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Dyonic non-Abelian black holes
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We study static spherically symmetric dyonic black holes in Einstein-Yang-Mills-Higgs theory. As for the
magnetic non-Abelian black holes, the domain of existence of the dyonic non-Abelian black holes is limited
with respect to the horizon radius and the dimensionless coupling constanta, which is proportional to the ratio

of vector meson mass and Planck mass. At a certain critical value of this coupling constantâ, the maximal

horizon radius is attained. We derive analytically a relation betweenâ and the charge of the black hole
solutions and confirm this relation numerically. In addition to the fundamental dyonic non-Abelian black holes,
we study radially excited dyonic non-Abelian black holes and globally regular gravitating dyons.
@S0556-2821~99!03920-X#

PACS number~s!: 04.20.Jb, 04.40.Nr, 04.70.Bw, 14.80.Hv
u
g
s

ta

ol
o
ng
o
r
s

h
ri
te

u
rr

In
lar
-

-

on

n-

cal

e
on-
u-

nd

the
to

the
n-
o-

e
tes,

N
in

e
elf-

-
u-

s
the
n-
ow
n-

al
ck
ly.
I. INTRODUCTION

SU~2! Yang-Mills-Higgs ~YMH ! theory, with the Higgs
field in the adjoint representation, possesses globally reg
particlelike solutions, such as the ’t Hooft–Polyakov ma
netic monopole@1# and the Julia-Zee dyon, which carrie
both magnetic and electric charge@2#.

In SU~2! Einstein-Yang-Mills-Higgs~EYMH! theory, for
a small gravitational constant the gravitating fundamen
monopole@3–5# and the gravitating fundamental dyon@6#
emerge smoothly from the corresponding flat space s
tions. The mass of the gravitating fundamental monop
@4,5# and dyon@6# solutions decreases with an increasi
gravitational constant, corresponding to an increasing c
pling constanta, which is proportional to the ratio of vecto
meson mass and Planck mass. The regular solutions cea
exist beyond some maximal value ofa, depending on the
electric chargeQ @4–7#.

In addition to these globally regular solutions, in SU~2!
EYMH theory magnetic @4,5,8,9# and dyonic @6# non-
Abelian black hole solutions exist. They emerge from t
globally regular solutions, when a finite regular event ho
zon xh is imposed. Consequently, they have been charac
ized as ‘‘black holes within magnetic monopoles’’@4# or
‘‘black holes within dyons’’ @6#. Distinct from the corre-
sponding embedded Reissner-Nordstro”m ~RN! black holes
@10#, these non-Abelian black hole solutions represent co
terexamples to the ‘‘no-hair’’ conjecture, because they ca
nontrivial non-Coulomb-like fields outside their horizon.
contrast, pure SU~2! EYM theory possesses neither regu
dyon solutions@11#, nor dyonic black holes other than em
bedded RN solutions@12,13#.

The magnetic non-Abelian black holes exist only in a lim
ited domain of thea-xh plane@4,5,8#. The domain of exis-
tence consists of two regimes, where for fixed coupling c
stant a and varying horizon radiusxh , the solutions
approach limiting solutions in two distinct ways. At the tra
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sition point between these two regimes, given by the criti

value â, the maximal horizon radius is attained@5,8#. Lim-
iting our investigations to vanishing Higgs self-coupling, w
here determine the domain of existence of the dyonic n
Abelian black holes, finding also two regimes for the co
pling constanta.

In addition to the fundamental gravitating monopole a
dyon solutions there are radially excited solutions@5,8,6#,
where the gauge field function possesses nodes. Both
radially excited monopole and dyon solutions are related
the globally regular Einstein-Yang-Mills~EYM! solutions,
found by Bartnik and McKinnon@14# and, similar to these
solutions, have no flat space counterparts. In addition to
radially excited globally regular dyon solutions, we here co
sider the radially excited dyonic non-Abelian black hole s
lutions and determine their domain of existence.

In Sec. II we derive the EYMH equations of motion. W
present the equations both in Schwarzschild-like coordina
employed in the numerical calculations@6#, and in isotropic
coordinates, to extend the analytical calculations@8# to the
dyonic case. In Sec. III we briefly review the embedded R
solutions. We discuss the globally regular dyon solutions
Sec. IV. In addition to vanishing Higgs self-coupling, w
consider the fundamental solutions also for finite Higgs s
coupling, in order to demonstrate that, as in flat space@15#, a
maximally possible chargeQmax arises. In section V we dis
cuss the dyonic non-Abelian black hole solutions. In partic
lar, we derive the critical valueâ for the dyonic solutions
analytically and confirm it numerically. For vanishing Higg
self-coupling, we determine the domain of existence for
fundamental and the first radially excited dyonic no
Abelian black hole solutions, and we discuss the pattern h
the black hole solutions approach limiting solutions. We co
clude in Sec. VI. In the Appendix, finally we show the loc
existence of the non-Abelian regular dyon and dyonic bla
hole solutions at the origin and at the horizon, respective
©1999 The American Physical Society16-1
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II. EINSTEIN-YANG-MILLS-HIGGS
EQUATIONS OF MOTION

We consider the SU~2! EYMH action

S5SG1SM5E LGA2gd4x1E LMA2gd4x ~1!

with

LG5
1

16pG
R ~2!

and

LM52
1

4
Fmn

a Famn2
1

2
DmfaDmfa2

b2g2

4
~fafa2v2!2,

~3!

where

Fmn
a 5]mAn

a2]nAm
a 1geabcAm

b An
c, ~4!

