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We study static spherically symmetric dyonic black holes in Einstein-Yang-Mills-Higgs theory. As for the
magnetic non-Abelian black holes, the domain of existence of the dyonic non-Abelian black holes is limited
with respect to the horizon radius and the dimensionless coupling coastesiich is proportional to the ratio
of vector meson mass and Planck mass. At a certain critical value of this coupling canstaetmaximal
horizon radius is attained. We derive analytically a relation betweeand the charge of the black hole
solutions and confirm this relation numerically. In addition to the fundamental dyonic non-Abelian black holes,
we study radially excited dyonic non-Abelian black holes and globally regular gravitating dyons.
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PACS numbe(s): 04.20.Jb, 04.40.Nr, 04.70.Bw, 14.80.Hv

I. INTRODUCTION sition point between these two regimes, given by the critical

value a, the maximal horizon radius is attain€8,8]. Lim-
~ SU(2) Yang-Mills-Higgs (YMH) theory, with the Higgs ting our investigations to vanishing Higgs self-coupling, we
field in the adjoint representation, possesses globally regulg{ere determine the domain of existence of the dyonic non-
particlelike solutions, such as the 't Hooft—Polyakov mag-apelian black holes, finding also two regimes for the cou-
netic monop_ole[l] and the Julia-Zee dyon, which carries pling constanta.
both magnetic anql electric c_harﬂ;_\;]. In addition to the fundamental gravitating monopole and
In SU(2) Einstein-Yang-Mills-HiggSEYMH) theory, for flyon solutions there are radially excited solutidhs8, g,

a small gravitational constant the gravitating fundamentaWhere the gauge field function possesses nodes. Both the
monopole[3-5] and the gravitating fundamental dy¢f] - gaug P - )
radially excited monopole and dyon solutions are related to

emerge smoothly from the corresponding flat space solu . . . )
tions. The mass of the gravitating fundamental monopoléhe globally regular Einstein-Yang-MillsEYM) solutions,

[4,5] and dyon[6] solutions decreases with an increasing/oUnd by Bartnik and McKinnori14] and, similar to these
gravitational constant, corresponding to an increasing couselutions, have no flat space counterparts. In addition to the
pling constantx, which is proportional to the ratio of vector radially excited globally regular dyon solutions, we here con-
meson mass and Planck mass. The regular solutions ceaseStger the radially excited dyonic non-Abelian black hole so-

exist beyond some maximal value ef depending on the lutions and determine their domain of existence.
electric chargeQ [4-7]. In Sec. Il we derive the EYMH equations of motion. We

In addition to these globally regular solutions, in @J Present the equations both in Schwarzschild-like coordinates,
EYMH theory magnetic[4,5,8,9 and dyonic [6] non- employed in the numerical calculatiof§], and in isotropic
Abelian black hole solutions exist. They emerge from thecoordinates, to extend the analytical calculatipdkto the
globally regular solutions, when a finite regular event hori-dyonic case. In Sec. Ill we briefly review the embedded RN
zonx, is imposed. Consequently, they have been charactegolutions. We discuss the globally regular dyon solutions in
ized as “black holes within magnetic monopole§4] or ~ Sec. IV. In addition to vanishing Higgs self-coupling, we
“black holes within dyons”[6]. Distinct from the corre- consider the fundamental solutions also for finite Higgs self-
sponding embedded Reissner-NordstrRN) black holes —coupling, in order to demonstrate that, as in flat sja&é a
[10], these non-Abelian black hole solutions represent counmaximally possible charg@ay arises. In section V we dis-
terexamp|es to the “no-hair” Conjecture' because they CarryCUSS the dyoniC non-Abelian black hole solutions. In partiCU'
nontrivial non-Coulomb-like fields outside their horizon. In lar, we derive the critical valuer for the dyonic solutions
contrast, pure S(2) EYM theory possesses neither regular analytically and confirm it numerically. For vanishing Higgs
dyon solutiong11], nor dyonic black holes other than em- self-coupling, we determine the domain of existence for the
bedded RN solutiongl2,13. fundamental and the first radially excited dyonic non-

The magnetic non-Abelian black holes exist only in a lim- Abelian black hole solutions, and we discuss the pattern how
ited domain of thex-x;, plane[4,5,8. The domain of exis- the black hole solutions approach limiting solutions. We con-
tence consists of two regimes, where for fixed coupling con€lude in Sec. VI. In the Appendix, finally we show the local
stant « and varying horizon radiust,, the solutions existence of the non-Abelian regular dyon and dyonic black
approach limiting solutions in two distinct ways. At the tran- hole solutions at the origin and at the horizon, respectively.
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II. EINSTEIN-YANG-MILLS-HIGGS 1
EQUATIONS OF MOTION S= _j dtdr &*?

1
S S[Lte ()2 +v' (1))
We consider the S(2) EYMH action

2

r
+47G| e 20 ()22 +e” K22
S=SG+SM=f LG\/—gd4x+f Lyv—gd*x (1) 2
K’ 2 r2
with —e 2 %+—(H’)2v2 Vo, (10)
g 2
Le=——F=R (20 wherev, \, r, K, J, andH are functions ofR, the prime
16mG indicates the derivative with respect R and
and 1_K2 2 2.2
V2=(Tgrr)r+K2H2v2+'BTgrz(HZ—l)zv“. (11)
1 v 1 B292 2\2
Lu=— g FLF¥"=5D,¢°D" ¢~ — = (4%¢*~v*)*,

3) B. Schwarzschild-like coordinates

We first employ Schwarzschild-like coordinates, corre-
where sponding to the gaugd R) = R. RenamingR=r, the spheri-
cally symmetric metric reads

