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Exact spherically symmetric dust solution of the field equations in observational coordinates
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In this paper we summarize the status of what is known about the solution of the exact spherically symmetric
Einstein field equations for dust in observational coordinates with the input of functions representing observer
area distance and galaxy number counts data, and complete the integration in a practically applicable way.
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I. INTRODUCTION existence of a unique solution to the field equations for dust
on C™ (pg) down to a valuev* of the affine parameter cor-
A key component of the observational cosmology pro-responding taz*, and for the past Cauchy development of

gram (Ellis et al.[1]) is the exact solution of the spherically that section ofC™(p,) betweenv=0 andv=v*.
symmetric Einstein equations for dust in observational coor- If the galactic observations are isotropic, i.e., if the proper
dinates, using cosmological data for observer area distanc#otions and null shear vanish and the area distances and
and ga|axy number counts given as functions of redshift number counts are independent of dir-eCt-ion, then this |mp||eS
These data are given, not on a space-like surface of constafirectly that the spacetime geometry is isotropic@n(po)

time, but rather on our past light cor@ (py), which is and in its past Cauchy deyelopment, as shqwn by Maart.ens
centered at our observational positipg, “here and now.” [3,4]. This theorem constitutes an observational foundation

Thus, they can be very easily and naturally introduced intcfor the spherically symmetric dust modefsf one further

the field equations written in observational coordinates. FanVOkes the. vyeak Copgr_nman prlnC|p_Ie, .e., that we QO not
example z is essentiall and the observer area distance °CCUPY & privileged position in spacetime, then one arrives at
Pi€; Woo- an observational foundation for Friedmann-Létreal

C(w.y) is 92~ 933/(Sm.20) evaluqted orC “(po)- To use Robertson-Walke(FLRW) models] We discuss this case
that same (_:iata in the field (_aq_uatlpns expressed in the usuﬂ”’oroughly in this paper, and present the completion of the
3+1 coordinates leads to difficulties, because the null 9€0jhtegration scheme initiated in Stoegral. [5], and signifi-
desic equations which are needed to transform the Paramantly corrected and improved in Maarteasal. [6] and
eters naturally defined on our past light cone to thel3  Hyumphreys[7]. The solution to these will, of course, give
coordinates cannot be solved exactly — only approximatejust the Lemare-Tolman-Bondi(LTB) models (Lematre
ly — even for spherical symmetry. [8], [9], Tolman[10], Bondi[11]; and cf. Humphrey§7] and

By using observational coordinates, defined below, weeferences therejrin observational coordinates. We have al-
can thus formulate Einstein’s equations in a way which reteady mentioned why it is not possible to obtain these obser-
flects both the geodesic flow of the cosmological fluid andvational solutions simply by transforming them from the
the null geometry ofC™(po), along which practically all of usual 3+ 1 coordinate representation to observational coor-
our information about the distant parts of our universe comeslinates: Those transformations cannot be exactly specified in
to us — via photons. In this formulation the field equationsanalytic form.
split naturally into two sets, as can be easily seen: a set of However, the spherically symmetriSS equations in
equations which can be solved @1 (py), that is on our past cosmological coordinates are formidable and not easily
light cone, specified byw=w,, wherew is the observational solved. There are many subtleties involved. Stoegel. [5]
time coordinate; and a second set which evolves these solpresented a detailed integration scheme, but it is not
tions off C™ (pg) to other light cones into the past or into the correct — as it introduces an assumption which over-restricts
future. Solution to the first set is directly determined from thethe solutions, forcing them, as it turns out, to be FLRW. The
data, and those solutions constitute the initial conditions fobasic system of SS field equations in that paper are, however,
the solution of the second set. correct, as is the first step in the integration — the solution of

