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Although quantum field theory allows local negative energy densities and fluxes, it also places severe
restrictions upon the magnitude and extent of the negative energy. The restrictions take the form of quantum
inequalities. These inequalities imply that a pulse of negative energy must not only be followed by a compen-
sating pulse of positive energy, but that the temporal separation between the pulses is inversely proportional to
their amplitude. In an earlier paper we conjectured that there is a further constraint upon a negative and positive
energy 5-function pulse pair. This conjectuiéhe quantum interest conjecturstates that a positive energy
pulse must overcompensate the negative energy pulse by an amount which is a monotonically increasing
function of the pulse separation. In the present paper we prove the conjecture for massless quantized scalar
fields in two- and four-dimensional flat spacetime, and show that it is implied by the quantum inequalities.
[S0556-282(99)02418-2

PACS numbefs): 04.62:+v, 03.70+k

[. INTRODUCTION Minkowski spacetime, the original bound on the energy den-
sity has the fornj21,22
Known forms of classical matter obey the weak energy
condition (WEC): T,,u“u’=0, whereT,, is the stress- ~_t fw Tufudt 3
Pmal] . 2+~ 32478

energy tensor of matter, and' is an arbitrary timelike vec- T @
tor [1]. By continuity, the condition also holds for all null

vectors. Physically, the WEC implies that the energy densityfor all sampling timest,, wheret is the proper time of a
seen by any observer must be non-negative. However, thgeodesic observefThroughout this paper we use units in

renormalized stress-energy tensors of quantum fields caphich%=c=1.) Equation(1) was derived using the Lorent-
violate the WEC, as well as all other known pointwise en-zian sampling function given by

ergy conditiong2,3]. States of quantum fields which involve
negative energy densities have even been produced in the
laboratory, two examples being the Casimir effett7] and gt)=———-.
squeezed states of lighig], although the energy densities m(t°+1tp)
have not been directly measured. If there were no constraints ] N ] ]
on negative energy densities, then it would be possible to use Quantum inequalities have now been derived in curved as
them to produce macroscopic effects. Such effects might inell as flat spacetimes, in both two and four dimensions
clude warp driveg9,10], traversable wormholegl1], time [24721. They have also been used to obtain severe con-
machined12—14, and violations of the second law of ther- Straints on traversable wormhole geomet(i28] and warp
modynamicg 15,16 The extent to which the laws of phys- drives[29,30. Quantum mequa_lltles have been derived for
ics place restrictions on negative energy density has receivéfjassless and massive scalar fidi#ls,22,24,26,2) and for
much attention during the last few years. the electromagnetic fielf22]. o _ _
Recent progress has been made on the topic of “quantum Flanagan[31] generalized the original two-dimensional
inequalities.” These are inequalities which restrict the magflat spacetime inequalities to those with arbitrary sampling
nitude and duration of negative energy densities and fluxe&inctions and was also able to find the optimal bound. His
[15,17,18,20—2P Physically, the inequalities imply that the "€sultis
energy density seen by an observer cannot be arbitrarily R
negative for an arbitrarily long period of timg3]. The ~ :_L = [9'(V] dt 3)
mathematical form of the bound consists of the renormalized Pmin™ " 24m | gty
expectation value of the energy density or the flux, evaluated
in an arbitrary quantum state, and folded into a samplingvhereg(t) is an arbitrary sampling function. If the Lorent-
function. The latter is a peaked function of time with a char-zian sampling function is substituted into E8), the result-
acteristic widthtg, called the sampling time. For a quantized ing bound is a factor of 6 smaller than the original two-
massless, minimally coupled scalar field in four-dimensionatlimensional bound found in Refg21,22,.
Fewster and EvesofFE) [32] have discovered a much
simpler method for deriving the quantum inequalities than
*Email address: ford@cosmos2.phy.tufts.edu was given previously. They prove quantum inequalities for
TPermanent address: Department of Physics and Earth Scienceésassless and massive scalar fields in two- and four-
Central Connecticut State University, New Britain, CT 06050.dimensional flat spacetimes. Their result for the massless
Email address: roman@ccsu.edu scalar field in four dimensions is given by
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where againg(t) is an arbitrary sampling function. When
g(t) is chosen to be the Lorentzian sampling function, the
resulting bound is 9/64 of that in E¢L).
An extremely useful feature of the results of Flanagan and \
of FE is the freedom to employ sampling functions with :
compact support. Some use of this type of sampling function
has already been made in RgR3]. This freedom will be

