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Fluctuations of the Hawking flux

C.-H. Wu* and L. H. Ford†

Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155
~Received 5 May 1999; published 20 October 1999!

The fluctuations of the flux radiated by an evaporating black hole will be discussed. Two approaches to this
problem will be adopted. In the first, the squared flux operator is defined by normal ordering. In this case, both
the mean flux and the mean-squared flux are well-defined local quantites. It is shown that the flux undergoes
large fluctuations on a time scale of the order of the black hole’s mass. Thus the semiclassical theory of gravity,
in which a classical gravitational field is coupled to the expectation value of the stress tensor, breaks down
below this time scale. In the second approach, one does not attempt to give meaning to the squared flux as a
local quantity, but only as a time-averaged quantity. In both approaches, the mean-squared mass minus the
square of the mean mass grows linearly in time, but 4 times as fast in the second approach as in the first.
@S0556-2821~99!04518-X#

PACS number~s!: 04.70.Dy, 04.62.1v, 05.40.2a
re
in
ol
ll
ve
e
flu
d
is

o

e
re
ue
po
ra
re
e
.

es
n

oa
ic

a
ec
en
tu
e

en
th
la
re

ux.
ical
the
ng
n
ill
B,
a

be
ack
ng
in

wn
on

ing
ess

il-
al
ro-
te-
red

t its
y in
rm
is

re-

sed

on
the

ki
just
I. INTRODUCTION

One of the most remarkable theoretical discoveries of
cent decades was that of black hole evaporation by Hawk
@1,2# in 1974. This discovery demonstrated that a black h
emits a ~filtered! thermal spectrum of radiation and wi
eventually cease to exist as a classical black hole. Howe
Hawking’s derivation of this effect and most of the subs
quent papers on the topic have dealt only with the mean
of radiation emitted by the black hole. There should in ad
tion be fluctuations of the flux, which will be the topic of th
paper.

In order to discuss the fluctuations in the components
the stress tensor, it is necessary to be able to define the
pectation value of the square of a stress tensor compon
As will be discussed in the following section, this is a mo
difficult problem than the definition of the expectation val
of the stress tensor operator itself. In flat spacetime, one
sibility is to normal order the product of stress tensor ope
tors. This gives a meaning to quantities such as the squa
the energy density or pressure at a spacetime point and h
to a local measure of the fluctuations in these quantites
will be shown in Sec. II that normal ordering here involv
dropping both a divergent vacuum term and a diverge
state-dependent, cross term. The normal ordering appr
was adopted in Refs.@3,4,5#, and was generalized to stat
curved spacetimes by Phillips and Hu@6#. It leads to the
correct classical limit in that the expectation value of
squared stress tensor component is the square of its exp
tion value in the limit that the quantum state is a coher
state. Furthermore, it leads to the prediction that quan
states which exhibit negative energy densities have large
ergy density fluctuations@5#.

Black hole evaporation necessarily involves negative
ergy density in that a flux of negative energy going down
horizon is needed to account for the mass loss by the b
hole. Thus the results of Ref.@5# lead us to suspect that the
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must be large instantaneous fluctuations in the Hawking fl
Such large fluctuations can also be inferred on statist
physics grounds, as will be discussed in Sec. III E. In
present paper, we will restrict our attention to the Hawki
flux in the asymptotic region far from the event horizo
where spacetime is approximately flat. In Sec. III, this w
be done using the normal ordering prescription. In Sec. III
a formula will be derived for the squared flux radiated by
moving mirror in two-dimensional spacetime. This can
used to discuss the fluctuations in the flux emitted by a bl
hole in two dimensions. In Sec. III D the correspondi
analysis will be carried out for a Schwarzschild black hole
four-dimensional spacetime. In both cases it will be sho
that there are fractional flux fluctuations of order unity
time scales of the order of the mass of the black hole.

However, there are alternatives to the normal-order
method which involve space or time averages of the str
tensor. One such alternative was used by Barton@7# to study
the fluctuations of the Casimir force. In Sec. IV the possib
ity of averaging the flux over time in a two-dimension
model will be examined. Using an integration by parts p
cedure, it is possible to define time integrals of the sta
dependent cross term. It will be shown that the mean-squa
mass of the black hole undergoes a random walk in tha
deviation from the square of the mean mass grows linearl
time. This is true regardless of whether or not the cross te
is retained, but the rate of growth when the cross term
included is 4 times that obtained in the normal ordering p
scription.

The results of the paper will be summarized and discus
in Sec. V.

II. NORMAL-ORDERING EXPANSIONS
AND THE CROSS TERM

In Minkowski spacetime we renormalize the expectati
value of the energy-momentum tensor by subtracting out
Minkowski divergence,

^Tmn& renormalized5^:Tmn :&5^Tmn&2^Tmn&M . ~1!

Here ^ &M denotes the expectation value in the Minkows
vacuum state. For quadratic operators, this subtraction is
©1999 The American Physical Society13-1
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normal ordering. However, this is not true for the squa
energy-momentum tensor. In this paper we will study
massless, minimally coupled scalar field, for which t
energy-momentum tensor is

Tmn5f~ ,mf ,n)2
1

2
gmnf ,rf ,r

5
1

2
~f ,mf ,n1f ,nf ,m!2

1

2
gmnf ,rf ,r. ~2!

The flux operatorTrt52Trt has finite expectation values
The product of a pair of normal-ordered quadratic opera
^:f1f2<f3f4 :& can be expressed using Wick’s theorem

:f1f2<f3f4 :5:f1f2f3f4 :1:f1f3 :^f2f4&M

1:f1f4 :^f2f3&M1:f2f3 :^f1f4&M

1:f2f4 :^f1f3&M1^f1f3&M^f2f4&M

1^f1f4&M^f2f3&M . ~3!