Dmfa5]mfa1geabcAm
b fc, ~5!

g is the gauge coupling constant,b is the dimensionless
Higgs coupling constant, proportional to the ratio of Hig
boson mass and vector boson mass, andv is the Higgs field
vacuum expectation value. Variation of the action Eq.~1!
with respect to the metricgmn , the gauge fieldAm

a and the
Higgs fieldfa leads to the Einstein equations and the ma
field equations.

A. Ansatz

For static spherically symmetric globally regular a
black hole solutions the metric can be parametrized as@8,16#

ds25gmndxmdxn52e2n(R)dt21e2l(R)dR2

1r 2~R!~du21sin2 u df2!. ~6!

For the gauge and Higgs field we employ the spherica
symmetric Ansatz@6#

AW t5eW rJ~r !v, ~7!

AW r50, AW u52eWf

12K~r !

g
, AW f5eW u

12K~r !

g
sinu,

~8!

and

fW 5eW rH~r !v, ~9!

with the standard unit vectorseW r , eW u , andeWf . For At
a50,

the solutions carry only magnetic charge@4,5,9#.
With these Ansa¨tze we obtain the action
10401
r

y

S5
1

GE dt dR en1lH 1

2
@11e22l

„~r 8!21n8~r 2!8…#

14pGFe22(l1n)
r 2

2
~J8!2v21e22nK2J2v2

2e22lS ~K8!2

g2
1

r 2

2
~H8!2v2D 2V2G J , ~10!

where n, l, r, K, J, and H are functions ofR, the prime
indicates the derivative with respect toR, and

V25
~12K2!2

2g2r 2 1K2H2v21
b2g2

4
r 2~H221!2v4. ~11!

B. Schwarzschild-like coordinates

We first employ Schwarzschild-like coordinates, corr
sponding to the gauger (R)5R. RenamingR5r , the spheri-
cally symmetric metric reads

ds252A2N dt21N21dr21r 2~du21sin2 u df2!,
~12!

with the metric functions

A~r !5el1n, ~13!

N~r !512
2m~r !

r
5e22l, ~14!

and the mass functionm(r ).
We now introduce the dimensionless coordinatex and the

dimensionless mass functionm,

x5gvr , m5gvm, ~15!

as well as the dimensionless coupling constanta

a254pGv2. ~16!

The tt and rr components of the Einstein equations th
yield the equations for the metric functions

m85a2S x2J82

2A2
1

J2K2

A2N
1NK821

1

2
Nx2H82

1
~K221!2

2x2
1H2K21

b2

4
x2~H221!2D ~17!

and

A85a2xS 2J2K2

A2N2x2
1

2K82

x2
1H82D A, ~18!

where the prime now indicates the derivative with respec
x. For the matter functions we obtain the equations
6-2
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~ANK8!85AKS K221

x2
1H22

J2

A2N
D , ~19!

S x2J8

A D 8
5

2JK2

AN
, ~20!

and

~x2ANH8!85AH@2K21b2x2~H221!#. ~21!

Introducing the new function

P5
J

A
~22!

and using Eq.~18!, we see that the metric functionA can be
eliminated from the set of equations~17!, ~19!–~21!. These
can then be solved separately, with the metric functionA
being determined subsequently by Eq.~18!. In the following
we refer to the above set of functions, variables and par
eters, also employed in Ref.@6#, as notation I.

C. Isotropic coordinates

To make contact with the analytical results of Refs.@5,8#
and to extend them to the case of gravitating dyons
dyonic black holes, we now present the equations of mo
in the notation of Ref.@8#, in the following referred to as
notation II. In the Schwarzschild gauge the following iden
fications hold:

6: x A N K H J a b2,

8: ar el1n e22l W aH J a
b2

2
. ~23!

Along with Ref. @8#, we now employ the gauge choic
el5r (R)/R, corresponding to isotropic coordinates, and
troduce the coordinate

t5 ln R, ~24!

and the overdot now indicates the derivative with respec
t. To obtain a system of first order equations we furth
employ for the first derivatives the new variables@8#

N5
ṙ

r
, k5 ṅ1N, U5

Ẇ

r
, V5Ḣ ~25!

and we introduce

B5e2nJ, C5Ḃ. ~26!

@Note that the symbolN here has a totally different meanin
from Eq. ~14!.#

Then the following system of first order autonomo
equations is obtained:

ṙ 5Nr, ~27!

Ṅ5N~k2N!2~2U21V2!22a2B2W2, ~28!
10401
-

d
n

-

o
r

k̇512k212U22
b2r 2

2
~H22a2!222W2H212a2W2B2,

~29!

Ḣ5V, ~30!

V̇5
b2r 2

2
~H22a2!H12W2H2kV, ~31!

Ẇ5rU , ~32!

U̇5U~N2k!1
W~W221!

r
1Wr~H22a2B2!, ~33!

Ḃ5C, ~34!

Ċ52kC1BS 2W224U22V21k221

12W2H21
b2r 2

2
~H22a2!2D24a2B3W2, ~35!

supplemented by the constraint

2kN511N212U21V222V212a2W2B2

2a2@C1B~k2N!#2 ~36!

compatible with the equations.

III. EMBEDDED REISSNER-NORDSTRO” M SOLUTIONS

As noted long ago@10#, the Einstein-Yang-Mills-Higgs
system admits embedded RN solutions. In notation I,
solutions with massm` , unit magnetic charge and arbitrar
electric chargeQ are given by

m~x!5m`2
a2~11Q2!

2x
, A~x!51, ~37!