mirror's worldline

exploited more fully in the current paper. 1/a X <0 X
In an earlier pap€dr20], we found evidence to suggest that e <0 —

there may be stronger restrictions on negative energy densi ’ \worldline_of inertial observer

ties than those proved to date. There we were concerned wit! x=0 sampling the flux

the question of whether &-function pulse of negative en-

ergy injected into an extreme charged black hole could pro-. FIG. 1. A moving mirror Wh'c.h emits fL!nCt'on pulses of nega
. . . . tive and positive energy. The mirror is initially at resbat x,, and
duce an observable violation of cosmic censorship by mak- " . . . .
its a negative energy pulse as it begins to accelerate with con-

. . e

ing the mass tempo_rarlly less than the charge. We Showeégnt proper acceleratian At time t; and positiorx=X; , it ceases
that-any initial negative <) energy pulse had to be accom- accelerating and emits a pulse of positive energy. An inertial ob-
panied by_a subsequent positivé X energy p_L’lse[The US€  server atk=0 receives these pulsestatt; andt=t,, respectively.

of S-function pulses would seem to provide an efficient

means of separating«) and (+) energy] Furthermore, we ;e by a moving mirror in two-dimensional flat spacetime

discovered that there existed a quantum inequality-type COM34]. Consider an observer at resbat 0 and a mirror which

straint on the mggmtude ?]f thel—() e”e.f9¥| pulse and theh accelerates toward the observer from positigrc0. (See
time separation between the pulses. Similar constraints ha&y 1) The mirror starts from rest and receives an initial

also peen found for pulses in flat spgc_gti[ﬂé]. This in- . kick at timet=0, which causes it to emit &-function pulse
equality appeared to exclude the possibility of an unamblgubf (—) energy toward the observer. Subsequently it moves

ously observable violation of cosmic censorship. with a constant proper acceleratiam,until t=t;, when its

During the course 9f that Investigation we Q'Scoveredacceleration is abruptly haltedo avoid collision with the
that, at least in certain instances, it was not possible to mak

the pulsesxactlycompensate one another. It appeared thafbserve}, causing the mirror to emit @-function pulse of
) L : . )
the (+) pulse had taovercompensatehe (~) pulse. Fur- ) energy toward the observefUnlike a classical point

. . charge, the mirror only radiates when its acceleration
f[hermore, It lappeared .that.the amount. of overcompensatp&]anges Thereafter the mirror moves inertially. The-|
reressed b ncreasng e Separalon of e e Thneoy puise crosses the obsevers work .t anc
be at work. We called this théquantum interest conjec- the (+).ene_rgy pulse crosses.’attz. Th_erefore, th? pulse
ture.” whicﬁ states that an energy “loan,” i.e.—() energy sep_aratlon isT=t,—t;. The mlrrqr’s .trajectory, during the
’ . AR P, 2" period of constant acceleration, is given by

must always be “repaid,” i.e., by{) energy, with an “in-
terest” which depends on the magnitude and duration of the
loan. In the present paper, we prove that the conjecture is
indeed true, at least fa¥-function pulses composed of mass-
less scalar fields in Minkowski spacetime.

