
PHYSICAL REVIEW D, VOLUME 60, 104018
The quantum interest conjecture
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Although quantum field theory allows local negative energy densities and fluxes, it also places severe
restrictions upon the magnitude and extent of the negative energy. The restrictions take the form of quantum
inequalities. These inequalities imply that a pulse of negative energy must not only be followed by a compen-
sating pulse of positive energy, but that the temporal separation between the pulses is inversely proportional to
their amplitude. In an earlier paper we conjectured that there is a further constraint upon a negative and positive
energyd-function pulse pair. This conjecture~the quantum interest conjecture! states that a positive energy
pulse must overcompensate the negative energy pulse by an amount which is a monotonically increasing
function of the pulse separation. In the present paper we prove the conjecture for massless quantized scalar
fields in two- and four-dimensional flat spacetime, and show that it is implied by the quantum inequalities.
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I. INTRODUCTION

Known forms of classical matter obey the weak ene
condition ~WEC!: Tmnumun>0, where Tmn is the stress-
energy tensor of matter, andum is an arbitrary timelike vec-
tor @1#. By continuity, the condition also holds for all nu
vectors. Physically, the WEC implies that the energy den
seen by any observer must be non-negative. However,
renormalized stress-energy tensors of quantum fields
violate the WEC, as well as all other known pointwise e
ergy conditions@2,3#. States of quantum fields which involv
negative energy densities have even been produced in
laboratory, two examples being the Casimir effect@4–7# and
squeezed states of light@8#, although the energy densitie
have not been directly measured. If there were no constra
on negative energy densities, then it would be possible to
them to produce macroscopic effects. Such effects migh
clude warp drives@9,10#, traversable wormholes@11#, time
machines@12–14#, and violations of the second law of the
modynamics@15,16#. The extent to which the laws of phys
ics place restrictions on negative energy density has rece
much attention during the last few years.

Recent progress has been made on the topic of ‘‘quan
inequalities.’’ These are inequalities which restrict the ma
nitude and duration of negative energy densities and flu
@15,17,18,20–22#. Physically, the inequalities imply that th
energy density seen by an observer cannot be arbitra
negative for an arbitrarily long period of time@23#. The
mathematical form of the bound consists of the renormali
expectation value of the energy density or the flux, evalua
in an arbitrary quantum state, and folded into a sampl
function. The latter is a peaked function of time with a ch
acteristic width,t0, called the sampling time. For a quantize
massless, minimally coupled scalar field in four-dimensio
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Minkowski spacetime, the original bound on the energy d
sity has the form@21,22#

r̂[
t0

pE2`

` Tmnumundt

t21t0
2 >2

3

32p2t0
4 , ~1!

for all sampling timest0, where t is the proper time of a
geodesic observer.~Throughout this paper we use units
which \5c51.! Equation~1! was derived using the Lorent
zian sampling function given by

g~ t !5
t0

p~ t21t0
2!

. ~2!

Quantum inequalities have now been derived in curved
well as flat spacetimes, in both two and four dimensio
@24–27#. They have also been used to obtain severe c
straints on traversable wormhole geometries@28# and warp
drives @29,30#. Quantum inequalities have been derived f
massless and massive scalar fields@21,22,24,26,27#, and for
the electromagnetic field@22#.

Flanagan@31# generalized the original two-dimension
flat spacetime inequalities to those with arbitrary sampl
functions and was also able to find the optimal bound. H
result is

r̂min52
1

24pE2`

` @g8~ t !#2

g~ t !
dt, ~3!

whereg(t) is an arbitrary sampling function. If the Loren
zian sampling function is substituted into Eq.~3!, the result-
ing bound is a factor of 6 smaller than the original tw
dimensional bound found in Refs.@21,22#.

Fewster and Eveson~FE! @32# have discovered a muc
simpler method for deriving the quantum inequalities th
was given previously. They prove quantum inequalities
massless and massive scalar fields in two- and fo
dimensional flat spacetimes. Their result for the mass
scalar field in four dimensions is given by

es,
.
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r̂>2
1

16p2E2`

`

@g1/29~ t !#2dt, ~4!

where againg(t) is an arbitrary sampling function. Whe
g(t) is chosen to be the Lorentzian sampling function,
resulting bound is 9/64 of that in Eq.~1!.