The first term is fully normal ordered, the next four are cro
terms, and the final two are pure vacuum terms. The
two-point function for an arbitrary state can be written as

^Trt~x!Trt~x8!&5^:Trt~x!<Trt~x8!:&

5^:Trt~x!Trt~x8!:&1^Trt~x!Trt~x8!&cross

1^Trt~x!Trt~x8!&M , ~4!

where the vacuum term

^Trt~x!Trt~x8!&M5^f~x! ,rf~x8! ,r 8&M^f~x! ,tf~x8! ,t8&M
~5!

is the expectation value in the Minkowski vacuum state a

^Trt~x!Trt~x8!&cross5^:f~x! ,rf~x8! ,r 8 :&^f~x! ,tf~x8! ,t8&M

1^:f~x! ,tf~x8! ,t8 :&

3^f~x! ,rf~x8! ,r 8&M ~6!

is a state-dependent cross term. In the coincidence limitx8
→x, ^Trt(x)Trt(x8)&M and ^Trt(x)Trt(x8)&cross are diver-
gent. We can see that although the off-diagonal compon
of the energy-momentum tensor are finite, their square
divergent and remains so even if^Trt

2 &M is subtracted. We
have cross terms which contain state-dependent divergen
If we wish to give meaning to the notion of the squared fl
as a local quantity, it is necessary to remove this diverge
One possibility is simply to remove both the vacuum a
cross term and definêTrt

2 &5^:Trt
2 :&. In the following sec-

tion, we will consider the normal-ordered term alone, and
Sec. IV, we will return to the issue of whether there is
nontrivial physical content to the cross term.

Note that the quantities we will investigate
^:Trt(x)Trt(x8):& and ^:Trt(x)Trt(x8):&
1^Trt(x)Trt(x8)&cross, are distinct from the stress tensor co
relation function given by
10401
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Cmnrs5^Tmn~x!Trs~x8&2^Tmn~x!&^Trs~x8!&. ~7!

This latter quantity is independent of the choice of renorm
ization in the sense that it is unchanged by subtractingc
number fromTmn , but it is singular in the coincidence limit
This correlation function was used by Muller and Schmid@8#
to discuss cosmological perturbations due to quantum fie
and by Carlitz and Willey@9# in the context of black hole
evaporation. However, for the questions which we wish
pose, it seems more natural to examine the various term
Eq. ~4!.

III. FLUX FLUCTUATIONS
USING THE NORMAL-ORDERING SCHEME

A. Formula for Š:Trt
2 : ‹

Consider the massless scalar field, whose stress tens
given by Eq.~2!. The normal-ordered expectation value of
product of fluxes is shown in Appendix A to be

^:Trt~x!Trt~x8!:&5^:Trt~x!:&^:Trt~x8!:&

1^:f ,r~x!f ,r~x8!:&^:f ,t~x!f ,t~x8!:&

1^:f ,r~x!f ,t~x8!:&^:f ,t~x!f ,r~x8!:&,

~8!

and the squared flux is

^:Trt
2 ~x!:&5 lim

x8→x

^:Trt~x!Trt~x8!:&. ~9!

B. Two-dimensional moving mirror

In flat spacetime, boundaries induce vacuum energy
stress. If the boundaries move, then particles can be crea
A single reflecting boundary~mirror! can create particles if it
undergoes nonuniform acceleration.

We follow the treatment of Fulling and Davies@10,11#
and consider a massless scalar field in two-dimensional
spacetime with an arbitrary mirror trajectory, as illustrated
Fig. 1.

FIG. 1. The world line of a mirror moving to the left. Th
radiation emitted to the right is illustrated.
3-2
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The trajectory for the mirror is

x5z~ t !, ~10!

whereuz8(t)u,1, andz50 for t<0. The boundary condition
for the scalar fieldf is

f„t,z~ t !…50, ~11!

and the positive frequency mode function fort.0 is given
by

fv~x!5 i ~4pv!21/2@e2 ivv2e2 iv~2tu2u!#. ~12!

Hereu[t2x andv[t1x are null coordinates, and the pa
rametertu is defined by

tu2z~tu!5u. ~13!

The phase of the reflected wave is a function ofu only and is
defined by

p~u!52tu2u. ~14!

The phase change of the outgoing mode is due to the D
pler shift at the moving mirror. It is not surprising to see th
the moving mirror can create particles, since the mir
boundary condition changes a positive frequency mode
a mixture of positive and negative frequencies.

The quantum field operator can be written as

f~x,t !5E
0

`

dv@avfv1av
† fv* #, ~15!

where av and av
† are annihilation and creation operator

respectively. The in-vacuum stateu0& is defined by

avu0&50, ;v. ~16!

We use the point-splitting method to extract out t
Minkowski vacuum divergence. Letfv* be replaced by
fv* (t1e,x), and

^f ,mf ,n&5 lim
e→0

E
0

`

fv,m~r ,t !fv,n* ~r ,t1e!dv. ~17!

The derivatives of the mode functions become

fv,t5S v

4p D 1/2

@e2 ivv2p8~u!e2 ivp~u!#, ~18!

fv,r5S v

4p D 1/2

@e2 ivv1p8~u!e2 ivp~u!#, ~19!

fv,t* 5S v

4p D 1/2

@eiv~v1e!2p8~u1e!eivp~u1e!#,

~20!

and
10401
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fv,r* 5S v

4p D 1/2

@eiv~v1e!1p8~u1e!eivp~u1e!#. ~21!

We insert these expressions into Eq.~17!, and evaluate thev
integration using

E
0

`

eibxdx5
i

b
~22!

and

E
0

`

veiavdv5
]

i ]a E0

`

eiavdv52
1

a2 . ~23!

Expanding the results in a power series ine yields

^f ,rf ,t&52
1

4p F1

4 S p9

p8D
2

2
1

6

p-
p8 G1O~e!, ~24!

^f ,tf ,r&52
1

4p F1

4 S p9

p8D
2

2
1

6

p-
p8 G1O~e!, ~25!

^f ,rf ,r&52
1

4p F 2

e2 1
2p8

@v2p~u!#22
1

4 S p9

p8D
2

1
1

6

p-
p8 G , ~26!

and

^f ,tf t&52
1

4p F 2

e22
2p8

@v2p~u!#22
1

4 S p9

p8D
2

1
1

6

p-
p8 G . ~27!

Here ^f ,rf ,t& and ^f ,tf ,r& are finite, and̂ f ,rf ,r& and
^f ,tf ,t& can be renormalized by discarding thee22 term.
This term is independent ofp(u) ~i.e., independent of trajec
tory! and can be recognized as the Minkowski vacuum
vergence. The normal-ordered operator products are

^:f ,rf ,t :&5^f ,rf ,t&, ~28!

^:f ,tf ,r :&5^f ,tf ,r&, ~29!

^:f ,rf ,r :&5^f ,rf ,r&1
1

2pe2 , ~30!

and

^:f ,tf ,t :&5^f ,tf ,t&1
1

2pe2 . ~31!