In Sec. I, we present a physically transparent example of

guantum interest in two dimensions, where thdunction dx at

X(t)=(xo— 1/a) + (1/a®+1%)12, (5)

The velocity,V, of the mirror is given by

pulses are generated by a moving mirror. It is shown in Sec. v dt (1+a2t2)1’2' ©
[Il that there exists a general constraint on the maximum

pulse separation, which is derived using a quantum inequal- |, ref. [18],
ity with compactly supported sampling functions. In Sec. IV
we show that quantum interest is required to exist for
S-function pulses in two- and four-dimensional flat space-

it was shown that the magnitude of the
(—) energy pulse emitted by the mirrde\E|, is given by

. o . a

time, even for arbitrarily small pulse separations. Our con- |AE|=——, (7)
clusions and some remaining open questions are discussed in 12m

Sec. V.

and that the magnitude and the pulse separafipare con-

strained by the inequality
Il. SIMPLE EXAMPLE: THE MOVING MIRROR

As a simple example of quantum interest, we examine the

1
case of twos-function pulses of ) and (+) energy pro- [AE[T<5- ®

127"
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For an observer to the right of the mirror, the energy flux isdue to the nonzero velocity of the mirror when the pulse is
given by Eq.(2.24) of Ref.[18] with the sign ofV changed. emitted, i.e., at the moment when the mirror's acceleration is
From this expression, it can be shown that the magnitude dfialted.
the positive pulseAE,, is The generation of the second pulse by the mirror is wor-
thy of some further discussion. If the mirror were to accel-
a \/1_Vf2 erate forever, no such pulse would be generated. However,
P12 m © the only observers who would see the negative pulse and
avoid being hit by the mirror would be ones who also accel-
and therefore erate so as to stay ahead of the mifrd8]. For the present
discussion, we are interested in pulses seen by inertial ob-
(AEp) V1-V7§ servers, as the quantum inequalities are formulated in an in-
= [AE] = (1-v)2’ (100 ertial frgme. !f one were to cons_lder a finite size mirror in
f three-dimensional space, one might have the observer step

wheree is the fraction by which the magnitude of the out of the way of the mirror before it hits him. Unfortunately

energy pulse overcompensates that of the energy pulse, the behavior of plan(_a mirror_s in four spacetime dimensions is
and V; is the velocity of the mirror when the acceleration MOt known, except in special casgk9]. We do not know

+€

ceases. how to compute the effects of complications which may
We now want to express in terms of| AE| andT. From arise, for example, from particle creation by the edge of such
; ; ' a mirror as it passes the observer. Therefore, the quantitative

Fig. 1, it can be seen that i . . : . ) .
discussion and claims made in this section are necessarily

to=t;+|X¢| =t — X (11) restricted to moving mirrors in two spacetime dimensions. In

any case, the mirror example of this section is simply illus-

and trative of more general behavior. It will be shown in subse-

quent sections that both the maximum pulse separation and
the phenomenon of quantum interest are general features
éNhiCh do not depend upon the details of how the pulses are
generated.

It is also worth noting that all of the analysis in this paper
deals with pulses in empty Minkowski spacetime, where the
guantum inequalities of Eq§3) and(4) are formulated. The

T(aT—2) case of a single mirror can still be regarded as being empty
tf:m' (13)  Minkowski spacetime in the sense that the pulses can be

studied at an arbitrarily large distance from the mirror. One

Equations(6), (10), (13), the fact thanT<1, and a straight- might consider generating negative energy by moving a pair

tl:|X0|:_X01 (12)

where we have used the fact that the final position of th
mirror when it stops accelerating;, is negative because the
mirror stays to the left of the observer. Usifig-t,—t,; and
Eq. (5), we obtain

forward but slightly tedious calculation imply of mirrors together from a Iar_ge sgparati(mdynamical Ca-
simir effech. However, this situation would be rather com-
aT(2a2T2—5aT+4) plicated to analyze. The quantum inequalities for the static
= 2Ty (14  Casimir case take the form of “difference inequalities”

[21,26, which constrain the difference in energy density be-
tween an arbitrary state and the Casimir vacuum. The gener-