K~x!50, J~x!5J`2
Q

x
, H~x!51, ~38!

where J` is a priori arbitrary, but here chosen asJ`

5Q/xh @see Eq.~51!#. At the regular horizonxh the metric
function

N~x!5
x222xm`1a2~11Q2!

x2
~39!

vanishes,N(xh)50, yielding

xh5m`1Am`
2 2a2~11Q2! ~40!

or, equivalently,

m`5
xh

21a2~11Q2!

2xh
. ~41!
6-3
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BRIHAYE, HARTMANN, KUNZ, AND TELL PHYSICAL REVIEW D 60 104016
For fixed values ofa and Q, RN solutions exist forxh

>aA11Q2, independent ofb.
In the extremal case

xh5m`5aA11Q2, ~42!

extremal RN solutions are obtained. Extremal RN solutio
are characterized byQ anda. In particular, for extremal RN
solutions the functionB(x) defined in Eq.~26! becomes con-
stant

B5
J

AAN
5

Q

aA11Q2
. ~43!

IV. DYON SOLUTIONS

Let us first consider the globally regular particlelike so
tions of the SU~2! EYMH system. In the Prasad
Sommerfield limit,b50, the dyon solutions in flat space a
known analytically@2#, whereas for finiteb they are ob-
tained only numerically@15#. In the presence of gravity, th
corresponding gravitating monopole and dyon solutions
obtained only numerically as well. The gravitating dyon s
lutions have many features in common with the gravitat
monopole solutions@6#.

After presenting the boundary conditions for the asym
totically flat globally regular solutions, we here briefly di
cuss the fundamental dyon solutions both in the Pras
Sommerfield limit and for finiteb. Then we turn to the
excited dyon solutions.

A. Boundary conditions

Requiring asymptotically flat solutions implies in notatio
I that the metric functionsA andm both approach a constan
at infinity. We here adopt

A~`!51 ~44!

andm(`)5m` represents the dimensionless mass of the
lutions. The matter functions also approach constants asy
totically,

K~`!50, J~`!5J` , H~`!51, ~45!

where for magnetic monopole solutionsJ`50. The
asymptotic fall-off of the functionJ(x) determines the di-
mensionless electric chargeQ @see Eq.~38!#.

Regularity of the solutions at the origin requires

m~0!50 ~46!

and @2#

K~0!51, J~0!50, H~0!50. ~47!

The local existence of a family of analytic solutions obeyi
these conditions is shown in the Appendix.
10401
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B. Fundamental dyons

b50. Similar to the gravitating monopole solutions, th
gravitating dyon solutions exist up to a maximal value of t
coupling constanta. Beyond this value no dyon solution
exist. The fundamental dyon branch does not end at
maximal valueamax, but bends backwards and extends up
the critical valueac . Since a254pGv2, variation of the
coupling constant along the fundamental dyon branch can
considered as first increasingG with v fixed up to the maxi-
mal valueamax, and then decreasingv with G fixed up to the
critical valueac .

Completely analogously to the fundamental monop
branch@5#, the fundamental dyon branch reaches a limiti
solution at the critical valueac , where it bifurcates with the
branch of extremal RN solutions of unit magnetic charge a
electric chargeQ @6#. The critical valueac(Q) depends only
slightly on the chargeQ @6#.

For a→ac the minimum of the metric functionN(x) of
the dyon solutions decreases monotonically, approach
zero atxc5acA11Q2. For x>xc , the metric functionN(x)
of the limiting solution corresponds to the metric function
the extremal RN black hole with horizonxh5xc

5acA11Q2, unit magnetic charge and electric chargeQ.
Likewise, for x>xc , the other functions of the limiting so
lution correspond to those of this extremal RN black ho
@6#. Consequently, also the mass of the limiting solution c
incides with the mass of this extremal RN black hole.

On the interval 0<x<xc the functionsN(x), K(x), and
H(x) of the limiting solution vary smoothly from their re
spective boundary values atx50 to those of the extrema
RN solution atxc , whereas the functionJ(x) is identically
zero. The metric functionA(x) is identically zero, as well,
on the interval 0<x,xc , but discontinuous atxc . Conse-
quently, in the limiting spacetime the inner and outer pa
are not analytically connected@4,5#.

b.0. Let us briefly consider the dyon solutions for fini
Higgs self-coupling,b.0, because we here encounter a ph
nomenon, also present for the black hole solutions at van
ing Higgs self-couplingb50. In flat space dyon solutions o
arbitrarily large charge exist only forb50. In contrast, for
finite values ofb dyon solutions exist only up to a maxima
value of the chargeQmax(b) @15#. As the maximal value of
the charge is approached, the functionJ(x) approaches as
ymptotically the limiting value

lim
Q→Qmax

J`51. ~48!

At this point the solutions change character and become
cillating instead of asymptotically decaying@15#.

As illustrated in Figs. 1 and 2, this phenomenon pers
in curved space. In Fig. 1 we show the mass of the flat sp
dyon ~solid line! and of the gravitating dyon~dashed line,
corresponding toa50.5) as a function of the chargeQ for
b250 andb250.5. In Fig. 2 the corresponding asymptot
values of the functionJ(x) are presented. We note that fo
finite b also gravitating dyon solutions exist only up to
maximal value of the charge, whereJ`→1.
6-4
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C. Radially excited dyons

In addition to the branch of fundamental dyon solutio
there are branches of radially excited dyon solutions, wh
the gauge field functionK(x) of the nth radially excited
dyon solution hasn nodes. These solutions have no flat spa
counterparts, and the variation ofa along a branch of excited

FIG. 1. The normalized mass of the regular dyon solutions
shown as a function of the chargeQ for vanishing Higgs self-
coupling (b50) and finite Higgs self-coupling (b250.5) for the
flat space solutions~solid lines! and curved space solutions wit
a50.5 ~dashed lines!. The asterisks mark the transition from exp
nentially decaying solutions to oscillating solutions.

