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Numerical simulations of Gowdy spacetimes onS23S13R
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Department of Physics, Oakland University, Rochester, Michigan 48309

~Received 7 June 1999; published 15 October 1999!

Numerical simulations are performed of the approach to the singularity in Gowdy spacetimes onS23S1

3R. The behavior is similar to that of Gowdy spacetimes onT33R. In particular, the singularity is asymp-
totically velocity term dominated, except at isolated points where spiky features develop.
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I. INTRODUCTION

There have been several numerical investigations of
approach to the singularity in inhomogeneous cosmolog
@1–8#. In general, it is found that~except at isolated points!
the approach to the singularity is either asymptotically vel
ity term dominated@9# ~AVTD ! or is oscillatory. In the os-
cillatory case, there are epochs of velocity term domina
punctuated by short ‘‘bounces.’’ The most extensively stu
ied inhomogeneous cosmology is the Gowdy spacet
@10,11# on T33R. Here the approach to the singularity
AVTD except at isolated points. The Gowdy spacetimes
T33R are especially well suited to a numerical treatment
the following reasons:~i! Because of the presence of tw
Killing fields, the metric components depend on only tw
spacetime coordinates.~ii ! The constraint equations are ea
to implement.~iii ! The boundary conditions are particular
simple, just periodic boundary conditions in the one no
trivial spatial direction.

The original work of Gowdy@11# treated spatially com-
pact spacetimes with a two parameter spacelike isom
group. Gowdy showed that, for these spacetimes, the to
ogy of space must beT3 or S3 or S23S1. Given the numeri-
cal results for theT3 case, it is natural to ask what happens
the other two cases. In a recent paper@12# Obregon and Ryan
note that the Kerr metric between the outer and inner h
zons is a Gowdy spacetime with spatial topologyS23S1.
They analyze the behavior of this spacetime and specu
that there may be significant differences between the be
ior of Gowdy spacetimes onT33R and onS23S13R.

A numerical simulation of theS23S1 case presents som
difficulties that are absent in theT3 case. The constrain
equations become more complicated, and there are diffi
ties associated with boundary conditions. In theT3 case, the
Killing fields are nowhere vanishing. However, in theS2

3S1 case, one of the Killing fields vanishes at the north a
south poles of theS2. Smoothness of the metric at these a
points then requires that the metric components behave
particular way at these points. A computer code to evolve
S23S1 case therefore must enforce these smoothness co
tions as boundary conditions, and must do so in such a
that the evolution is both stable and accurate. These is
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are similar to those encountered in the numerical evolut
of axisymmetric spacetimes, and the techniques prese
here for Gowdy spacetimes should be useful for axisymm
ric spacetimes as well.

This paper presents the results of numerical simulation
Gowdy spacetimes onS23S13R. Section II presents the
metric and vacuum Einstein equations in a form suitable
numerical evolution. The numerical technique is presente
Sec. III, with the results given in Sec. IV.

II. METRIC AND FIELD EQUATIONS

The Gowdy metric onS23S13R has the form@11#

ds25eM~2dt21du2!1sint sinu~eL@df1Qdd#2

1e2Ldd2!. ~1!

Here the metric functionsM , L andQ depend only ont and
u. Thus our two Killing fields are (]/]f) and (]/]d). The
coordinatesf and d are identified with period 2p, with d
the coordinate on theS1 and (u,f) the coordinates on the
S2.

Here the ‘‘axis’’ points are atu50 andu5p. The space-
time singularities~‘‘big bang’’ and ‘‘big crunch’’! are att
50 and t5p. This form of the metric presents difficultie
for a numerical treatment. Smoothness at the axis requ
divergent behavior in the functionsL and M. Furthermore,
the spactimes singularities occur at finite values of the ti
coordinate. This is likely to lead to bad behavior of the n
merical simulation neart50 or t5p. These difficulties are
overcome with a new choice of metric functions and tim
coordinate. Define the new metric functionsP andg by

P[L2 ln sinu, ~2!

2g[M2~P1 ln sint !. ~3!

Define the new time coordinatet by

t[2 ln tan~ t/2!. ~4!

The metric then takes the form
©1999 The American Physical Society10-1
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ds25
1

cosht H ePFe2gS 2dt2

cosh2 t
1du2D

1sin2 u~df1Qdd!2G1e2Pdd2J . ~5!