Fo,=0,A3—0,A%+ Qe AP AS, 4
S g g ds?=—A2N dE2+ N~ dr2+r3(d¢?+sir? 9 d¢?),
_ bcpb (12
D,u,d)a_ ﬁp¢a+gea CAM¢C! (5)
) ) ) ) ) with the metric functions
g is the gauge coupling constang, is the dimensionless
Higgs coupling constant, proportional to the ratio of Higgs A(r)=eM"?, (13
boson mass and vector boson mass, amslthe Higgs field
vacuum expectation value. Variation of the action Eb). 2m(r)
with respect to the metrig,,,, the gauge fieldA? and the N(r)=1-— =e 2, (14
Higgs field 2 leads to the Einstein equations and the matter
field equations. and the mass functiom(r).
We now introduce the dimensionless coordiratnd the
A. Ansatz dimensionless mass functiqn,
For static spherically symmetric globally regular and B _
black hole solutions the metric can be parametrize/Bd<s) X=gvr, u=gvm, (15
dszzgwdxudxvz — e2v(R g2+ e2MR g R2 as well as the dimensionless coupling constant
+r2(R)(d#?+sir? 6d¢?). (6) a’=47Gv2, (16)
For the gauge and Higgs field we employ the sphericallyThe tt and rr components of the Einstein equations then
symmetric Ansat6] yield the equations for the metric functions
> > 2712 22
= x“J J°K 1
At er‘J(r)V1 (7) M/:aZ + +NK!2+_NX2H12
2A2 AN 2
Ao & - 1-K(r) i » 1-K(r) . 0 5 5 5
r=Y, 0= €y ) »— €y sinég, (K?-1) B
g g + ———+HX K%+ ——x?(H?-1)2| (17
(8) 2x2 R
and and
d=eH(r)v, 9) o, [ 2%kZ 2Kk
A= a“X A2N2x2+ ) +H'“|A, (18
with the standard unit vectoré(, ég, and é¢. For Ai=0,
the solutions carry only magnetic chargg5s,9. where the prime now indicates the derivative with respect to
With these Ansize we obtain the action x. For the matter functions we obtain the equations
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2 32 _ B2r2
(ANK')' =AK FHZ- | (19) k=1—k?+2U%— T(Hz—a2)2—2W2H2+2a2WZBZ,
X AN
(29)
x2J'\"  2JK? :
- = A (20 H=V, (30
. BAr?
and V= BT(Hz—aZ)H—i-ZWZH—KV, (31)
(x>ANH’)"=AH[2K?+ B?x?(H?—1)]. (21)
Introducing the new function w=ru, (32
: W(W2—1
p:% (22) U=U(N—K)+¥+Wr(H2—aZBZ), (33
and using Eq(18), we see that the metric functiohcan be B=C, (34)
eliminated from the set of equatiori$7), (19)—(21). These
can then be solved separately, with the metric functon . ) s o o
being determined subsequently by E4g). In the following C=—-kC+B| 2W—4U =V +k°—1
we refer to the above set of functions, variables and param-
eters, also employed in Rg6], as notation I. 2r2
i 4] +2W?H?+ —BZ (H?=a?)?| —4a°B°W?, (35)
C. Isotropic coordinates
To make contact with the analytical results of R¢&8] supplemented by the constraint
and to extend them to the case of gravitating dyons a_md 2kN= 1+ N2+ 2U2+ V2 — 2V, + 2a?W?B?
dyonic black holes, we now present the equations of motion
in the notation of Ref[8], in the following referred to as —a’[C+B(xk—N)]? (36)
notation Il. In the Schwarzschild gauge the following identi-
fications hold: compatible with the equations.
. 2
6. X A N K H J a p IIl. EMBEDDED REISSNER-NORDSTRO M SOLUTIONS
2
8 ar e e W aH J «a B_ 23 As noted long agd10], the Einstein-Yang-Mills-Higgs
5 (23

system admits embedded RN solutions. In notation I, RN
solutions with masg..,, unit magnetic charge and arbitrary

Along with Ref.[8], we now employ the gauge choice electric charge) are given by

e*=r(R)/R, corresponding to isotropic coordinates, and in-
troduce the coordinate a?(1+Q?)

=R, (24 M(X):Mw—T A(x)=1, (37)

and the overdot now indicates the derivative with respect to
7. To obtain a system of first order equations we further K)=0, JX)=J.—~, HX)=1, (39)
employ for the first derivatives the new variab|[&3

where J., is a priori arbitrary, but here chosen a%,

N= [' k=v+N, U= V_V V=H (25) =Q/)_<h [see Eq.(51)]. At the regular horizorx, the metric
r function
and we introduce X2 = 2X o + a?(1+ Q?)
_ N(x)= 5 (39)
B=e “J, C=B. (26) X

[Note that the symbdN here has a totally different meaning vanishesN(x;) =0, yielding
from Eq. (14).] 7 > 2
Then the following system of first order autonomous Xp= Mot Vo — a"(1+Q%) (40

equations is obtained: )
or, equivalently,

r=Nr, 2
@ Xp+a?(1+Q?)
Mo="""F7

- 41
N=N(x—N)—(2U?+V?)—2a’B>W?, (28 2Xh (4D
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For fixed values ofa and Q, RN solutions exist forx; B. Fundamental dyons
=ay1+ Q" independent of3. B=0. Similar to the gravitating monopole solutions, the
In the extremal case gravitating dyon solutions exist up to a maximal value of the
. coupling constanty. Beyond this value no dyon solutions
Xp= o= ay1+Q%, (42)  exist. The fundamental dyon branch does not end at the

maximal valuex 4, but bends backwards and extends up to
extremal RN solutions are obtained. Extremal RN solutionghe critical valuea,. Since a?=4=7Gv?, variation of the
are characterized b® and«. In particular, for extremal RN  coupling constant along the fundamental dyon branch can be
solutions the functioB(x) defined in Eq(26) becomes con- considered as first increasi@with v fixed up to the maxi-

stant mal valuea .y, and then decreasingwith G fixed up to the
critical valuea.
J Q Completely analogously to the fundamental monopole
B= = : (43 branch[5], the fundamental dyon branch reaches a limitin
AN T+ > g ’

solution at the critical valuer., where it bifurcates with the
branch of extremal RN solutions of unit magnetic charge and
IV. DYON SOLUTIONS electric charge) [6]. The critical valuex;(Q) depends only
, ) o slightly on the charg® [6].