We next substitute the above relations into Eq.~8!. The
squared flux for an arbitrary trajectory becomes

^:Trt
2 :&5S 1

4p D 2F 24~p8!2

@v2p~u!#4 1
3

16S p9

p8D
4

2
1

4

~p9!2p-

~p8!3 1
~p-!2

12~p8!2G , ~32!

and the flux is
3-3
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C.-H. WU AND L. H. FORD PHYSICAL REVIEW D60 104013
^Trt&5
1

4p F1

4 S p9

p8D
2

2
1

6

p-
p8 G . ~33!

1. Trajectory which produces a thermal spectrum of particles

Fulling and Davies@10,11# have discussed a particula
mirror trajectory which produces a steady thermal flux
particles at late times and which models a two-dimensio
evaporating black hole. Carlitz and Willey@9# have shown
that the correlation functionC defined in Eq.~7! in this case
is just that for a thermal state. The trajectory has
asymptotic form

z~ t !;2t2Ae22kt1B, t→`, ~34!

whereA, B, andk are positive constants. Here

p~u!52tu2u;B2A2k~u1B!, u→`. ~35!

Substituting this form into Eq.~32! gives the normal-ordered
squared flux

^:Trt
2 ~x!:&5S 1

4p D 2Fk4

48
2

16A2k2e22k~u1B!

~v2B1Ae2k~u1B!!4G
→S 1

4p D 2 k4

48
, u→`. ~36!

Similarly, the expectation value of the flux is

^:Trt~x!:&52^:Trt~x!:&5
k2

48p
. ~37!

The squared flux is related to the mean flux by

^:Trt
2 ~x!:&53^:Trt :&2, ~38!

and the relative deviation is

^:DTrt :&

^:Trt :&
5

A^:Trt
2 ~x!:&2^:Trt :&2

^:Trt :&
5&. ~39!

The fractional flux fluctuations are thus of order unity.

2. Correlation function

The function^Trt(x)Trt(x8)& is finite except in the shor
distance limit x82x→0. On the other hand, the norma
ordered function̂ :Trt(x)Trt(x8):& has a finite value in this
limit. Here we restrict our discussion to the latter functio
We define a normalized correlation function as@note that this
is distinct from the functionC defined in Eq.~7!#

j~Dt !5
^:Trt~ t !Trt~ t8!:&2^:Trt~ t !:&^:Trt~ t8!:&

^:Trt~ t !:&^:Trt~ t8!:&
, ~40!

whereDt5ut2t8u and the spatial points are coincident. F
the specific trajectory of Eq.~34!, j(Dt) is

j~Dt !5288F e2kDt

~12e2kDt!22
1

~kDt !2G2

, ~41!
10401
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which is plotted in Fig. 2. Note thatj(Dt) is finite for all
Dt>0. The correlation timetc is defined by

j~tc!5
1

2
j~0!, ~42!

and is approximately

tc'
3

k
. ~43!

C. Two-dimensional black hole

Fulling and Davies have shown that the mirror trajecto
of Eq. ~34! produces the same quantum state in
asymptotic region as does a two-dimensional evapora
black hole of massM if k51/4M . Thus the flux and square
flux for a 2D black hole are

^:Trt~x!:&5
1

768pM2 ~44!

and

^:Trt
2 ~x!:&53^:Trt~x!:&2. ~45!

The correlation timetc becomes

tc511M . ~46!

Thus the Hawking flux undergoes large fluctuations, vary
by a factor of order unity on a time scale of order 11M .

D. Four-dimensional black hole

In four dimensions, the treatment of black hole evapo
tion becomes more complicated than in two dimensions. T
is due to the angular degrees of freedom and the resu
potential barrier around the black hole. Ingoing and outgo
waves experience scattering off of this potential barrier. W
will consider the case of a nonrotating, uncharg
~Schwarzschild! black hole and will follow the treatment o
DeWitt @12#. The mode functions are of the form

FIG. 2. The correlation function for thermal radiation in two
dimensional spacetime.
3-4
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u5
1

2prA2v
Rl~vur !Ylm~u,f!e2 ivt, ~47!

where theYlm(u,f) are the usual spherical harmonics. Ve
tor signs will be used to indicate the two independent mo
which have the asymptotic forms

RW l~vur !→H eivr* 1AW l~v!eivr* ,

Bl~v!eivr* ,

r * →2`,
r * →`, ~48!

and

RQ l~vur !→H Bl~v!e2 ivr* ,

e2 ivr* 1AQ l~v!eivr* ,

r * →2`,

r * →`,
~49!

wherer * is the usual tortoise coordinate:

r * 5r 12M lnS r

2M
21D . ~50!

The transmission coefficientsBl and reflection coefficients
Al satisfy the relations

uAQ l~v!u5uAW l~v!u, ~51!

12uAW l~v!u2512uAQ l~v!u25uBl~v!u2, ~52!

and

AW l* ~v!Bl~v!52Bl* AQ l~v!. ~53!

The components of the energy-momentum tensor in the
ruh vacuum state near future null infinity are of the form~see
Ref. @12# for details!

^f ,mf ,n&;(
l ,m

E
0

`

@uQ ,muQ ,n* 1coth~4pMv!uW ,muW ,n* #dv. ~54!

The asymptotic forms of the mode functions are

uW 5
1

2prA2v
Bl~v!eivr* Ylme2 ivt, ~55!

and

uQ 5
1

2prA2v
Ylme2 ivt@e2 ivr* 1AQ l~v!eivr* #. ~56!

The derivatives of these mode functions become

uQ ,ruQ ,t* 5
vuYlmu2

8p2r 2 ~12uAQ l u21AQ l* e22ivr2AQ le
2ivr !, ~57!

uQ ,tuQ ,r* 5
vuYlmu2

8p2r 2 ~12uAQ l u22AQ l* e22ivr1AQ le
2ivr !,

~58!
10401
-
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uQ ,tuQ ,t* 5
vuYlmu2

8p2r 2 ~11uAQ l u21AQ l* e22ivr1AQ le
2ivr !,

~59!

uQ ,ruQ ,r* 5
vuYlmu2

8p2r 2 ~11uAQ l u21AQ l* e22ivr1AQ le
2ivr !,

~60!

uW ,ruW ,t* 5
2vuBl u2uYlmu2

8p2r 2 , ~61!

uW ,tuW ,r* 5
2vuBl u2uYlmu2

8p2r 2 , ~62!

uW ,ruW ,r* 5
vuBl u2uYlmu2

8p2r 2 , ~63!

and

uW ,tuW ,t* 5
vuBl u2uYlmu2

8p2r 2 . ~64!