FIG. 2. Same as Fig. 1 for the asymptotic value of the funct
J(x).
10401
re

e

solutions must be interpreted as a variation ofv with G fixed.
In the limit a→0 the Higgs field vacuum expectation valu
therefore vanishes, whileG remains finite. Because of th
particular choice of dimensionless variables~15!, in this limit
the solutions shrink to zero size and their massm diverges.
As for the radially excited monopole solutions@5#, the coor-
dinate transformationx̃5x/a leads to finite limiting solu-
tions in the limit a→0, which are the Bartnik-McKinnon
solutions@6#.

In Fig. 3 we show the normalized massm` /a as a func-
tion of a for the first excited dyon branch with electri
chargeQ51 andb50. For comparison also the first excite
monopole branch is shown.

Similar to the radially excited monopole solutions, th
radially excited dyon solutions exist only below a critic
value of the coupling constanta. For the radially excited
monopole solutions this critical value isac5A3/2 @5,8#. For
the radially excited dyon solutions the critical value is larg
and will be discussed in the context of the dyonic black h
solutions.

V. BLACK HOLE SOLUTIONS

We now turn to the dyonic black hole solutions of th
SU~2! EYMH system, choosingb50. Again, the SU~2!
EYMH dyonic black holes have many features in comm
with the magnetic non-Abelian black holes@6#. In particular,
dyonic non-Abelian black hole solutions exist in a limite
domain of thea-xh plane, which depends on the chargeQ
and, in the limitxh→0, the corresponding globally regula

s

n

FIG. 3. The mass of the solutions of the first excited dy
branch forQ51 and the first excited monopole branch (Q50) is
shown as a function of the coupling constanta for b50 ~solid!.
Also shown is the mass of the branch of extremal RN solutions w
unit magnetic charge andQ51 as well asQ50 ~dotted!. The nor-
malization is chosen such that ata50 the mass of the first Bartnik
McKinnon solution is obtained.
6-5
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solutions are obtained. But a new phenomenon occurs
small values ofa, where the non-Abelian solutions no long
bifurcate with nonextremal RN solutions.

In the following, we briefly present the boundary cond
tions. We generalize the considerations of Ref.@8# to dyonic
solutions and derive analytically the critical value of the co
pling constantâ. We then present our numerical calculatio
for the fundamental dyonic black hole solutions and th
radial excitations.

A. Boundary conditions

Imposing the condition of asymptotic flatness, the bla
hole solutions satisfy the same boundary conditions at in
ity as the regular solutions. The existence of a regular ev
horizon atxh leads in notation I to the conditions for th
metric functions

m~xh!5
xh

2
~49!

andA(xh),`, and for the matter functions

N8K8uxh
5KS K221

x2
1H2D U

xh

, ~50!

Juxh
50, ~51!

and

x2N8H8uxh
5H@2K21b2x2~H221!#uxh

. ~52!

The local existence of a family of solutions obeying the
conditions at the horizon is demonstrated in the Append

B. Critical value of a

For magnetic black holes, there are two regimes of
coupling constanta, corresponding to two distinct pattern
of reaching a limiting solution as a function of the horizo
radiusxh . For larger values ofa, the solutions bifurcate with
an extremal RN black hole solution, when the horizon rad
appoaches its critical valuexh

cr . Here the solutions tend to
wards the corresponding extremal RN solution with horiz
radius xh

RN5a only on the intervalx>xh
RN, whereas they

tend to a generic non-Abelian limiting solution on the inte
val xh

cr<x<xh
RN @6#. In contrast for smaller values ofa the

solutions bifurcate with a nonextremal RN solution on t
full interval x>xh

cr @5,8#. The transition point between thes

two regimes corresponds to the critical valueâ, where the
non-Abelian black hole solutions tend towards the extrem
RN solution with horizon radiusxh

RN5â on the full interval
x>xh

cr5xh
RN, i.e., xh

cr and xh
RN coincide. For the magnetic

non-Abelian black holes this critical value is given byâ
5A3/2 @5,8#.

Analogously, for dyonic non-Abelian black holes the
are also two regimes of the coupling constanta, with â
marking the transition point between these two regimes.
10401
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now derive this critical valueâ for the dyonic non-Abelian
black hole solutions, following closely the reasoning of R
@8#.

Let us then consider the fixed points of the system~27!–
~35!. Employing notation II, the relevant fixed point is give
by the configuration

Hh5a, Wh50, kh51, r h5
1

A12a2Bh
2

, ~53!

where Nh5Vh5Uh5Ch50, while Bh is such that 0<Bh
<1/a.

Linearization of the equations about this fixed point lea
to the following eigenvalues of the matrix defining the line
part ~adopting the orderN, W, U, H, V, P, Q, k):

g051, ~54!

g1,252
1

2
6 iA3

4
2a2

12Bh
2

12a2Bh
2, ~55!

g3,452
1

2
6A1

4
1a2b2r h

2, ~56!

g550, ~57!

g6521, ~58!

g7522. ~59!

In particular, we see that the eigenvaluesg1,2, which are
related to the functionW and determine the critical valueâ
for the magnetic black holes@8#, now depend onBh . The
zero modeg5 is related to the occurrence of this free para
eter.

