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Fluctuations of the Hawking flux
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The fluctuations of the flux radiated by an evaporating black hole will be discussed. Two approaches to this
problem will be adopted. In the first, the squared flux operator is defined by normal ordering. In this case, both
the mean flux and the mean-squared flux are well-defined local quantites. It is shown that the flux undergoes
large fluctuations on a time scale of the order of the black hole’s mass. Thus the semiclassical theory of gravity,
in which a classical gravitational field is coupled to the expectation value of the stress tensor, breaks down
below this time scale. In the second approach, one does not attempt to give meaning to the squared flux as a
local quantity, but only as a time-averaged quantity. In both approaches, the mean-squared mass minus the
square of the mean mass grows linearly in time, but 4 times as fast in the second approach as in the first.
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[. INTRODUCTION must be large instantaneous fluctuations in the Hawking flux.

Such large fluctuations can also be inferred on statistical

One of the most remarkable theoretical discoveries of rephysics grounds, as will be discussed in Sec. IlIE. In the
cent decades was that of black hole evaporation by Hawkin§resent paper, we will restrict our attention to the Hawking
[1,2] in 1974. This discovery demonstrated that a black hold!UX in the asymptotic region far from the event horizon
emits a (filtered thermal spectrum of radiation and wil where spacetime is approximately flat. In Sec. Ill, this will

eventually cease to exist as a classical black hole. Howeveg,efgrcr’:ﬁ;i:lﬂ?tgge dr;?i:/n;gl fc())rrdtehréng ?Jraersecc??lﬂinr};giastgg tl)” B;’
Hawking’s derivation of this effect and most of the subse- d y

moving mirror in two-dimensional spacetime. This can be

quent papers on the topic have dealt only with the mean qu>l(Jsed to discuss the fluctuations in the flux emitted by a black

of radiation emitted by the black hole. There should in addi'hole in two dimensions. In Sec. 1D the corresponding

tion be fluctuations of the flux, which will be the topic of this analysis will be carried out for a Schwarzschild black hole in
Paper. ) ) ) four-dimensional spacetime. In both cases it will be shown
In order to discuss the fluctuations in the components Ofy5; there are fractional flux fluctuations of order unity on
the stress tensor, it is necessary to be able to define the exae scales of the order of the mass of the black hole.
pectation value of the square of a stress tensor component. o ever, there are alternatives to the normal-ordering
As will be discussed in the following section, this is & more meihod which involve space or time averages of the stress
difficult problem than the definition of the expectation valueansor. One such alternative was used by Bafro study

of the stress tensor operator itself. In flat spacetime, one pogge fiyctuations of the Casimir force. In Sec. IV the possibil-
sibility is to normal order the product of stress tensor operasy,, of averaging the flux over time in a two-dimensional

tors. This gives a meaning to quantities such as the square g{oqel will be examined. Using an integration by parts pro-

the energy density or pressure at a spacetime point and henggq e, it is possible to define time integrals of the state-
to a local measure of the fluctuations in these quantites. Iaependent cross term. It will be shown that the mean-squared
will be shown in Sec. Il that normal ordering here involves a4 of the black hole undergoes a random walk in that its
dropping both a divergent vacuum term and a divergentyeyiation from the square of the mean mass grows linearly in
state-dependent, cross term. The normal ordering approagpne This s true regardless of whether or not the cross term
was adopted in Ref§3,4,5, and was generalized to static j5 reained, but the rate of growth when the cross term is

curved spacetimes by Phillips and HEJ. It leads to the o1 ded is 4 times that obtained in the normal ordering pre-
correct classical limit in that the expectation value of ascription.

squared stress tensor component is the square of its expecta-The results of the paper will be summarized and discussed
tion value in the limit that the quantum state is a coherenf, gec /.
state. Furthermore, it leads to the prediction that quantum
states which exhibit negative energy densities have large en- Il. NORMAL-ORDERING EXPANSIONS
ergy density fluctuationgs]. AND THE CROSS TERM

Black hole evaporation necessarily involves negative en-
ergy density in that a flux of negative energy going down the In Minkowski Spacetime we renormalize the eXpeCtation
horizon is needed to account for the mass loss by the black@lue of the energy-momentum tensor by subtracting out the
hole. Thus the results of R46] lead us to suspect that there Minkowski divergence,

(T,uv>renormalized__<:T,uv:>:<Tuv>_<T,uv>M . (1)
*Email address: wu@cosmos2.phy.tufts.edu Here ( ),y denotes the expectation value in the Minkowski
"Email address: ford@cosmos2.phy.tufts.edu vacuum state. For quadratic operators, this subtraction is just
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normal ordering. However, this is not true for the squared t
energy-momentum tensor. In this paper we will study the
massless, minimally coupled scalar field, for which the
energy-momentum tensor is mirror trajectory

/' radiation

]

1
T,LLV: ¢(,M¢,V)_ zg,uv(ﬁ,p(ﬁ’p

~
1 1
:§(¢,M¢,V+ ¢,V¢,,u.)_ Eg,uv(ﬁ,pd)yp' (2)
The flux operatorT=—T,, has finite expectation values.
The product of a pair of normal-ordered quadratic operators
(1 1y pacps:) can be expressed using Wick's theorem as
X
[ P1¢27 P3bai=P1obads’ T ib1d3 (Padaim FIG. 1. The world line of a mirror moving to the left. The

irda(brdadmt badbz(brdbadu radiation emitted to the right is illustrated.