An extremely useful feature of the results of Flanagan a
of FE is the freedom to employ sampling functions w
compact support. Some use of this type of sampling func
has already been made in Ref.@33#. This freedom will be
exploited more fully in the current paper.

In an earlier paper@20#, we found evidence to suggest th
there may be stronger restrictions on negative energy de
ties than those proved to date. There we were concerned
the question of whether ad-function pulse of negative en
ergy injected into an extreme charged black hole could p
duce an observable violation of cosmic censorship by m
ing the mass temporarily less than the charge. We sho
that any initial negative (2) energy pulse had to be accom
panied by a subsequent positive (1) energy pulse.@The use
of d-function pulses would seem to provide an efficie
means of separating (2) and (1) energy.# Furthermore, we
discovered that there existed a quantum inequality-type c
straint on the magnitude of the (2) energy pulse and the
time separation between the pulses. Similar constraints
also been found for pulses in flat spacetime@17#. This in-
equality appeared to exclude the possibility of an unambi
ously observable violation of cosmic censorship.

During the course of that investigation we discover
that, at least in certain instances, it was not possible to m
the pulsesexactlycompensate one another. It appeared t
the (1) pulse had toovercompensatethe (2) pulse. Fur-
thermore, it appeared that the amount of overcompensa
increased with increasing time separation of the pulses. T
behavior suggested to us that a more general principle m
be at work. We called this the‘‘quantum interest conjec-
ture,’’ which states that an energy ‘‘loan,’’ i.e., (2) energy,
must always be ‘‘repaid,’’ i.e., by (1) energy, with an ‘‘in-
terest’’ which depends on the magnitude and duration of
loan. In the present paper, we prove that the conjectur
indeed true, at least ford-function pulses composed of mas
less scalar fields in Minkowski spacetime.

In Sec. II, we present a physically transparent example
quantum interest in two dimensions, where thed-function
pulses are generated by a moving mirror. It is shown in S
III that there exists a general constraint on the maxim
pulse separation, which is derived using a quantum ineq
ity with compactly supported sampling functions. In Sec.
we show that quantum interest is required to exist
d-function pulses in two- and four-dimensional flat spac
time, even for arbitrarily small pulse separations. Our c
clusions and some remaining open questions are discuss
Sec. V.

II. SIMPLE EXAMPLE: THE MOVING MIRROR

As a simple example of quantum interest, we examine
case of twod-function pulses of (2) and (1) energy pro-
10401
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duced by a moving mirror in two-dimensional flat spacetim
@34#. Consider an observer at rest atx50 and a mirror which
accelerates toward the observer from positionx0,0. ~See
Fig. 1.! The mirror starts from rest and receives an init
kick at timet50, which causes it to emit ad-function pulse
of (2) energy toward the observer. Subsequently it mo
with a constant proper acceleration,a, until t5t f , when its
acceleration is abruptly halted~to avoid collision with the
observer!, causing the mirror to emit ad-function pulse of
(1) energy toward the observer.~Unlike a classical point
charge, the mirror only radiates when its accelerat
changes.! Thereafter the mirror moves inertially. The (2)
energy pulse crosses the observer’s world line att5t1, and
the (1) energy pulse crosses att5t2. Therefore, the pulse
separation isT5t22t1. The mirror’s trajectory, during the
period of constant acceleration, is given by

x~ t !5~x021/a!1~1/a21t2!1/2. ~5!

The velocity,V, of the mirror is given by

V5
dx

dt
5

at

~11a2t2!1/2
. ~6!

In Ref. @18#, it was shown that the magnitude of the
(2) energy pulse emitted by the mirror,uDEu, is given by

uDEu5
a

12p
, ~7!

and that the magnitude and the pulse separation,T, are con-
strained by the inequality

uDEuT,
1

12p
. ~8!

