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Exact spherically symmetric dust solution of the field equations in observational coordinates
with cosmological data functions
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In this paper we summarize the status of what is known about the solution of the exact spherically symmetric
Einstein field equations for dust in observational coordinates with the input of functions representing observer
area distance and galaxy number counts data, and complete the integration in a practically applicable way.
@S0556-2821~99!05720-3#
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I. INTRODUCTION

A key component of the observational cosmology p
gram~Ellis et al. @1#! is the exact solution of the spherical
symmetric Einstein equations for dust in observational co
dinates, using cosmological data for observer area dista
and galaxy number counts given as functions of redshifz.
These data are given, not on a space-like surface of con
time, but rather on our past light coneC2(p0), which is
centered at our observational positionp0, ‘‘here and now.’’
Thus, they can be very easily and naturally introduced i
the field equations written in observational coordinates.
example,z is essentiallyg00, and the observer area distan
C(w,y) is g225g33/(sin2u) evaluated onC2(p0). To use
that same data in the field equations expressed in the u
311 coordinates leads to difficulties, because the null g
desic equations which are needed to transform the par
eters naturally defined on our past light cone to the 311
coordinates cannot be solved exactly — only approxima
ly — even for spherical symmetry.

By using observational coordinates, defined below,
can thus formulate Einstein’s equations in a way which
flects both the geodesic flow of the cosmological fluid a
the null geometry ofC2(p0), along which practically all of
our information about the distant parts of our universe com
to us — via photons. In this formulation the field equatio
split naturally into two sets, as can be easily seen: a se
equations which can be solved onC2(p0), that is on our past
light cone, specified byw5w0, wherew is the observationa
time coordinate; and a second set which evolves these s
tions off C2(p0) to other light cones into the past or into th
future. Solution to the first set is directly determined from t
data, and those solutions constitute the initial conditions
the solution of the second set.

The foundations for this approach were inspired by
classic paper of Kristian and Sachs@2# and established by
Ellis et al. @1#. In that paper they demonstrated that a co
plete observational set of analytic data onC2(p0), consist-
ing of galaxy redshifts, observer area distances, galaxy n
ber counts, cosmological proper motions, and null sh
measures down to some limiting redshiftz*, determine the
0556-2821/99/60~10!/104020~7!/$15.00 60 1040
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existence of a unique solution to the field equations for d
on C2(p0) down to a valuev* of the affine parameter cor
responding toz*, and for the past Cauchy development
that section ofC2(p0) betweenv50 andv5v*.

If the galactic observations are isotropic, i.e., if the prop
motions and null shear vanish and the area distances
number counts are independent of direction, then this imp
directly that the spacetime geometry is isotropic onC2(p0)
and in its past Cauchy development, as shown by Maar
@3,4#. This theorem constitutes an observational foundat
for the spherically symmetric dust models.@If one further
invokes the weak Copernican principle, i.e., that we do
occupy a privileged position in spacetime, then one arrive
an observational foundation for Friedmann-Lemaıˆtre-
Robertson-Walker~FLRW! models.# We discuss this case
thoroughly in this paper, and present the completion of
integration scheme initiated in Stoegeret al. @5#, and signifi-
cantly corrected and improved in Maartenset al. @6# and
Humphreys@7#. The solution to these will, of course, giv
just the Lemaıˆtre-Tolman-Bondi~LTB! models ~Lemaı̂tre
@8#, @9#, Tolman@10#, Bondi @11#; and cf. Humphreys@7# and
references therein! in observational coordinates. We have a
ready mentioned why it is not possible to obtain these ob
vational solutions simply by transforming them from th
usual 311 coordinate representation to observational co
dinates: Those transformations cannot be exactly specifie
analytic form.

However, the spherically symmetric~SS! equations in
cosmological coordinates are formidable and not ea
solved. There are many subtleties involved. Stoegeret al. @5#
presented a detailed integration scheme, but it is
correct — as it introduces an assumption which over-restr
the solutions, forcing them, as it turns out, to be FLRW. T
basic system of SS field equations in that paper are, howe
correct, as is the first step in the integration — the solution
the null Raychaudhuri equation on our past light cone
determine the null radial coordinatey as a function of the
redshift z. Subsequently, Maartenset al. @6# demonstrated
how the integration of the SS equations could be carried
and completed onC2(p0), and then off into the past as
function of proper time. But they did not actually show ho
the solutions off the light cone can be determined as fu
©1999 The American Physical Society20-1
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tions of the observational coordinate timew. Humphreys@7#
has gone one step farther, deriving an evolution equation
the observer area distanceC which can be integrated in two
steps for obtainingC(w,y). However, he only performed th
first integration overy down C2(p0) and did not explicitly
show how the central conditions can be used at that poin
recover the generalw-dependence of the first integral or ho
the second integration overw is to be done.