1020, (D1d3)m T (D1d3)m(P2dbam Cripo= T T (X" ) = (T ()N T e (X")).  (7)

H{b1a)u(P2dba)m - 3) This latter quantity is independent of the choice of renormal-

The first term is fully normal ordered, the next four are crosgzation in the sense t.ha.t It is unchanged by ;ubtract!mg a
umber fromT ,,,, but it is singular in the coincidence limit.

terms, and the final two are pure vacuum terms. The flu hi lation functi d by Mull d Sch
two-point function for an arbitrary state can be written as IS corretation function was used by Mufler and Sc 'ﬁﬁﬂi_
to discuss cosmological perturbations due to quantum fields

(TrOO T (X)) =T (X) 2 Tre(X'):2) and by Carlitz and Willey[9] in the context of black hole
evaporation. However, for the questions which we wish to
=(TrOOT (X D)D) H(T )T (X)) cross pose, it seems more natural to examine the various terms in
, Eq. (4).
H(TaO (X)) @
USING THE NORMAL-ORDERING SCHEME
<Tn<x>Tn<x'>>M=<¢<x>,r¢<x'),r/>M<¢<x>,t¢<x'),v>M(5) A. Formula for (:T2:)

_ _ _ _ _ Consider the massless scalar field, whose stress tensor is
is the expectation value in the Minkowski vacuum state angjiven by Eq.(2). The normal-ordered expectation value of a

product of fluxes is shown in Appendix A to be
<Trt(X)Trt(Xl)>cross:<:d’(x),r(b(x,),r’ :><¢(X),t¢(x,),t’>M
+<¢(X) [¢(XI) v > <Trt(X)TrI(X,)>:<TTI(X)><TH(XI)>

(00 ) 1 © b 006,0¢) i) b (X))2)

: . L (1 ()P (X)) b () (X)),
is a state-dependent cross term. In the coincidence lihit,

X, (T T} ) and (T () Tr(X'))ross are diver- ®
gent. We can see that although the off-_dlagonal 'componer!tgnd the squared flux is
of the energy-momentum tensor ?re finite, their square is
divergent and remains so evz_an(ff,tm is subtracte_d. We GT2(00:) = lim T (0 Tr(X):). 9)
have cross terms which contain state-dependent divergences.
If we wish to give meaning to the notion of the squared flux
as a local quantity, it is necessary to remove this divergence.
One possibility is simply to remove both the vacuum and
cross term and defingT%)=(:T4:). In the following sec- In flat spacetime, boundaries induce vacuum energy and
tion, we will consider the normal-ordered term alone, and instress. If the boundaries move, then particles can be created.
Sec. IV, we will return to the issue of whether there is aA single reflecting boundargmirror) can create particles if it
nontrivial physical content to the cross term. undergoes nonuniform acceleration.

Note that the quantities we will investigate, = We follow the treatment of Fulling and Davi¢40,11]
CTr)Tr(X")) and Tu(X)Tw(x'):)  and consider a massless scalar field in two-dimensional flat
(T () T (X)) eross are distinct from the stress tensor cor- spacetime with an arbitrary mirror trajectory, as illustrated in
relation function given by Fig. 1.

X' —x

B. Two-dimensional moving mirror

104013-2
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The trajectory for the mirror is w\¥2 ,
¢:”: 4_ [elw(v+s)+p/(u+€)elwp(u+e)]_ (21)

x=2z(t), (10 7’
We insert these expressions into E&j7), and evaluate the

where|z’ (t)| <1, andz=0 fort=<0. The boundary condition . . ;
integration using

for the scalar fieldp is

o(t,z(1))=0, (11 fmeibxdxz IE (22)
0
and the positive frequency mode function to¢0 is given
by and
i -1/ —iwv_ q—io(27,—u) % ) 9 o 1
¢w(X) |(4’7T00) 2[9 e ] (12) f we@°dy= — glrody=— . (23)
0 1da Jo a
Hereu=t—x andv=t+x are null coordinates, and the pa-
rameterr, is defined by Expanding the results in a power seriescigields
T,—2Z(7,)=U. (13 1[1(p"\? 1p”
(rbi)=—7- Z(F) 5 +0(e), (24
The phase of the reflected wave is a functiomahly and is -
defined b - " m
y (bab)=- E(D—,)Z—fp—wme), 25
p(u)=27,—u. (149 e 47|41\ p 6 p
The phase change of the outgoing mode is due to the Dop- 12 2p’ 1/p"\? 1p”
pler shift at the moving mirror. It is not surprising to see that( ¢, .00 =~ anl2" [v—p(w]? 4\p teo (26)
the moving mirror can create particles, since the mirror )
boundary condition changes a positive frequency mode intend
a mixture of positive and negative frequencies.
The quantum field operator can be written as 1 2p’ 1/p"\? 1p” )
(ato=—ol ez nopwp alp) Tep | @

— ” T %
¢(X’t)_fo dola,éotaydyl A9 Here (¢ ¢ ) and(¢ ¢ ) are finite, and(¢ ¢ ,) and

(¢ 19 can be renormalized by discarding tlee term.
where a,, and afu are annihilation and creation operators, This term is independent @f(u) (i.e., independent of trajec-

respectively. The in-vacuum sta® is defined by tory) and can be recognized as the Minkowski vacuum di-
vergence. The normal-ordered operator products are
a,|0)=0, Vo. (16)
(1drd)=(d:d 0, (28)

We use the point-spliting method to extract out the
Minkowski vacuum divergence. Let)* be replaced by (i )=(D b)), (29
o (t+€,x), and