FIG. 1. A moving mirror which emitsd-function pulses of nega-
tive and positive energy. The mirror is initially at rest atx5x0, and
emits a negative energy pulse as it begins to accelerate with
stant proper accelerationa. At time t f and positionx5xf , it ceases
accelerating and emits a pulse of positive energy. An inertial
server atx50 receives these pulses att5t1 andt5t2, respectively.
8-2
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THE QUANTUM INTEREST CONJECTURE PHYSICAL REVIEW D60 104018
For an observer to the right of the mirror, the energy flux
given by Eq.~2.24! of Ref. @18# with the sign ofV changed.
From this expression, it can be shown that the magnitud
the positive pulse,DEp , is

DEp5
a

12p

A12Vf
2

~12Vf !
2

, ~9!

and therefore

11e5
~DEp!

uDEu
5

A12Vf
2

~12Vf !
2

, ~10!

wheree is the fraction by which the magnitude of the (1)
energy pulse overcompensates that of the (2) energy pulse,
and Vf is the velocity of the mirror when the acceleratio
ceases.

We now want to expresse in terms ofuDEu andT. From
Fig. 1, it can be seen that

t25t f1uxf u5t f2xf ~11!

and

t15ux0u52x0 , ~12!

where we have used the fact that the final position of
mirror when it stops accelerating,xf , is negative because th
mirror stays to the left of the observer. UsingT5t22t1 and
Eq. ~5!, we obtain

t f5
T~aT22!

2~aT21!
. ~13!

Equations~6!, ~10!, ~13!, the fact thataT,1, and a straight-
forward but slightly tedious calculation imply

e5
aT~2a2T225aT14!

2~12aT!3
. ~14!

If we rewrite this equation using Eq.~7!, we get

e5
24puDEuT~72p2uDEu2T2215puDEuT11!

~1212puDEuT!3
, ~15!

which is a monotonically increasing function ofuDEuT. In
the nonrelativistic, i.e., smalluDEuT, limit Eq. ~15! becomes

e'24puDEuT1504p2~ uDEuT!21O@T3#••• . ~16!

The leading term on the right-hand side of this expressio
identical to an earlier result derived in Sec. II E of Ref.@20#.
There only the nonrelativistic case was considered and
more general result, now confirmed by our Eq.~15! above,
was conjectured.

In this simple example, it is easy to see why there i
maximum pulse separation,T,Tmax51/(12puDEu), and
how quantum interest arises. The former arises from the c
straint that the mirror not collide with the observer. The lat
is produced by the Doppler shifting of the (1) energy pulse
10401
s
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due to the nonzero velocity of the mirror when the pulse
emitted, i.e., at the moment when the mirror’s acceleratio
halted.

The generation of the second pulse by the mirror is w
thy of some further discussion. If the mirror were to acc
erate forever, no such pulse would be generated. Howe
the only observers who would see the negative pulse
avoid being hit by the mirror would be ones who also acc
erate so as to stay ahead of the mirror@18#. For the present
discussion, we are interested in pulses seen by inertial
servers, as the quantum inequalities are formulated in an
ertial frame. If one were to consider a finite size mirror
three-dimensional space, one might have the observer
out of the way of the mirror before it hits him. Unfortunate
the behavior of plane mirrors in four spacetime dimension
not known, except in special cases@19#. We do not know
how to compute the effects of complications which m
arise, for example, from particle creation by the edge of s
a mirror as it passes the observer. Therefore, the quantita
discussion and claims made in this section are necess
restricted to moving mirrors in two spacetime dimensions.
any case, the mirror example of this section is simply illu
trative of more general behavior. It will be shown in subs
quent sections that both the maximum pulse separation
the phenomenon of quantum interest are general feat
which do not depend upon the details of how the pulses
generated.

