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Numerical simulations of Gowdy spacetimes or8?x S'x R
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Numerical simulations are performed of the approach to the singularity in Gowdy spacetin®8s &h
X R. The behavior is similar to that of Gowdy spacetimesTdix R. In particular, the singularity is asymp-
totically velocity term dominated, except at isolated points where spiky features develop.
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[. INTRODUCTION are similar to those encountered in the numerical evolution
of axisymmetric spacetimes, and the techniques presented
There have been several numerical investigations of thgere for Gowdy spacetimes should be useful for axisymmet-
approach to the singularity in inhomogeneous cosmologie8C spacetimes as well.
[1-8]. In general, it is found thatexcept at isolated points This paper presents the results of numerical simulations of
the approach to the singularity is either asymptotically veloc:Gowdy spacetimes of”*X S'XR. Section Il presents the
ity term dominated9] (AVTD) or is oscillatory. In the os- metric'and vacuum Einstein quations in'a for.m suitable fqr
cillatory case, there are epochs of velocity term dominanc&umerical _evolutlon. The n_ume_rlcal technique is presented in
punctuated by short “bounces.” The most extensively stud->€¢- Il, with the results given in Sec. IV.
ied inhomogeneous cosmology is the Gowdy spacetime
[10,1] on T3XR. Here the approach to the singularity is Il. METRIC AND FIELD EQUATIONS
AVTD except at isolated points. The Gowdy spacetimes on )
T3X R are especially well suited to a numerical treatment for  1he Gowdy metric or8*X S'XR has the forn{11]
the following reasons(i) Because of the presence of two
Killing fields, the metric components depend on only two ds?=eM(—dt?+d#?)+sint sing(e'[dp+ Qds]?
spacetime coordinate6i) The constraint equations are easy
to implement.(iii) The boundary conditions are particularly
simple, just periodic boundary conditions in the one non-
trivial spatial direction. Here the metric function®l, L andQ depend only ort and
The original work of Gowd)[11] treated spatially com- 6. Thus our two Killing fields are d/d¢) and (@/95). The
pact spacetimes with a two parameter spacelike isometrgoordinates¢ and § are identified with period 2, with &
group. Gowdy showed that, for these spacetimes, the topothe coordinate on th&" and (9,¢) the coordinates on the
ogy of space must b&® or S® or S2x St. Given the numeri-  S*.
cal results for th@® case, it is natural to ask what happens in  Here the “axis” points are a#=0 andf= 7. The space-
the other two cases. In a recent pafid] Obregon and Ryan time singularities(“big bang” and “big crunch”) are att
note that the Kerr metric between the outer and inner hori=0 andt= . This form of the metric presents difficulties
zons is a Gowdy spacetime with spatial topologix St. for a numerical treatment. Smoothness at the axis requires
They analyze the behavior of this spacetime and speculagivergent behavior in the functiorls and M. Furthermore,
that there may be significant differences between the beha¥he spactimes singularities occur at finite values of the time
ior of Gowdy spacetimes ofi®X R and onS?X S'xXR. coordinate. This is likely to lead to bad behavior of the nu-
A numerical simulation of th&”x St case presents some Mmerical simulation near=0 or t= . These difficulties are
difficulties that are absent in th& case. The constraint overcome with a new choice of metric functions and time
equations become more complicated, and there are difficuroordinate. Define the new metric functioRsand y by
ties associated with boundary conditions. In Tiecase, the
Killing fields are nowhere vanishing. However, in tig8 P=L-Insiné, 2)
X St case, one of the Killing fields vanishes at the north and
south poles of th&?. Smoothness of the metric at these axis
points then requires that the metric components behave in a 2y=M~—(P+Insint). 3
particular way at these points. A computer code to evolve the
S?x St case therefore must enforce these smoothness condiefine the new time coordinateby
tions as boundary conditions, and must do so in such a way
that the evolution is both stable and accurate. These issues

+e tdés?). (1)

=—Intant/2). (4)

*Email address: garfinkl@oakland.edu The metric then takes the form
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+e” Pdéz) . (5)

+sir? 8(dp+Qds)?
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= sinh7. Smoothness of the metric then requires that the
numerators of these equations vanish whenever the denomi-
nator does. This places conditions Brand Q. If these con-
ditions are satisfied for the initial data, the evolution equa-
tions will preserve them. The second difficulty has to do with
the fact thaty must vanish ath= = as well as6=0. Inte-

Smoothness of the metric at the axis is equivalent to thgrating Eq.(12) from 0 to 7 it then follows that we must

requirement thaP, Q and+y be smooth functions of cas

with y vanishing até=0 and 6= w. Note that forf any
smooth function of co$, it follows thatdf/dé=0 at =0
and 0= .

