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In a gedanken experiment in which a box initially containing endtgand entropyS is lowered toward a
black hole and then dropped in, it was shown by Unruh and Wald that the generalized second law of black hole
thermodynamics holds, without the need to assume any boun8®other than the bound that arises from the
fact that entropy at a given energy and volume is bounded by that of unconstrained thermal matter. The original
analysis by Unruh and Wald made the approximation that the box was “thin,” but they later generalized their
analysis to thick boxe@n the context of a slightly different proces®levertheless, Bekenstein has argued that,
for a certain class of thick boxes, the buoyancy force of the “thermal atmosphere” of the black hole is
negligible, and that his previously postulated boundSbE is necessary for the validity of the generalized
second law. In arguing for these conclusions, Bekenstein made some assumptions about the nature of uncon-
strained thermal matter and the location of the “floating point” of the box. We show here that under these
assumptions, Bekenstein’s bound 8itt follows automatically from the fact th&is bounded by the entropy
of unconstrained thermal matter. Thus, a box of matter which violates Bekenstein's bound would violate the
assumptions made in his analysis, rather than violate the generalized second law. Indeed, we prove here that no
universal entropy bound need be hypothesized in order to ensure the validity of the generalized second law in
this process[S0556-282(199)01320-X]

PACS numbegs): 04.70.Dy, 04.62+v

[. INTRODUCTION When this buoyancy force is taken into account, the optimal
place to drop such a box into a black hole no longer is at the
A cornerstone of black hole thermodynamics is gen-  horizon of the black hole but rather at the “floating point” of
eralized second laWGSL), which asserts that in any process, the box, which lies at a finite distance from the horizon.
the generalized entropy When the effects of the buoyancy force on the energy bal-
S —si 1 ance are properly taken into account, it was found that the
Soh @D GsL always holds in this proce$3].

never decreases, wheenotes the entropy of matter out-  1he analysis of3] assumed, for simplicity, that the box
side of black holes an8,;,=.A/4, whereA denotes the total Was “thin” in the sense that its proper heigh, is small
surface area of the black hole horizoftsere and throughout compared with the scale of variation of the redshift factar,
this paper we use units whe@=c=#=k=1.) The validity ~ i.e., b<x(dx/dl) ", wherel denotes proper distance from
of the GSL is essential for the consistency of black holethe horizon. This analysis was then generalized to the case of
thermodynamics and for the interpretation 4f4 as repre- “thick boxes” in [4], although this generalization was done
senting the physical entropy of a black hole. in the context of a slightly different process, wherein, rather
It was already recognized at the time the GSL was firsthan dropping the box into the black hole, the contents of the
postulated that a potential difficulty arises when one lowers &ox are allowed to “leak out” as the box is raisésee also
box initially containing energyE and entropyS toward a  [5]). Nevertheless, several years ago Bekenstein arffiled
black hole[1]. Classically, a violation of the GSL can be that for boxes withb at least as large a&'? (whereA de-
achieved if one lowers the box sufficiently close to the hori-notes the horizontal cross-sectional area of the)bthe
zon. A resolution of this difficulty was proposed by Beken- pyoyancy effects of the thermal atmosphere are negligible.
stein by postulating that the entropy to energy ratio of anye then showed that the bouf® must hold for such boxes
matter put into a box must be subject to the universal boung, orger that the GSL be valid, in apparent contradiction with

(2] the conclusions of the analysis [&,4].
SIE<27R (2) T_he_ purpose of this paper is to regolve this apparent con-
tradiction. In the course of his analysis, Bekens{éhmade

whereE denotes the energy in the box, aRdlenotes some some assumptions concerning the nature of unconstrained
suitable measure of the size of the box. Naively, at leastthermal matter and the location of the floating point of the
such a bound would rescue the GSL by preventing one frombox. Under these assumptions, it is indeed necessary for the
lowering a box close enough to a black hole to violate it. validity of the GSL that the boun®) hold, as Bekenstein