1
o <:¢,r¢,r :>:<¢,r¢,r>+ 5 _ 2> (30)
(9 ,6.0=1m [ g 10681+ o a7 2me

0 and
The derivatives of the mode functions become 1
0\ § ((hrdi)=(D )+ Pyl (31
boi=|7-| [e7=p'(We ™, (19
We next substitute the above relations into E§).. The
o |12 squared flux for an arbitrary trajectory becomes
I —iwv ’ —iwp(u)
¢w,r (477) [e +p (U)e ]1 (19) <T2>_ 1 )2 _4(p!)2 . 3 (pﬂ)4
0 S\ aa) [fv=pw)]* T 16l p’
w . .
¢fa,t:(ﬂ) [elw(v+e)_p’(u+€)elwp(u+é)], - E (pu)me .\ (pm)Z } (32)
(20) 4 (p')* 12Ap))?f
and and the flux is
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1 plf 2 1 p/// {(At)
23]

o (33 2

()= o
A

1. Trajectory which produces a thermal spectrum of particles ™
Fulling and Davieg10,11] have discussed a particular
mirror trajectory which produces a steady thermal flux of
particles at late times and which models a two-dimensional
evaporating black hole. Carlitz and Willg®] have shown 0.3
that the correlation functio@ defined in Eq(7) in this case
is just that for a thermal state. The trajectory has the

2 4 6 8 10

asymptotic form At/x
z(t)~—t—Ae 2Bt oo, (34)
N FIG. 2. The correlation function for thermal radiation in two-
whereA, B, and k are positive constants. Here dimensional spacetime.
— —y~B— A «u+B) L . . L.
p(u)=27,—u~B-AT"H, u—oe. (39 which is plotted in Fig. 2. Note thag(At) is finite for all

Substituting this form into Eq.32) gives the normal-ordered At=0. The correlation timer; is defined by

squared flux

1
& 16A2x2e—2x(u+B) &(ro)= 55(0), (42)

48 (v—B+Ae «(UtB)4

<:Tﬁ<x>:>=($)2

and is approximately

1\2k%
Sl =] =, u—oe. 36 3
K
Similarly, the expectation value of the flux is
2 C. Two-dimensional black hole
(T == (Tr(x):)= 287 37) Fulling and Davies have shown that the mirror trajectory
of Eg. (34) produces the same quantum state in the
The squared flux is related to the mean flux by asymptotic region as does a two-dimensional evaporating
black hole of mas# if xk=1/4M. Thus the flux and squared
CTA(X):)=3(:T,:)2, (38  flux for a 2D black hole are
and the relative deviation is 1
(T = g2 (44)
AT VETRK0D—(Tw )
<-. rt.- _ rt : : rt -, (39) and
(Tr2) (Tre2)
The fractional flux fluctuations are thus of order unity. CTA(X):)=3(:T(x):)2 (45)
2. Correlation function The correlation timer, becomes

The function(T,(X)T,;(x")) is finite except in the short
distance limitx’ —x—0. On the other hand, the normal-
ordered function: T,(x) T,{(x"):) has a finite value in this
limit. Here we restrict our discussion to the latter function.
We define a normalized correlation function[aste that this
is distinct from the functiorC defined in Eq(7)]

7o=11IM. (46)

Thus the Hawking flux undergoes large fluctuations, varying
by a factor of order unity on a time scale of ordeM.1

D. Four-dimensional black hole

(T Tr(t)) = T (DT (L)1) (40 In four dimensions, the treatment of black hole evapora-

CT()DNCT(t):) ' tion becomes more complicated than in two dimensions. This

is due to the angular degrees of freedom and the resultant

whereAt=[t—t’'| and the spatial points are coincident. For potential barrier around the black hole. Ingoing and outgoing
the specific trajectory of Eq34), §(At) is waves experience scattering off of this potential barrier. We
will consider the case of a nonrotating, uncharged
(Schwarzschilg black hole and will follow the treatment of
DeWitt [12]. The mode functions are of the form

§(At)=

— kAt 1 2
g(At)zzs%(l_eKAt)Z_ (KAt)Z ’ (41)
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1 ; < ek w|Y|m|2 A2 A*a—2i0r | A p2ior
U=WR,(w|r)Y|m(0,¢)e"“‘, (47 U,tU,t=W(1+|A|I +Ae +AEe”),
r w
(59
where theY (0, ¢) are the usual spherical harmonics. Vec- Y, 2
igns wil indicate the two | 7 g o OYim (24 Ak g 2ior 4 i g2i0
B
(60)
Ri(wr) [emr*ﬂs'(wewr*’ "o s [BiI?1Y |
)= fwr* r* L T oBYn
B(w)e”, -, 0,0i= g 27 oy
and
e o[BI Yl?
i Bi(w)e 1" -, 0= gz (62
R(wlr)—{ _ % < ' (49
e lwr +A|(w)e|wr , r*‘}w’ , ,
= 0BV
wherer* is the usual tortoise coordinate: U0 =—g 272 (63
r
* — _ and
r r+2MIn(2NI 1]. (50
o N _ N e 0BV i[?
The transmission coefficien®, and reflection coefficients Udi=—g 22 (64)

A, satisfy the relations
Substitution of these relations into E4) and use of the

|A(w)|=]A(w)], (51)  summation formula
1-|Af(0)?=1-|A(0)[*=|B/(v)/?, (52 _2+1
2 Y= = (65)
and
- _ yields
Al (0)Bi(w)=—B[A(w). (53

The components of the energy-momentum tensor in the Un- (¢, # )= |2 J [0, 0% +coth4mMw)d 0% ]dw
ruh vacuum state near future null infinity are of the fdisae m 7o
Ref.[12] for detail9 —sing