The foundations for this approach were inspired by thethe null Raychaudhuri equation on our past light cone to
classic paper of Kristian and Sacf] and established by determine the null radial coordinateas a function of the
Ellis et al. [1]. In that paper they demonstrated that a com-redshift z. Subsequently, Maartenst al. [6] demonstrated
plete observational set of analytic data Gn(pg), consist-  how the integration of the SS equations could be carried out
ing of galaxy redshifts, observer area distances, galaxy numand completed o€ ~(py), and then off into the past as a
ber counts, cosmological proper motions, and null sheafunction of proper time. But they did not actually show how
measures down to some limiting redshift, determine the the solutions off the light cone can be determined as func-
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tions of the observational coordinate time Humphreyd7] possible choices for this coordinate — the affine parameter,
has gone one step farther, deriving an evolution equation foz, the area distanc€(w,y) itself. We normally choosg to

the observer area distanCewhich can be integrated in two be comoving with the fluid, that is?9,y=0. Once we have
steps for obtainin@(w,y). However, he only performed the made this choice, there is still a little bit of freedom leftyin
first integration ovely down C™(pg) and did not explicitty — which we shall use below. The remaining freedom in the
show how the central conditions can be used at that point tand ¢ coordinates is a rigid rotation ane point onC.

recover the general-dependence of the first integral or how  In observational coordinates the SS metric takes the gen-

the second integration over is to be done. eral form
In this paper we review the entire problem of determining
the solution of the exact spherically symmetric Einstein ds?=—A(w,y)?dw?+ 2A(w,y)B(w,y)dwdy

equations for dust in observational coordinates, summarize
the steps in integrating them, and complete the integration by

. . B B - ’ B
expllc!tly carrying .OUt the solution of the keg ev_olutlo_n where we assume thgtis comoving with the fluid, so that
equation. From this all the other dependent metric varlableﬁ1e fluid 4-velocity isut=A- 182
= 2

are determined. Finally, we illustrate the procedure con- The remainina coordinate freedom which preserves the
cretely by integrating these equations for FLRW data in the . 9 . . P i
flat case to obtain the FLRW solution explicitly. observational form of the metric is a scalingwfand ofy:

After defining observational coordinates and writing the

+C(w,y)2d0? (1)

general spherically symmetric metric using them in Sec. Il, vty T (d_W d_y) 2
we summarize the basic observational parameters we shall be WW=WW), - y—y=y(y) dwgﬁo;é dy 2
using in Sec. lll. In Sec. IV we present several key relation-

ships among the metric variables, including the key momen- The first, as we mentioned above, corresponds to a free-
tum conservation equation. Section V presents the full set oflom to choosev as any time parameter we wish alofly
field equations for the spherically symmetric case, with dustalong our world line aty=0. This is usually effected by

In Sec. VI, we outline in considerable detail the procedurechoosingA(w,0). The second corresponds to the freedom to
for integrating these equations with data functions representhoosey as any null distance parameter on an initial light
ing observer area distance and galaxy number counts, emsene — typically our light cone atv=w,. Then that choice
phasizing how the complete solution of the momentum conis effectively dragged onto other light cones by the fluid flow
servation equation can be obtained, which has not been- y is comoving with the fluid 4-velocity, as we have al-
presented before. Section VII shows how this procedure iseady indicated. We shall use this freedom to chopdy
applied in the simplest case for FLRW data. setting:

Il. THE SS METRIC IN OBSERVATIONAL COORDINATES A(wg,y)=B(wg,y). ©)

We begin by giving the SS spacetime in observational In general, these freedoms ¥m andy imply the metric
coordinategwhich were first suggested by Temple in 1938 scalings:
[12]). As described by Elliet al. [1] these coordinates'
={w,y, 6, ¢} are centered on the observer’s world li@and _ dw - dy
defined in the following way: A—A=—A, B—B=—B. (4)
(i) w is constant on each past light cone ald@gwith dw dy
u?9,w>0 along C, where u? is the 4-velocity of matter
(utu,=—1). In other words, eackv= constant specifies a

ast light cone along. Our past light cone is designated as
\F/)v=w09 ¢ P g g that is, their proper behavior as they approgehO. These
(ii) y is the null radial coordinate. It measures distance®'®
down the null geodesics — with affine parameter— gen-
erating each past light cone centered@ny=0 on C and
dy/dv>0 on each null cone, so that increases as one