For Q50, the critical value ofa corresponds to the tran
sition of the eigenvalueg1,2 @Eq. ~55! for Q50] from com-
plex to real value@8#. Repeating this reasoning for dyon
black holes, we conclude, that the corresponding criti
value of the coupling constant for the dyonic non-Abeli
black holes is given by

â25
3

42Bh
2 . ~60!

Here the relation of the critical valueâ to the chargeQ
seems only indirect, since the value of the functionB(x) at
the horizon enters in Eq.~60!. However, for the dyonic non-
Abelian black holesâ also represents the special poin
where the non-Abelian black hole solutions tend towards
corresponding extremal RN solution with horizon radi
xh

RN5âA11Q2 on the full intervalx>xh
cr5xh

RN. This im-
plies for the functionB(x) according to Eq.~43!

lim
a→â

B~x!5
Q

âA11Q2
, ;x.xh

RN. ~61!
6-6
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DYONIC NON-ABELIAN BLACK HOLES PHYSICAL REVIEW D 60 104016
Consequently, we may insert forBh in Eq. ~60! the constant
RN value, Eq.~43!, and obtain for the critical coupling con
stant the expression

â~Q!5A 314Q2

4~11Q2!
, ~62!

which now depends on the electric chargeQ.

C. Fundamental dyonic black holes

Let us now define some quantities helpful in the analy
of the numerical results. Denoting the set of functions of
extremal RN solution with horizon radiusxh

RN5aA11Q2 by
(NRN,KRN,HRN,PRN), and denoting the set of functions o
the non-Abelian black hole solution with horizon radiusxh

~with xh,xh
RN) by (N,K,H,P), we define

DN5maxxP[x
h
RN ,`] uNRN~x!2N~x!u, ~63!

and analogously we define the quantitiesDK, DP, andDH.
Clearly the quantitiesDN, DK, DP, andDH must vanish,
when the non-Abelian black hole solutions bifurcate with t
corresponding extremal RN solution. Therefore these qu
tities help to determine the critical values with good accura
in the regimea>â.

Q50. Our numerical evaluation of the domain of exi
tence of the magnetic non-Abelian black holes in thea-xh
plane is in agreement with the results of Refs.@5,8#, and in
particular we confirmâ5A3/2. Considering the quantitie
DN, DK, and DH @Eq. ~63!# as functions of the horizon
radiusxh , we observe that fora>â the three functions ap
proach zero at a common valuexh

cr(a)<â. As a2â changes
sign, in particular the quantityDK changes drastically, be
coming a convex function when the critical horizon radi
xh

cr is approached.
QÞ0. We have numerically determined the domain

existence of the fundamental dyonic non-Abelian black h
solutions in thea-xh plane, which is shown in Fig. 4 forQ
51. The straight line indicates the extremal RN solutio
dividing the domain of existence into a lower region wi
non-Abelian black holes only and an upper region with b
non-Abelian and nonextremal Abelian black holes, co
pletely analogously to the case of magnetic black holes.

To start the detailed discussion of the diagram, we cho
a small fixed value of the horizon radiusxh and varya. Then
the dyonic black hole solutions exist only up to some ma
mal valueamax(xh). Fromamax(xh) a second branch extend
backwards until a critical valueac(xh) is reached. With in-
creasingxh the second branch becomes increasingly sma
and finally disappears. The critical valuesamax(xh) and
ac(xh) are both shown in Fig. 4.

The presence of the two branches is illustrated in Fig
for Q51 andxh50.8, where the quantitiesDN, DK, DP,
andDH are shown as functions of the parametera. Here the
second branch of solutions only exists in the small inter
1.1986<a<1.2002.
10401
s
e

n-
y

f
e

,

h
-

se

-

r,

5

l

For fixed xh and varyinga, the functions of the black
holes solutions evolve completely analogously to those
the regular dyon solutions. Consequently, the limiting so
tion reached at the critical valueac(xh) consists of two parts,
the outer part corresponding to the exterior of the extrem
RN black hole with horizonxh

RN5acA11Q2, unit magnetic
charge and electric chargeQ and the inner part representin
a genuine non-Abelian solution.

Similarly for fixed a.â and varyingxh , the limiting
solution reached consists of two parts, the outer part co
sponding to the exterior of the extremal RN black hole w
horizon xh

RN5aA11Q2, unit magnetic charge and electr
chargeQ, as demonstrated in Figs. 6 and 7 for the black h
solutions with horizonxh51, 1.1, and 1.153, chargeQ51
anda51 for the functionsN andP, and the functionsK and
H, respectively.

According to Eq.~62!, for Q51 the critical valueâ is
given by â5A7/8'0.935. Here the transition between th
two regimes with different bifurcation patterns is suppos
to occur. Indeed, our numerical calculations confirm t
critical value, as demonstrated in Figs. 8 and 9, where

FIG. 4. The domain of existence of the dyonic black hole so
tions in thea-xh plane is shown forQ51. The straight diagona
line represents the extremal RN solutions. To the right of this l
only non-Abelian black hole solutions exist. Here the limiting cur
represents the maximal values ofa, while the second curve close t
it represents the critical values ofa, where the solutions bifurcate
with the corresponding extremal RN solution. The asterisk ma

the critical valueâ. To the left of the line of extremal RN solution
both nonextremal RN solutions and non-Abelian black hole so
tions coexist below the upper curve, representing the maximal
rizon radius as a function ofa. The small rectangle indicates th
critical region, where bifurcations occur~enlarged in Fig. 10!. Be-
low the bifurcations, the lower curve represents the critical val
of the horizon, where the solutions terminate becauseJ`51 is
reached.
6-7
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four quantitiesDN, DK, DP, andDH are shown as func
tions of the horizon radiusxh for a50.94 anda50.93, re-
spectively.