If ite thi ti ing Eq7 t . : . . . :
we rewrite this equation using E¢7), we ge alization of these inequalities to time-dependent situations

24| AEIT(7272| AE|2T2— 157 | AE| T+ 1 has not yet been i_nvestigated. _ _
€= | AE[T(7277|AE| 37T| | ) , (15 We speculated in Ref20] that quantum interest might be
(1—127|AE|T) a more general phenomenon which generically occurs in

cases of separatetifunction pulses of ) and (+) energy,

in four as well as in two dimensions, regardless of how the
pulses are produced. In the following sections of this paper,
we will prove that this is in fact the case.

which is a monotonically increasing function pSE|T. In
the nonrelativistic, i.e., smalAE|T, limit Eq. (15) becomes

e~24m|AE|T+50472(|AE|T)?+O[T3]--- . (16)

The leading term on the right-hand side of this expression is
identical to an earlier result derived in Sec. Il E of Re&0]. lll. GENERAL CONSTRAINT ON PULSE SEPARATIONS

There only the nonrelativistic case was considered and the |n this section, we will show that quantum inequalities
more general result, now confirmed by our Efj5) above, impose a maximum time separatiof,,,, on any pair of

was conjectured. (=) and (+) energy é-function pulses, in both two- and

In this simple example, it is easy to see why there is &oyr-dimensional flat spacetime. Let the pulse profile be
maximum pulse separation] <Tp.,=1/(127|AE[), and  given by

how quantum interest arises. The former arises from the con-
straint that the mirror not collide with the observer. The latter
is produced by the Doppler shifting of the-{ energy pulse p(t)=B[—d6(t)+(1+e€)5(t—T)], 17
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whereB=|AE]| in two dimensions and@=|AE|/A in four
dimensions, wherd\ is the (planay collecting area of the
flux [35].

The quantum inequalities have the general form

~ [ C
p=ﬁwg(t)p(t)>—— (18)

o’

wherep(t) is the energy densityg(t) is the sampling func-

tion, andC is a constant whose value depends on both the 0,
specific choice of sampling function and the spacetime di-

mension,D. Substituting Eq(17) into Eq.(18), we obtain

- C
p=B[-g(0)+(1+e)g(T)]=~

E' (19

Let us use a compactly supported sampling function wit

width ty; e.g., the sampling function vanish@ontinuously

for t<—ty/2 and fort=ty,/2. We will also assume, for the
purposes of this discussion, that the sampling function has T m
only one maximum in this interval. The left-hand side of Eq.

(19 will be most negative wheif=t,/2, sinceg(T)=0 in
this region. The bound can then be written as

C
< 908" (20
We may express, as a multiple ofT,
to=«T, (21
wherex<2, and then rewrite Eq20) as
B< L (22
9(0)x°TP

The best bound is obtained far=2, and is given by

C

<—. 23
® 2PTPg(0) 3

For a sampling function with a single maximurg(0)
«1fty, so letg(0)=Cy/ty=Cy/2T, whereC, is a constant

PHYSICAL REVIEW D60 104018

1/ CA
( (26)

3
$_ —_—
=3 colAEl)
in two and four dimensions, respectively. Therefore, the
larger the magnitude of the<) energy pulse, the smaller is
the allowed time separation between the pulses.

An example of a compactly supported sampling function,
which was given in Ref[33], is

t<—to/2,
0, t>t0/2.

(27)

For this functionCy=2, and in two dimension€= /6,

pwhich gives the following constraint on the maximum pulse

separationr -

0.131

a4 AE]  [AE] (28)

For the same functior€ = 72/16 in four dimensions, and the

analogous constraint is
1/3 A 1/3 )
~0.33 Ag] (29

m

2/3 A
Thax= ( 1_6 (

|AE]|

Note that in two dimensions the bound @g,,, given by
Eq. (28 is larger than the boundAE|T.=1/(12m)
~0.027, for the moving mirror case. It could be that there
are other quantum states in two dimensions for which the
value of T, lies between the moving mirror value and the
bound given by Eq(28). Alternatively, it may be that the
moving mirror case comes close to the maximum allowed
value of T,,a for any quantum state in two dimensions. If
that is true, then perhaps other choices of compactly sup-
ported sampling functions would lead to stronger bounds on
Tmax- Of the various sampling functions which we have ex-
amined, the best bound was obtained for E7). At
present, this remains an open question.