It is important to specify the central conditions for the
metric variableA(w,y), B(w,y) andC(w,y) in Eq. (1) —

as y—0: A(w,y)—A(w,0#0,

moves down a past light cone away frabn B(w,y)—B(w,0)#0,
(iii) # and¢ are the latitude and longitude of observation,
respectively — spherical coordinates based on a parallelly C(w,y)—B(w,0y=0, (5)
propagated orthonormal tetrad alofy and defined away
from C by k#9,0=k?9,¢=0, wherek? is the past-directed Cy(w,y)—B(w,0).
wave vector of photonskfk,=0).
There are certain freedoms in the specification of these |, +4E BASIC OBSERVATIONAL QUANTITIES
observational coordinates. Im there is the remaining free-
dom to specifyw along our world lineC. Once specified The basic observable quantities @nare the following:

there it is fixed for all other world lines. There is consider- (i) Redshift. The redshift at timew, on C for a comov-
able freedom in the choice gf— there is a large variety of ing source a null radial distangedown C™ (p) is given by
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1+2z

A(Wo,0) 1(B C
520 (12)

~ Awoy)” © H=3a

This is just the observed redshift, which is directly deter-where a “dot” indicatesd/dw and a “prime” indicates

mined by source spectra, once they are corrected for thg/sy which will be used later. For the central obsertris

Doppler shift due to local motions. precisely the Hubble expansion rate. In the homogeneous
(ii) Observer area distance. The observer area distancg;LRW) caseH is constant at each instant of timeBut in

often written ag o, measured at time/, on C for a source at  the general inhomogeneous caseyaries with radial dis-

a null radial distance is simply given by tance fromy=0 ont=t,. From our central conditions above

Eq. (3), we find that the central behavior &f is given by

ro=C(wo.y), (7)
- " o . 1 B(w,0
provided the central conditiofb), determining the relation as y—0: H(wy)—>—— =H(w,0).
betweenC(w,y) and B(w,y) for small values ofy, holds. A(w,0) B(w,0)
This quantity is also measurable as the luminosity distance (13

because of the reciprocity relatigm3].
(i) Galaxy number counts. The number of galaxies

— _ A 1lp—1/F
counted by a central observer out to a null radial distanise  Just the Hubble constanitiy=H(wy,0)=A, "B, *(B)o as
given by measured by the central observer.

Finally, from the normalization condition for the fluid
y ~ 4 ~ ~ 5 four-velocity, we can immediately see that it can be gitien
N(y)=477f0 m(Wo,y)m™"B(Wo,y)C(Wo,y)*dy (8)  covariant vector formas the gradient of the proper tine
along the matter world lines1®=—t ,. It is also given by

where . is the mass-energy density andis the average Eds-(1) and(11) as
galaxy mass. Then the total energy density can be written as

At any given instantv=wg alongy=0, this expression is

Upa=0apu®=—Aw,+By,. (14)
dz 1
m(Wo,y)=m n(wg,y)=Mqy(z) a/ B(W—Oy) 9 Comparing these two forms implies

wheren(wg,y) is the number density of sources aty,y), dt=Adw-Bdy & A=t,, B=-t (19

and where which shows that the surfaces of simultaneity for the ob-
server are given in observational coordinates Agw
_m 1 1dN =Bdy. The integrability condition of Eq.15) is simply then
Moy=— 7 = 5= (10
J dQ r% dz ]
A’'+B=0. (16)

Hered() is the solid angle over which sources are counted,
andJ is the completeness of the galaxy count, that is, the This turns out precisely to be the momentum conservation
fraction of sources in the volume that are counted.i§he  equation, which is the key equation in the system and essen-
effects of dark matter in biasing the galactic distribution maytial to finding a solution.
be incorporated vid. In particular, strong biasing is needed
if the number counts have a fractal behavior on local scales V. THE SS FIELD EQUATIONS IN OBSERVATIONAL
[14]. COORDINATES

It can be seen from the above characterization of these
observational quantities how closely they fit into the metric
as given in observational coordinates.

Stoegeret al. [5], using the fluid-rayFR) tetrad formula-
tion of the Einstein’s equations developed by MaartEis
and Stoegeet al.[15], give the detailed derivation of the SS
field equations in observational coordinates. Besides the very
important momentum conservation equati@6), they are as

There are a number of other important quantities whicHollows.
we catalog here for completeness and for later reference. A set of two very simple fluid-ray tetrad time-derivative

First there are the two fundamental four-vectors in theequations
problem, the fluid four-velocityu? and the null vectok?,
which points down the generators of past light cones. These Aw=-3bw (17)
are given in terms of the metric variables as