Substitution of these relations into Eq.~54! and use of the
summation formula

(
m

uYlmu25
2l 11

4p
~65!

yields

^f ,rf ,t&5(
l ,m

E
0

`

@uQ ,ruQ ,t* 1coth~4pMv!uW ,ruW ,t* #dv

5
2sinu

4p2 (
l ,m

uYlmu2E
0

` uBl u2v

e8pMv21
dv

1
sinu

32p3 (
l

~2l 11!

3E
0

`

v~AQ l* e22ivr2AQ le
2ivr !dv. ~66!

The first term on the right-hand side is^Trt&. Similar calcu-
lations give us these derivatives in terms of the mean fl
^Trt& as

^f ,rf ,t&52^Trt&1I 2 , ~67!

^f ,tf ,r&52^Ttr&2I 2 , ~68!

^f ,rf ,r&5^Trt&1I 02I 1 , ~69!

and

^f ,tf ,t&52^Trt&1I 01I 1 , ~70!

where the integralsI 0 , I 1 , andI 2 are
3-5
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I 05
sinu

16p3 (
l

~2l 11!E
0

`

v dv, ~71!

I 15
sinu

16p3 (
l

~2l 11!E
0

`

vA~v!cos@d~v!12rv#dv, ~72!

and

I 252 i
sinu

16p3 (
l

~2l 11!E
0

`

vA~v!sin@d~v!12rv#dv.

~73!

Here A(v) andd(v) are the magnitude and phase, resp
tively, of Al(v). We can identityI 0 as the Minkowski diver-
gence, and symmetrization removes the pure imaginary t
I 2 . Discarding these two terms yields

1

2
~^:f ,rf ,t :&1^:f ,tf ,r :&5^:Trt :&5^:Ttr :&, ~74!

^:f ,rf ,r :&52^:Trt :&2I 1 , ~75!

and

^:f ,tf ,t :&52^:Trt :&1I 1 . ~76!

Using the relations

A~v!→A0 , v→0,

A~v!→0, v→`,

and

d~v!→d0 , v→`,

the integralI 1 at large distance,r→`, becomes

E
0

`

vA~v!cos@d~v!12rv#dv

5
1

r 2 E
0

`

xAS x

r D cosFdS x

r D12xGdv

;
A0

r 2 E
0

`

cos~2x1d0!xdx}
1

r 2 . ~77!

Thus the termI 1 is much smaller than the mean flux

^Trt&5
sinu

16p3 (
l

~2l 11!E
0

` uBl u2

e8pMv21
dv, ~78!

which is a nonzero constant at large distance, and hencI 1
can be ignored. The squared flux becomes
10401
-

m

^:Trt
2 :&5^:Trt :&21^:f ,rf ,t :&^:f ,tf ,r :&

1^:f ,rf ,r :&^:f ,tf ,t :&

52^:Trt :&21~^:Trt :&2I 1!~^:Trt :&1I 1!'3^Trt&
2.

~79!

We thus get the same relation between the squared flux
the mean flux as in the case of a two-dimensional evapo
ing black hole.

Next we will discuss the normal-ordered correlation fun
tion and ignore the contribution fromI 1 . From Eq.~54!, we
have

^:f ,r~x!f ,r~x8!:&

5ReF 1

16p2r 2 (
l

~2l 11!E
0

` uBl u2veivDt

e8pMv21
dvG ,

~80!

^:f ,t~x!f ,t~x8!:&

5ReF 1

16p2r 2 (
l

~2l 11!E
0

` uBl u2veivDt

e8pMv21
dvG ,

~81!

^:f ,r~x!f ,t~x8!:&

5ReF2
1

16p2r 2 (
l

~2l 11!E
0

` uBl u2veivDt

e8pMv21
dvG ,

~82!

and

^:f ,t~x!f ,r~x8!:&

5ReF2
1

16p2r 2 (
l

~2l 11!E
0

` uBl u2veivDt

e8pMv21
dvG ,

~83!

where Dt5t82t. The correlation function defined in Eq
~40! now becomes

j~Dt !5

2H ReF( l~2l 11!E
0

` uBl u2veivDt

e8pMv21
dvG J 2

H ReF( l~2l 11!E
0

` uBl u2v

e8pMv21
dvG J 2 .

~84!

For our purposes, the transmission coefficient may be
proximated by a step function

Bl~v!'Q~A27Mv2 l !. ~85!

In this approximation, modes with energies below the pe
of the angular momentum barrier are assumed to be perfe
reflected and those with energies above the peak are c
pletely transmitted. This is a reasonably good approximat
3-6
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as may be seen by examining Fig. 1 in Ref.@13#, where
numerical results for the transmission and reflection coe
cients are given. The summation onl yields

(
l

~2l 11!uBl u25(
l

~2l 11!Q~A27Mv2 l !

527M2v216)Mv11, ~86!

and the numerator of Eq.~84! becomes

S~Dt !5ReS (
l

~2l 11!E
0

` uBl u2veivDt

e8pMv21
dv D

5ReS E
o

` ~27M2v216)Mv11!veivDt

e8pMv21
dv D

5
27

~8p!4M2 ReS E
0

` x3eibx

ex21
dxD

1
6)

~8p!3M2 ReS E
0

` x2eibx

ex21
dxD

1
1

~8p!2M2 ReS E
0

` xeibx

ex21
dxD , ~87!

wherex58pMv andb5Dt/8pM . The correlation function
is

j~Dt !5
2S~Dt !2

S~0!2 ~88!

and is plotted in Fig. 3.
The correlation timetc is around 0.3(8pM )'8M . As in

the two-dimensional case, the four-dimensional Hawking
diation undergoes large flux fluctuations on a time scale
about 8M .

FIG. 3. The correlation function for the radiation from a bla
hole in four dimensional spacetime.
10401
-

-
f

E. Flux fluctuations as thermal fluctuations

It is reasonable to expect that the flux fluctuations co
puted in the previous subsection can be interpreted as o
nary thermal fluctuations. Thermal fluctuations of the ene
in the canonical ensemble are described by the relation

DE

E
5

TAkBCV

E
, ~89!

whereE is the mean energy at temperatureT for a system
with heat capacityCV . In the case of thermal radiation,E
}T4, soCV54E/T, and hence

DE

E
52AkBT

E
. ~90!