For a50.94, which is slightly aboveâ, the curves in Fig.
8 clearly approach zero atxh

cr'1.235. This value is well

FIG. 5. The quantitiesDN, DK, DP, and DH are shown as
functions of the parametera for the dyonic black hole solutions
with Q51 and xh50.8. The second branch of solutions in th
interval 1.1986<a<1.2002 is clearly visible.

FIG. 6. The functionsN(x) andP(x) are shown for the dyonic
black hole solutions withQ51 anda51 for the horizon radiixh

51, 1.1, and 1.153.
10401
below the horizon value of the corresponding extremal R
solution,xh

RN5aA11Q2'1.329. Moreover, in this limitxh

→xh
cr , the corresponding values ofK(xh) andH(xh) do not

tend to their RN values of zero and one, respectively,
they converge to generic numbers in the interval@0,1#.

In contrast, fora50.93, which is slightly belowâ, the
function DK becomes a convex function when the critic
horizon radiusxh

cr'0.93A2'1.315 is approached. Furthe

FIG. 7. Same as Fig. 6 for the functionsK(x) andH(x).

FIG. 8. The quantitiesDN, DK, DP, and DH are shown as
functions of the horizon radiusxh for the dyonic black hole solu-

tions with Q51 anda50.94.â.
6-8
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more, the quantitiesK(xh) andH(xh) tend to their RN val-
ues zero and one, respectively, forxh→xh

cr . Thus for a
50.93 the limiting solution represents a RN solution on t
full interval x>xh

cr .

Clearly, the transition pointâ occurs in between thes
two values. Approachingâ further from both sides, the valu
â5A7/8'0.935 is confirmed. The gap in Fig. 4 on the righ
hand side ofâ represents a tiny region, numerically not a
cessible with sufficient accuracy@17#. We have confirmed
the validity of Eq.~62! also for other values of the chargeQ.

In the regimea,â, we observe that the maximal value
the horizon radiusxh decreases with decreasinga, com-
pletely analogously to the magnetic case. Continuing our
tailed discussion of the approach to the limiting solution
this regime, however, we observe differences to the magn
case for smaller values ofa and larger values ofQ.

For fixed a close to â and increasingxh , the dyonic
black hole solutions bifurcate with a RN solution when t
maximal value of the horizon is reached. The limiting so
tion corresponds to the exterior of the RN solution on the
interval x>xh

cr . For smaller values ofQ and somewhat
smaller fixeda, with increasingxh the solutions do not ye
bifurcate with a nonextremal RN solution, when the maxim
value of the horizon is reached. Instead a second branc
solutions emerges, extending backwards to lower value
the horizon radius, until it bifurcates with a nonextremal R
solution at the critical value of the horizonxh

cr @5,8,6#. Mov-
ing along both branches, the values ofK(xh) and H(xh)
change monotonically, reaching their respective RN val
of zero and one as the critical horizon is reached.

For the magnetic black holes as well as for the dyo
black holes with smaller values ofQ this latter bifurcation
pattern persists with decreasinga @5,8#. In contrast, for the

FIG. 9. Same as Fig. 8 fora50.93,â.
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dyonic non-Abelian black holes with larger values ofQ new
phenomena occur.

We exhibit these new phenomena in Fig. 10, where
critical region of thea-xh plane shown in Fig. 4 forQ51 is
enlarged and more details are given. First, we observe
occurrence of bifurcations, which lead to the small triangu
regionABC, where three solutions exist. Thus belowâ we
find four distinct regions in thea-xh plane. With decreasing
a and increasingxh there are~i! for 0.605,a first one, then
zero solutions,~ii ! for 0.575,a,0.605 first one, then three
then one, then zero solutions,~iii ! for 0.535,a,0.575 first
one, then three, then two, then zero solutions, and~iv! for
a,0.535 first one, then two, then zero solutions.

Second, with decreasinga, the valueJ` of the limiting
solution increases. When it reaches its maximal value of o
the functionK(x) ceases to decay exponentially. The lim
ing solution then no longer represents a nonextremal
solution, instead an oscillating solution is reached as the l
iting solution. The corresponding critical point, where t
transition from the limiting nonextremal RN solutions to th
oscillating solutions occurs, is labeledD in Fig. 10. Along
the curveBD the maximal value of the horizon radius
reached when the limiting valueJ`51 is attained, whereas
along the curvesAB andA8A an intermediate extremal valu
of the horizon radius is reached when the limiting valueJ`

51 is attained.
Figures 11–13 illustrate both phenomena, represen

the valuesK(xh), H(xh), andJ` as functions of the horizon
radius fora50.7, 0.55, and 0.2, respectively. As seen in F

FIG. 10. Enlargement of the critical region~small rectangle! of
Fig. 4, showing the domain of existence of the dyonic black h
solutions in thea-xh plane forQ51. The numbers 0–3 indicate th
numbers of solutions in the respective areas.A andC indicate the
critical values, where the bifurcations occur,D indicates the critical
value, where the transition from the limiting nonextremal RN so
tions to the oscillating solutions occurs.J`51 is reached along the
curveA8ABD.
6-9
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11, for a50.7 only one branch of solutions exists. Her
with increasingxh K(xh) decreases monotonically to zer
H(xh) increases monotonically to one, whileJ` increases
monotonically to a limiting value smaller that one. Decrea
ing a, the critical pointC of Fig. 10 is reached, below whic
three branches of solutions exist. Moving along the th
branches,K(xh) decreases monotonically,H(xh) increases

FIG. 11. The quantitiesK(xh), H(xh), and J` are shown as
functions of the horizon radiusxh for the dyonic black hole solu-
tions with Q51 anda50.7.