In this paper we review the entire problem of determini
the solution of the exact spherically symmetric Einste
equations for dust in observational coordinates, summa
the steps in integrating them, and complete the integration
explicitly carrying out the solution of the keyĊ8 evolution
equation. From this all the other dependent metric variab
are determined. Finally, we illustrate the procedure c
cretely by integrating these equations for FLRW data in
flat case to obtain the FLRW solution explicitly.

After defining observational coordinates and writing t
general spherically symmetric metric using them in Sec.
we summarize the basic observational parameters we sha
using in Sec. III. In Sec. IV we present several key relatio
ships among the metric variables, including the key mom
tum conservation equation. Section V presents the full se
field equations for the spherically symmetric case, with du
In Sec. VI, we outline in considerable detail the proced
for integrating these equations with data functions repres
ing observer area distance and galaxy number counts,
phasizing how the complete solution of the momentum c
servation equation can be obtained, which has not b
presented before. Section VII shows how this procedur
applied in the simplest case for FLRW data.

II. THE SS METRIC IN OBSERVATIONAL COORDINATES

We begin by giving the SS spacetime in observatio
coordinates~which were first suggested by Temple in 19
@12#!. As described by Elliset al. @1# these coordinatesxi

5$w,y,u,f% are centered on the observer’s world lineC and
defined in the following way:

~i! w is constant on each past light cone alongC, with
ua]aw.0 along C, where ua is the 4-velocity of matter
(uaua521). In other words, eachw5constant specifies a
past light cone alongC. Our past light cone is designated
w5w0.

~ii ! y is the null radial coordinate. It measures distan
down the null geodesics — with affine parametern — gen-
erating each past light cone centered onC. y50 on C and
dy/dn.0 on each null cone, so thaty increases as on
moves down a past light cone away fromC.

~iii ! u andf are the latitude and longitude of observatio
respectively — spherical coordinates based on a paral
propagated orthonormal tetrad alongC, and defined away
from C by ka]au5ka]af50, whereka is the past-directed
wave vector of photons (kaka50).

There are certain freedoms in the specification of th
observational coordinates. Inw there is the remaining free
dom to specifyw along our world lineC. Once specified
there it is fixed for all other world lines. There is conside
able freedom in the choice ofy — there is a large variety o
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possible choices for this coordinate — the affine parame
z, the area distanceC(w,y) itself. We normally choosey to
be comoving with the fluid, that isua]ay50. Once we have
made this choice, there is still a little bit of freedom left iny,
which we shall use below. The remaining freedom in theu
andf coordinates is a rigid rotation atonepoint onC.

In observational coordinates the SS metric takes the g
eral form

ds252A~w,y!2dw212A~w,y!B~w,y!dwdy

1C~w,y!2dV2 ~1!

where we assume thaty is comoving with the fluid, so tha
the fluid 4-velocity isua5A21dw

a .
The remaining coordinate freedom which preserves

observational form of the metric is a scaling ofw and ofy:

w→w̃5w̃~w!, y→ ỹ5 ỹ~y! S dw̃

dw
Þ0Þ

dỹ

dy
D . ~2!

The first, as we mentioned above, corresponds to a f
dom to choosew as any time parameter we wish alongC,
along our world line aty50. This is usually effected by
choosingA(w,0). The second corresponds to the freedom
choosey as any null distance parameter on an initial lig
cone — typically our light cone atw5w0. Then that choice
is effectively dragged onto other light cones by the fluid flo
— y is comoving with the fluid 4-velocity, as we have a
ready indicated. We shall use this freedom to choosey by
setting:

A~w0 ,y!5B~w0 ,y!. ~3!

In general, these freedoms inw and y imply the metric
scalings:

A→Ã5
dw

dw̃
A, B→B̃5

dy

dỹ
B. ~4!

It is important to specify the central conditions for th
metric variablesA(w,y), B(w,y) andC(w,y) in Eq. ~1! —
that is, their proper behavior as they approachy50. These
are

as y→0: A~w,y!→A~w,0!Þ0,

B~w,y!→B~w,0!Þ0,

C~w,y!→B~w,0!y50, ~5!