However, an alternative resolution of the apparent diffi-found. However, we shall show that E®) holds automati-
culty with the GSL was given ifi3]. There it was noted that cally as a consequence of the same assumptions used to
there is a quantum “thermal atmosphere” surrounding ashow that it is necessary for the validity of the GSL. In other
black hole, which produces a large “buoyancy force” on awords, if one had matter which violated E@), then Bek-
box when it is slowly lowered very close to the horizon. enstein’s assumption about the nature of unconstrained ther-
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mal matter and/or his assumption about the location of thenergy density will depend on both the proper distahcef

floating point of the box could not be correct. the center of the box from the horizon and the proper height,
In the next section, we show that—whether or not &jy. vy, above the center of the box. Followif§], we adopt the

is satisfied—the GSL holds in any process whefpassibly  abbreviation

“thick” ) box, initially containing energ¥ and entropys, is o

lowered toward a black hole and then dropped in. Beken- _

stein’s arguments are then analyzed in Sec. Il j f(y)dV_Af,b,z fly)dy. @)

Il VALIDITY OF THE GSL EOR “THICK” BOXES The energy of the box as measured at infinity is
It was shown in[3] that the bound?2) is not needed for

the validity of the GSL for the case of a “thin” box. The

analysis off 3] was generalized to “thick” boxes in the Ap- ) ) _

pendix of [4]. However, in[4] a slightly different process Where x is the redshift factor. The weight of the box at

was consideredin response to criticisms df7]), in which  infinity is [3]

the contents of the box are allowed to slowly leak out as the av(l+

box is raised. Consequently, the formulag 4f are not im- W(I):f ol y)udvl (6)

mediately applicable to the present situation where the box is ’ al

dropped into the black hole. Thus, in this section, we shall . )

extend the analysis and arguments given in the Appendix ofhe condm(_)n_ that no extra energy be fed into or taken out of

[4] to the present case. For simplicity we restrict attentiontn® POXx as it is lowered fs

here to the case of a stafias opposed to stationarplack

hole.

To begin, in a given region of space outside of the black dl
hole, unconstrained thermal mattés definedto be the state
of matter that maximizes entropy at a fixed enefgy mea-
sured at infinity.! It should be noted that the properties of
unconstrained thermal matter may depend upon location; i.e., |
for unconstrained thermal matter the functional dependence Wg(l)=—f w(I’)dI’=Ei—f p(l,y)x(I+y)dV (8)
of the entropy densitys, on energy densitye (measured *
locally by a static observgrmay vary with position outside . -
of the black hole. We make two assumptions about unconWhereEi 'S _the initial energy O.f the box.
strained thermal matteli) We assume that unconstrained Meanwhile, the thermal radiation exerts a buoyancy force
thermal matter is(locally) homogeneous, so that the inte- on the box equal to

grated Gibbs-Duhem relation hO|@3] fb(l):A[(PX)I—b/Z_(PX)H—b/Z] (9)

Em(|)=f p(Ly)x(1+y)dV ®)

dE., ap(l,
=S ew= [P eav. @

dl

Thus the work done by the weight of the box on the agent
lowering it is

e+P—-Ts=0 (3)  whereP is the radiation pressure of the unconstrained ther-
mal matter. The work done by the buoyancy force on the
whereT is the temperature of the unconstrained thermal matagent at infinity is then
ter, andP is its pressure(ii) We assume that the “thermal
atmosphere” of a black hole is described by unconstrained

|
thermal matter, with the locally measured temperature given Wi(h)=~ Lfb(l ydi’= _f PU+y)x(I+y)av.

by T=Tpn/x, whereT=Ty,= «/27 is the Hawking tempera- (10
ture of the black hole. Both of these assumptions were also
made in Bekenstein’s analyi6]. If the box is dropped into the black hole from positign

Following [4] and [6], we now compute the change in the increase in black hole entropy will be
generalized entropy occurring when a thick box containing
matter is slowly lowered toward a black hole and then :i W
. : . ASon (Ei—Wg—Wp)
dropped in. Consider a box of cross-sectional afeand Ton
height b, containing energy density and total entropys.