Smoothness of the metric at the axis is equivalent to
requirement thatP, Q and g be smooth functions of cosu
with g vanishing atu50 and u5p. Note that for f any
smooth function of cosu, it follows that d f /du50 at u50
andu5p.

As in the T3 case, the vacuum Einstein field equatio
become evolution equations forP and Q and ‘‘constraint’’
equations that determineg. The evolution equations are

Ptt5e2Psin2 u~Qt!
21

1

cosh2 t
@Puu1cotu Pu21

2e2P sin2 u~Qu!2#, ~6!

Qtt522PtQt1
1

cosh2t
@Quu13 cotuQu12PuQu#.

~7!

Here a subscript denotes partial derivative with respect to
corresponding coordinate. Note that, as in theT3 case, the
evolution equations have no dependence ong.

The constraint equations are

cotugt2tanht gu5A, ~8!

cotu

cosh2 t
gu2tanhtgt5B, ~9!

where the quantitiesA andB are given by

2A[tanhtPu1PtPu1e2P sin2 u QtQu , ~10!

4B[2 tanht Pt1~Pt!
21e2P sin2 u~Qt!

21tanh2 t24

1
1

cosh2t
@~Pu!21e2P sin2 u ~Qu!2#. ~11!

Solving Eqs.~8! and ~9! for gu andgt we find

gu5
cosh2 t~A tanht1B cotu!

cot2 u2sinh2t
, ~12!

gt5
A cotu1B sinht cosht

cot2 u2sinh2 t
. ~13!

Given a solution of the evolution equations~6! and~7! for P
andQ, Eqs.~12! and~13! and the smoothness condition th
g50 at u50 completely determineg. Actually, Eqs.~12!
and~13! seem to be in danger of overdeterminingg, but the
integrability condition for these equations is automatica
satisfied as a consequence of the evolution equations fP
and Q. There are, however, two remaining difficulties wi
the equations forg. The first has to do with the fact that th
denominator in Eqs.~12! and ~13! vanishes whenucotuu
10401
e
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5 sinht. Smoothness of the metric then requires that
numerators of these equations vanish whenever the den
nator does. This places conditions onP andQ. If these con-
ditions are satisfied for the initial data, the evolution equ
tions will preserve them. The second difficulty has to do w
the fact thatg must vanish atu5p as well asu50. Inte-
grating Eq.~12! from 0 to p it then follows that we must
have

E
0

p cosh2t~A tanht1B cotu!du

cot2u2sinh2t
50. ~14!

If this condition is satisfied by the initial data, then the ev
lution equations will preserve it.

In summary, the initial data forP and Q are not com-
pletely freely specifiable. They must satisfy conditions at
points whereucotuu5 sinht as well as an integral condition
Given initial data satisfying these conditions, the evoluti
equations~6! and ~7! then determineP and Q and the con-
straint equations~12! and ~13! then determineg.

III. NUMERICAL METHODS

We now turn to the numerical methods used to implem
the evolution equations. We begin by casting the equati
in first order form by introducing the quantitiesV[Pt and
W[Qt . These quantities then satisfy the equations

Vt5e2P sin2 u W21
1

cosh2 t
@Puu1 cotu Pu21

2e2P sin2 u ~Qu!2#, ~15!

Wt522VW1
1

cosh2 t
@Quu13 cotuQu12PuQu#.

~16!

Thus the evolution equations have the formXW t5FW (XW ,t).
We implement these equations using an iterative Cra

Nicholson scheme. GivenXW at time t, we define XW 0(t

1Dt)[XW (t) and then iterate the equation

XW n11~t1Dt!5XW ~t!1
Dt

2
@FW „XW ~t!,t…

1FW „XW n~t1Dt!,t1Dt…#. ~17!

In principle, one should iterate until some sort of conve
gence is achieved. In practice, we simply iterate 10 tim
We useDt5Du/2 whereDu is the spatial grid spacing.