Cy~w,y!→B~w,0!.

III. THE BASIC OBSERVATIONAL QUANTITIES

The basic observable quantities onC are the following:
~i! Redshift. The redshiftz at timew0 on C for a comov-

ing source a null radial distancey down C2(p0) is given by
0-2



er
t

n

nc

ie

n

ed
th

a
d
le

es
ric

ic
.

th

e

ous

e

b-

tion
sen-

S
ery

e

.

EXACT SPHERICALLY SYMMETRIC DUST SOLUTION . . . PHYSICAL REVIEW D60 104020
11z5
A~w0,0!

A~w0 ,y!
. ~6!

This is just the observed redshift, which is directly det
mined by source spectra, once they are corrected for
Doppler shift due to local motions.

~ii ! Observer area distance. The observer area dista
often written asr 0, measured at timew0 on C for a source at
a null radial distancey is simply given by

r 05C~w0 ,y!, ~7!

provided the central condition~5!, determining the relation
betweenC(w,y) and B(w,y) for small values ofy, holds.
This quantity is also measurable as the luminosity dista
because of the reciprocity relation@13#.

~iii ! Galaxy number counts. The number of galax
counted by a central observer out to a null radial distancey is
given by

N~y!54pE
0

y

m~w0 ,ỹ!m21B~w0 ,ỹ!C~w0 ,ỹ!2dỹ ~8!

where m is the mass-energy density andm is the average
galaxy mass. Then the total energy density can be writte

m~w0 ,y!5m n~w0 ,y!5M0~z!
dz

dy

1

B~w0 ,y!
~9!

wheren(w0 ,y) is the number density of sources at (w0 ,y),
and where

M0[
m

J

1

dV

1

r 0
2

dN

dz
. ~10!

HeredV is the solid angle over which sources are count
and J is the completeness of the galaxy count, that is,
fraction of sources in the volume that are counted isJ. The
effects of dark matter in biasing the galactic distribution m
be incorporated viaJ. In particular, strong biasing is neede
if the number counts have a fractal behavior on local sca
@14#.

It can be seen from the above characterization of th
observational quantities how closely they fit into the met
as given in observational coordinates.

IV. OTHER KEY RELATIONSHIPS

There are a number of other important quantities wh
we catalog here for completeness and for later reference

First there are the two fundamental four-vectors in
problem, the fluid four-velocityua and the null vectorka,
which points down the generators of past light cones. Th
are given in terms of the metric variables as

ua5A21dw
a , ka5~AB!21dy

a . ~11!

The rate of expansion of the dust fluid is 3H5¹aua, so
that, from the metric~1! we have
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1

3A
S Ḃ

B
12

Ċ

C
D ~12!

where a ‘‘dot’’ indicates]/]w and a ‘‘prime’’ indicates
]/]y, which will be used later. For the central observerH is
precisely the Hubble expansion rate. In the homogene
~FLRW! case,H is constant at each instant of timet. But in
the general inhomogeneous case,H varies with radial dis-
tance fromy50 on t5t0. From our central conditions abov
Eq. ~3!, we find that the central behavior ofH is given by

as y→0: H~w,y!→ 1

A~w,0!

Ḃ~w,0!

B~w,0!
5H~w,0!.

~13!

At any given instantw5w0 along y50, this expression is
just the Hubble constantH05H(w0 ,0)5A0

21B0
21(Ḃ)0 as

measured by the central observer.
Finally, from the normalization condition for the fluid

four-velocity, we can immediately see that it can be given~in
covariant vector form! as the gradient of the proper timet
along the matter world lines:ua52t ,a . It is also given by
Eqs.~1! and ~11! as

ua5gabu
b52Aw,a1By,a . ~14!

Comparing these two forms implies

dt5Adw2Bdy ⇔ A5tw , B52ty ~15!

which shows that the surfaces of simultaneity for the o
server are given in observational coordinates byAdw
5Bdy. The integrability condition of Eq.~15! is simply then

A81Ḃ50. ~16!

This turns out precisely to be the momentum conserva
equation, which is the key equation in the system and es
tial to finding a solution.

V. THE SS FIELD EQUATIONS IN OBSERVATIONAL
COORDINATES

Stoegeret al. @5#, using the fluid-ray~FR! tetrad formula-
tion of the Einstein’s equations developed by Maartens@3#
and Stoegeret al. @15#, give the detailed derivation of the S
field equations in observational coordinates. Besides the v
important momentum conservation equation~16!, they are as
follows.