FIG. 12. Same as Fig. 11 fora50.55.
10401
,

-

e

monotonically and J` increases monotonically until i
reaches one, as seen in Fig. 12 fora50.55. For still smaller
values ofa, at the critical valueA, the third branch disap-
pears, leaving two branches which end whenJ` reaches one.
This is seen in Fig. 13 fora50.2. The maximal horizon
radius in this case is approximately 0.917. For small val
of a ~i.e., below the critical pointA) the lower curve in Fig.

FIG. 13. Same as Fig. 11 fora50.2.

FIG. 14. The chargeQ, corresponding to the critical valueD,
where the transition from the limiting nonextremal RN solutions
the oscillating solutions occurs, is shown as a function ofa ~dot-

ted!. Also shown is the critical valueâ ~solid!.
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4 represents the critical value of the horizon, where the
ymptotically exponentially decaying solutions cease to ex

Considering theQ dependence of the new phenomena,
observe that the bifurcations leading to three branches a
only for Q>0.8, and the limiting valueJ`51 is reached
only for Q>0.75. The latter is seen in Fig. 14, where t
critical valueD is shown, which marks the transition from
the limiting nonextremal RN solutions to the oscillating s
lutions. Also shown in Fig. 14 is the critical valueâ. We
note that with increasingQ the two curves get increasingl
closer.

D. Excited dyonic black holes

In addition to the fundamental magnetic black hole so
tions there exist radially excited black hole solutions,
which the gauge functionK(x) possessesn nodes @5,8#.
These radially excited solutions exist only fora<â5A3/2
@5,8#.

Our numerical analysis of the radially excited dyon
black hole solutions strongly indicates that, at least forn
51, the excited dyonic black hole solutions penetrate int
small domain of thea.â regime, as can already be antic
pated from Fig. 3, where the first excited regular dyon so
tion is shown for chargeQ51. Indeed, we observe that th
maximal value ofa, where the radially excited black hol
solutions cease to exist, increases more strongly withQ than
the critical valueâ.

Let us now consider the domain of existence of the bla
hole solutions in thea-xh plane in more detail. In the regim
a.â, for fixedxh and increasinga the solutions again reac
a limiting solution at the critical valueac(xh), which con-
sists of two parts, the outer part corresponding to the exte

FIG. 15. The minimum of the functionN(x) is shown as a
function of the parametera for the first radially excited dyonic
black hole solutions withQ51 and horizon radiixh50.01, 0.4, and
0.8.
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of the extremal RN black hole with horizonxh
RN

5acA11Q2, unit magnetic charge and electric chargeQ.
For a→ac(xh) the function N(x) develops a progres

sively decreasing minimumNmin , reaching zero atxh
RN

5ac(xh)A11Q2. This is illustrated in Fig. 15, where th
value of Nmin is shown as a function ofa for the horizon
radii xh50.01, 0.4, and 0.8 and chargeQ51. With increas-
ing xh the value ofac(xh) decreases, though it remain
greater thanâ even for xh50.8, as inspection of the fou
quantitiesDN, DK, DP, andDH reveals.

In Fig. 16 we show the functionsN(x), K(x), H(x), and
P(x) of the first radially excited black hole solution fo
chargeQ51, horizon radiusxh50.4, anda50.938.â. The
minimum of the functionN(x), which here occurs close to
xh

RN5ac(xh)A11Q2, remains well separated from the hor
zon xh for a→ac(xh).

Considering finally the first excited black hole solutio
for small fixeda and increasingxh , we observe that as fo
the fundamental black hole solutions, the quantityJ` here
plays a major role. With increasingxh , J` approaches its
maximal value one, where the asymptotically exponentia
decaying solutions cease to exist. Fora50.2, for instance,
this happens atxh'0.28.

VI. CONCLUSIONS

In analogy to gravitating monopoles@4,5,7#, gravitating
dyons also@6# exist. When a regular horizonxh is imposed,
from these solutions ‘‘black holes within monopoles’’@4,5#
and ‘‘black holes within dyons’’@6# emerge. In addition to
the fundamental regular and black hole solutions also ra
ally excited solutions exist@5,8,6#, related to the correspond
ing EYM solutions@14,18#. The static spherically symmetri

FIG. 16. The functionsN(x), P(x), K(x), andH(x) are shown
for the first radially excited dyonic black hole solution withQ
51, a50.938, andxh50.4.
6-11
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BRIHAYE, HARTMANN, KUNZ, AND TELL PHYSICAL REVIEW D 60 104016
‘‘black holes within monopoles’’ and ‘‘black holes within
dyons’’ provide counterexamples to the ‘‘no-hair conje
ture.’’

The domain of existence of the fundamental dyonic n
Abelian black hole solutions in thea-xh plane is similar to
the one of the fundamental magnetic non-Abelian black h
solutions. There are two regimes of the coupling constana.
For a,â, the maximal horizon radius increases with i
creasinga, whereas fora.â it decreases. The transitio
point between these two regimes,â, depends on the charg
Q of the solutionsâ5A(314Q2)/@4(11Q2)#.