IV. OTHER KEY RELATIONSHIPS

Ap=2p(n—b) (18)

w=A"1s,, k¥=(AB) '5;. (12) . o
where A=(A(w,y)) l9/ow is a tetrad derivative,b

The rate of expansion of the dust fluid i$13-V,u?, so =C/AC andn=C'/2AB are FR spin coefficients. Using Eq.
that, from the metri¢1l) we have (16) these equations can be quickly integrated to give
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HOW,Y)=po(y)B H(w,y)C2(wy) (19
_wo(Y) 1 c c
Y Gy~ 2c? T ACBC
1( C/ )2
+ 5\ Be (20

where the last equality in E20) comes from the fact thad
is defined in terms of the FR spin coefficientsasr +bf
+f2/2, f=C'IBC, r=—1/2C, u again is the relativistic
mass-energy density of the dust, aag=w(wg,y) is a
quantity closely related tau,=u(wgp,y) [see Eq.(27) be-
low]. Both wy and u are specified by data on our past light
cone, as we shall show.

The fluid-ray tetrad radial equations are

C”_C’ A" B’ 1BZ -
c clate) 2B @)
., 1 [Cc C

wo' =~ S Ho| at F (22)
¢ _B8c AB 23
cBC @

PHYSICAL REVIEW D60 104020

C
= 29
[F2—1-2wy/C]"? 29
C/
(30

B= :
F—[F?=1-2w,/C]"

The LTB exact solution is obtained by integration of Eq.
(29) along the matter flowy = constant using Eq.15)

t—T( )—f dc (31

V) P 1=2w0/C]"

whereT(y) is arbitrary, provided we identify
F2=1-kf?, k=0,+1. (32

Here f=1f(y) is a function commonly used in describing
LTB models in the 3-1 coordinategBonnor[16]).

VI. INTEGRATION PROCEDURE

In order to streamline our discussion, we shall discuss the

The remaining “independent” time-derivative equations flat case k=0) first. Then, from Eq(32) F(y)=1. Now,

given by the fluid-ray tetrad formulation are

cC CA |

E=6K+wA (24)
B BA , 1
gZEK—ZwA—EﬁLA. (25)

From Eq.(22) we see that there is a naturally defined “po-
tential” (see Stoegeet al. [5])

N, C C
Fiy)=Z=2+tg5"

< (26

whereN, (y) is an arbitrary function, whose central behavior

is the same as that of the number coui8®egeret al. [5]).
Thus, from Eqs(26) and(22) it follows that

(27)

1
wo(y) _Ej mo(y)F(y)dy.

Connected with this relationship is EO0), which we re-
write as

cc AC?
cc'

AB
2C?

o
= gAB.

(28)

Stoegeret al.[5] and Maartent al. [6] have shown that
Egs.(26) and (28) can be transformed into equations #r
andB, thus reducing the problem to determini@g

since we have specifide(y), the observer area distance data

ro(z)=C(wq,z) and the galaxy number counts data given by

n(wq,z) arenotindependent. So, we can choose one or the

other, and then find the second from the relationship given in

Eq. (30), temporarily choosiny =z, which is always legiti-

mate. For instance, if we kno@(wg,z), thenwg(z) is given
(1+2)

by
1 ! 1 i 33
_E_ F—O ( )

with y=z, where Ay=A(w,,0) and we have used EgR)
and (6) to write

B(wg,y)=A(Wy,0)/(1+2z). (39

The next step is to solve the null Raychaudhuri equation
(21) on our past light cone using(wg,z) and u(wg,2z), or
equivalentlywg(z), in order to determine the null radial co-
ordinatey as a function of the redshift. This step is de-
scribed in detail by Stoeget al.[5]. In principle, we could
maintain the choicg/=z, but this leads to analytically im-
possible integrations later. We now can write our data func-
tions as functions ofy — thus we haveC(wg,y) and
n(wgq,y), and thereforevy(y).

We now substitute Eq$29) and(30) into the momentum
conservation equatiorfl6) and solve it algebraically for

C'/C to obtain
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C' (FF' —wjC 1) (2F?—2F JG—1-2C twy)+ wo,C 2C'F(F—2/G)

< (395)
C GF(F—\G)
|
where this choice because we know all the relevant quantities in Eq.
X (35) as functions ofy on w=w,. That is, there is hidden in
G=F"—1-2w,/C. (36)  our expression fo€(wg,y) an implicit dependence ow,.