As in the T3 case, the vacuum Einstein field equations

become evolution equations f& and Q and “constraint”
equations that determing. The evolution equations are

1
— 2P 2 _
P_.=e?Psir? 9(Q,) +cosHT[P{"’+COt0P" 1

—e?Psir? 6(Q,)?], (6)

1
Q== 2P, Q.+ 5[ Quy+ 3 COLIQ,+ 2P ,Q,].
()

have

=0. (14

Jw cosHr(Atanhr+B cot6)dé
0 cof6—sinttr

If this condition is satisfied by the initial data, then the evo-
lution equations will preserve it.

In summary, the initial data foP and Q are not com-
pletely freely specifiable. They must satisfy conditions at the
points whergcotd|= sinhr as well as an integral condition.
Given initial data satisfying these conditions, the evolution
equations(6) and (7) then determind® and Q and the con-
straint equation$12) and(13) then determiney.

IIl. NUMERICAL METHODS

Here a subscript denotes partial derivative with respect to the We now turn to the numerical methods used to implement

corresponding coordinate. Note that, as in THecase, the

evolution equations have no dependenceyon
The constraint equations are

cotfy,.—tanhr y,=A, (8)
coté tanhrv.— B g
cosh 7 Vo~ a7y, =b, 9

where the quantitied andB are given by
2A=tanhrP,+P,P,+e?"sir? 6Q.Q,, (10)

4B=2tanhr P_+(P,)?+e?P sir? 0(Q,)?+tanlf r—4

1 .
+m;[(P0)2+e2Psm2 0(Qy)?]. (11
Solving Egs.(8) and (9) for y, and y, we find
_ costf r(Atanhr+B cot6) 15
Yo~ cot’ §—sintfr ’ (12)
A cot6+ B sinhrcoshr
(13

Y= cot —sink? 7

Given a solution of the evolution equatio(® and(7) for P

andQ, Eqgs.(12) and(13) and the smoothness condition that

vy=0 at 6=0 completely determine. Actually, Egs.(12)

and(13) seem to be in danger of overdeterminipgbut the

the evolution equations. We begin by casting the equations
in first order form by introducing the quantitiés=P . and
W=Q,. These quantities then satisfy the equations

V,=e?Psir? § W2+

cosk T[Pa(ﬂ- cotdPy,—1

—e?Psirt 0(Qy)?], (15

1
W, = = 2VW+ ——o—[Qgy+ 3 cotdQ,+ 2P Q).
(16)

Thus the evolution equations have the fo)?m= IE()Z,T).
We implement these equations using an iterative Crank-

Nicholson scheme. GivelX at time 7, we define)?o(r
+A7)=X(7) and then iterate the equation

- - JA
xn+1(T+AT)ZX(’T)-F?[F(X(T),T)

+EX (r+A7),7+AD]. (17

In principle, one should iterate until some sort of conver-
gence is achieved. In practice, we simply iterate 10 times.
We useA7=A6/2 whereA 6 is the spatial grid spacing.