= |B*w
= 2 —_—
42 ;n |Ylm| fo egﬁM“’—ldw

<‘/""¢'”>~|2 f w[lj'#l]”‘v+cotf(477Mw)ﬁjﬂﬁy*v]dw. (54)
,m 0

The asymptotic forms of the mode functions are

1 . ‘ xf w(Afe @ —A e do. (66)
i=————=B|(w)e“ " Yne ', (55) 0
272w A m
The first term on the right-hand side($,,). Similar calcu-
and lations give us these derivatives in terms of the mean flux
(T™y as
1 i Pork < Pork
U= ———Y e '"“[e ' +A(w)e“ ]. (56 =—(T+1,, 6
o ’_2w Im [ i ) ] ( ) <¢r¢t> ( > 2 ( 7)
— try _
The derivatives of these mode functions become (bidr)=—(TH~l2, (68)
o2 o (brdr)=(T)+1o= 11, (69
0,05 =——7 (1-|A[?+Afe @ —~Ae?*), (57)
v 8m°r and
Yiml? - - ) - . — /Tt
G,tlj:kr: (;|7T|r:| (1_ |A||2_Aik e—ZIwr+A|e2lwr)' <¢,t¢,t> <T >+IO+ I 1 (70)

(58 where the integrals,, 1,1, andl, are
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sing o
IO:].IGTZ (2|+1)j0 wdw, (71)
Ilzi'l’;HE (21+1) j wA(w)cod §(w)+2roldo, (72
and

_siné ® )
ly=—i WZ (2|+1)fO wA(0)sin 8(w)+2ro]dw.
(73

Here A(w) and 6(w) are the magnitude and phase, respec-

tively, of A;(w). We can identityl ; as the Minkowski diver-

gence, and symmetrization removes the pure imaginary term

I,. Discarding these two terms yields

1
§(<3¢,r¢,t DFCP i )=CT ) =Ty 1), (74)
<:¢,r¢,r:>:_<:Trt:>_|1 (75
and
(i) =—CT)+1a. (76)
Using the relations
A(w)—Ay, ©—0,
A(w)—0, w—oo,
and
S(w)— 6y, w—»,
the integrall ; at large distanca,— o, becomes
f wA(w)cod S(w)+2rw]dw
0
1 (=~ X X
=—2f xA(— 00{5 —|+2x|dw
r<Jo r r
Ay (= 1
~r—2f cos(2x+50)xdxo<r—2. (77)
0

Thus the terml ; is much smaller than the mean flux

|Bi|?

sm0
I+1)j payI— 1d“’

<-|-rt> 1 -

(78)

PHYSICAL REVIEW D60 104013

(Ta =T )4 (i )i )
(D)D)
=2(:T )2+ ((T) 1 ~3(T,)2

(79

DTy +1y)

We thus get the same relation between the squared flux and
the mean flux as in the case of a two-dimensional evaporat-
ing black hole.

Next we will discuss the normal-ordered correlation func-
tion and ignore the contribution froiy . From Eq.(54), we
have

(o (X (X))
Io)At
{16 2 22 (2|+1)f 87TMw dw:|

(80)
(1 (X) (X))
IwAI
e{ 16721 22 2|+1)j 87-er dw}
(81
a7 <x)¢>t<x'>:>
IwAt
—RE{ 16:2r 22 (2|+1)f de ,
(82
and
(X)), (X')1>
IwAI
(83

where At=t"—t. The correlation function defined in Eq.
(40) now becomes
+2

fofrn s [
e [ ]

For our purposes, the transmission coefficient may be ap-
proximated by a step function

Bl(w)~0(V2Mw—1).

In this approximation, modes with energies below the peak
of the angular momentum barrier are assumed to be perfectly

Ia)At
877Mw dw

-1

§(At)=

IR

B8rMo_ 1

(84)

(85

which is a nonzero constant at large distance, and hence reflected and those with energies above the peak are com-

can be ignored. The squared flux becomes

pletely transmitted. This is a reasonably good approximation,

104013-6
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§(AL) E. Flux fluctuations as thermal fluctuations

2 It is reasonable to expect that the flux fluctuations com-
puted in the previous subsection can be interpreted as ordi-
nary thermal fluctuations. Thermal fluctuations of the energy

1.9 in the canonical ensemble are described by the relation
AE TVkgCy 89
) ETE ®9

whereE is the mean energy at temperatdrdor a system
0.9 with heat capacityCy,. In the case of thermal radiatiok,
«T4 soCy=4E/T, and hence

o'.s 1 1.5 2 ?=2 — (90)
At/8xM
Note thatE/(kgT) is a measure of the mean number of pho-
FIG. 3. The correlation function for the radiation from a black tons in the thermal radiation, so the above result is the famil-
hole in four dimensional spacetime. iar 1/\/N statistical fluctuation.
o ) ] Let us takeE to be the energy emitted by a black hole in
as may be seen by examining Fig. 1 in REE3], where  gne correlation timer,~8M, and the power emitted to be
numerical results for the transmission and reflection coeffithat calculated by PagEl4] for photon emission from a

cients are given. The summation bgields Schwarzscild black hole:
> (21+1)|B2=2, (21+1)0(V2Mw—1) P=3.4x10"°M "2, (91)
[ |
=27M202+ 6V3Mw+ 1, (86) This leads to a rather small number of photons emitted per

correlation time,

and the numerator of Eq84) becomes
E
w |Bi|2pel @At ——~8x103 (92
S(At)=Re(Z (2|+1)J B w) KT
[