Let us first consider the globally regular particlelike solu-  "Fqf a, the minimum of the metric functiol(x) of
tions of the SW2) EYMH system. In the Prasad- he gyon solutions decreases monotonically, approaching
Sommerfield limit,5=0, the dyon solutions in flat space are o4 atx = o 1+ Q2. Forx=x,, the metric functiorN(x)

. .. C Cc " = Aco
known analytically[2], whereas for finiteS they are ob- of the limiting solution corresponds to the metric function of

tained only numerically15]. In the presence of gravity, the the extremal RN black hole with horizonx,=x
C

corresponding gravitating monopole and dyon solutions are_ A+ 02 unit maanetic charge and electric cha@e
obtained only numerically as well. The gravitating dyon so- *e Q- g 9 Q

. . . . Likewise, forx=x., the other functions of the limiting so-
lutions have many features in common with the gravitating i correspond to those of this extremal RN black hole
monopole solut|pn$6]. . [6]. Consequently, also the mass of the limiting solution co-

_After presenting the boundary _condmons for th_e asyMPincides with the mass of this extremal RN black hole.
totically flat globally regular solutions, we here briefly dis-

. . On the interval Gsx=<x, the functionsN(x), K(x), and
cuss the fundamental dyon solutions both in the Prasad- oo ¢ .
Sommerfield limit and for finiteB. Then we turn to the %(X) of the limiting solution vary smoothly from their re

excited dyon solutions spective .boundary values at=0 to those of the ex_tremal
' RN solution atx;, whereas the functiod(x) is identically

zero. The metric functio\(x) is identically zero, as well,

A. Boundary conditions on the interval Bsx<x., but discontinuous at.. Conse-

Requiring asymptotically flat solutions implies in notation duently, in the limiting spacetime the inner and outer parts
| that the metric functions\ and . both approach a constant are not analytically connected,5).

at infinity. We here adopt B>0. Let us briefly consider the dyon solutions for finite
Higgs self-coupling3>0, because we here encounter a phe-
A()=1 (44) nomenon, also present for the black hole solutions at vanish-

ing Higgs self-coupling3=0. In flat space dyon solutions of
and u () = w., represents the dimensionless mass of the soarbitrarily large charge exist only fgg=0. In contrast, for
lutions. The matter functions also approach constants asymffinite values ofg dyon solutions exist only up to a maximal
totically, value of the charg®,,.,(8) [15]. As the maximal value of
the charge is approached, the functidfx) approaches as-
K()=0, J(®)=J,, H(»)=1, (45)  ymptotically the limiting value

where for magnetic monopole solution3,,=0. The lim  J,,=1. (48)

asymptotic fall-off of the functionJ(x) determines the di- Q= Qmax
mensionless electric chargg[see Eq.38)].
Regularity of the solutions at the origin requires At this point the solutions change character and become os-
cillating instead of asymptotically decayifd5].
n(0)=0 (46) As illustrated in Figs. 1 and 2, this phenomenon persists
in curved space. In Fig. 1 we show the mass of the flat space
and[2] dyon (solid line) and of the gravitating dyoridashed line,
corresponding tax=0.5) as a function of the chardge for
K(0)=1, J(0)=0, H(0)=0. (47 p?=0 andB?=0.5. In Fig. 2 the corresponding asymptotic

values of the functiond(x) are presented. We note that for
The local existence of a family of analytic solutions obeyingfinite 8 also gravitating dyon solutions exist only up to a
these conditions is shown in the Appendix. maximal value of the charge, whede—1.
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FIG. 1. The normalized mass of the regular dyon solutions is F!G- 3. The mass of the solutions of the first excited dyon
shown as a function of the chard@ for vanishing Higgs self- Pranch forQ=1 and the first excited monopole brand@<0) is
coupling (3=0) and finite Higgs self-coupling42=0.5) for the shown as a_functlon of the coupling constantfor 8=0 (so_hd). _
flat space solutiongsolid lines and curved space solutions with Also shown is the mass of the branch of extremal RN solutions with

a=0.5 (dashed lings The asterisks mark the transition from expo- Unit magnetic charge ar@=1 as well aQ=0 (dotted. The nor-

nentially decaying solutions to oscillating solutions.

C. Radially excited dyons

malization is chosen such thatat 0 the mass of the first Bartnik-
McKinnon solution is obtained.

solutions must be interpreted as a variatiow efith G fixed.

In addition to the branch of fundamental dyon solutionsin the limit «—0 the Higgs field vacuum expectation value
there are branches of radially excited dyon solutions, whergherefore vanishes, whil& remains finite. Because of the

the gauge field functiorK(x) of the nth radially excited

particular choice of dimensionless variab{&$), in this limit

dyon solution hasi nodes. These solutions have no flat spacghe solutions shrink to zero size and their massliverges.
counterparts, and the variation @falong a branch of excited  As for the radially excited monopole solutiofs], the coor-

1.0 /
s/
J/
=05/ , —
0.8 1 // /////
/ -
/ s
/ '
// 7
0.6 / 7 B =0
/ 4
// //
J(inf) /
0.4 /
/
/
4
v
//
0.2 /
/
/)
0.0 T T T
0.0 0.5 1.0 1.5
Q

dinate transformatiox=x/«a leads to finite limiting solu-
tions in the limit «— 0, which are the Bartnik-McKinnon
solutions[6].