The spatial grid is as follows: Let, be the number of
spatial grid points. Then we chooag)= m/(n,—2) and 6,
=(i—1.5)A 6. Thus in addition to the “physical zones” for

integrability condition for these equations is automaticallyi =2.3,-...Ny—1, we have two “ghost zones” a¥;=
satisfied as a consequence of the evolution equation® for —A6/2 and 6, =+ (A6/2). The ghost zones are not part
and Q. There are, however, two remaining difficulties with of the spacetime: variables there are set by boundary condi-
the equations fol. The first has to do with the fact that the tions. For any quantitys, defineS;=S(6,). Spatial deriva-

denominator in Eqs(12) and (13) vanishes wherjcot

tives are implemented using the usual second order scheme:

104010-2



NUMERICAL SIMULATIONS OF GOWDY SPACETIMES . .. PHYSICAL REVIEW D 60 104010

" ———— T

95 ]
P ]
of ]
os | ]
s [ ]
7.5 : PR SR TR W NN TN SN TN N AN TN TN TN SN NN TN ST SO WO [N ST SN TN SO [N AT T S S | .:
0 0.5 1 15 2 25 3 ] o )
FIG. 3. The evolution oP for initial data withvy=2.
0
FIG. 1. The analytic valuedine) and numerical value@ots of IV. RESULTS
P are plotted v at 7= 10. To test the computer code, it is helpful to have some
closed form exact solution of the evolution equations to com-
S.1—S_.; pare to the numerical evolution of the corresponding initial
Se(6;) = BRI (18) data. In particular, for a second order accurate evolution

scheme, the difference between the numerical solution and
the exact solution should converge to zero as the grid spac-
_ (19) ing squared.
(AG)? A polarized Gowdy spacetime is one for which the Kill-
ing vectors are hypersurface orthogonal. For our form of the
Smoothness of the metric requires tiaj=0 at #=0.  Metric, that is equivalent to the conditi&=0. For polar-
Since #=0 is halfway betweeri=1 andi=2, we imple- ized Gowdy spacetimes, the evolution equati@nfor Q is
ment this condition a®;=P,. Similarly, we useQ,=Q, trivially satisfied, and the evolution equatid) for P re-
sinceQ,=0 at #=0. Correspondingly, the requirement that duces to the following:
P, and Q, vanish atd= is implemented a®, =P, 1

and Qnngne—l- These boundary conditions are imposed at o [Pyt cOtoP,—1]. (20)
each iteration of the Crank-Nicholson scheme. cosit 7
00012 This is a linear equation which can be solved by a separation

of variables, though one must choose only those solutions
that satisfy the additional conditions for smoothness of the
metric.
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FIG. 2. The differences between analytic and numerical values 0
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for P are compared for two different resolutions. The lin&B for

502 grid points and the squares are 4 timésfor 1002 grid points.
The fact that these curves agree shows second order convergence. FIG. 4. The evolution of) for initial data withvy=2.
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FIG. 5. The evolution of for initial data withvy=4.
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FIG. 7. The evolution oP for initial data withvy=38.

Unfortunately, the polarized solutions do not provide, byThe solution generating technique then yields an unpolarized
themselves, a very stringent code test: the evolution equatiogy|ution with P given by Eq.(21) andQ given by

for Q and the nonlinear terms in the evolution equationHor
are not tested at all. Fortunately, there is a technique, the
Ehlers solution generating technique, which allows us to be-

Q=4c(1—tanhr)cosé. (29

gin with a polarized solution and produce an unpolarized

solution. LetP be any solution of the polarized equati(#)
and letc be any constant. Define and Q by

— csirt g -\?
P=P—In|1+|——€"]| |, (22)
. coshr
= 2% (5 coso+singP, 22
QT_cosH’-r( cosf+sin6P), (22
Q0=chin0(tanhr—37). (23

Then (P,Q) is a solution of the unpolarized Gowdy equa-

tions (6) and (7).
We use the following polarized solution:

=—Incoshr+27. (24

Figure 1 shows for the exact solution and the numerical
evolution. (Here there are 502 spatial grid pointss 1, and
the initial data atr=0 are evolved tar=10. The results are
shown at 51 equally spaced points frofs=0 to 6= ).
Figure 2 shows the difference between exact and numerical
solutions. Here the parameters are as in Fig. 1, except that
two simulations are run: one with 502 spatial grid points and
one with 1002 grid points. For comparison, the results on the
finer grid are multiplied by a factor of 4. The results show
second order convergend®ote that due to the presence of
the ghost zones, quantities must be interpolated on the grids
to make a comparison between quantities at the same values
of 6).