IV. NECESSITY OF QUANTUM INTEREST

whose value depends only on the form of the chosen sam-

pling function (but not on the spacetime dimension, unlike

C). Equation(23) now yields the constraint

In this section we will establish the existence of quantum

interest. The first subsection contains a simple argument
which proves the necessity of quantum interest in four-

dimensional flat spacetime, using the Lorentzian sampling
function. The second subsection extends this argument to
more general sampling functions in both two and four di-

mensions.

A. Simple argument in four dimensions

It will now be shown that quantum interest must exist for
S-function pulses in four-dimensional flat spacetime. Here
we will use the Lorentzian sampling function. The quantum

BTP 1< . (29
2D—1C0
We thus have the following constraints on the pulse separa-
tion, T:
T c 25
[
3C,[AE| @9
and

inequality is

104018-4



THE QUANTUM INTEREST CONJECTURE

A C

P=— 7, (30)
to
where C=3/(327%) in the earlier version of Ref21], and
C=27/(20487%) in the improved version of FIE32]. If we
substitute Eq(17), with B=|AE|/A, into Eq. (30), the re-
sulting inequality may be rewritten as

~ |AE| (ep?-1) __C

=— , 31
TA BT(1+p% BT o
where
to
=7 (32

A non-trivial inequality is obtained only fo¢g82—1<0, i.e.,
0=<p<1/\/e. A slight rearrangement of E¢31) gives

CwA
|AE|T=< T F(B), (33
with
__1p
F('B)_B3(1—e,82)' (34

Note that if we sete=0, corresponding t@xactlycompen-
sating pulses, then

2

1+
F(B)= B3 —0, as B—». (35

Since the quantum inequality must hold for any valugBof
this would imply that| AE| T30, i.e., eithedAE|=0 or T

=0. In either case, there would be no non-trivial pulses.
Therefore,e>0; i.e., wemusthave quantum interest in four-

dimensional flat spacetime.

To get the tightest bound in E€33), we should evaluate
the right-hand side at the smallest value of the function
F(B). A calculation using the computer algebra program

MACSYMA shows that the minimum d¥(g) is at

V(1+e€)(1+25¢)+1—-5€
B=Bm= .

6e

(36)

If we let y(e)=F(Bm(€)), theny(e) is a monotonically in-

creasing functior(as can be shown, for example, by graph-

ing the function. Therefore, Eq(33) can be written as

CmA
[AEIT=| —-]y(e) (37
or, inverting the inequality, as
_,[IAE[T?
=Y\ Ccan | 8

PHYSICAL REVIEW B0 104018

Sincey(e€) is a monotonically increasing function, soyis?;
hence the minimum allowed value efincreases ag\E|T®
increases.

In the e—0 limit, y(e)~3/3€/2, and so Eq(37) can be
inverted to yield

4 (|AE|T3)2
€= ;

27\ C#A |’ (39)

i.e., € grows asT® for fixed |AE| andA.

B. A more general approach to quantum interest

In this section we will develop a more general formalism
for obtaining lower bounds upoa First, it is convenient to
formulate the quantum inequalities in terms of sampling
functions which are dimensionless functions of a dimension-
less variablez=t/t,. Let

G(2)=tog(1).