0 eBwa_l

and rather large fractional energy fluctuations

» (2IM?w?+6V3Mw + 1) we' @At
=R f do

o e817Mw_ 1

34ibx ?%23' (93

27 » X°€
REEE fo o1 I o _
This estimate is somewhat larger than the result obtained
6v3 e( fx x2albx ) from the normal-ordered squared flux in the previous subsec-
R

= ——dx tion. However, it is a very rough estimate which depends
(8m)°M oe—1 upon our choice for the enerdy and the collecting time. If
1 » x@bx we had chosen to integrate the flux for a time longer than
+ ﬁRe( f —dx) , (87)  the statistical fluctuations would be somewhat reduced. Also,
(8m)°M 0oe’—1 the spectrum of particles emitted by a black hole is not ex-

actly Planckian, but has been filtered by the angular momen-
wherex=87Mw andb=At/87M. The correlation function tym barrier.

IS

ZS(AI)Z IV. PHYSICS OF THE CROSS TERM

E(AY) = 507 (88)

We now turn to examining the cross term between the
vacuum fluctuations and the finite, state-dependent parts. Re-
and is plotted in Fig. 3. call that this contribution is singular in the coincidence limit

The correlation timer; is around 0.3(&M)~8M. Asin  and, hence, does not lead to a well-defined local definition of
the two-dimensional case, the four-dimensional Hawking rathe squared flux. If it is not to be subtracted by some renor-
diation undergoes large flux fluctuations on a time scale ofnalization method, then it can only be given physical mean-
about 8V. ing by dealing with time or space averages.
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A. Switching functions that the correlation functions are constant would no longer be
One possibility is to suppose that we operationally meagXxact. Nonetheless, this calculation should give a reasonable
sure the flux with a model detector which has a finite re-order of magnitude estimate, and predicts that all three terms
sponse time. Suppose that the response of our detector §&€ Of the same order of magnitude.
described by a Lorentzian function with characteristic width

7. B. Mirror as a flux detector
r 1 Here we will examine a model in which the flux is mea-
f)=——F—. (94)  sured by the force which it exerts on a reflecting or absorbing
B surface. of our discussion will be in one spatial dimen-
7 (t=to)"+ 7 face. All of our d Il b tial d

The averaged squared flux becomes sion, so the force on a partially reflecting surface is

F=r:T":, (99)

(T merae | [ 1OTa00T o atar. . | o
—oJ - where 0<r=2 ands3r is the fraction of the radiation which
(95 is reflected. Consider a mirror with masswhich starts at
We will examine the case of the thermal flux from a mirror rest at timet=0. The mean velocity and mean-squared ve-

or black hole in two dimensions and assume that the sarﬁpc'ty att=rare
pling time is short compared to the correlation time,

<7.. In this case, the correlation functions are approxi- <v>=ifT<F)dt (100
mately constant, and the average of the normal ordered term mJo
is
and
A= Jl fﬁ FIOF()CT(X) T (X"):Hdtdt’ 1 (rer
<v2>=WJ f (F(OF(t'))dtdt’. (10D
~(Tr(X)Tr(X)). (96) 00
The average of the cross term can be written as The force two-point function is

(FIOF())=r2CT(t) T (t):)

= r2<Trt(t)Tn(t,)>+ r2<TrtTrt>CTOSS
X(P(X) 1 p(X") 1 )m+ (1 p(X) 1 p(X') 1) ATy Tom - (102

X(P(X) rp(X") rrymldtdt’

A= f,:fjxf(t)f(t,)[Cd’(x),rg‘b(x')'r/ :>

We are interested in the difference between the fluctuations

~2<'T”'>fm FOF(L) dtdt in a given state and those in the Minkowski vacuum, and so

B B —277(t—t’)7 drop the vacuum term. We then define the fluctuations by
subtracting out the square of the mean value:

1
~ 22T (97) (AT2)=(T2)—(T)2. (103
where we have used E@B8) in Appendix B. The normal-ordered flux fluctuation is given by
For comparison, it is of interest to give the average of the
vacuum term, (ATENo= (T Tr(t) ) = (Tr(O)(Tr(t')
AO: foc fw f(t)f(t’) :<:¢,r(t)¢,r(t’):><:¢,t(t)¢,t(t,):>
I +(1 (D (1)) (1D (1)),
X((X) rd(X") r)m(B(X) 1p(X") r)mdt dt’ (104
= fx fw f(t)f(tf)ﬁdt dt' = ﬁ' and the cross-term contribution is
—nJ - ar - a - T
(98) <AT$t>cross=<:d’,r(t)¢,r(t,):><¢,t(t)¢,t(t,>M
using Eq.(B16). TP (t): )P (DD (t))u -
In the case of a two-dimensional black hole, whéTé') (105

=1/(7687M?) and (:T2:)=3(T,;)2, we see thatA,>A,
>A, whenT>M. If we were to letT~M, our assumption The velocity fluctuation can be written as
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(Av?)y=(v?)—(v)? The velocity fluctuation is then

= sz + AV2 r2
( INoH(AV?)cross <AV2>:WJ <ATr2t>crossdtdt,

r? r2
ZWJ <ATr2t>NOdtdt,+Wf <ATr2t>crossdtdt,- —w0|z|2r2

(106) T alm?
+cog 2A — wo(t+t") ]} + Sirf(wqr)

x{cog wo(t—t")]

f (co2(wqr ){cog wg(t—t")]

