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Comment on entropy bounds and the generalized second law
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In a gedanken experiment in which a box initially containing energyE and entropyS is lowered toward a
black hole and then dropped in, it was shown by Unruh and Wald that the generalized second law of black hole
thermodynamics holds, without the need to assume any bounds onSother than the bound that arises from the
fact that entropy at a given energy and volume is bounded by that of unconstrained thermal matter. The original
analysis by Unruh and Wald made the approximation that the box was ‘‘thin,’’ but they later generalized their
analysis to thick boxes~in the context of a slightly different process!. Nevertheless, Bekenstein has argued that,
for a certain class of thick boxes, the buoyancy force of the ‘‘thermal atmosphere’’ of the black hole is
negligible, and that his previously postulated bound onS/E is necessary for the validity of the generalized
second law. In arguing for these conclusions, Bekenstein made some assumptions about the nature of uncon-
strained thermal matter and the location of the ‘‘floating point’’ of the box. We show here that under these
assumptions, Bekenstein’s bound onS/E follows automatically from the fact thatS is bounded by the entropy
of unconstrained thermal matter. Thus, a box of matter which violates Bekenstein’s bound would violate the
assumptions made in his analysis, rather than violate the generalized second law. Indeed, we prove here that no
universal entropy bound need be hypothesized in order to ensure the validity of the generalized second law in
this process.@S0556-2821~99!01320-X#

PACS number~s!: 04.70.Dy, 04.62.1v
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I. INTRODUCTION

A cornerstone of black hole thermodynamics is thegen-
eralized second law~GSL!, which asserts that in any proces
the generalized entropy

S85S1Sbh ~1!

never decreases, whereS denotes the entropy of matter ou
side of black holes andSbh5A/4, whereA denotes the tota
surface area of the black hole horizons.~Here and throughou
this paper we use units whereG5c5\5k51.! The validity
of the GSL is essential for the consistency of black h
thermodynamics and for the interpretation ofA/4 as repre-
senting the physical entropy of a black hole.

It was already recognized at the time the GSL was fi
postulated that a potential difficulty arises when one lowe
box initially containing energyE and entropyS toward a
black hole @1#. Classically, a violation of the GSL can b
achieved if one lowers the box sufficiently close to the ho
zon. A resolution of this difficulty was proposed by Beke
stein by postulating that the entropy to energy ratio of a
matter put into a box must be subject to the universal bo
@2#

S/E<2pR ~2!

whereE denotes the energy in the box, andR denotes some
suitable measure of the size of the box. Naively, at le
such a bound would rescue the GSL by preventing one f
lowering a box close enough to a black hole to violate it.

However, an alternative resolution of the apparent di
culty with the GSL was given in@3#. There it was noted tha
there is a quantum ‘‘thermal atmosphere’’ surrounding
black hole, which produces a large ‘‘buoyancy force’’ on
box when it is slowly lowered very close to the horizo
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When this buoyancy force is taken into account, the optim
place to drop such a box into a black hole no longer is at
horizon of the black hole but rather at the ‘‘floating point’’ o
the box, which lies at a finite distance from the horizo
When the effects of the buoyancy force on the energy b
ance are properly taken into account, it was found that
GSL always holds in this process@3#.

The analysis of@3# assumed, for simplicity, that the bo
was ‘‘thin’’ in the sense that its proper height,b, is small
compared with the scale of variation of the redshift factor,x,
i.e., b!x(dx/dl)21, where l denotes proper distance from
the horizon. This analysis was then generalized to the cas
‘‘thick boxes’’ in @4#, although this generalization was don
in the context of a slightly different process, wherein, rath
than dropping the box into the black hole, the contents of
box are allowed to ‘‘leak out’’ as the box is raised~see also
@5#!. Nevertheless, several years ago Bekenstein argued@6#
that for boxes withb at least as large asA1/2 ~whereA de-
notes the horizontal cross-sectional area of the box!, the
buoyancy effects of the thermal atmosphere are negligi
He then showed that the bound~2! must hold for such boxes
in order that the GSL be valid, in apparent contradiction w
the conclusions of the analysis of@3,4#.