The quantum inequalities still take the form of E@.8),
where the constart is

(40)

1 (=[G(2]?
= %4m) . Gz 97 (41)
in two dimensions, and

1
1672

J 16 (2)Pdz, 42

in four dimensions. The lower bound ancan be obtained
from Eq. (19):

ezﬁ g(0)—B£tg) —1. (43)
In terms ofG, this bound is
1 Cc(x\b 1
) Co_g(f) -1, (44)
whereCy=G(0) and
x=Tlt,. (45)

We can express this as an upper boundldor fixed € as
BTP1<H(x,e), (46)

where

CXD*l
H(x, €)= c

(et DG @0

Note that our bound is nontrivial only i€y— (e+1)G(x)
>0.

104018-5
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The basic strategy which we will pursue is the following:

first find the valuex=x,, which minimizes the function
H(x,e€) for fixed e. Then the best bound of for a given
form of G is

BTP I<y(e)=H(Xy,€). (48)

If y(€) is a monotonically increasing function, then so is its

inversey !, and we can write the lower bound enas
e=y {BTP 1), (49

The extremization with respect tois equivalent to that with

PHYSICAL REVIEW D60 104018

>1in two dimensions antb>3 in four dimensions. In two
dimensions, the lower bound anfrom Eq. (53) grows as
TY/(1=b) wherel<b< 1, and hence always grows faster than
linearly for smallT. In four dimensions, the corresponding
bound grows ag3”(3~b) where2<b<3, and hence grows
faster thariT® for small T. The main point of this calculation

is to show that the quantum interest effect persists even in
the limit of arbitrarily small temporal separation of the
pulses. Note that this behavior is also a feature of the specific
example of the moving mirror.

2. Numerical bounds for general

resp_ecft toB performed in the pre_vious_ section, and_ amounts  We can go beyond the smallapproximation by numeri-
to finding the choice of sampling time which yields the cal methods. Here we restrict our discussion to a specific

strongest bound. If we set the first derivativetbfwith re-
spect tox equal to zero, we find

(14 €)[xG' —(D—1)G]+(D—1)Co=0, (50

which is the equation to be solved frg,. We will then need
to check thatH”(x,,)>0 to verify that this is a minimum.
1. Small T approximation

Let us first consider quantum interest in the snidiimit,
which is determined by the behavior &f(x) for small x.

choice of sampling function,

G(2)=Coe 2", (55)

for which
C __b 56
02T (1b) " (56

This function has the form of Eq51) for |z|<1, so the
bounds obtained from it will be of the form of E¢G3) for

Take G to be an even function which has the approximatesmallT. Let us first use this sampling function to study quan-

form
G(z)~C,—az’ (51)

for 0<z<1. If we substitute this form into Eq50) and
solve the resulting equation, the result is

(D—1)Coe |*P
Xm= (52)
a(e+1)(D—b—-1)
The bound ore in this case becomes
D—b—1/Bb\P(®~b~1)
e=—— | —
Co ( ¢
a \(-1)/(D-b-1)
% 51 Tb(D-1)/(D-b-1) (53

tum interest in two dimensions. Here Hdl) yields

_ b’T((2b—1)/b)

247T (1b) (57)

and Eq.(50) becomes
e’ (1+€)(bx°+1)=0. (58)

The root of this equation i8=X,. The upper bound oit
for fixed €, Eq. (48), may now be expressed as

C
BT< —x. °(1+bx2). (59

bCo

For a given value ob, we may numerically solve Eq58)
for fixed €, and check thaH"(x,,,€)>0. We then evaluate

As a check, we may compare this with the results of thethe right hand side of Eq59), which yields the limiting

previous subsection. SBt=4 andb=2 in the above bound,
and then seCy=a= 1/, corresponding to the Lorentzian
sampling function. Then we obtain

=l
_ T6
2772\ C '
which is equivalent to Eq(39).