It is also worth noting that all of the analysis in this pap
deals with pulses in empty Minkowski spacetime, where
quantum inequalities of Eqs.~3! and~4! are formulated. The
case of a single mirror can still be regarded as being em
Minkowski spacetime in the sense that the pulses can
studied at an arbitrarily large distance from the mirror. O
might consider generating negative energy by moving a p
of mirrors together from a large separation~a dynamical Ca-
simir effect!. However, this situation would be rather com
plicated to analyze. The quantum inequalities for the sta
Casimir case take the form of ‘‘difference inequalities
@21,26#, which constrain the difference in energy density b
tween an arbitrary state and the Casimir vacuum. The ge
alization of these inequalities to time-dependent situati
has not yet been investigated.

We speculated in Ref.@20# that quantum interest might b
a more general phenomenon which generically occurs
cases of separatedd-function pulses of (2) and (1) energy,
in four as well as in two dimensions, regardless of how
pulses are produced. In the following sections of this pap
we will prove that this is in fact the case.

III. GENERAL CONSTRAINT ON PULSE SEPARATIONS

In this section, we will show that quantum inequalitie
impose a maximum time separation,Tmax, on any pair of
(2) and (1) energyd-function pulses, in both two- and
four-dimensional flat spacetime. Let the pulse profile
given by

r~ t !5B@2d~ t !1~11e!d~ t2T!#, ~17!
8-3
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L. H. FORD AND THOMAS A. ROMAN PHYSICAL REVIEW D60 104018
whereB5uDEu in two dimensions andB5uDEu/A in four
dimensions, whereA is the ~planar! collecting area of the
flux @35#.

The quantum inequalities have the general form

r̂5E
2`

`

g~ t !r~ t !>2
C

t0
D

, ~18!

wherer(t) is the energy density,g(t) is the sampling func-
tion, andC is a constant whose value depends on both
specific choice of sampling function and the spacetime
mension,D. Substituting Eq.~17! into Eq. ~18!, we obtain

r̂5B@2g~0!1~11e!g~T!#>2
C

t0
D

. ~19!

Let us use a compactly supported sampling function w
width t0; e.g., the sampling function vanishes~continuously!
for t<2t0/2 and for t>t0/2. We will also assume, for the
purposes of this discussion, that the sampling function
only one maximum in this interval. The left-hand side of E
~19! will be most negative whenT>t0/2, sinceg(T)50 in
this region. The bound can then be written as

B<
C

g~0!t0
D

. ~20!

We may expresst0 as a multiple ofT,

t05kT, ~21!

wherek<2, and then rewrite Eq.~20! as

B<
C

g~0!kDTD
. ~22!

The best bound is obtained fork52, and is given by

B<
C

2DTDg~0!
. ~23!

For a sampling function with a single maximum,g(0)
}1/t0, so letg(0)5C0 /t05C0/2T, whereC0 is a constant
whose value depends only on the form of the chosen s
pling function ~but not on the spacetime dimension, unli
C). Equation~23! now yields the constraint

BTD21<
C

2D21C0

. ~24!

We thus have the following constraints on the pulse sep
tion, T:

T<
C

2C0uDEu
~25!

and
10401
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T<
1

2 S CA

C0uDEu D
1/3

~26!

in two and four dimensions, respectively. Therefore, t
larger the magnitude of the (2) energy pulse, the smaller i
the allowed time separation between the pulses.

An example of a compactly supported sampling functio
which was given in Ref.@33#, is

g~ t !5H 0, t,2t0/2,

~1/t0!@11cos~2pt/t0!#, 2t0/2<t<t0/2,

0, t.t0/2.
~27!

For this functionC052, and in two dimensionsC5p/6,
which gives the following constraint on the maximum pul
separationTmax:

Tmax5
p

24uDEu
'

0.131

uDEu
. ~28!

For the same function,C5p2/16 in four dimensions, and the
analogous constraint is

Tmax5S p

16D
2/3S A

uDEu D
1/3

'0.338S A

uDEu D
1/3

. ~29!

Note that in two dimensions the bound onTmax given by
Eq. ~28! is larger than the bounduDEuTmax51/(12p)
'0.027, for the moving mirror case. It could be that the
are other quantum states in two dimensions for which
value ofTmax lies between the moving mirror value and th
bound given by Eq.~28!. Alternatively, it may be that the
moving mirror case comes close to the maximum allow
value of Tmax for any quantum state in two dimensions.
that is true, then perhaps other choices of compactly s
ported sampling functions would lead to stronger bounds
Tmax. Of the various sampling functions which we have e
amined, the best bound was obtained for Eq.~27!. At
present, this remains an open question.