, : : 1
(Here p includes any energy density that may be in box :_J | V) +P(l+ [+v)dV. 11
walls) As the box is lowered toward the black hole, the Thh LedLy) (Y (+y) 1

By contrast, the terminology “thermal matter” would be used to 2If the box is filled with matter in thermal equilibrium, then the
denote matter which is in thermal equilibrium but which may havetemperature in the box will follow the Tolman lafex1/y. Using
additional “constraints” resulting, e.g., from the presence of boxdp=Tds (and, hencedp/dl=Tdsl/dl), we see that Eq(7) is
walls (which may exclude some modes of excitation of the matter equivalent to requiring that the entropy of the box remain constant
or restrictions on the species of particles that are present. as it is lowered.
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Using Eq.(3) together withT =T,/ x, we obtain idealized process where we chodBg so that at positiort
1 the energies as measured at infinig, , of the two boxes

A :_f [p(l,y)—e(l+y)]x(I+y)dV+ (12)  agree. Then, it follows immediately from Eq&) and (12)
Sbh Thh P S that the change in black hole entrogyS,;,, is the same for

. L ) both processes. However, since the boxes have the same en-
whereS;, is the entropy of the thermal radiation displaced byergy at infinity and occupy the same region of space, the

the box. Equationi12) is equivalent to Eq(20) of [6] and it enropy. S contained in the box in the actual process cannot
corresponds directly to E¢A12) of [4] for the process con- e |arger than the entropy contained in the box in the ideal-
sidered in that reference. _ ized process. Consequently, the change in generalized en-
It also follows from Eq.(3) together withT=Tyn/x that o5y in the actual process cannot be smaller than the change

_ in generalized entropy in the idealized process, which was

d(Px)=—edy. (13 shown above to be non-negative. This proves that the GSL

Minimizing AS,,, with respect tol, and using Eqs(7) and ~ cannot be violated in the actual process.

(13), we obtain
I1l. BEKENSTEIN'S ANALYSIS

f [P('o,Y)—e(|o+Y)]Md\/: 0. (14) In [6] Bekenstein purports to show that for thick boxes
! whose “height,” b, is not small compared witA'? (where,

. o as aboveA denotes the horizontal cross-sectional area of the
Thus, the entropy mcrease.of the black hole IS m'”".“”a' V‘.’herbox), the contents of the box must satisfy the entropy bound
the contents are dropped in from the “floating pomt,” I.€. (2) if the GSL is to hold. We now briefly review Beken-
W_hen the weight of t_he_ box is equal to _the v_velght of thestein’s assumptions and conclusions, and then reconcile them
displaced thermal radiation. Equati@t¥) is identical to Eq. with the results of the previous section
(14) of [6] and Eq.(A13) of [4]. In his analysis, Bekenstein assumes that unconfined ther-

To proceed further, we first consider an idealized situation, . matter can be modelled as Wrspecies mixture of non-
in which we imagine that the box is filled with unconstramedimeractingl massless particles, so that

thermal matter and the energy in the box walls is negligible.
Let Ty denote the temperature of the matter in the box at the e Nm2T4

start of the process. Then, when lowered to positiothe P= 3= a5 - 17
matter in the box will have a temperature distribution

=T..(1)/x, whereT.(l) is determined byT, and Eq.(7).  Bekenstein then makes the approximatitmat

According to our analysis above, the optimal pldge the

sense of minimizing\ Sy, to drop such a box is at its “float- x()=~«l (18

ing point,” which is easily seen to be the position, at ) ,
whichT..(Ip) = Ty, Since at this position we haye=e. By Wherex der_lotes_ the surface gravity of the black hole. Using
Eq. (12), when the box is dropped into the black hole from th|§ appr0>_<|_mat|on, Bekenstein finds that the exact floating
its floating point,| =1, we have point condition(14) reduces to

ASy=Sy=S (15) (13-p%4° _ NA
312b*+b%4  720m2E(ly)b®

(19
and there is no change in the generalized entropy. Conse-

quently, if the box is dropped frorany position,|, we have \ynere E(lo)=/pdV is the locally measured energy of the
box at the floating point.