The purpose of this paper is to resolve this apparent c
tradiction. In the course of his analysis, Bekenstein@6# made
some assumptions concerning the nature of unconstra
thermal matter and the location of the floating point of t
box. Under these assumptions, it is indeed necessary fo
validity of the GSL that the bound~2! hold, as Bekenstein
found. However, we shall show that Eq.~2! holdsautomati-
cally as a consequence of the same assumptions use
show that it is necessary for the validity of the GSL. In oth
words, if one had matter which violated Eq.~2!, then Bek-
enstein’s assumption about the nature of unconstrained t
©1999 The American Physical Society09-1
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mal matter and/or his assumption about the location of
floating point of the box could not be correct.

In the next section, we show that—whether or not Eq.~2!
is satisfied—the GSL holds in any process where a~possibly
‘‘thick’’ ! box, initially containing energyE and entropyS, is
lowered toward a black hole and then dropped in. Bek
stein’s arguments are then analyzed in Sec. III.

II. VALIDITY OF THE GSL FOR ‘‘THICK’’ BOXES

It was shown in@3# that the bound~2! is not needed for
the validity of the GSL for the case of a ‘‘thin’’ box. The
analysis of@3# was generalized to ‘‘thick’’ boxes in the Ap
pendix of @4#. However, in@4# a slightly different process
was considered~in response to criticisms of@7#!, in which
the contents of the box are allowed to slowly leak out as
box is raised. Consequently, the formulas of@4# are not im-
mediately applicable to the present situation where the bo
dropped into the black hole. Thus, in this section, we sh
extend the analysis and arguments given in the Appendi
@4# to the present case. For simplicity we restrict attent
here to the case of a static~as opposed to stationary! black
hole.

To begin, in a given region of space outside of the bla
hole,unconstrained thermal matteris definedto be the state
of matter that maximizes entropy at a fixed energy~as mea-
sured at infinity!.1 It should be noted that the properties
unconstrained thermal matter may depend upon location;
for unconstrained thermal matter the functional depende
of the entropy density,s, on energy density,e ~measured
locally by a static observer!, may vary with position outside
of the black hole. We make two assumptions about unc
strained thermal matter:~i! We assume that unconstraine
thermal matter is~locally! homogeneous, so that the int
grated Gibbs-Duhem relation holds@3#:

e1P2Ts50 ~3!

whereT is the temperature of the unconstrained thermal m
ter, andP is its pressure.~ii ! We assume that the ‘‘therma
atmosphere’’ of a black hole is described by unconstrai
thermal matter, with the locally measured temperature gi
by T5Tbh/x, whereT5Tbh5k/2p is the Hawking tempera
ture of the black hole. Both of these assumptions were a
made in Bekenstein’s analysis@6#.

Following @4# and @6#, we now compute the change i
generalized entropy occurring when a thick box contain
matter is slowly lowered toward a black hole and th
dropped in. Consider a box of cross-sectional areaA and
height b, containing energy densityr and total entropyS.
~Here r includes any energy density that may be in b
walls.! As the box is lowered toward the black hole, th

1By contrast, the terminology ‘‘thermal matter’’ would be used
denote matter which is in thermal equilibrium but which may ha
additional ‘‘constraints’’ resulting, e.g., from the presence of b
walls ~which may exclude some modes of excitation of the mat!
or restrictions on the species of particles that are present.
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energy density will depend on both the proper distance,l, of
the center of the box from the horizon and the proper heig
y, above the center of the box. Following@6#, we adopt the
abbreviation

E f ~y!dV[AE
2b/2

b/2

f ~y!dy. ~4!

The energy of the box as measured at infinity is

E`~ l !5E r~ l ,y!x~ l 1y!dV ~5!

where x is the redshift factor. The weight of the box a
infinity is @3#

w~ l !5E r~ l ,y!
]x~ l 1y!

] l
dV. ~6!

The condition that no extra energy be fed into or taken ou
the box as it is lowered is2

05
dE`

dl
2w5E ]r~ l ,y!

] l
x~ l 1y!dV. ~7!