IV. NECESSITY OF QUANTUM INTEREST

In this section we will establish the existence of quantu
interest. The first subsection contains a simple argum
which proves the necessity of quantum interest in fo
dimensional flat spacetime, using the Lorentzian samp
function. The second subsection extends this argumen
more general sampling functions in both two and four
mensions.

A. Simple argument in four dimensions

It will now be shown that quantum interest must exist f
d-function pulses in four-dimensional flat spacetime. He
we will use the Lorentzian sampling function. The quantu
inequality is
8-4
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r̂>2
C

t0
4

, ~30!

whereC53/(32p2) in the earlier version of Ref.@21#, and
C527/(2048p2) in the improved version of FE@32#. If we
substitute Eq.~17!, with B5uDEu/A, into Eq. ~30!, the re-
sulting inequality may be rewritten as

r̂5
uDEu
pA

~eb221!

bT~11b2!
>2

C

b4T4
, ~31!

where

b5
t0

T
. ~32!

A non-trivial inequality is obtained only foreb221,0, i.e.,
0<b,1/Ae. A slight rearrangement of Eq.~31! gives

uDEuT<S CpA

T2 D F~b!, ~33!

with

F~b!5
11b2

b3~12eb2!
. ~34!

Note that if we sete50, corresponding toexactlycompen-
sating pulses, then

F~b!5
11b2

b3
→0, as b→`. ~35!

Since the quantum inequality must hold for any value ofb,
this would imply thatuDEuT3→0, i.e., eitheruDEu50 or T
50. In either case, there would be no non-trivial puls
Therefore,e.0; i.e., wemusthave quantum interest in four
dimensional flat spacetime.

To get the tightest bound in Eq.~33!, we should evaluate
the right-hand side at the smallest value of the funct
F(b). A calculation using the computer algebra progra
MACSYMA shows that the minimum ofF(b) is at

b5bm5AA~11e!~1125e!1125e

6e
. ~36!

If we let y(e)5F„bm(e)…, theny(e) is a monotonically in-
creasing function~as can be shown, for example, by grap
ing the function!. Therefore, Eq.~33! can be written as

uDEuT<S CpA

T2 D y~e! ~37!

or, inverting the inequality, as

e>y21S uDEuT3

CpA D . ~38!
10401
.

n

-

Sincey(e) is a monotonically increasing function, so isy21;
hence the minimum allowed value ofe increases asuDEuT3

increases.
In the e→0 limit, y(e);3A3e/2, and so Eq.~37! can be

inverted to yield

e>
4

27S uDEuT3

CpA D 2

; ~39!

i.e., e grows asT6 for fixed uDEu andA.

B. A more general approach to quantum interest

In this section we will develop a more general formalis
for obtaining lower bounds upone. First, it is convenient to
formulate the quantum inequalities in terms of sampli
functions which are dimensionless functions of a dimensi
less variable,z5t/t0. Let

G~z!5t0g~ t !. ~40!

The quantum inequalities still take the form of Eq.~18!,
where the constantC is

C5
1

24pE2`

` @G8~z!#2

G~z!
dz, ~41!

in two dimensions, and

C5
1

16p2E2`

`

@G1/29~z!#2dz, ~42!

in four dimensions. The lower bound one can be obtained
from Eq. ~19!:

e>
1

g~T! S g~0!2
C

Bt0
DD 21. ~43!

In terms ofG, this bound is

e>
1

G~x! FC02
C

B S x

TD D21G21, ~44!

whereC05G(0) and

x5T/t0 . ~45!

We can express this as an upper bound onT for fixed e as

BTD21<H~x,e!, ~46!

where

H~x,e!5
CxD21

C02~e11!G~x!
. ~47!