The spatial grid is as follows: Letnu be the number of
spatial grid points. Then we chooseDu5p/(nu22) andu i
5( i 21.5)Du. Thus in addition to the ‘‘physical zones’’ fo
i 52,3,. . . ,nu21, we have two ‘‘ghost zones’’ atu15
2Du/2 andunu

5p1(Du/2). The ghost zones are not pa
of the spacetime: variables there are set by boundary co
tions. For any quantityS, defineSi[S(u i). Spatial deriva-
tives are implemented using the usual second order sche
0-2
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Su~u i !5
Si 112Si 21

2Du
, ~18!

Suu~u i !5
Si 111Si 2122Si

~Du!2 . ~19!

Smoothness of the metric requires thatPu50 at u50.
Since u50 is halfway betweeni 51 and i 52, we imple-
ment this condition asP15P2. Similarly, we useQ15Q2
sinceQu50 at u50. Correspondingly, the requirement th
Pu and Qu vanish atu5p is implemented asPnu

5Pnu21

andQnu
5Qnu21. These boundary conditions are imposed

each iteration of the Crank-Nicholson scheme.

FIG. 1. The analytic values~line! and numerical values~dots! of
P are plotted vsu at t510.

FIG. 2. The differences between analytic and numerical val
for P are compared for two different resolutions. The line isDP for
502 grid points and the squares are 4 timesDP for 1002 grid points.
The fact that these curves agree shows second order converg
10401
t

IV. RESULTS

To test the computer code, it is helpful to have som
closed form exact solution of the evolution equations to co
pare to the numerical evolution of the corresponding init
data. In particular, for a second order accurate evolut
scheme, the difference between the numerical solution
the exact solution should converge to zero as the grid sp
ing squared.

A polarized Gowdy spacetime is one for which the Ki
ing vectors are hypersurface orthogonal. For our form of
metric, that is equivalent to the conditionQ50. For polar-
ized Gowdy spacetimes, the evolution equation~7! for Q is
trivially satisfied, and the evolution equation~6! for P re-
duces to the following:

Ptt5
1

cosh2 t
@Puu1cotuPu21#. ~20!

This is a linear equation which can be solved by a separa
of variables, though one must choose only those soluti
that satisfy the additional conditions for smoothness of
metric.

s

ce.

FIG. 3. The evolution ofP for initial data withv052.

FIG. 4. The evolution ofQ for initial data withv052.
0-3
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Unfortunately, the polarized solutions do not provide,
themselves, a very stringent code test: the evolution equa
for Q and the nonlinear terms in the evolution equation foP
are not tested at all. Fortunately, there is a technique,
Ehlers solution generating technique, which allows us to
gin with a polarized solution and produce an unpolariz

solution. LetP̄ be any solution of the polarized equation~20!
and letc be any constant. DefineP andQ by

P5 P̄2 lnF11S c sin2 u

cosht
eP̄D 2G , ~21!

Qt5
22c

cosh2 t
~2 cosu1sinu P̄u!, ~22!

Qu52c sinu~ tanht2 P̄t!. ~23!

Then (P,Q) is a solution of the unpolarized Gowdy equ
tions ~6! and ~7!.

We use the following polarized solution:

P̄52 ln cosht12t. ~24!

FIG. 5. The evolution ofP for initial data withv054.

FIG. 6. The evolution ofQ for initial data withv054.
10401
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The solution generating technique then yields an unpolari
solution withP given by Eq.~21! andQ given by

Q54c~12tanht!cosu. ~25!

Figure 1 showsP for the exact solution and the numeric
evolution.~Here there are 502 spatial grid points,c51, and
the initial data att50 are evolved tot510. The results are
shown at 51 equally spaced points fromu50 to u5p).
Figure 2 shows the difference between exact and nume
solutions. Here the parameters are as in Fig. 1, except
two simulations are run: one with 502 spatial grid points a
one with 1002 grid points. For comparison, the results on
finer grid are multiplied by a factor of 4. The results sho
second order convergence.~Note that due to the presence
the ghost zones, quantities must be interpolated on the g
to make a comparison between quantities at the same va
of u).

We would now like to find the generic behavior of Gowd
spacetimes onS23S13R. In the T3 case@1# a family of
initial data was chosen and evolved. It was argued that
behavior of these spacetimes reflects the generic beha
Here, we choose a similar family. The initial data att50 are

FIG. 7. The evolution ofP for initial data withv058.