1. Coherent state

A coherent state describes a classical field excitation and
is hence a useful model to reveal the effects of the cross

te.rm. Consider a single-mode coherent stajefor a mode —C0§2A —2wot + wo(t+t')]}) , zdt dt’.
with frequencywy: (t=t')
8,2)= 8,,,212). (107 (114
. . . This integral is poorly defined due to the singularity of the
The free quantum field expanded in normal modes is integrand at=t’. A possible resolution of this difficulty is
to employ a trick which has been used by various authors
)= a ralo*), 108 under the rubrics of “generalized principle valug’1l5] or
Px) % (@udota,dy) (108 “differential regularization” [16]. In any case, it involves

writing the singular factor as a derivative of a less singular
where the mode function for a standing wave in a box offunction, and then integrating by parts. We will also assume
lengthL is that the flux is adiabatically switched on in the past and off
again in the future, so that any surface terms vanish. Thus we
may use relations such as

e'“tsin( wx). (109

1
o= 2ol

Assume that the mirror remains approximately stationary, as
will be the case when its mass is large, andxse’. Fur-

1
f f(t,t’)mdtdt’

; \ 1
ther, letz=Ré* and find = EJ [9,0,F(t,t")]In[(t—t")?]dt dt’.
, wo|2]? cog(wqr)
(2:p, ()0 (X)) = = (119
Letr=0,x=wgt, andx’ = wpt’. The velocity fluctuation be-
xX{cod wo(t—t")] comes
+Cco§2A — wo(t+t")]} r203|z|? (7 (7
(110 (Av?)=— L fo fO[COS(wot—wot’)
and +c0g2A — wot — wot’) JIN[wo(t—t")]2dt dt’.

wo|Z|? sirf(wqr) (116

<Z|:¢’,t(x)¢,t'(xl):|z>: L

The integral may now be written in terms of the variables

X {co§ wo(t—1")] U=x—x" andV=x+x’, using the identity

_ _ ’ T (T 1 0 U+2r T 27—U
COiZA 2w0t+w0(t+t )]} f f dtdtr:_(f duf dV+J' de dv)
(111) 0Jo 2\ J-- -u 0 U
(117

and evaluated in terms of sine and cosine integral functions.
We are primarily interested in the asymptotic form for large

1 Lo
(D(X) (p(X") i Im=(D(X) ;D(X") ;)= — 2 (=1)2" 7, which is

(112 2r2w§|z|2
) (Av¥)~————1. (118
For the coherent state, the only fluctuations come from the 3Lm?
cross term because

We also have that

This result shows that the cross term leads to a contribu-
(Z: T, T,wil2)=(2:T,,:|2)(2:T,,:|z). (113  tion to the mean-squared velocity of the mirror which grows
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linearly in time. This is the characteristic time dependence of
a random walk process. It is useful to compare the fluctua-

PHYSICAL REVIEW D60 104013

<AV >total

tions with the mean velocity

= [ Tt
2P

~4Lm

SiN(2wgX)[cOg2A) — cOg2A —2wq7)].

(119

The mean velocity happens to vanish at the special point

f f (ATZ) o dt dt’

(4772 Zf”

2

p'(u)p’(u’)

[p(u)—p(u")]?

[ et r
[v—p(u)]?

p'(u)
[v'—p(w]?
1
C(t-t)?

]dtdt’. (125

=0 at which we evaluateAv?). However, at a more gen-  as pefore, we suppose thdT2) . is multiplied by a

eral point it is of order

|Z|2 120
(vi)~ T (120
and the fractional velocity fluctuation becomes of order
V(AV?) ooyl T
~ . (121
(v) ||

switching function which vanishes in the past and in the
future. Then the t(—t’) * term gives no contribution after

an integration by parts. Note that this term is of the same
form as the pure vacuum contribution, so our results will not
depend upon whether the vacuum part was subtracted before-
hand or not.

Consider the trajectory which produces a thermal spec-
trum, p(u)=B—Ae “(“"® and again assume that the de-
tector remains at a fixed location, which we take toxe
=0. Thenu=v=t andu’=v'=t’. The integral of the two

Although this quantity grows in time, it is also inversely middle terms in Eq(125 may be shown to approach a con-
proportional to the amplitudig|. Thus, for a nearly classical stant in the limit of large sampling time:

state (z|>1), it can remain small for a very long time.

2. Thermal state created by a moving mirror

Consider a 2D moving mirror with an arbitrary trajectory.
These flux fluctuation, without the vacuum term, can be writ-

ten as
<ATrt total ™ <AT >NO+<ATrt Cross
:z(i)z p'(wp'(u)
47) |[p(u)—p(u")]*

() -
[v—pw]?) (t=t)*)

p'(u’) )2
[v—p(u’)]?

(122

where

Rl
[v=pu) P/ \[v=pw)P

2 ’ '
st ] P

p'(u)yp’(u’) ) 1
+([p(u)—p(u')]z =0k

- [|O(U)ZE ;(uu)’p)](;(jt)—t’)z} (1239
and
(AT?) oo 4(i)2 p’(U)p’(U’)z_ 1 2} 1 N
4m| [[p(w)—pu)]* (t—t)7J(t-t")
(124

The total velocity fluctuation is

2

p’(u”)
v=pu 2

2
]dt dt’—const.
(126

e

As we will see, this is small compared to the leading term,
which grows linearly in7. The total velocity fluctuation is
now

[v' —p(u

p'(u)p’(u’) ,
<AV )total™ (4 )2 ff [p(u) (U2 dtdt
<t - eZK(tft’)
= 8m2m2 jo(l_ek(tt’))4dtdt
K T eV
i oV gt 020

where in the last step we have used the change of variables
given in Eq.(117). At late times, we have