We need to extract that dependence and make it explicit, so

. _ . . ._that we can then determine the general dependenc mf
a different way — essentially by evaluating the integral in o licitly i d bl
Eq. (31), differentiating it down the light rays, substituting W- Knowing C(wo,y) explicitly in terms ofw, andy enables

from Eq. (30) and differentiating byw. Equation(35) can  Usto write'C(w,_y), if we can determine which part of the,
also be obtained from the null Raychaudhuri equat®d)  dependence o€(wg,y) translates intov dependencésee

by writing it completely in terms ofC(w,y), using, once pelow) when we letC move from light cone to light cone.
again, Eqgs(29) and(30). Finally, it can be shown with some  Thjs is true because andy are independent coordinates.
extensive calculation that this key equati(89) is the first The main complication is that, besides thig dependence
integral of Eq.(25), which, of course, can be written as a gyising from thew=w, choice we made just before finding
third-order partial differential equation i@(w,y). The other  tne first integral of Eq(35), there is another part of the,

two basic equations, Eq&23) and (24) reduce to algebraic gdependence which derives from previous integration con-
identities we already know, when we try to turn them into gtants and remains through the entire problem. Thjde-

equations just foC(w,y). Thus they are of no further use to pendenceloes notranslate intav dependence when we free
us. We can see, then, from this brief inventory of the equaz

tions constituting this formulation of Einstein’s spherically C to move from light cone to light cone. These twa,
symmetric equations for dust, that is EGE7), (18), and Eqs. dependences must be disentangled. How exactly is this

) . g done?
(21) to (25), that we will have either used or satisfied all the . . _— i
equations available, once we have solved @8). We do this by employing the full description of the cen

Now, how do we go about integrating th' equation tral behavior ofC, that is[Eq. (5)]
(35? As Humphreyg7] first noticed, and we can see from
our calculations, it can be solved as an ordinary differential

equation forC, with w held constant. That is, sinse andy

This equation was originally derived by Humphréy$in

C(w,y)—B(w,0)y=0y—0. (37)

ind q di i di h (In order to follow this brief description of the procedure, it
are independent coordinates we Wx=wo and integrate the may be a help to see each step exemplified in the FLRW case

above _equation With respect W.o obtainC(wp,y). This .is detailed in Sec. VII below.Applying this to ourC expres-
a crucial stage in the integration procedure. In particular, . .

since we knowC(wg,y) andC’(wg,y) we can carry out this sion, we |soI§1t_e the B(w,y)” part,_which Is trivia_lly
integration on our past light coney=w,. In determining (_jone—Just -d|V|d-e guty. Then, settingy=0, we find

this first integral we also need to include an integration conB(Wo,0). This will give a constant. The two parts of the
stant which implements the proper behaviorcfiw,,y) at wy-dependence are hidden in this constant—that is, the free

_ _ . . w part which was set tovg in order to do they-integration,
y—OO, that is, on our central world linfEq. (5)]: C(wo.y) and thew, part which was constant from the beginning. We
—VU.

. . . .__can then choose to relate the two parts of thisdependence
This same procedure can be followed in obtaining a flrsiin any way we wish. This choice afv is essentially the

mtegral in the general SS case, in Wh.'(fh we O_'° n.Ot 'mpos%hoice of thew parameter along the central world line, which
spatial flatnesgsee below. But now theC’ equation is a bit s the one coordinate freedom we have not yet used. It is
more complicatedf(y) no longer equals 1, but must be often, as indicated above, expressed as the freedom to choose
found in a previous step using the procedures indicated ifhe dependent metric variabkg(w,y) on our world line —
Maartenset al. [6] (see especially the erratQnin this case, that s, the freedom to choogéw,0). But making the choice

of course C(wg,y) andwy(y) are no longer interdependent, in this way here effectively seta(w,0): Knowing B(w,0)

but constitute llndepen(.jent data parameters. EXC‘?pt for the terminesA’(w,0) through the conservation equatiéi
nontrivial, but inessential changes, obtaining the first integral .

of EqQ. (35) on our past light cone is the same as in the flat™ B:O: And fromA’(yv,O), A(w,0) it'self is determingd.
case. In this exact spherically symmetric dust case our integra-