FIG. 8. The evolution ofQ for initial data withv058.
0-4
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P50, Pt5v0 cosu, Q52 cosu, Qt50. Here v0 is a con-
stant. These data satisfy the constraint conditions. Figur
–8 show the evolution of these data for various values of
parameterv0. Here,v052 in Figs. 3 and 4,v054 in Figs. 5
and 6, andv058 in Figs. 7 and 8. In all cases, the range
u is (0,p), the range oft is (0,10) and the simulation is ru
with 1002 spatial grid points. Note the presence of sp
features. The larget behavior of the solutions is the follow
ing: There are functionsQ`(u) and v`(u) with 0,v`(u)
,1 such that away from the spiky features we haveQ
→Q`(u) andPt→v`(u) for larget.

The reason for this behavior is not hard to find and
essentially the same as in theT3 case. For larget and pro-
vided thatP is growing no faster thant, the terms in Eqs.~6!
and~7! proportional to 1/cosh2t become negligible. The trun
cated equations obtained by neglecting these terms are

Ptt5e2P sin2 u~Qt!
2, ~26!

Qtt522PtQt . ~27!

Equations~26! and ~27! are called the AVTD equations
They can be solved in closed form and have the property
Q→Q`(u) and Pt→v`(u) as t→`. Solutions of the full
Eqs. ~6! and ~7! are called AVTD provided that they ap
proach solutions of the AVTD equations for larget. Thus we
have an explanation of the AVTD behavior provided that
can show thatP grows no faster thant. As in theT3 case, if
P grows faster thant, then the term in Eq.~6! proportional to
e2P/cosh2t will cause a ‘‘bounce’’ that leavesP growing less
fast thant. Thus, an analysis of the larget behavior of the
evolution equations~6! and~7!, essentially the same as in th
T3 case, leads to an explanation of the AVTD behavior.

The AVTD behavior can also be explained by an analy
of the local properties of Gowdy spacetimes onS23S13R.

FIG. 9. A spiky feature inP ~solid line! occurs whereQ ~dashed
line! has an extremum. Here,v058, t510 and the simulation is
run with 2002 spatial grid points.
10401
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DefineSa[¹a(sint sinu). Then in regions of the spacetim
where Sa is timelike, the region is locally isometric to
Gowdy spacetime onT33R. In regions whereSa is space-
like, the region is locally isometric to a cylindrical wave
Thus, the behavior that we should expect in theS23S1 case
is a combination of the behavior of theT3 case and the
behavior of cylindrical waves. Furthermore, for any point
the S2 except the poles, as the singularity is approachedSa

becomes timelike at that point. Thus the asymptotic beha
as the singularity is approached in theS23S1 case should be
the same as in theT3 case.

We now turn to an analysis of the spiky features seen
the metric functionsP andQ. The argument of the previou
paragraph indicates that these features are essentially
same as those seen in theT3 case. In fact, these features ca
be explained using the evolution equations~6! and~7! as was
done in theT3 case@3#. For larget, it follows from Eq. ~7!
thatQt'PQ(u)e22P for some functionPQ(u). Then, using
this result in Eq.~6! we have an approximate evolution equ
tion for P:

Ptt'sin2 uFe22P~PQ!22
e2P

cosh2t
~Qu!2G . ~28!

These terms eventually drivePt to the range between 0 an
1. However, at a pointu1 where Qu vanishes,Pt can be
greater than 1. This leads to a spiky feature inP, sincePt
.1 at u1 but Pt,1 at points nearu1. This sort of spiky
feature is illustrated in Fig. 9. Correspondingly, at a pointu2
wherePQ vanishes,Pt can be less than zero. This leads
sharp features inP sincePt.0 at points nearu2. Also, since
the region whereP,0 leads to rapid growth inQ, there is a

FIG. 10. A sharp feature inQ ~dashed line! occurs at a down-
ward spike inP ~solid line!. Here,v054, t510 and the simulation
is run with 2002 spatial grid points.
0-5
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DAVID GARFINKLE PHYSICAL REVIEW D 60 104010
sharp feature inQ. This sort of feature is illustrated in Fig
10.

In summary, a numerical treatment of Gowdy spacetim
on S23S13R reveals that they are very similar to Gowd
spacetimes onT33R. In particular, they show the same b
havior of AVTD behavior almost everywhere, and they ha
the same sort of spiky features at isolated points.
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