, S R 2kU
(Av >total~4ﬂ_2m2 o (1 KU)4dU

I e2x
2m? f_x(l—eX)“dX’ (129
wherex= kU. If we ignore the singularity in the integrand,
this integral may be evaluated directly:

2X

X=00

3e*-1
6(1—e5)°

*® e

7“:de= - (129)

X=—00
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A more rigorous approach is to use the relation 3. Mass fluctuations of two-dimensional black holes

We may use the above results to discuss the fluctuations
- Inx2 (139  in the mass of evaporating black holes in two dimensions.
12dx* 7 i
X Define themass operatoby

1 1 d*

x4

integrate by parts, and then evaluate the resulting integral

numerically: M(T)=Mo— fo T (t)dt, (139

X4e2x
(1—-e9*

1 where My is the initial mass at timé=0. The mean mass
dx~ 6 decreases according to the semiclassical theory of gravity as

(131

focl e e 1Jw| ,d?
A=t T T 12) M

M)=M —fT T(1))dt. (139
In either case, the result is (M) 0 o< ()

3r2 However, the squared mass will undergo fluctuations:
(132) T (T ,
M= 2= || T

48m°m? T

As in the case of the coherent state discussed in the previous _ / /
subsection, the mean-squared velocity fluctuations grow lin- (Tr(ON(Tr(t'))]dtdt’. (140
early in time. Equations(125 and (132 may be used to show that

We now wish to determine the relative contributions of 3
the normal-ordered and cross terms. A calculation analogous (M2)—(M)2~
to that performed for{Av?)., reveals that the normal-
ordered contribution is also linearly growing in time:

<AV2( 7) >totaI:

,
~—, 141
487°  115M3 (149

where in the last step we assumed thatl/(4M,), which is

5 =2 (= [1 @2x ex a good approximation in the early stages of evaporation. We
(AVONo~ 52— f_oc 2= 2x2(1—ex)2 dx. may estimate the evaporation timg,,, of a black hole by
setting
(133 M
~ o _ 3
In this case, the integrand is finite from the beginning, so no Tevas™ (T_(0)) =768mMj. (142
integration by parts is needed. The integral may be evaluated
numerically to yield If we set7=7¢5in Eq. (141), the result is
2 KT <M2>—<M>2~%- (143
Av ~——7—(1.00. 134
(Avno 192772m2( 0 (134

Recall that we are working in Planck units, so the right-hand

The cross term contribution may be obtained as the difSide of Eq.(143) represents a mass fluctuation of the order of
compute it independently. If we follow the procedure used tomacroscopic black holes, the cross term plays a significant
find the asymptotic form of Av?),, including an integra-  fole here. If one were to normal order the product of flux

tion by parts, the result is operators above, then the right-hand sides of Etgl) and
(143 will be decreased by factor of 1/4. This leads to a
K3r? 6 eX(e”+4eX+1) thought experiment in which one could use evaporating

T s
ot T [
< >cross 2.m2m?

dx. black holes to test the reality of the cross term. One prepares
(135 several black holes with the same initial mass and then mea-

sures the masses at some later time. If the mass fluctuation
Again, the integral may be evaluated numerically with thedrows linearly in time in accordance with EQL41) (or its
result four-dimensional analogliethen one would have measured
the effect of the cross term.

X [1-e7

3.2
K Irert
<AV2>cross~ 2m2 (1-00)~3<ATr2t NO - (136) V. CONCLUSION AND DISCUSSION

We have seen that the flux of radiation from an evaporat-
Thus to the accuracy of the numerical calculations, the thre#d black hole undergoes large fluctuations on short time

independently computed pieces do indeed satisfy scales. One approach to the subject of flux fluctuations in-
volves the use of normal-ordered products of stress tensor
(AV?) o= (AV) not (AV) ross: (137  operators. In this approach the squared flux is a finite, local

quantity and the Hawking flux undergoes fluctuations of or-
The normal-ordered term contributes 25% of the total effectder 1 on time scales of ord#f, the black hole’s mass. These
as compared to 75% from the cross term. fluctuations can be viewed as essentially statistical
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fluctuations due to the small mean number of particle emittedvhere N, means normal ordering with respect to the state

by the black hole on this time scale. | ), and(), means the expectation value in this state. If we
However, the subject of stress tensor fluctuations can be ake the expectation value of the above relation in the state

subtle one, and there is another approach in which one rg),, the result is

tains the state-dependent cross term in the product of stress

tensor operators. This term is divergent in the limit that both

operators are evaluated at the same point. Consequently, if it _

is present one cannot give a meaning to the local squared ($1283¢a)a=(P1b2)al $sba)at (D1ds)a{ P2dba)a

flux. It is, however, still possible to define time integrals of a H{(p1ba)a{ P2d3)a- (A2)

product of fluxes. These time integrals may be used to show

that, at least in a two-dir_nensional model, the mean-square.gOr the particular case of the Minkowski vacuum,

mass of a black hole differs from the square of the mean

mass by an amount which grows linearly in time. Further-

more, the rate of growth is 4 times larger when the cross 1®2¢3b2=:d1¢2b3ba:+:d1¢2:(b3da)u

term is retained as compared to the normal-ordering ap- . . . .
proach. Thus, in principle, the two approaches have different Tip1¢si{badalut drda(dadaim
observational consequences. Similarly, they give different +ipod3i{Prdamt  Poadai{Pridzdm
predictions for the velocity fluctuations of a material body,
such as the mirror discussed in Sec. IVB. ti¢3ds(D1d2)mt (Brd)m( Padaim