A set of two very simple fluid-ray tetrad time-derivativ
equations

Dv523bv ~17!

Dm52m~n2b! ~18!

where D5„A(w,y)…21]/]w is a tetrad derivative,b
[Ċ/AC andn[C8/2AB are FR spin coefficients. Using Eq
~16! these equations can be quickly integrated to give
0-3
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m~w,y!5m0~y!B21~w,y!C22~w,y! ~19!

v~w,y!5
v0~y!

C3~w,y!
52

1

2C2
1

Ċ

AC

C8

BC

1
1

2S C8

BCD 2

~20!

where the last equality in Eq.~20! comes from the fact thatv
is defined in terms of the FR spin coefficients asv[r 1b f
1 f 2/2, f [C8/BC, r 521/2C, m again is the relativistic
mass-energy density of the dust, andv0[v(w0 ,y) is a
quantity closely related tom0[m(w0 ,y) @see Eq.~27! be-
low#. Both v0 andm0 are specified by data on our past lig
cone, as we shall show.

The fluid-ray tetrad radial equations are

C9

C
5

C8

C S A8

A
1

B8

B D2
1

2
B2m ~21!

v0852
1

2
m0S Ċ

A
1

C8

B
D ~22!

Ċ8

C
5

Ḃ

B

C8

C
2v A B. ~23!

The remaining ‘‘independent’’ time-derivative equatio
given by the fluid-ray tetrad formulation are

C̈

C
5

Ċ

C

Ȧ

A
1v A2 ~24!

B̈

B
5

Ḃ

B

Ȧ

A
22vA22

1

2
m A2. ~25!

From Eq.~22! we see that there is a naturally defined ‘‘p
tential’’ ~see Stoegeret al. @5#!

F~y![
N!8

N8
5

Ċ

A
1

C8

B
, ~26!

whereN!(y) is an arbitrary function, whose central behavi
is the same as that of the number counts~Stoegeret al. @5#!.
Thus, from Eqs.~26! and ~22! it follows that

v0~y!52
1

2E m0~y!F~y!dy. ~27!

Connected with this relationship is Eq.~20!, which we re-
write as

Ċ

C

C8

C
1

A

2B

C82

C2
2

AB

2C2
5

v0

C3
AB. ~28!

Stoegeret al. @5# and Maartenset al. @6# have shown that
Eqs. ~26! and ~28! can be transformed into equations forA
andB, thus reducing the problem to determiningC:
10402
A5
Ċ

@F22122v0 /C#1/2
~29!

B5
C8

F2@F22122v0 /C#1/2
. ~30!

The LTB exact solution is obtained by integration of E
~29! along the matter flowy5constant using Eq.~15!

t2T~y!5E dC

@F22122v0 /C#1/2
~31!

whereT(y) is arbitrary, provided we identify

F2512k f2, k50,61. ~32!

Here f 5 f (y) is a function commonly used in describin
LTB models in the 311 coordinates~Bonnor @16#!.

VI. INTEGRATION PROCEDURE

In order to streamline our discussion, we shall discuss
flat case (k50) first. Then, from Eq.~32! F(y)51. Now,
since we have specifiedF(y), the observer area distance da
r 0(z)5C(w0 ,z) and the galaxy number counts data given
m(w0 ,z) arenot independent. So, we can choose one or
other, and then find the second from the relationship given
Eq. ~30!, temporarily choosingy5z, which is always legiti-
mate. For instance, if we knowC(w0 ,z), thenv0(z) is given
by

v05
CF2

2 H 12
1

F2
2F12

~11z!C8

FA0
G2J ~33!

with y5z, whereA0[A(w0,0) and we have used Eqs.~3!
and ~6! to write

B~w0 ,y!5A~w0,0!/~11z!. ~34!

The next step is to solve the null Raychaudhuri equat
~21! on our past light cone usingC(w0 ,z) andm(w0 ,z), or
equivalentlyv0(z), in order to determine the null radial co
ordinatey as a function of the redshiftz. This step is de-
scribed in detail by Stoegeret al. @5#. In principle, we could
maintain the choicey5z, but this leads to analytically im-
possible integrations later. We now can write our data fu
tions as functions ofy — thus we haveC(w0 ,y) and
m(w0 ,y), and thereforev0(y).

We now substitute Eqs.~29! and~30! into the momentum
conservation equation~16! and solve it algebraically for
Ċ8/Ċ to obtain
0-4
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Ċ
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~FF82v08C
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G[F22122v0 /C. ~36!