Note thatE/(kBT) is a measure of the mean number of ph
tons in the thermal radiation, so the above result is the fam
iar 1/AN statistical fluctuation.

Let us takeE to be the energy emitted by a black hole
one correlation time,tc'8M , and the power emitted to b
that calculated by Page@14# for photon emission from a
Schwarzscild black hole:

P53.431025M 22. ~91!

This leads to a rather small number of photons emitted
correlation time,

E

kBT
'831023 ~92!

and rather large fractional energy fluctuations

DE

E
'23. ~93!

This estimate is somewhat larger than the result obtai
from the normal-ordered squared flux in the previous subs
tion. However, it is a very rough estimate which depen
upon our choice for the energyE and the collecting time. If
we had chosen to integrate the flux for a time longer thantc ,
the statistical fluctuations would be somewhat reduced. A
the spectrum of particles emitted by a black hole is not
actly Planckian, but has been filtered by the angular mom
tum barrier.

IV. PHYSICS OF THE CROSS TERM

We now turn to examining the cross term between
vacuum fluctuations and the finite, state-dependent parts.
call that this contribution is singular in the coincidence lim
and, hence, does not lead to a well-defined local definition
the squared flux. If it is not to be subtracted by some ren
malization method, then it can only be given physical me
ing by dealing with time or space averages.
3-7
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A. Switching functions

One possibility is to suppose that we operationally m
sure the flux with a model detector which has a finite
sponse time. Suppose that the response of our detect
described by a Lorentzian function with characteristic wid
t:

f ~ t !5
t

p

1

~ t2t0!21t2 . ~94!

The averaged squared flux becomes

^Trt
2 ~x!&average5E

2`

` E
2`

`

f ~ t ! f ~ t8!^Trt~x!Trt~x8!&dt dt8.

~95!

We will examine the case of the thermal flux from a mirr
or black hole in two dimensions and assume that the s
pling time is short compared to the correlation time,t
!tc . In this case, the correlation functions are appro
mately constant, and the average of the normal ordered
is

A25E
2`

` E
2`

`

f ~ t ! f ~ t8!^:Trt~x!Trt~x8!:&dt dt8

'^:Trt~x!Trt~x8!:&. ~96!

The average of the cross term can be written as

A15E
2`

` E
2`

`

f ~ t ! f ~ t8!@^:f~x! ,rf~x8! ,r 8 :&

3^f~x! ,tf~x8! ,t8&M1^:f~x! ,tf~x8! ,t8 :&

3^f~x! ,rf~x8! ,r 8&M#dt dt8

'2^:Trt :&E
2`

`

f ~ t ! f ~ t8!
1

22p~ t2t8!2 dt dt8

'
1

4pt2 ^Trt&, ~97!

where we have used Eq.~B8! in Appendix B.
For comparison, it is of interest to give the average of

vacuum term,

A05E
2`

` E
2`

`

f ~ t ! f ~ t8!

3^f~x! ,rf~x8! ,r 8&M^f~x! ,tf~x8! ,t8&Mdt dt8

5E
2`

` E
2`

`

f ~ t ! f ~ t8!
1

4p2~ t2t8!4 dt dt85
1

64p2t4 ,

~98!

using Eq.~B16!.
In the case of a two-dimensional black hole, where^Trt&

51/(768pM2) and ^:Trt
2 :&53^Trt&

2, we see thatA0@A1

@A2 whenT@M . If we were to letT'M , our assumption
10401
-
-
is

-

-
rm

e

that the correlation functions are constant would no longer
exact. Nonetheless, this calculation should give a reason
order of magnitude estimate, and predicts that all three te
are of the same order of magnitude.

B. Mirror as a flux detector

Here we will examine a model in which the flux is me
sured by the force which it exerts on a reflecting or absorb
surface. All of our discussion will be in one spatial dime
sion, so the force on a partially reflecting surface is

F5r :Trt :, ~99!

where 0,r<2 and 1
2 r is the fraction of the radiation which

is reflected. Consider a mirror with massm which starts at
rest at timet50. The mean velocity and mean-squared v
locity at t5t are

^v&5
1

m E
0

t

^F&dt ~100!

and

^v2&5
1

m2 E
0

tE
0

t

^F~ t !F~ t8!&dt dt8. ~101!

The force two-point function is

^F~ t !F~ t8!&5r 2^:Trt~ t !<Trt~ t8!:&

5r 2^:Trt~ t !Trt~ t8!:&1r 2^TrtTrt&cross

1r 2^TrtTrt&M . ~102!

We are interested in the difference between the fluctuati
in a given state and those in the Minkowski vacuum, and
drop the vacuum term. We then define the fluctuations
subtracting out the square of the mean value:

^DT2&5^T2&2^T&2. ~103!

The normal-ordered flux fluctuation is given by

^DTrt
2 &NO5^:Trt~ t !Trt~ t8!:&2^Trt~ t !&^Trt~ t8!&

5^:f ,r~ t !f ,r~ t8!:&^:f ,t~ t !f ,t~ t8!:&

1^:f ,r~ t !f ,t~ t8!:&^:f ,t~ t !f ,r~ t8!:&,

~104!

and the cross-term contribution is

^DTrt
2 &cross5^:f ,r~ t !f ,r~ t8!:&^f ,t~ t !f ,t~ t8&M

1^:f ,t~ t !f ,t~ t8!:&^f ,r~ t !f ,r~ t8!&M .

~105!

The velocity fluctuation can be written as
3-8
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^Dv2&5^v2&2^v&2

5^Dv2&NO1^Dv2&cross

5
r 2

m2 E ^DTrt
2 &NO dt dt81

r 2

m2 E ^DTrt
2 &crossdt dt8.

~106!

1. Coherent state

A coherent state describes a classical field excitation
is hence a useful model to reveal the effects of the cr
term. Consider a single-mode coherent stateuz& for a mode
with frequencyv0 :

avuz&5dvv0
zuz&. ~107!

The free quantum field expanded in normal modes is

f~x,t !5(
v

~avfv1av
† fv* ! , ~108!

where the mode function for a standing wave in a box
lengthL is

fv5
1

A2vL
eivt sin~vx!. ~109!