In Fig. 3 we show the normalized mags,/« as a func-
tion of « for the first excited dyon branch with electric
chargeQ=1 andB=0. For comparison also the first excited
monopole branch is shown.

Similar to the radially excited monopole solutions, the
radially excited dyon solutions exist only below a critical
value of the coupling constant. For the radially excited
monopole solutions this critical value ig.= \3/2[5,8]. For
the radially excited dyon solutions the critical value is larger
and will be discussed in the context of the dyonic black hole
solutions.

V. BLACK HOLE SOLUTIONS

We now turn to the dyonic black hole solutions of the
SU(2) EYMH system, choosingB=0. Again, the S(R2)
EYMH dyonic black holes have many features in common
with the magnetic non-Abelian black holgs). In particular,
dyonic non-Abelian black hole solutions exist in a limited

FIG. 2. Same as Fig. 1 for the asymptotic value of the functiondomain of thea-x,, plane, which depends on the chai@Qe

J(X).

and, in the limitx,— 0, the corresponding globally regular
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solutions are obtained. But a new phenomenon occurs fafow derive this critical valuer for the dyonic non-Abelian
small values ofr, where the non-Abelian solutions no longer plack hole solutions, following closely the reasoning of Ref.
bifurcate with nonextremal RN solutions. [8].

n the foIIowmg_, we briefly present the boundary C(_)nd|- Let us then consider the fixed points of the syst@m—
tions. We generalize the considerations of R&f.to dyonic  (35). Employing notation II, the relevant fixed point is given
solutions and derive analytically the critical value of the cou-py the configuration
pling constantr. We then present our numerical calculations
for the fundamental dyonic black hole solutions and their _ _ _ _
radial excitations. h=a, Wy=0, x,=1, "= g2 (53

@ Bp
A. Boundary conditions where N,=V,,=U,=C,,=0, while By, is such that &B

Imposing the condition of asymptotic flatness, the black<l/@. . o _
hole solutions satisfy the same boundary conditions at infin- Lin€arization of the equations about this fixed point leads
ity as the regular solutions. The existence of a regular everif the following eigenvalues of the matrix defining the linear
horizon atx,, leads in notation | to the conditions for the Part(adopting the ordeN, W, U, H, V, P, Q, ):
metric functions
Yo=1, (54)

Xn
M(Xh):? 49 - 1+- 3, 1_Bf21 55
v2m 3 I\ T T (59

and A(xy) <o, and for the matter functions h

- T e T (56)
N’K’|Xh=K( i (50) Vaam T3 Ng T T
Xh

¥s=0, (57)

J|,, =0, (51)
’)/6:_1, (58)

and

ENUTU I 2., p2y2(142 ¥7= 2. (59

X“N'H |Xh—H[2K + B x“(H _1)]|Xh' (52

. . _ _ In particular, we see that the eigenvalugs,, which are
The local existence of a family of solutions obeying theserg|ated to the functioW and determine the critical value
conditions at the horizon is demonstrated in the Appendix. fo; the magnetic black holef8], now depend orB;,. The

zero modeys is related to the occurrence of this free param-
B. Critical value of « eter.

For magnetic black holes, there are two regimes of the ForQ=0, the critical value otx corresponds to the tran-
coupling constantr, corresponding to two distinct patterns Sition of the eigenvaluey, , [Eq. (55 for Q=0] from com-
of reaching a limiting solution as a function of the horizon Plex to real valug8]. Repeating this reasoning for dyonic
radiusxy, . For larger values of, the solutions bifurcate with Plack holes, we conclude, that the corresponding critical
an extremal RN black hole solution, when the horizon radiug/alué of the coupling constant for the dyonic non-Abelian
appoaches its critical value”. Here the solutions tend to- Plack holes is given by
wards the corresponding extremal RN solution with horizon

: RN H RN ~ 3
radius X, =a only on the intervalx=x; ", whereas they a’=——s. (60)
tend to a generic non-Abelian limiting solution on the inter- h
val xf'<x<xf" [6]. In contrast for smaller values af the _ - R
solutions bifurcate with a nonextremal RN solution on the Here the relation of the critical value to the chargeQ
full interval x=x{' [5,8]. The transition point between these S€éms only indirect, since the value of the functiéfx) at

. - ~ the horizon enters in Eq60). However, for the dyonic non-

two regimes corresponds to the critical valae where the ) . . .
non-Abelian black hole solutions tend towards the extremaﬁﬁel'a”hblaCk Rglel'sa gllsokrﬁplreselms_ the sp()jemal pé"”tﬁ
RN solution with horizon radiusN=& on the full interval ~ WNere the non-Abelian black hole solutions tend towards the

o RN or RN 4 . corresponding extremal RN solution with horizon radius
X=X, =Xp , I.e., Xy and x;" coincide. For the magnetic RN_ 5 1+ OZ on the full intervalx=x"=x"N. This i

-Abelian black holes this critical value is given by h _ & Q" on the full Intervalx=x =x; °. This im-
non plies for the functiorB(x) according to Eq(43)

=3/2[5,8].