We need to check that=x,, is actually a minimum of.
For our procedure to be self-consistent, we must hlave
<D-—1, as may be seen from E(r2). With this restriction
it can be shown tha#l”(x,,,€) >0, for this form ofG. There
is a further constraint oh coming from the requirement that
the integrals forC converge ak=0, which requires thab

€=

(54

value of T(€). The graph shown in Fig. 2 was obtained by
inverting this relationship and plotting(T). Typically, val-
ues ofb close to} give the best bounds for small This is
the case that was treated analytically above. Similaoly,
~1.75 gives the best bound for larger valuesTofLarger
values ofb actually give weaker bounds far<T,,,,. Some
results for various values t&fare given in Fig. 2. Recall that
Eq. (28) gives an upper bound oh of BT,5,~0.13. ForT
~Tmax, OUr sampling function requires that €,,;,~40.

A similar calculation may be performed in four dimen-
sions. In this case

o b2(b—1)(2b—1)T((2b—3)/b)
- 25672I"(1/b)

: (60)
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FIG. 2. The lower bound o in two dimensions for different FIG. 3. The lower bound o in four dimensions for different
choices ofb. Here the pulse separatidhis in units of[AE| ™. choices ofb. Here the pulse separatidhis in units of (A/|AE[)*>.

the equation fox,, is now . . . L .
q m ing mirror example. Another important question is which

b hoice of sampling function maximizes quantum interest, for
3e —(1+€)(bxP+3)=0, 61 °© piing q '
(1+e) ) (61 a fixed choice ofl. These are unresolved problems to which
and the bound off is we hope to return later.

Moving mirrors generate more quantum interest than is
required by our bounds. For examples=~4 at T
(62 —1/(24m|AE|)~0.0133fAE|, which is one-half of
(Tmamirror - This is much larger than the bounds eril-
Again values ofb near the lower limit of3 give better lustrated in Fig. 3. It may be that the moving mirror state
bounds for smalll, and larger values df give better bounds generates much more quantum interest than similar quantum
for largerT. Recall that Eq(29) gives an upper bound oh  states in which the pulses are produced by other mecha-
of BY3T ,.=0.34. The bounds which arise whén=1.75  nisms. Alternatively, it may be that the moving mirror state
andb=2 are shown in Fig. 3. As in two dimensions, yet is close to the generic case of quantum interest in two dimen-
larger values ofb actually give weaker bounds fol  sions. In this event, presumably other choices of the sam-
<Tmax- pling function would predict a value foe which is much
closer to the moving mirror value. At present, this question
V. CONCLUSIONS also remains unresolved.
Our central result is that quantum inequalities imply that

3uantum interest must exist for pulses in both two- and four-

in two- and four-dimensional Minkowski spacetime, Satisfydlmensmnal flat spacetime. This takes the form of a lower

the “quantum interest conjecture.” This statement says thaPOund one which IS a monot(_)nlcally Increasing function OT
an energy “loan,” i.e., () energy, must always be repaid, the pulse separation, for a fixed magnitude of the negative

i.e., by (+) energy, with an “interest” which increases with €Nergy pulse.'The bound is nonzero even for arbitrarily small
the magnitude and/or duration of the “loan.” Quantum in- pulse separations. ane again it appears that nature _enforces
terest is measured by the quantitywhich is the fraction by ~rather strict constraints on manipulations of X energies.
which the magnitude of the¥{) energy pulse overcompen- The energy density integrated along an inertial observer’'s
sates that of the {) energy pulse. A simple example of world line must be positive and the sampled energy density
quantum interest, involving-function pulses produced by a obeys the quantum inequalities. The degree of overcompen-
moving mirror, was examined in two-dimensional spacetimesation by the ) energy increases with increasing pulse
There it was easy to see how quantum interest arose. It waeparation. In addition, there exists a maximum allowed
the result of a Doppler shifting of the subsequenf) (energy  pulse separation, which thereby limits the duration of the
pulse emitted by the mirror when its acceleration waseffects of the &) energy.

brought to a stop in order to avoid a collision with the ob-

server. The use of compactly supported sampling functions

enabled us to conclude that, for a fixed magnitude of the ACKNOWLEDGMENTS
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We have proved that quantum states of the massless s
lar field involving §-function pulses of {-) and (+) energy,
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