Assume that the mirror remains approximately stationary
will be the case when its mass is large, and setx5x8. Fur-
ther, letz5ReiD and find

^zu:f ,r~x!f ,r 8~x8!:uz&5
v0uzu2 cos2~v0r !

L

3$cos@v0~ t2t8!#

1cos@2D2v0~ t1t8!#%

~110!

and

^zu:f ,t~x!f ,t8~x8!:uz&5
v0uzu2 sin2~v0r !

L

3$cos@v0~ t2t8!#

2cos@2D22v0t1v0~ t1t8!#%.

~111!

We also have that

^f~x! ,tf~x8! ,t8&M5^f~x! ,rf~x8! ,r 8&M52
1

2p~ t2t8!2 .

~112!

For the coherent state, the only fluctuations come from
cross term because

^zu:TmnTrs :uz&5^zu:Tmn :uz&^zu:Trs :uz&. ~113!
10401
d
s

f

s

e

The velocity fluctuation is then

^Dv2&5
r 2

m2 E ^DTrt
2 &crossdt dt8

5
2v0uzu2r 2

pLm2 E „cos2~v0r !$cos@v0~ t2t8!#

1cos@2D2v0~ t1t8!#%1sin2~v0r !

3$cos@v0~ t2t8!#

2cos@2D22v0t1v0~ t1t8!#%…
1

~ t2t8!2
dt dt8.

~114!

This integral is poorly defined due to the singularity of t
integrand att5t8. A possible resolution of this difficulty is
to employ a trick which has been used by various auth
under the rubrics of ‘‘generalized principle value’’@15# or
‘‘differential regularization’’ @16#. In any case, it involves
writing the singular factor as a derivative of a less singu
function, and then integrating by parts. We will also assu
that the flux is adiabatically switched on in the past and
again in the future, so that any surface terms vanish. Thus
may use relations such as

E f ~ t,t8!
1

~ t2t8!2 dt dt8

5
1

2 E @] t] t8 f ~ t,t8!# ln@~ t2t8!2#dt dt8.

~115!

Let r 50,x5v0t, andx85v0t8. The velocity fluctuation be-
comes

^Dv2&52
r 2v0

3uzu2

2pLm2 E
0

tE
0

t

@cos~v0t2v0t8!

1cos~2D2v0t2v0t8!# ln@v0~ t2t8!#2dt dt8.

~116!

The integral may now be written in terms of the variabl
U5x2x8 andV5x1x8, using the identity

E
0

tE
0

t

dt dt85
1

2 S E
2t

0

dUE
2U

U12t

dV1E
0

t

dUE
U

2t2U

dVD
~117!

and evaluated in terms of sine and cosine integral functio
We are primarily interested in the asymptotic form for lar
t, which is

^Dv2&;
2r 2v0

2uzu2

3Lm2
t. ~118!

This result shows that the cross term leads to a contr
tion to the mean-squared velocity of the mirror which gro
3-9
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linearly in time. This is the characteristic time dependence
a random walk process. It is useful to compare the fluct
tions with the mean velocity

^v&5
r

m E
0

t

^Trt&dt

5
uzu2r

4Lm
sin~2v0x!@cos~2D!2cos~2D22v0t!#.

~119!

The mean velocity happens to vanish at the special poix
50 at which we evaluated̂Dv2&. However, at a more gen
eral point it is of order

^:v:&'
uzu2r

Lm
, ~120!

and the fractional velocity fluctuation becomes of order

A^Dv2&

^v&
'

v0ALt

uzu
. ~121!

Although this quantity grows in time, it is also inverse
proportional to the amplitudeuzu. Thus, for a nearly classica
state (uzu@1), it can remain small for a very long time.

2. Thermal state created by a moving mirror

Consider a 2D moving mirror with an arbitrary trajector
These flux fluctuation, without the vacuum term, can be w
ten as

^DTrt
2 & total5^DTrt

2 &NO1^DTrt
2 &cross

52S 1

4p D 2F p8~u!p8~u8!

@p~u!2p~u8!#2 2S p8~u8!

@v2p~u8!#2D 2

2S p8~u!

@v2p~u!#2D 2

2
1

~ t2t8!4G , ~122!

where

^DTrt
2 &NO52S 1

4p D 2F2S p8~u8!

@v2p~u8!#2D 2

2S p8~u!

@v2p~u!#2D 2

1S p8~u!p8~u8!

@p~u!2p~u8!#2D 2

1
1

~ t2t8!4

2
2p8~u!p8~u8!

@p~u!2p~u8!#2~ t2t8!2G ~123!

and

^DTrt
2 &cross54S 1

4p
D 2F p8~u!p8~u8!

@p~u!2p~u8!#2 2
1

~ t2t8!2G 1

~ t2t8!2 .

~124!

The total velocity fluctuation is
10401
f
-

-

^Dv2& total5
r 2

m2 E
0

tE
0

t

^DTrt
2 & totaldt dt8

5
2r 2

~4p!2m2 E
0

tE
0

tH F p8~u!p8~u8!

@p~u!2p~u8!#2G2

2F p8~u!

@v82p~u!#2G2

2F p8~u8!

@v2p~u8!#2G2

2
1

~ t2t8!4J dt dt8. ~125!

As before, we suppose that^DTrt
2 & total is multiplied by a

switching function which vanishes in the past and in t
future. Then the (t2t8)24 term gives no contribution afte
an integration by parts. Note that this term is of the sa
form as the pure vacuum contribution, so our results will n
depend upon whether the vacuum part was subtracted be
hand or not.

Consider the trajectory which produces a thermal sp
trum, p(u)5B2Ae2k(u1B), and again assume that the d
tector remains at a fixed location, which we take to bex
50. Thenu5v5t andu85v85t8. The integral of the two
middle terms in Eq.~125! may be shown to approach a co
stant in the limit of large sampling timet :

E
0

tE
0

t H F p8~u!

@v82p~u!#2G2

1F p8~u8!

@v2p~u8!#2G2J dt dt8→const.

~126!

As we will see, this is small compared to the leading ter
which grows linearly int. The total velocity fluctuation is
now

^Dv2& total;
2r 2

~4p!2m2 E
0

tE
0

tF p8~u!p8~u8!

@p~u!2p~u8!#2G2

dt dt8

5
k4r 2

8p2m2 E
0

t e2k~ t2t8!