Analogously, for dyonic non-Abelian black holes there
are also two regimes of the coupling constantwith « lim B(X)== 5 Vx>xp (62
marking the transition point between these two regimes. We a—a ay1+Q
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Consequently, we may insert f&;, in Eq. (60) the constant
RN value, Eq.43), and obtain for the critical coupling con-
stant the expression

. [ 3+4Q7 62

which now depends on the electric cha@e

=

X 07 EYM+RN
C. Fundamental dyonic black holes 0.6 4
Let us now define some quantities helpful in the analysis 0.5 - EYM
of the numerical results. Denoting the set of functions of the 0.4
extremal RN solution with horizon radiug"= a1+ Q? by 0.3 -
(NgnsKgrnsHgrn:Pra)s @and denoting the set of functions of 02
the non-Abelian black hole solution with horizon radixs 0'1 ]
(with x,<xf™) by (N,K,H,P), we define 0'0
- T T T T T T 1
DN:ma&E[XENYmﬂNRN(x)— N(x)|, (63 00 02 04 06 08 10 12 14

o
and analogously we define the quantitizk, DP, andDH. FIG. 4. The domain of existence of the dyonic black hole solu-
Clearly the quantitie®N, DK, DP, andDH must vanish, .. ; . . ; .
hen th Abelian black hol uti bif te with th tions in thea-x;, plane is shown foQ=1. The straight diagonal
when the non-Abelian black nole solutions briurcate wi Ciine represents the extremal RN solutions. To the right of this line

corresponding extremal RN solution. Therefore these quarBnly non-Abelian black hole solutions exist. Here the limiting curve

tities help to dete[m'ne the critical values with good accuraCyepresents the maximal valuesa@fwhile the second curve close to

in the regimea= a. it represents the critical values af, where the solutions bifurcate
Q=0. Our numerical evaluation of the domain of exis- with the corresponding extremal RN solution. The asterisk marks

tence of the magnetic non-Abelian black holes in th&,  the critical valuea. To the left of the line of extremal RN solutions

plane is in agreement with the results of Ré&8], and in  both nonextremal RN solutions and non-Abelian black hole solu-

particular we confirma= /3/2. Considering the quantities tions coexist below the upper curve, representing the maximal ho-

DN, DK, andDH [Eq. (63)] as functions of the horizon rizon radius as a function ak. The small rectangle indicates the

. ~ . critical region, where bifurcations occgenlarged in Fig. 10 Be-
= - - . o
radiusxy, , we observe that for=a the three functions ap low the bifurcations, the lower curve represents the critical values

p.roaclh zero .at a common va_luﬁf(a)sa. Asa—a .changes of the horizon, where the solutions terminate becailise 1 is
sign, in particular the quantitp K changes drastically, be- reached.
coming a convex function when the critical horizon radius

Xh is approached. _ _ _ For fixed x, and varyinge, the functions of the black
Q#0. We have numerically determined the domain ofpgjes solutions evolve completely analogously to those of
existence of the fundamental dyonic non-Abelian black holgne regular dyon solutions. Consequently, the limiting solu-
solutions in thea-xy, plane, which is shown in Fig. 4 fd®  {jon reached at the critical value.(x;,) consists of two parts,
=1. The straight line indicates the extremal RN solutions,ihe outer part corresponding to the exterior of the extremal

dividing the domain of existence into a lower region with pp black hole with horizon?N= m unit magnetic
non-Abelian black holes only and an upper region with both n ° i

. _ charge and electric charge and the inner part representing
non-Abelian and nonextremal Abelian bl_ack holes, com- genuine non-Abelian solution.
pletely analogously to the case of magnetic black holes.

To start the detailed discussion of the diagram, we choose S|_m|larly for fixed a=a and varyingxy, the limiting
a small fixed value of the horizon radixg and varya. Then soluthn reached consists of two parts, the outer part corre-
the dyonic black hole solutions exist only up to some maxi_spo_ndngth(l)_the _zextenor of_the extremal RN black hole W.'th
mal valuea (X)) - From a.,(Xn) @ second branch extends horizon x,= ay1+Q", unl_t mggnetlc charge and electric
backwards until a critical value(x,) is reached. With in- CcNargeQ, as demonstrated in Figs. 6 and 7 for the black hole
creasingx,, the second branch becomes increasingly smallesSelutions with horizomx,=1, 1.1, and 1.153, charg@=1
and finally disappears. The critical values,.{x,) and anda=1 f(_)r the functiondN andP, and the function& and
ac(x,) are both shown in Fig. 4. H, respectively. .

The presence of the two branches is illustrated in Fig. 5 According to Eq.(62), for Q=1 the critical valuea is
for Q=1 andx,=0.8, where the quantitie®N, DK, DP,  given by a=\7/8~0.935. Here the transition between the
andDH are shown as functions of the parameteiHere the  two regimes with different bifurcation patterns is supposed
second branch of solutions only exists in the small intervato occur. Indeed, our numerical calculations confirm this
1.1986< a<1.2002. critical value, as demonstrated in Figs. 8 and 9, where the
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0.6
Q=1,x, =0.8
0.5 ..
“..10*DN
044 DK

0.0

0.2 0.4

100*(0—1.19)

FIG. 5. The quantitieDN, DK, DP, andDH are shown as
functions of the parametet for the dyonic black hole solutions
with Q=1 and x,=0.8. The second branch of solutions in the
interval 1.1986< «<1.2002 is clearly visible.

0.6 0.8 1.0

four quantitiesDN, DK, DP, andDH are shown as func-
tions of the horizon radiug;, for «=0.94 anda=0.93, re-
spectively.