AS'=0 (16) Bekenstein then argues that at the floating point, the quan-
and the GSL holds in this idealized process. tity
Now consider the actual process in which the box con- NA
tains somgarbitrary distribution of matter, is lowered to an = (20)
arbitrary positionl (not necessarily the floating point of the 720m%E(ly) b3

box) and then is dropped into the black hole. Let us compare

the change in generalized entropy in this process with thé&wust satify »<1. In making this argument, Bekenstein

change in generalized entropy that would occur in the abov&akes two additional assumptior(d) that b>1/E and (2)
thatN is of order unity.(It is easy to see that these assump-
tions together withPA<b? imply »<1.) However, these as-

31t should be emphasized that we are not assuming here thatitis
physically realistic to actually have a box filled with unconstrained
thermal matter. The consideration of such a box is done here purely*Equation(18) is a good approximation sufficiently near the black
for mathematical purposes, to compare the generalized entropyole. Bekenstein’s justification for this approximation is somewhat
change that would occur in this idealized process to that whicttircular in nature, but Eq18) is not the source of any difficulties in
occurs in the actual procegsee below Bekenstein’s analysis.
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sumptions are not innocuous ones since, in conjunction with 4E,,
Eq. (17) they would imply that entropy boun@) is already Sin(Ex)= 3Ty (26)
satisfied by a wide margin for a box in Minkowski space- =0
time. Namely, since the box must have lower entropy than; is convenient to express,, in terms of the position, ., ,

unconstrained thermal matter at the same energy and Vo5t the center of mass of the box. Again applying the!
ume, we have, for the model of unconstrained thermal matteépproximation we obtain the simple relation

assumed by Bekenstein,

S S 1 j I+ av
ES(E) T @D Lyl e 27)
th cm E(lo) kE(lg)”
Hence, given thab>1/E, N~1, andA<b?, we have By Eqs.(24), (26) and (27), we have
1
E~AbT4>6, (22 S_87( T | 28
E~ 3 (Tulp) ™

from which it follows that
and from Eq.(25) and the definition, Eq.20), of #, we find

2 2 2 :

Nevertheless, Bekenstein’'s arguments correctly show Te(lo) o= b ) em,

that—irrespective of the above two additional

assumptions—if the floating point of the box is very close to
the horizon[in which case, by Eqg.19) and (20), we have

Now, assumingy<<1, the floating point conditiofi19) yields
|3~ (1/4+ n)b?. Consequently,

n<1], then buoyancy effects are negligible, and the bound T |\ 14
(2) is needed for the validity of the GSL. However, we now i%< ,,_0) ' (30)
show that if unconstrained thermal matter is described by Eq. T(lo) lem

(17), then any box that floats very close to the horizon must ) ) )
automatically satisfy Eq2). Once again, we use the fact that @nd, finally, to leading order im,
unconstrained thermal matter maximizes entropy at a fixed s

P 8 8
volume and energy at infinity, ES ?(377|g.m.|0)1/4$ ?b(Sn)l"‘«b:ZR. (31)

S(Ex,10)<Sin(Ex,l0)- (29
. ) ) Thus, we see that if the box floats very near the horizon, it
The unconstrained thermal matter is described by B@  f5)10ws that the entropy bount®) is already satisfied by a
with T=T..(1o)/x, whereT..(l,) is determined by imposing  ide margin. Consequently, the bouf@) does not have to

JexdV=E.,. Evaluating this integral using the approxima- ¢ postulated as an additional requirement.
tion (18), we find
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