~12ek~ t2t8!!4
dt dt8

5
k4r 2

4p2m2 E
0

t

~t2U !
e2kU

~12ekU!4 dU, ~127!

where in the last step we have used the change of varia
given in Eq.~117!. At late times, we have

^Dv2& total;
tk4r 2

4p2m2 E
0

t e2kU

~12ekU!4 dU

;
tk3r 2

2p2m2 E
2`

` e2x

~12ex!4 dx, ~128!

wherex5kU. If we ignore the singularity in the integrand
this integral may be evaluated directly:

E
2`

` e2x

~12ex!4 dx52F 3ex21

6~12ex!3G
x52`

x5`

5
1

6
. ~129!
3-10
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A more rigorous approach is to use the relation

1

x4 52
1

12

d4

dx4 ln x2, ~130!

integrate by parts, and then evaluate the resulting inte
numerically:

E
2`

` 1

x4

e2x

~12ex!4 dx52
1

12E2`

`

ln x2
d4

dx4 F x4e2x

~12ex!4Gdx'
1

6
.

~131!

In either case, the result is

^Dv2~t!& total5
k3r 2

48p2m2
t. ~132!

As in the case of the coherent state discussed in the prev
subsection, the mean-squared velocity fluctuations grow
early in time.

We now wish to determine the relative contributions
the normal-ordered and cross terms. A calculation analog
to that performed for̂ Dv2& total reveals that the normal
ordered contribution is also linearly growing in time:

^Dv2&NO;
tk3r 2

2p2m2 E
2`

` F 1

x4 1
e2x

~12ex!422
ex

x2~12ex!2Gdx.

~133!

In this case, the integrand is finite from the beginning, so
integration by parts is needed. The integral may be evalu
numerically to yield

^Dv2&NO;
k3r 2t

192p2m2
~1.00!. ~134!

The cross term contribution may be obtained as the
ference of Eqs.~132! and~134!, but it is useful as a check to
compute it independently. If we follow the procedure used
find the asymptotic form of̂Dv2& total, including an integra-
tion by parts, the result is

^Dv2&cross;
k3r 2t

2p2m2 E
2`

`

ln x2F 6

x42
ex~e2x14ex11!

@12ex#4 Gdx.

~135!

Again, the integral may be evaluated numerically with t
result

^Dv2&cross;
k3r 2t

66p2m2
~1.00!'3^DTrt

2 &NO. ~136!

Thus to the accuracy of the numerical calculations, the th
independently computed pieces do indeed satisfy

^Dv2& total5^Dv2&NO1^Dv2&cross. ~137!

The normal-ordered term contributes 25% of the total effe
as compared to 75% from the cross term.
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3. Mass fluctuations of two-dimensional black holes

We may use the above results to discuss the fluctuat
in the mass of evaporating black holes in two dimensio
Define themass operatorby

M ~T!5M02E
0

t

Trt~ t !dt, ~138!

whereM0 is the initial mass at timet50. The mean mass
decreases according to the semiclassical theory of gravit

^M &5M02E
0

t

^Trt~ t !&dt. ~139!

However, the squared mass will undergo fluctuations:

^M2&2^M &25E
0

tE
0

t

@^Trt~ t !Trt~ t8!&

2^Trt~ t !&^Trt~ t8!&#dt dt8. ~140!

Equations~125! and ~132! may be used to show that

^M2&2^M &2;
k3t

48p2 '
t

1152M0
3 , ~141!

where in the last step we assumed thatk51/(4M0), which is
a good approximation in the early stages of evaporation.
may estimate the evaporation timetevap of a black hole by
setting

tevap'
M0

^Trt~0!&
5768pM0

3. ~142!

If we sett5tevap in Eq. ~141!, the result is

^M2&2^M &2'
2

3p
. ~143!

Recall that we are working in Planck units, so the right-ha
side of Eq.~143! represents a mass fluctuation of the order
the Planck mass. Even though this effect is quite small
macroscopic black holes, the cross term plays a signific
role here. If one were to normal order the product of fl
operators above, then the right-hand sides of Eqs.~141! and
~143! will be decreased by factor of 1/4. This leads to
thought experiment in which one could use evaporat
black holes to test the reality of the cross term. One prepa
several black holes with the same initial mass and then m
sures the masses at some later time. If the mass fluctua
grows linearly in time in accordance with Eq.~141! ~or its
four-dimensional analogue!, then one would have measure
the effect of the cross term.

V. CONCLUSION AND DISCUSSION

We have seen that the flux of radiation from an evapo
ing black hole undergoes large fluctuations on short ti
scales. One approach to the subject of flux fluctuations
volves the use of normal-ordered products of stress ten
operators. In this approach the squared flux is a finite, lo
quantity and the Hawking flux undergoes fluctuations of
der 1 on time scales of orderM, the black hole’s mass. Thes
fluctuations can be viewed as essentially statisti
3-11
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fluctuations due to the small mean number of particle emi
by the black hole on this time scale.

However, the subject of stress tensor fluctuations can
subtle one, and there is another approach in which one
tains the state-dependent cross term in the product of s
tensor operators. This term is divergent in the limit that b
operators are evaluated at the same point. Consequently
is present one cannot give a meaning to the local squ
flux. It is, however, still possible to define time integrals o
product of fluxes. These time integrals may be used to sh
that, at least in a two-dimensional model, the mean-squa
mass of a black hole differs from the square of the me
mass by an amount which grows linearly in time. Furth
more, the rate of growth is 4 times larger when the cr
term is retained as compared to the normal-ordering
proach. Thus, in principle, the two approaches have differ
observational consequences. Similarly, they give differ
predictions for the velocity fluctuations of a material bod
such as the mirror discussed in Sec. IV B.