In either approach, we are dealing with thermal radiation
(or filtered radiation in the asymptotic region far from the T{S183)u(dabaiut(drdaiu(d2dslu,
black hole. Thus the ambiguity in how to treat the fluctua- (A3)

tions is not confined to the specific case of a black hole, but

is present in a general quantum state. Because we are work-

ing in the asymptotic region, we cannot directly address thgvhere:: means normal order to the Minkowski vacuum state
issue of horizon fluctuations caused by quantum stress tensgnd (),, means the expectation value in the Minkowski
fluctuations[17]. Horizon fluctuations must be far below the vacuum. The expectation value of the above equation in this
Planck scale in order that Hawking’s semiclassical derivatiorstate is

[2] of black hole evaporation hold. Estimates of the scale of
the horizon fluctuations due to quantization of the gravita-
tional field (“active” as opposed to “passive” fluctuations _
indicate that Hawking’spgerivation pdoes indeed hold for (P1f283baim=(brb2lu{bsta)m*(P1ds)u(b2bau
black holes above the Planck m448]. (The effects of met- +{(p1da)m{Pad3)m - (A4)
ric fluctuations on the spectrum of the Hawking radiation
have recently been discussed in Rdf9].) It is thus of in-
terest to calculate more carefully the scale of “passive” fluc-

tuations due to stress tensor fluctuations. By using the expressions
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APPENDIX A
Assume that there is a quantum sthfé, which can de- (P102)a=(11027)at(D12)M, (AB)
compose the field operator into positive and negative fre-
quency parts¢=¢" +¢~, with ¢ |4),=0. By using we get
Wick’s theorem, the four-point function can be expressed as
D102¢304=Na(P1P2d304) +Na(D102)(P3da)a (102 )a=(P102)a—(P102)m (A7)
+Na(h103)(P2ds)at Na(P12)(h203)a and
+Na(h203)(P1d4)at Na(2d4){(D103)a
+ N (3 1) at(brdbadal Badbada (1¢10203b4:)a=(1P1d2:)a( P3dat)a
+(p19h3)al Baba)at (D1bayal P2d3)a, F(hrdst)ald28a0)a
(Al) +<:¢1¢4:>a<:¢2¢3:>a- (A8)
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APPENDIX B
1. Evaluation of ff(t)f(t")[1/(t—t’)2]dt dt’

The sampling function and its derivative are, respectively,

=L —— (B1)
T (t—tg)2+ 7
and
T -t 2+
The integral after integration by parts yields
1
f f(t)f(t/)mdtdt/
=fff’(t)f’(t’)ln(t—t’)dtdt’
=f f’(t’)dt’Jw f'(t)In(t—t")dt
=J fr(t")A(t")dt’, (B3)
where
At) _ZTJw T i—t)dt (B4
= n(t— .
T (-t )

This integral contains a second-order pole and can be done

by residues. Lek=t—t,, and the integral becomes

A(t’)=_27Jw X

ol By In(x+ty—t")dx

—27§ z | q
= n(z+ty—t')dz
T (22-1—72)2 ( 0 )

—27(—0 é; Z |
= — ——In(z+t,—t’
™ 72 22+ 72 ( 0 )

2T ( ﬁ) In(z+to—t")
=—(2mi) Fyv] | .

T z+iT

b T
= +
?+b? ! ?+b?’

whereR=\/72+b? andb=t’—t,. The double integral be-

comes

(BS)

PHYSICAL REVIEW D60 104013

—27 w4 —(to—tH)?]
T 27477+ (to—t5)?]?

J fr(t")A(t")dt' =

+i“ f(t")Im[A(t")]dt’|.
(B6)
We keep only the real part and write

—27 77[47'2—(t0—t6)2]
T 2147+ (to—t})?]?

1
f f(t)f(t,)mdt dt'=

(B7)

In the coincidence limity—tg, the integral is
li J f(t)f(t’ ! dtdt' = ! B8
m (t) (t)m t t__ﬁ' ( )

’
to—to

2. Evaluation of [f(t)f(t")[1/(t—t')*]dt dt’
The second derivative of the sampling function is

()= —-27 1 4(t—tg)?
7 [[(t=t*+ 71° [(t-tg)*+ ~P)]
(B9)
Integrating by parts yields
Jf f(t’ ! dtdt’
(Of(t )m tdt
-1
=Tfjf(t)”f(t’)”In(t—t’)dtdt’.
(B10)
A similar calculation as in Appendix B 1 yields
B(t’)zf f’(t) In(t—t")dt
27| 4 3€ Inz d
w7 P v —trr 292
g \? (z+t' —tg)?
+2 ﬁ) mlnz dz
2 B +2( i )ZB B11
~ a2 Bt 7] Be (611
where
a
Blz:anO (BlZ)
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and
f(t)f(t’ dtdt’
J OF) e
B,=—m7Inz,, (B13) —7 [ 1 At —t4)?
3w e\ [ -2 PP (U —tp) P T
wherezy=/7?+b? andb=t'—t,. The integralB(t’) be- 1 27° dt’
comes T2+ b2 (T2+ b2)2
1672 —2472(to—t0) >+ (to—tg)*
* 1 27’2 = 2 _41\274 (815)
B(t’)=f F/() In(t—t")dt=— — s+ — [47°+ (to~tp)7]
o THbT (7Y In the limit to—t;—0, the integral becomes
(B14) 0 oo g
li ff t)f(t’ ! dtdt' = ! (B16)
. g | | im | OT) e dtdt = 1
Substituting this result into the original double integral yields to—to
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