For «=0.94, which is slightly above, the curves in Fig.
8 clearly approach zero atf'~1.235. This value is well

0.5

0.4

0.3 +

0.2

Q=1, alpha=1

0.1 - x,=1,1.1,1.153

0.0 +

X

FIG. 6. The function$N(x) andP(x) are shown for the dyonic
black hole solutions wittfQ=1 anda=1 for the horizon radiix;,
=1, 1.1, and 1.153.
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0.6

0.5

0.4 1
J Q=1 alpha=1

03 4 x,=1,1.1,1.153

0.2

0.1

0.0 H

-0.1 : :

—y
o

FIG. 7. Same as Fig. 6 for the functiokgx) andH(x).

below the horizon value of the corresponding extremal RN
solution, xfN= a1+ Q?~1.329. Moreover, in this limik,
— Xy, the corresponding values Bf(x,) andH(x,) do not
tend to their RN values of zero and one, respectively, but
they converge to generic numbers in the intefMall].

In contrast, fora=0.93, which is slightly below, the
function DK becomes a convex function when the critical
horizon radiusx{’~0.93,/2~1.315 is approached. Further-

0.7

Q =1, alpha=0.94

0.6
DK

0.5
DH

0.4

DP
0.3

0.2

0.1 1 DN

0.0 T T T I
1.00 1.05 1.10 1.15 1.20

1.25
X
FIG. 8. The quantitieDN, DK, DP, andDH are shown as

functions of the horizon radius,, for the dyonic black hole solu-
tions withQ=1 anda=0.94>a.

104016-8



DYONIC NON-ABELIAN BLACK HOLES PHYSICAL REVIEW D 60 104016

0.7 1.02
Q=1, alpha=0.93 0
0.6
DK 1.00 - 5
0
0.5 1
c
DH 0.98 — 0o B
0.4 ¥ 3 2
> 0

/ 2
0.3 DP 0.96 )

/ A 1 1 1
0.2 0.94 —

A
0.1
DN 0.92 T T
0.50 0.55 0.60 0.65
0.0 I I I | I I
1.00 106 110 115 120 125 130 135 o
Xh FIG. 10. Enlargement of the critical regigemall rectangleof
Fig. 4, showing the domain of existence of the dyonic black hole
FIG. 9. Same as Fig. 8 for=0.93< & solutions in thex-x,, plane forQ=1. The numbers 0—3 indicate the

numbers of solutions in the respective areasnd C indicate the
more, the quantitie& (x,) andH(x;,) tend to their RN val- critical values, where the bifurcations occOrjndicates the critical
ues zero and one, respectively, fnﬁﬂxﬁr_ Thus for a value, where the transition from the limiting nonextremal RN solu-
=0.93 the limiting solution represents a RN solution on thetions to the oscillating solutions occuiks. =1 is reached along the
’
full interval x=x¢' . curve A’ABD.

Clearly, the transition pointr occurs in between these
two values. Approaching further from both sides, the value
phenomena occur.

a=1/7/8~0.935 is confirmed. The gap in Fig. 4 on the right- " \y/& exhibit these new phenomena in Fig. 10, where the

hand side Qf& represents a tiny region, numerically not ac- critical region of thea-x;, plane shown in Fig. 4 foQ=1 is
cessible with sufficient accurady7]. We have confirmed enlarged and more details are given. First, we observe the
the validity of Eq.(62) also for other values of the char@  occurrence of bifurcations, which lead to the small triangular

In the regimex< a, we observe that the maximal value of region ABC, where three solutions exist. Thus belawwe
the horizon radiusc, decreases with decreasing com-  find four distinct regions in ther-x,, plane. With decreasing
pletely analogously to the magnetic case. Continuing our dey and increasing;, there are(i) for 0.605< « first one, then
tailed discussion of the approach to the limiting solution inzero solutions(ii) for 0.575< &< 0.605 first one, then three,
this regime, however, we observe differences to the magnetig,en one, then zero solution@j ) for 0.535< @< 0.575 first
case for smaller values ef and larger values o. one, then three, then two, then zero solutions, @ng for

For fixed @ close to« and increasingx,, the dyonic  «<0.535 first one, then two, then zero solutions.
black hole solutions bifurcate with a RN solution when the  Second, with decreasing, the valued,, of the limiting
maximal value of the horizon is reached. The limiting solu-solution increases. When it reaches its maximal value of one,
tion corresponds to the exterior of the RN solution on the fullthe functionK(x) ceases to decay exponentially. The limit-
interval x=x;. For smaller values ofQ and somewhat ing solution then no longer represents a nonextremal RN
smaller fixeda, with increasingx;, the solutions do not yet solution, instead an oscillating solution is reached as the lim-
bifurcate with a nonextremal RN solution, when the maximaliting solution. The corresponding critical point, where the
value of the horizon is reached. Instead a second branch dfansition from the limiting nonextremal RN solutions to the
solutions emerges, extending backwards to lower values dfscillating solutions occurs, is labeléd in Fig. 10. Along
the horizon radius, until it bifurcates with a nonextremal RNthe curveBD the maximal value of the horizon radius is
solution at the critical value of the horizoqi' [5,8,6]. Mov-  reached when the limiting valug.=1 is attained, whereas
ing along both branches, the values Ktx,) and H(x,)  along the curveé&B andA’A an intermediate extremal value
change monotonically, reaching their respective RN valuesf the horizon radius is reached when the limiting valye
of zero and one as the critical horizon is reached. =1 is attained.

For the magnetic black holes as well as for the dyonic Figures 11-13 illustrate both phenomena, representing
black holes with smaller values @ this latter bifurcation the valuesK(x;), H(x;,), andJ., as functions of the horizon
pattern persists with decreasiag[5,8]. In contrast, for the radius fora=0.7, 0.55, and 0.2, respectively. As seen in Fig.

dyonic non-Abelian black holes with larger values@hew
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1.0

0.8

0.6

0.4

0.2 - H(x,)

Q=1, alpha=0.7
0.0 T T T T T
0.80 0.85 0.90 0.95 1.00 1.05 1.10

Xn

FIG. 11. The quantitieX(x,), H(xy), and J,. are shown as
functions of the horizon radius,, for the dyonic black hole solu-
tions withQ=1 anda=0.7.