In either approach, we are dealing with thermal radiat
~or filtered radiation! in the asymptotic region far from th
black hole. Thus the ambiguity in how to treat the fluctu
tions is not confined to the specific case of a black hole,
is present in a general quantum state. Because we are w
ing in the asymptotic region, we cannot directly address
issue of horizon fluctuations caused by quantum stress te
fluctuations@17#. Horizon fluctuations must be far below th
Planck scale in order that Hawking’s semiclassical derivat
@2# of black hole evaporation hold. Estimates of the scale
the horizon fluctuations due to quantization of the grav
tional field ~‘‘active’’ as opposed to ‘‘passive’’ fluctuations!
indicate that Hawking’s derivation does indeed hold
black holes above the Planck mass@18#. ~The effects of met-
ric fluctuations on the spectrum of the Hawking radiati
have recently been discussed in Ref.@19#.! It is thus of in-
terest to calculate more carefully the scale of ‘‘passive’’ flu
tuations due to stress tensor fluctuations.
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APPENDIX A

Assume that there is a quantum stateuc&a which can de-
compose the field operator into positive and negative
quency partsf5f11f2, with f1uc&a50. By using
Wick’s theorem, the four-point function can be expressed

f1f2f3f45Na~f1f2f3f4!1Na~f1f2!^f3f4&a

1Na~f1f3!^f2f4&a1Na~f1f4!^f2f3&a

1Na~f2f3!^f1f4&a1Na~f2f4!^f1f3&a

1Na~f3f4!^f1f2&a1^f1f2&a^f3f4&a

1^f1f3&a^f2f4&a1^f1f4&a^f2f3&a ,

~A1!
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where Na means normal ordering with respect to the st
uc&a and^&a means the expectation value in this state. If w
take the expectation value of the above relation in the s
uc&a , the result is

^f1f2f3f4&a5^f1f2&a^f3f4&a1^f1f3&a^f2f4&a

1^f1f4&a^f2f3&a . ~A2!

For the particular case of the Minkowski vacuum,

f1f2f3f45:f1f2f3f4 :1:f1f2 :^f3f4&M

1:f1f3 :^f2f4&M1:f1f4 :^f2f3&M

1:f2f3 :^f1f4&M1:f2f4 :^f1f3&M

1:f3f4 :^f1f2&M1^f1f2&M^f3f4&M

1^f1f3&M^f2f4&M1^f1f4&M^f2f3&M ,

~A3!

where< means normal order to the Minkowski vacuum sta
and ^&M means the expectation value in the Minkows
vacuum. The expectation value of the above equation in
state is

^f1f2f3f4&M5^f1f2&M^f3f4&M1^f1f3&M^f2f4&M

1^f1f4&M^f2f3&M . ~A4!

By using the expressions

f1f25:f1f2 :1^f1f2&M ~A5!

and

^f1f2&a5^:f1f2 :&a1^f1f2&M , ~A6!

we get

^:f1f2 :&a5^f1f2&a2^f1f2&M ~A7!

and

^:f1f2f3f4 :&a5^:f1f2 :&a^:f3f4 :&a

1^:f1f3 :&a^:f2f4 :&a

1^:f1f4 :&a^:f2f3 :&a . ~A8!
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APPENDIX B

1. Evaluation of * f „t…f „t8…†1/„t2t8…2
‡dt dt8

The sampling function and its derivative are, respective

f ~ t !5
t

p

1

~ t2t0!21t2
~B1!

and

f 8~ t !5
22t

p

t2t0

@~ t2t0!21t2#2
. ~B2!

The integral after integration by parts yields

E f ~ t ! f ~ t8!
1

~ t2t8!2 dt dt8

5E E f 8~ t ! f 8~ t8!ln~ t2t8!dt dt8

5E f 8~ t8!dt8E
2`

`

f 8~ t !ln~ t2t8!dt

5E f 8~ t8!A~ t8!dt8, ~B3!

where

A~ t8![
22t

p E
2`

` t2t0

@~ t2t0!21t2#2
ln~ t2t8!dt. ~B4!

This integral contains a second-order pole and can be d
by residues. Letx5t2t0 , and the integral becomes

A~ t8!5
22t

p
E

2`

` x

~x21t2!2 ln~x1t02t8!dx

5
22t

p
R z

~z21t2!2 ln~z1t02t8!dz

5
22t

p
S 2]

]t2D R z

z21t2 ln~z1t02t8!

5
2t

p
~2p i ! S ]

]t2D F ln~z1t02t8!

z1 i t
G

z5 i t

5
b

t21b2 1 i
t

t21b2 , ~B5!

whereR5At21b2 and b5t82t0 . The double integral be
comes
10401
,

ne

E f 8~ t8!A~ t8!dt85
22t

p

p@4t22~ t02t08!2#

2t@4t21~ t02t08!2#2

1 i F E f 8~ t8!Im@A~ t8!#dt8G .
~B6!

We keep only the real part and write

E f ~ t ! f ~ t8!
1

~ t2t8!2 dt dt85
22t

p

p@4t22~ t02t08!2#

2t@4t21~ t02t08!2#2 .

~B7!

In the coincidence limitt0→t08 , the integral is

lim
t08→t0

E f ~ t ! f ~ t8!
1

~ t2t8!2 dt dt852
1

4t2 . ~B8!

2. Evaluation of * f „t…f „t8…†1/„t2t8…4
‡dt dt8

The second derivative of the sampling function is

f 9~ t !5
22t

p F 1

@~ t2t0!21t2#22
4~ t2t0!2

@~ t2t0!21t2#3G .
~B9!

Integrating by parts yields

E f ~ t ! f ~ t8!
1

~ t2t8!4 dt dt8

5
21

6 E E f ~ t !9 f ~ t8!9 ln~ t2t8!dt dt8.

~B10!

A similar calculation as in Appendix B 1 yields

B~ t8!5E
2`

`

f 9~ t ! ln~ t2t8!dt

5
2t

p F ]

]t2 R ln z

~z2t82t0!21t2 dz

12S ]

]t2D 2 R ~z1t82t0!2

~z1t82t0!21t2 ln z dzG
5

2a

p F ]

]t2 B112S ]

]t2D 2

B2G , ~B11!

where

B15
p

t
ln z0 ~B12!
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and

B252pt ln z0 , ~B13!

wherez05At21b2 and b5t82t0 . The integralB(t8) be-
comes

B~ t8!5E
2`

`

f 9~ t ! ln~ t2t8!dt52
1

t21b2 1
2t2

~t21b2!2 .

~B14!

Substituting this result into the original double integral yiel
in

on

on

ev

10401
E f ~ t ! f ~ t8!
1

~ t2t8!4 dt dt8

5
2t

3p
E

2`

` S 1

@~ t82t08!21t2#22
4~ t82t08!2

@~ t82t08!21t2#3D
3S 1

t21b22
2t2

~t21b2!2D dt8

5
16t2224t2~ t02t08!21~ t02t08!4

@4t21~ t02t08!2#4 . ~B15!

In the limit t02t08→0, the integral becomes

lim
t08→t0

E f ~ t ! f ~ t8!
1

~ t2t8!4 dt dt85
1

16t4 . ~B16!
J.
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