Note that our bound is nontrivial only ifC02(e11)G(x)
.0.
8-5



g:

its

nt
e

at

th
,
n

e

t

an
g

n in
e
cific

ific

n-

y

,

t

-

L. H. FORD AND THOMAS A. ROMAN PHYSICAL REVIEW D60 104018
The basic strategy which we will pursue is the followin
first find the valuex5xm which minimizes the function
H(x,e) for fixed e. Then the best bound onT for a given
form of G is

BTD21<y~e![H~xm ,e!. ~48!

If y(e) is a monotonically increasing function, then so is
inversey21, and we can write the lower bound one as

e>y21~BTD21!. ~49!

The extremization with respect tox is equivalent to that with
respect tob performed in the previous section, and amou
to finding the choice of sampling time which yields th
strongest bound. If we set the first derivative ofH with re-
spect tox equal to zero, we find

~11e!@xG82~D21!G#1~D21!C050, ~50!

which is the equation to be solved forxm . We will then need
to check thatH9(xm).0 to verify that this is a minimum.

1. SmallT approximation

Let us first consider quantum interest in the smallT limit,
which is determined by the behavior ofG(x) for small x.
Take G to be an even function which has the approxim
form

G~z!'C02azb ~51!

for 0,z!1. If we substitute this form into Eq.~50! and
solve the resulting equation, the result is

xm5F ~D21!C0e

a~e11!~D2b21!G
1/b

. ~52!

The bound one in this case becomes

e>
D2b21

C0
S Bb

C D b/(D2b21)

3S a

D21D (D21)/(D2b21)

Tb(D21)/(D2b21). ~53!

As a check, we may compare this with the results of
previous subsection. SetD54 andb52 in the above bound
and then setC05a51/p, corresponding to the Lorentzia
sampling function. Then we obtain

e>
4

27p2 S B

CD 2

T6, ~54!

which is equivalent to Eq.~39!.
We need to check thatx5xm is actually a minimum ofH.

For our procedure to be self-consistent, we must havb
,D21, as may be seen from Eq.~52!. With this restriction
it can be shown thatH9(xm ,e).0, for this form ofG. There
is a further constraint onb coming from the requirement tha
the integrals forC converge atx50, which requires thatb
10401
s

e

e

.1
2 in two dimensions andb. 3

2 in four dimensions. In two
dimensions, the lower bound one from Eq. ~53! grows as
Tb/(12b) where1

2 ,b,1, and hence always grows faster th
linearly for smallT. In four dimensions, the correspondin
bound grows asT3b/(32b) where 3

2 ,b,3, and hence grows
faster thanT3 for smallT. The main point of this calculation
is to show that the quantum interest effect persists eve
the limit of arbitrarily small temporal separation of th
pulses. Note that this behavior is also a feature of the spe
example of the moving mirror.

2. Numerical bounds for generalT

We can go beyond the smallT approximation by numeri-
cal methods. Here we restrict our discussion to a spec
choice of sampling function,

G~z!5C0e2uzub, ~55!

for which

C05
b

2G~1/b!
. ~56!

This function has the form of Eq.~51! for uzu!1, so the
bounds obtained from it will be of the form of Eq.~53! for
smallT. Let us first use this sampling function to study qua
tum interest in two dimensions. Here Eq.~41! yields

C5
b2G„~2b21!/b…

24pG~1/b!
, ~57!

and Eq.~50! becomes

exb
2~11e!~bxb11!50. ~58!

The root of this equation isx5xm . The upper bound onT
for fixed e, Eq. ~48!, may now be expressed as

BT<
C

bC0
xm

12b~11bxm
b !. ~59!

For a given value ofb, we may numerically solve Eq.~58!
for fixed e, and check thatH9(xm ,e).0. We then evaluate
the right hand side of Eq.~59!, which yields the limiting
value of T(e). The graph shown in Fig. 2 was obtained b
inverting this relationship and plottinge(T). Typically, val-
ues ofb close to1

2 give the best bounds for smallT. This is
the case that was treated analytically above. Similarlyb
'1.75 gives the best bound for larger values ofT. Larger
values ofb actually give weaker bounds forT,Tmax. Some
results for various values ofb are given in Fig. 2. Recall tha
Eq. ~28! gives an upper bound onT of BTmax'0.13. ForT
'Tmax, our sampling function requires thate>emin'40.