For fixed a and varying horizon radius, a limiting solu
tion is approached. Fora.â the limiting solution consists
of two distinct parts. The outer part corresponds to the e
rior of an extremal RN black hole solution with horizon r
dius xh

RN5aA11Q2, unit magnetic charge and electr
chargeQ, whereas on the intervalxh<x,xh

RN the limiting
solution has the features of generic non-Abelian solutions
the transition pointa5â the limiting solution correspond
precisely to the exterior of the extremal RN black hole so
tion with horizon radiusxh

RN5âA11Q2, on the full interval

x>xh . In contrast, fora,â the limiting solution represent
the exterior of a nonextremal RN solution for the larger v
ues ofa, while for the smaller values ofa the dyonic non-
Abelian black hole solutions encounter a critical point, whe
the solutions no longer are exponentially decaying but
come oscillating.

The domain of existence of the radially excited dyon
non-Abelian black hole solutions in thea-xh plane is similar
to the one of the fundamental solutions. Again, there are
regimes of the coupling constanta with the transition point
â. This is in contrast to the radially excited magnetic no
Abelian black hole solutions, which exist only up toâ @5,8#.

In a large part of their domain of existence, the magne
non-Abelian black hole solutions are classically sta
@4,5,8,19#. In contrast, dyonic non-Abelian black hole sol
tions should be classically unstable. As for the classical d
solutions in flat space, their mass should be lowered cont
ously, by lowering the electric charge, as long as there is
charge quantization@2#.

APPENDIX

In this appendix we show the local existence of the n
Abelian dyon solutions at the singular pointx50 and the
local existence of the non-Abelian dyonic black hole so
tions at the singular pointxh .

As for the monopoles, the field equations for the dyo
have singular points atx50 andx5`. For the monopoles
there exists a two-parameter family of local solutions regu
at x50. Analogously, for the dyons there exists a thre
parameter family of local solutions regular atx50, as shown
in the following.

Let us consider Eqs.~17!–~21!, using notation I. At the
singular pointx50, the expansion of regular solutions d
pends on four parameters, yielding
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N~x!512n2x21O~x4!,

A~x!5A0@11a2x21O~x4!#,

K~x!512k2x21O~x4!, ~A1!

J~x!5A0@ j 1x1O~x3!#,

H~x!5h1x1O~x3!,

whereA0 , h1 , j 1, andk2 are arbitrary parameters while

a25a2S j 1
214k2

21
h1

2

2 D ,

n25a2S j 1
21h1

214k2
21

b2

6 D . ~A2!

Eliminating the metric functionA, we now show that the
remaining equations forN, K, H, and P admit a three-
parameter family of local solutions nearx50, analytic in the
parameters. This is the counterpart of proposition 2 of A
pendix A of Ref.@5# in the presence of the dyon degree
freedom. Let us define

w15
H

x
, w25NH8, w35

12K

x2 , w45
NK8

x
,

w55
P

x
, w65~P81PM!N, w75

12N

x2 ~A3!

with

M5
A8

A
5a2xS 2P2K2

N2x2 1
2K82

x2
1H82D ~A4!

and furthermore

u15
1

3
~2w11w2!, u25

1

3
~w32w4!, u35

1

3
~2w51w6!,

v15
1

3
~w12w2!, v25

1

3
~2w31w4!, v35

1

3
~w52w6!,

v45
w7

2
2

a2

2 S u1
222v1

214u2
222v2

21u3
222v3

21
b2

6 D .

~A5!

Then Eqs.~17! and ~19!–~21! can be rewritten in the form

xui85x2f i , i 5123,

xv i852l iv i1x2gi , i 5124, ~A6!

where f i and gi are analytical functions ofx2, uj , v j , and
1/N andl i53, i 51,2,3. It now follows from Proposition 1
of Appendix A of Ref.@5# that the system of equations~17!
and ~19!–~21! admits a three-parameter family of solution
of the form
6-12
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ui5ci1O~x2!, v i5O~x2! ~A7!

which are locally analytic inx2 and in the constantsci .
These constants correspond toh1 , j 1, andk2 in ~A1!.

Following Ref. @8# and considering the system of equ
tions ~27!–~35!, we here demonstrate the local existence
the non-Abelian dyonic black hole solutions at the singu
point xh . Black hole solutions are characterized by a fi
order pole singularity of the functionk at the nondegenerat
horizon @8#. Due to translation invariance of the equatio
undert→t1t0, we can assume that the horizon occurs
t50.

To rewrite the set of equations in the form~A6!, which
reveals the number of free parameters occurring in the
pansion at the horizon of the locally analytic solution, w
introduce the following set of functions:
ys

ys

he

ys
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~u1 ,u2 ,u3 ,u4 ,u5!5~r ,W,H,2kN22U22V2,S!,

~v1 ,v2 ,v3 ,v4!5Fk2
1

t
,U,V,Y2SS k2

1

t D G ,
~A8!

with

S5B/t, Y5Ṡ. ~A9!

These functions are regular at the horizon and can
expanded in powers oft. Moreover, it follows that the equa
tions for ui and vk are of the form~A6! with l152, l2
5l351, andl453. This demonstrates the existence of
five-parameter family of local analytic solutions of the equ
tions. Because of the constraint~36!, it actually reduces to a
four-parameter family of local solutions.
s.
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â @8#.
@18# M.S. Volkov and D.V. Gal’tsov, Sov. J. Nucl. Phys.51, 747

~1990!; P. Bizon, Phys. Rev. Lett.64, 2844 ~1990!; H.P.
Künzle and A.K.M. Masoud-ul-Alam, J. Math. Phys.31, 928
~1990!.

@19# H. Hollmann, Phys. Lett. B338, 181 ~1994!.
6-13