We would now like to find the generic behavior of Gowdy
spacetimes or8?X S'XR. In the T® case[1] a family of
initial data was chosen and evolved. It was argued that the
behavior of these spacetimes reflects the generic behavior.
Here, we choose a similar family. The initial dataratO are

FIG. 6. The evolution of) for initial data withvy=4.

FIG. 8. The evolution of) for initial data withvy=8.
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FIG. 9. A spiky feature irP (solid line) occurs wher& (dashed
line) has an extremum. Herey,=8, 7=10 and the simulation is
run with 2002 spatial grid points.

FIG. 10. A sharp feature iQ (dashed ling occurs at a down-
ward spike inP (solid line). Here,vo=4, =10 and the simulation
is run with 2002 spatial grid points.

P=0, P,=vycosf, Q=2cosh, Q,=0. Herev, is a con-

stant. These data satisfy the constraint conditions. Figures Befine S,;=V ,(sintsin ). Then in regions of the spacetime
—8 show the evolution of these data for various values of thevhere S, is timelike, the region is locally isometric to a
parametew,. Here,vo=2 in Figs. 3 and 4y,=4 in Figs. 5  Gowdy spacetime off°XR. In regions wheres, is space-
and 6, andvy=8 in Figs. 7 and 8. In all cases, the range oflike, the region is locally isometric to a cylindrical wave.
¢ is (0,m), the range ofr is (0,10) and the simulation is run Thus, the behavior that we should expect in 8% S! case
with 1002 spatial grid points. Note the presence of spikyis a combination of the behavior of thE® case and the
features. The Iarge behavior of the solutions is the follow- behavior of cylindrical waves. Furthermore, for any point on
ing: There are functionQ..(6) andv..(0) with 0<v..(f)  the S? except the poles, as the singularity is approacld,
<1 such that away from the spiky features we h&@e pecomes timelike at that point. Thus the asymptotic behavior

—Q-=(6) andP.—v.(6) for large . _ _as the singularity is approached in t8&x S! case should be
The reason for this behavior is not hard to find and isihe same as in the® case.
essentially the same as in tfié case. For larger and pro- We now turn to an analysis of the spiky features seen in

vided thatP is growing no faster tham, the terms in EqS6)  the metric functiond® and Q. The argument of the previous
and(7) proportional to 1/costr become negligible. The trun- paragraph indicates that these features are essentially the
cated equations obtained by neglecting these terms are  same as those seen in thé case. In fact, these features can
be explained using the evolution equatidésand(7) as was
P, =e?"sirt 6(Q,)?, (26)  done in theT? case[3]. For larger, it follows from Eq.(7)
thatQ,~II(#)e 2" for some functiorilo(6). Then, using

this result in Eq(6) we have an approximate evolution equa-
Q=-2P.Q;,. 27 ion for P: %o i |

Equations(26) and (27) are called the AVTD equations.

They can be solved in closed form and have the property that 2P

Q—Q.(0) and P,—v,(6) as 7—x. Solutions of the full ~ai -2P 2_ 2

Egs. (6) and (7) are called AVTD provided that they ap- P o=sin’ 6l ”* (1) COSRT(Q") ’ 28)

proach solutions of the AVTD equations for largeThus we

have an explanation of the AVTD behavior provided that we

can show thaP grows no faster tham. As in theT® case, if  These terms eventually drivR, to the range between 0 and

P grows faster tham, then the term in E((6) proportionalto 1. However, at a poin#; where Q, vanishes,P, can be

e?P/costrwill cause a “bounce” that leaveB growing less  greater than 1. This leads to a spiky featurePinsinceP

fast thanr. Thus, an analysis of the largebehavior of the >1 at 6; but P, <1 at points neam;. This sort of spiky

evolution equationgs) and(7), essentially the same as in the feature is illustrated in Fig. 9. Correspondingly, at a pdint

T2 case, leads to an explanation of the AVTD behavior. wherell vanishesP, can be less than zero. This leads to
The AVTD behavior can also be explained by an analysisharp features iR sinceP >0 at points nea#,. Also, since

of the local properties of Gowdy spacetimes 8K S'XR.  the region wherd®<0 leads to rapid growth i@, there is a
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sharp feature irQ. This sort of feature is illustrated in Fig. ACKNOWLEDGMENTS
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