H(xp) increases monotonically to one, while, increases
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Q=1 , alpha = 0.2

0.0 T | !

02 03 04 05 06 07 08 O

X,

FIG. 13. Same as Fig. 11 far=0.2.

T
9 1.0

monotonically andJ, increases monotonically until it
reaches one, as seen in Fig. 12 éor 0.55. For still smaller
11, for «=0.7 only one branch of solutions exists. Here,values of«, at the critical valueA, the third branch disap-
with increasingx, K(x,) decreases monotonically to zero, pears, leaving two branches which end wlegmreaches one.

This is seen in Fig. 13 fow=0.2. The maximal horizon

monotonically to a limiting value smaller that one. Decreas—adius in this case is approximately 0.917. For small values
ing a, the critical pointC of Fig. 10 is reached, below which of « (j.e., below the critical poind) the lower curve in Fig.
three branches of solutions exist. Moving along the three

branchesK(x,,) decreases monotonically4(x;) increases

1.0

0.8

0.6

0.4 1

0.2

Q=1, alpha = 0.55
0.0 T T T

0.80 0.85 0.90 0.95 1.00
Xh

FIG. 12. Same as Fig. 11 far=0.55.

2.0

1.8
1.6
1.4 .
1.2 4
T 1.0 1
0-8_ .....................................................
0.6 +

0.4 u

0.2

0.0 T T T T

00 01 02 03 04 05 06 07 08 09 10

o

FIG. 14. The charg®, corresponding to the critical value,
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0.7
first excited , Q=1 1.0 4 Q=1, x, =0.4,0 =0.938
0.6
0.5 +
£ 0.4
=z
o)
3
~ 03
0.2
0.1
0.0 . .
0.92 0.93 0.94 0.95
o 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
FIG. 15. The minimum of the functioMN(x) is shown as a X
function of the parameter for the first radially excited dyonic FIG. 16. The functiondN(x), P(x), K(x), andH(x) are shown
black hole solutions witl)=1 and horizon radik,=0.01, 0.4, and  for the first radially excited dyonic black hole solution wit
0.8. =1, «=0.938, andk,=0.4.

4 represents the critical value of the horizon, where the asof the extremal RN black hole with —horizom"
ymptotically exponentially decaying solutions cease to exist=a¢y1+ Qz, unit magnetic charge and electric chaf@e
Considering th&) dependence of the new phenomena, we For a—a.(x,) the functionN(x) develops a progres-
observe that the bifurcations leading to three branches arissvely decreasing minimumN.,;,, reaching zero aIxEN
only for Q=0.8, and the limiting valuel,=1 is reached = a(x,)y1+Q?. This is illustrated in Fig. 15, where the
only for Q=0.75. The latter is seen in Fig. 14, where thevalue of N, is shown as a function of for the horizon
critical valueD is shown, which marks the transition from radii x,=0.01, 0.4, and 0.8 and char@=1. With increas-
the limiting nonextremal RN solutions to the oscillating so-ing x,, the value of a.(x;) decreases, though it remains
lutions. Also shown in Fig. 14 is the critical value. We  greater thane even forx,=0.8, as inspection of the four
note that with increasin@ the two curves get increasingly quantitiesDN, DK, DP, andDH reveals.
closer. In Fig. 16 we show the functions(x), K(x), H(x), and
P(x) of the first radially excited black hole solution for

D. Excited dyonic black holes chargeQ=1, horizon radiux,=0.4, anda= 0.938> a. The

In addition to the fundamental magnetic black hole solu-minimum of the functionN(x), which here occurs close to
tions there exist radially excited black hole solutions, forxffN: ac(Xh)‘/lJer, remains well separated from the hori-
which the gauge functioiK(x) possesse® nodes|[5,8]. zonx;, for a— a(Xx;).
These radially excited solutions exist only fars a=/3/2 Considering finally the first excited black hole solutions
[5,8]. for small fixeda and increasing,, we observe that as for

Our numerical analysis of the radially excited dyonic the fundamental black hole solutions, the quandty here
black hole solutions strongly indicates that, at leastdor plays a major role. With increasing,, J.. approaches its
=1, the excited dyonic black hole solutions penetrate into anaximal value one, where the asymptotically exponentially

small domain of thex> a regime, as can already be antici- 4écaying solutions cease to exist. ko 0.2, for instance,
pated from Fig. 3, where the first excited regular dyon soluthis happens at,~0.28.

tion is shown for charg€=1. Indeed, we observe that the

maximal value ofa, where the radially excited black hole VI. CONCLUSIONS

solutions cease to exist, increases more strongly @ithan In analogy to gravitating monopold4,5,7], gravitating

the critical valuea. _ . dyons alsd6] exist. When a regular horizaxy, is imposed,
Let us now consider the domain of existence of the blackyom these solutions “black holes within monopole4,5]
hoIeAsqutions in ther-xy, plane in more detail. In the regime g “plack holes within dyons'{6] emerge. In addition to
a> a, for fixedxy, and increasing the solutions again reach the fundamental regular and black hole solutions also radi-
a limiting solution at the critical valuex.(x;), which con-  ally excited solutions exigi5,8,6], related to the correspond-
sists of two parts, the outer part corresponding to the extericing EYM solutions[14,18. The static spherically symmetric
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“black holes within monopoles” and “black holes within N(x)=1—n,x2+0(x%),
dyons” provide counterexamples to the *“no-hair conjec-
ture.” A(x)=Ag[ 1+ax?*+0(x")],
The domain of existence of the fundamental dyonic non- _ 5 4
Abelian black hole solutions in the-x,, plane is similar to K(X)=1-kox"+0(x%), (A1)
the one of the fundamental magnetic non—Abghan black hole I =Ag[jx+0(x3)],
solutions. There are two regimes of the coupling constant
For «<a, the maximal horizon radius increases with in- H(x)=h;x+0O(x%),

creasinga, whereas fora>« it decreases. The transition

point between these two regimes, depends on the charge whereAo, hy, j1, andk, are arbitrary parameters while