This equation was originally derived by Humphreys@7# in
a different way — essentially by evaluating the integral
Eq. ~31!, differentiating it down the light rays, substitutin
from Eq. ~30! and differentiating byw. Equation~35! can
also be obtained from the null Raychaudhuri equation~21!
by writing it completely in terms ofC(w,y), using, once
again, Eqs.~29! and~30!. Finally, it can be shown with som
extensive calculation that this key equation~35! is the first
integral of Eq.~25!, which, of course, can be written as
third-order partial differential equation inC(w,y). The other
two basic equations, Eqs.~23! and ~24! reduce to algebraic
identities we already know, when we try to turn them in
equations just forC(w,y). Thus they are of no further use t
us. We can see, then, from this brief inventory of the eq
tions constituting this formulation of Einstein’s spherica
symmetric equations for dust, that is Eqs.~17!, ~18!, and Eqs.
~21! to ~25!, that we will have either used or satisfied all th
equations available, once we have solved Eq.~35!.

Now, how do we go about integrating thisĊ8 equation
~35!? As Humphreys@7# first noticed, and we can see from
our calculations, it can be solved as an ordinary differen
equation forĊ, with w held constant. That is, sincew andy
are independent coordinates we fixw5w0 and integrate the
above equation with respect toy to obtainĊ(w0 ,y). This is
a crucial stage in the integration procedure. In particu
since we knowC(w0 ,y) andC8(w0 ,y) we can carry out this
integration on our past light cone,w5w0. In determining
this first integral we also need to include an integration c
stant which implements the proper behavior ofĊ(w0 ,y) at
y50, that is, on our central world line@Eq. ~5!#: Ċ(w0 ,y)
→0.

This same procedure can be followed in obtaining a fi
integral in the general SS case, in which we do not imp
spatial flatness~see below!. But now theĊ8 equation is a bit
more complicated:F(y) no longer equals 1, but must b
found in a previous step using the procedures indicated
Maartenset al. @6# ~see especially the erratum!. In this case,
of course,C(w0 ,y) andv0(y) are no longer interdependen
but constitute independent data parameters. Except for t
nontrivial, but inessential changes, obtaining the first integ
of Eq. ~35! on our past light cone is the same as in the
case.

Before we can proceed to integrate this resulting fir
order Ċ equation to obtainC(w,y) we have to examine the
central behavior ofĊ(w0 ,y) in somewhat more detail to
determine the explicit dependenceĊ on the variablew,
which was set tow0 in the previous integration. We mad
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this choice because we know all the relevant quantities in
~35! as functions ofy on w5w0. That is, there is hidden in
our expression forĊ(w0 ,y) an implicit dependence onw0.
We need to extract that dependence and make it explicit
that we can then determine the general dependence ofĊ on
w. Knowing Ċ(w0 ,y) explicitly in terms ofw0 andy enables
us to writeĊ(w,y), if we can determine which part of thew0

dependence ofĊ(w0 ,y) translates intow dependence~see
below! when we letĊ move from light cone to light cone
This is true becausew andy are independent coordinates.

The main complication is that, besides thew0 dependence
arising from thew5w0 choice we made just before findin
the first integral of Eq.~35!, there is another part of thew0
dependence which derives from previous integration c
stants and remains through the entire problem. Thisw0 de-
pendencedoes nottranslate intow dependence when we fre
Ċ to move from light cone to light cone. These twow0
dependences must be disentangled. How exactly is
done?

We do this by employing the full description of the ce
tral behavior ofĊ, that is@Eq. ~5!#

Ċ~w,y!→Ḃ~w,0!y50,y→0. ~37!

~In order to follow this brief description of the procedure,
may be a help to see each step exemplified in the FLRW c
detailed in Sec. VII below.! Applying this to ourĊ expres-
sion, we isolate the ‘‘Ḃ(w0 ,y)’’ part, which is trivially
done—just divide outy. Then, setting y50, we find
Ḃ(w0,0). This will give a constant. The two parts of th
w0-dependence are hidden in this constant—that is, the
w part which was set tow0 in order to do they-integration,
and thew0 part which was constant from the beginning. W
can then choose to relate the two parts of thisw0-dependence
in any way we wish. This choice ofw is essentially the
choice of thew parameter along the central world line, whic
is the one coordinate freedom we have not yet used. I
often, as indicated above, expressed as the freedom to ch
the dependent metric variableA(w,y) on our world line —
that is, the freedom to chooseA(w,0). But making the choice
in this way here effectively setsA(w,0): Knowing Ḃ(w,0)
determinesA8(w,0) through the conservation equationA8