A similar calculation may be performed in four dimen
sions. In this case

C5
b2~b21!~2b21!G„~2b23!/b…

256p2G~1/b!
, ~60!
8-6
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the equation forxm is now

3exb
2~11e!~bxb13!50, ~61!

and the bound onT is

T<F 3C

bBC0
xm

32bS 11
1

3
bxm

b D G1/3

. ~62!

Again values ofb near the lower limit of 3
2 give better

bounds for smallT, and larger values ofb give better bounds
for largerT. Recall that Eq.~29! gives an upper bound onT
of B1/3Tmax'0.34. The bounds which arise whenb51.75
and b52 are shown in Fig. 3. As in two dimensions, y
larger values ofb actually give weaker bounds forT
,Tmax.

V. CONCLUSIONS

We have proved that quantum states of the massless
lar field involvingd-function pulses of (2) and (1) energy,
in two- and four-dimensional Minkowski spacetime, satis
the ‘‘quantum interest conjecture.’’ This statement says t
an energy ‘‘loan,’’ i.e., (2) energy, must always be repai
i.e., by (1) energy, with an ‘‘interest’’ which increases wit
the magnitude and/or duration of the ‘‘loan.’’ Quantum i
terest is measured by the quantitye, which is the fraction by
which the magnitude of the (1) energy pulse overcompen
sates that of the (2) energy pulse. A simple example o
quantum interest, involvingd-function pulses produced by
moving mirror, was examined in two-dimensional spacetim
There it was easy to see how quantum interest arose. It
the result of a Doppler shifting of the subsequent (1) energy
pulse emitted by the mirror when its acceleration w
brought to a stop in order to avoid a collision with the o
server. The use of compactly supported sampling functi
enabled us to conclude that, for a fixed magnitude of t
(2) energy pulse, there must be a maximum allowed ti
separation between the pulses, in both two and four dim
sions. This was deduced by placing the (1) energy pulse in
the region where the sampling function vanished. At pres
we do not know what the optimal value of this separat
might be. In two dimensions, we do know that it must be
smaller thanT51/(12puDEu), so as to not rule out the mov

FIG. 2. The lower bound one in two dimensions for different
choices ofb. Here the pulse separationT is in units of uDEu21.
10401
ca-

t

.
as

s

s

e
n-
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ing mirror example. Another important question is whic
choice of sampling function maximizes quantum interest,
a fixed choice ofT. These are unresolved problems to whi
we hope to return later.

Moving mirrors generate more quantum interest than
required by our bounds. For example,e'4 at T
51/(24puDEu)'0.0133/uDEu, which is one-half of
(Tmax)mirror . This is much larger than the bounds one il-
lustrated in Fig. 3. It may be that the moving mirror sta
generates much more quantum interest than similar quan
states in which the pulses are produced by other mec
nisms. Alternatively, it may be that the moving mirror sta
is close to the generic case of quantum interest in two dim
sions. In this event, presumably other choices of the s
pling function would predict a value fore which is much
closer to the moving mirror value. At present, this quest
also remains unresolved.

Our central result is that quantum inequalities imply th
quantum interest must exist for pulses in both two- and fo
dimensional flat spacetime. This takes the form of a low
bound one which is a monotonically increasing function o
the pulse separation, for a fixed magnitude of the nega
energy pulse. The bound is nonzero even for arbitrarily sm
pulse separations. Once again it appears that nature enfo
rather strict constraints on manipulations of (2) energies.
The energy density integrated along an inertial observ
world line must be positive and the sampled energy den
obeys the quantum inequalities. The degree of overcomp
sation by the (1) energy increases with increasing pul
separation. In addition, there exists a maximum allow
pulse separation, which thereby limits the duration of t
effects of the (2) energy.
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FIG. 3. The lower bound one in four dimensions for different
choices ofb. Here the pulse separationT is in units of (A/uDEu)1/3.
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