evolu-
- L . g gher temperatures closer ton can be adapted for a description of “exact spherical
t=t;. This is consistent with the fact that Compton scattering is the . "
dominant radiative process in this temperature range. perturba.tlons qn a FLRW background. It would be exj

tremely interesting, not only to compare the results of this

approach with those of a perturbative treatment, but to pro-
where p,p,n(™ are given by Eqs(2), (7), (13), and (14), vide a physically plagsible th(_eore_tical frgmework tq examine
Xi=p™p' . W, andT follow from Eq. (19) and C, is the carefully how much information is lost in the nonlinear re-

. : gime that falls beyond the scope of linear perturbations. We
speed of sound, which for the equation of stéte has the have studied in this paper only the cage 0 in Eq. (11),

34

form thus restricting the evolution to the “growing mode” since
2 3,(m] 1 all fluid layers expand monotonously. The study of the more
c2=— |14 2P . pM=mcn™M, general case, whefe(r) in Eq. (11) is an arbitrary function
* 3 4p" that could change sign, would allow a comparison with per-

turbations that include also a “decaying mode” related to
p(=3n"kgT. condensation and collapse of cosmological inhomogeneities.
(c) Inhomogeneity and irreversibility in primordial den-
Evaluating Eq.(48) for y=yp~10*4 e~1/x;~10% and sity perturbations The initial conditions of the models with
p{N~agTi~7.5x10° ergs/icm, yields M;~10" gm, or A0 are set for a hypersurface with temperatdre
approximately 18 solar masses. This value coincides with ~10°. These initial conditions can be considered the end
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product of processes characteristic of previous cosmologicéB4]. These and other applications are worth to be under-
history, and so the estimated valle®|~10"8, related to  taken in future research efforts.

the spatial variation of photon entropy fluctuations, can be
used as a constraint on the effects of inhomogeneity on pri-
mordial entropy fluctuations that might be predicted by in-

flationary models at an earlier cosmic time. Also, the devia-
tion from equilibrium in the initial hypersurface This work was partially supported by the Spanish Minis-
(proportional tof A{"]2~|A{®|) might be helpful to under- try of Education and the National University of Mexico

stand the irreversibility associated with the physical pro-(UNAM), under Grants No. PB94-0718 and DGAPA-IN-

ACKNOWLEDGMENTS
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