1Ḃ50. And fromA8(w,0), A(w,0) itself is determined.
In this exact spherically symmetric dust case our integ

tion scheme is valid for moving into the future, as well as f
moving into the past. This is not true in general, nor even
perturbations away from spherical symmetry, for whi
schemes analogous to the one presented here provide
tions only in the past Cauchy development of that part of
past light coneC2(p0) on which we have data@17,1#. In the
0-5
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exact spherically symmetric dust case this restriction d
not hold, because there can be no gravitational waves c
ing in along future past light cones~spherical symmetry!.
Furthermore, we have effectively eliminated photons a
sound waves, because we have restricted the problem
pressure free matter. The only characteristics in the prob
are timelike world lines of the matter itself.

Having obtainedĊ(w,y) by this procedure, we can the
do the second integral, with respect tow, to obtainC(w,y),
being careful to use the value ofC(w0 ,y) we already have
as an initial-value condition. From this we can now eas
determineA(w,y) andB(w,y) from Eqs.~29! and ~30!.

VII. INTEGRATION WITH FLAT FLRW DATA

Here we briefly illustrate the integration procedure d
scribed above by beginning with FLRW data to find t
FLRW solution in observational coordinates. For simplic
we shall again restrict ourselves to the flat case, for wh
F(y)51. Because of this restriction we need only the o
server area distance, or the galaxy number counts —
both. F51 establishes a relation between these data fu
tions. In the flat case, the FLRW data have the form~Stoeger
et al. @5#!

r 0~z!52H0
21~11z!22$z112~z11!1/2% ~38!

and

M0~z!53H0~11z!1/2, ~39!

whereH0 is the Hubble parameter measured atw5w0 and
y50.

Solving the null Raychaudhuri equation with this da
~see Stoegeret al. @5#! yields the following relation between
redshift and the null coordinatey

~11z!5
1

~11ay!2
~40!

a[
H0A0

2
. ~41!

The observer area distanceC(w0 ,y) andv0 as functions
of y are then given by

C~w0 ,y!52H0
21~12ay!2ay ~42!

v0524H0
21~ay!3. ~43!

Substituting Eqs.~42!, ~43! andF51 into Eq.~35! gives

Ċ8

Ċ
5

2ay21

y~ay21!
. ~44!

Integrating the above equation yields

Ċ~w0 ,y!5y~ay21!. ~45!
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This already obeys the central condition thatĊ→0 as y
→0.

From the central conditions we also have that

lim
y→0

Ċ~w0 ,y!5 lim
y→0

yḂ~w0,0!. ~46!

Therefore,

lim
y→0

ay215Ḃ~w0,0!⇒Ḃ~w0,0!521. ~47!

Somehow the twow0 dependences we discussed above
hidden in this constant. We are free~the remaining coordi-
nate freedom inw) to make any choice which is consiste
with this central behavior. The obvious ones areḂ(w,0)
5w, with w051, Ḃ(w,0)5w0 /w, or Ḃ(w,0)5w/w0. We
choose the last. With this, together with our knowledge t
for the flat casea51/w0, we then have

Ċ~w,y!5y~y2w!/w0 . ~48!

Now keepingy constant we can integrate this to obtain

C~w,y!5y~y2w!2/2w0 , ~49!

which is the correct expression for FLRW in observation
coordinates. Using this expression we can obtainA and B
from Eqs.~29! and ~30!.

VIII. CONCLUSION

In this paper we have summarized the spherically sy
metric field equations for dust in observational coordina
and their integration with data on our past light co
C2(p0), focusing on completing that integration by indica
ing an analytic procedure for solving the momentum cons
vation equation@Eq. ~35!# for C(w,y). This involves finding
the first integral onC2(p0) — that is forw5w0 — and then
recovering the dependence ofĊ on w by using the central
conditions. Once this is accomplished the second integra
to determineC(w,y) itself is straightforward. Determination
of the other two remaining metric variablesA(w,y) and
B(w,y) then follow from Eqs.~29! and ~30!, respectively.
We have also fully characterized the relationships among
original equations, showing that all of the information that
contained in them has been used. Finally, we have illustra
this procedure by beginning with FLRW observational da
in the flat case, and integrating to find the FLRW metric
observational coordinates.

In a subsequent paper, we shall discuss the pertur
spherically symmetric case in detail.
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