Q of the solutionsa = \(3+4Q?)/[4(1+ Q?)]. h2
; . ; . S 2| 2 2 1
For fixed @ and varying horizon radius, a limiting solu- a,=a’| j1+4ks+ >
tion is approached. Far>a the limiting solution consists
of two distinct parts. The outer part corresponds to the exte- B2
rior of an extremal RN black hole solution with horizon ra- n,= az(ijr h2+ 4k3+ Sl (A2)
dius xfN=a\1+Q?, unit magnetic charge and electric
chargeQ, whereas on the intervad,<x<xj" the limiting Eliminating the metric functiom, we now show that the

solution has the features of generic non-Abelian solutions. Atemaining equations foN, K, H, and P admit a three-

the transition pointz=«a the limiting solution corresponds parameter family of local solutions nees+ 0, analytic in the
precisely to the exterior of the extremal RN black hole solu-parameters. This is the counterpart of proposition 2 of Ap-

tion with horizon radiustN= a1+ QZ, on the full interval  Pendix A of Ref.[5] in the presence of the dyon degree of

X=Xxp,. In contrast, fora< « the limiting solution represents freedom. Let us define
the exterior of a nonextremal RN solution for the larger val- H 1-K NK’
ues ofa, while for the smaller values at the dyonic non- wi=—, Wy,=NH’, w;=
Abelian black hole solutions encounter a critical point, where X X
the solutions no longer are exponentially decaying but be- P 1-N
come oscillating. . . . _ Ws=—, Wg=(P'+PM)N, w;=— (A3)

The domain of existence of the radially excited dyonic X X
non-Abelian black hole solutions in thex,, plane is similar )
to the one of the fundamental solutions. Again, there are wvith
regimes of the coupling constaatwith the transition point

A’ 2P2K2  2K'?

a. This is in contrast to the radially excited magnetic non- M= — = a?X WJF 5
X

Abelian black hole solutions, which exist only up&o[5,8].

In a large part of their domain of existence, the magnetic
non-Abelian black hole solutions are classically stableand furthermore
[4,5,8,19. In contrast, dyonic non-Abelian black hole solu- 1 1
tions should be classically unstable. As for the classical dyon, == (2w, +w,), U,==(W3z—W,), Uz==(2Ws+Wg),
solutions in flat space, their mass should be lowered continu- 3 3 3
ously, by lowering the electric charge, as long as there is no

charge quantizatiof2].

+H'? (A4)

1 1
V1:§(W1—W2), V2:§(2W3+W4)’ V3:§(W5_W6)’

2 2
APPENDIX w7 o« B
Vam = — S| uB=2v24 4uZ—2v2 4 u2—2vR+ |
. . . 2 2 6
In this appendix we show the local existence of the non- (A5)

Abelian dyon solutions at the singular poixt0 and the

local existence of the non-Abelian dyonic black hole solu-Then Eqgs(17) and(19)—(21) can be rewritten in the form
tions at the singular pointy, .

As for the monopoles, the field equations for the dyons xu =x*f;, i=1-3,
have singular points at=0 andx=o. For the monopoles
there exists a two-parameter family of local solutions regular Xv/=— Nvi+x3g, i=1—4, (AB)

at x=0. Analogously, for the dyons there exists a three-

parameter family of local solutions regulanat 0, as shown wheref; and g are analytical functions of?, uj, v, and

in the following. 1/N and\;=3,1=1,2,3. It now follows from Proposition 1
Let us consider Eq917)—(21), using notation |. At the of Appendix A of Ref.[5] that the system of equatioli$7)

singular pointx=0, the expansion of regular solutions de- and (19)—(21) admits a three-parameter family of solutions

pends on four parameters, yielding of the form
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ui=c+0(x?), v;=0(x?) (A7) (Ug,Uy,Uz,Ug,Ug)=(r,W,H,2kN—2U%-V2S),
which are locally analytic inx? and in the constants; . B 1 1
These constants correspondhp, j;, andk, in (Al). (V1,V2,V3,Va) = k= -, UV, Y =5 k= —] |,
Following Ref.[8] and considering the system of equa- (A8)

tions (27)—(35), we here demonstrate the local existence of .
the non-Abelian dyonic black hole solutions at the singulaﬁ"”th
point X,,. Black hole solutions are characterized by a first S=B/r Y=S§ (A9)
order pole singularity of the functior at the nondegenerate ’ '

horizon [8]. Due to translation invariance of the equations These functions are regular at the horizon and can be
under 7— 7+ 75, we can assume that the horizon occurs atexpanded in powers af. Moreover, it follows that the equa-
7=0. tions for u; and v, are of the form(A6) with N;=2, \,

To rewrite the set of equations in the forfA6), which  =\3=1, and\,=3. This demonstrates the existence of a
reveals the number of free parameters occurring in the exive-parameter family of local analytic solutions of the equa-
pansion at the horizon of the locally analytic solution, wetions. Because of the constraif®6), it actually reduces to a
introduce the following set of functions: four-parameter family of local solutions.
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