Before we can proceed to integrate this resulting firstion scheme is valid for moving into the future, as well as for

- . . . moving into the past. This is not true in general, nor even for
orderC equation to obtairC(w,y) we have to examine the perturbations away from spherical symmetry, for which

central behavior ofC(wo,y) in somewhat more detail to schemes analogous to the one presented here provide solu-
determine the explicit dependen¢® on the variablew, tions only in the past Cauchy development of that part of our
which was set tavg in the previous integration. We made past light coneC ™ (py) on which we have datgl7,1]. In the
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exact spherically symmetric dust case this restriction doeshijs already obeys the central condition tH@&0 asy
not hold, because there can be no gravitational waves com-, (.

ing in along future past light conespherical symmetpy From the central conditions we also have that
Furthermore, we have effectively eliminated photons and
sound waves, because we have restricted the problem to lim C(wyg,y) = limyB(w,,0). (46)
pressure free matter. The only characteristics in the problem y—0 y—0
are timelike world lines of the matter itself.
Having obtained”(w,y) by this procedure, we can then 1herefore,
do the second integral, with respectvipto obtainC(w,y), . i : _
being careful to use the value @f(w,,y) we already have I'L“an_ 1=B(Wo,0)=B(Wp,0)=~1. (47)
as an initial-value condition. From this we can now easily Y
determineA(w,y) andB(w,y) from Egs.(29) and(30). Somehow the twav, dependences we discussed above are
hidden in this constant. We are fréthe remaining coordi-
VIl. INTEGRATION WITH FLAT FLRW DATA nate freedom irw) to make any choice which is consistent

Here we briefly illustrate the integration procedure de-With this central behavior. The obvious ones &&w,0)
scribed above by beginning with FLRW data to find the =W, with wo=1, B(w,0)=wo/w, or B(w,0)=w/w,. We
FLRW solution in observational coordinates. For simplicity choose the last. With this, together with our knowledge that
we shall again restrict ourselves to the flat case, for whicHor the flat caser=1/,, we then have
F(y)=1. Because of this restriction we need only the ob- ,
server area distance, or the galaxy number counts — not C(w,y)=y(y—w)/wp. (48)
both. F=1 establishes a relation between these data func- ) . ) )
tions. In the flat case, the FLRW data have the fé8toeger NOW keepingy constant we can integrate this to obtain

etal.[5) C(w.y) =y(y—w)%/2wo, (49
_oy-1 -2 1
ro(2)=2H, "(1+2) ¥z+1-(z+ )"} (38) which is the correct expression for FLRW in observational
q coordinates. Using this expression we can ob#iand B
an from Eqgs.(29) and (30).

Mo(2)=3Ho(1+2)"? (39
VIll. CONCLUSION

whereHj is the Hubble parameter measurediat wo and In this paper we have summarized the spherically sym-

y=0. metric field equati i i i
. . . . . quations for dust in observational coordinates
Solving the null Raychaudhuri equation with this dataand their integration with data on our past light cone

(see Stoegeet al. [5]) yields the following relation between C™(p,), focusing on completing that integration by indicat-

redshift and the null coordinate ing an analytic procedure for solving the momentum conser-
vation equatiofEq. (35)] for C(w,y). This involves finding

(1+2)= ; (40) the first integral orC™ (pg) — t'hat is forw=wy — and then
(1+ay)? recovering the dependence Gf on w by using the central
conditions. Once this is accomplished the second integration
~ HoAg to determineC(w,y) itself is straightforward. Determination
a="o (41) of the other two remaining metric variablés(w,y) and

B(w,y) then follow from Eqgs.(29) and (30), respectively.
The observer area distan@wg,y) andw, as functions We have also fully characterized the relationships among the

of y are then given by original equations, showing that all of the information that is
contained in them has been used. Finally, we have illustrated
C(wo,y)=2H51(1— ay)’ay (42 this procedure by beginning with FLRW observational data
in the flat case, and integrating to find the FLRW metric in
wo= —4H51(ay)3. (43 observational coordinates.

In a subsequent paper, we shall discuss the perturbed
Substituting Eqs(42), (43) andF=1 into Eq.(35) gives  spherically symmetric case in detail.
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