Thus the work done by the weight of the box on the ag
lowering it is

Wg~ l !52 È l

w~ l 8!dl85Ei2E r~ l ,y!x~ l 1y!dV ~8!

whereEi is the initial energy of the box.
Meanwhile, the thermal radiation exerts a buoyancy fo

on the box equal to

f b~ l !5A@~Px! l 2b/22~Px! l 1b/2# ~9!

whereP is the radiation pressure of the unconstrained th
mal matter. The work done by the buoyancy force on
agent at infinity is then

Wb~ l !52 È l

f b~ l 8!dl852E P~ l 1y!x~ l 1y!dV.

~10!

If the box is dropped into the black hole from positionl,
the increase in black hole entropy will be

DSbh5
1

Tbh
~Ei2Wg2Wb!

5
1

Tbh
E @r~ l ,y!1P~ l 1y!#x~ l 1y!dV. ~11!

2If the box is filled with matter in thermal equilibrium, then th
temperature in the box will follow the Tolman lawT}1/x. Using
dr5Tds ~and, hence,]r/] l 5T]s/] l ), we see that Eq.~7! is
equivalent to requiring that the entropy of the box remain cons
as it is lowered.
9-2
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Using Eq.~3! together withT5Tbh/x, we obtain

DSbh5
1

Tbh
E @r~ l ,y!2e~ l 1y!#x~ l 1y!dV1Sth ~12!

whereSth is the entropy of the thermal radiation displaced
the box. Equation~12! is equivalent to Eq.~20! of @6# and it
corresponds directly to Eq.~A12! of @4# for the process con
sidered in that reference.

It also follows from Eq.~3! together withT5Tbh/x that

d~Px!52edx. ~13!

Minimizing DSbh with respect tol, and using Eqs.~7! and
~13!, we obtain

E @r~ l 0 ,y!2e~ l 01y!#
]x~ l 1y!

] l
dV50. ~14!

Thus, the entropy increase of the black hole is minimal wh
the contents are dropped in from the ‘‘floating point,’’ i.
when the weight of the box is equal to the weight of t
displaced thermal radiation. Equation~14! is identical to Eq.
~14! of @6# and Eq.~A13! of @4#.

To proceed further, we first consider an idealized situat
in which we imagine that the box is filled with unconstrain
thermal matter and the energy in the box walls is negligib3

Let T0 denote the temperature of the matter in the box at
start of the process. Then, when lowered to positionl, the
matter in the box will have a temperature distributionT
5T`( l )/x, whereT`( l ) is determined byT0 and Eq.~7!.
According to our analysis above, the optimal place~in the
sense of minimizingDSbh) to drop such a box is at its ‘‘float
ing point,’’ which is easily seen to be the position,l 0, at
which T`( l 0) 5 Tbh, since at this position we haver5e. By
Eq. ~12!, when the box is dropped into the black hole fro
its floating point,l 5 l 0, we have

DSbh5Sth5S ~15!

and there is no change in the generalized entropy. Co
quently, if the box is dropped fromany position, l, we have

DS8>0 ~16!

and the GSL holds in this idealized process.
Now consider the actual process in which the box c

tains some~arbitrary! distribution of matter, is lowered to a
arbitrary positionl ~not necessarily the floating point of th
box! and then is dropped into the black hole. Let us comp
the change in generalized entropy in this process with
change in generalized entropy that would occur in the ab

3It should be emphasized that we are not assuming here that
physically realistic to actually have a box filled with unconstrain
thermal matter. The consideration of such a box is done here pu
for mathematical purposes, to compare the generalized ent
change that would occur in this idealized process to that wh
occurs in the actual process~see below!.
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idealized process where we chooseT0 so that at positionl
the energies as measured at infinity,E` , of the two boxes
agree. Then, it follows immediately from Eqs.~5! and ~12!
that the change in black hole entropy,DSbh, is the same for
both processes. However, since the boxes have the sam
ergy at infinity and occupy the same region of space,
entropy,S, contained in the box in the actual process can
be larger than the entropy contained in the box in the ide
ized process. Consequently, the change in generalized
tropy in the actual process cannot be smaller than the cha
in generalized entropy in the idealized process, which w
shown above to be non-negative. This proves that the G
cannot be violated in the actual process.

III. BEKENSTEIN’S ANALYSIS

In @6# Bekenstein purports to show that for thick box
whose ‘‘height,’’ b, is not small compared withA1/2 ~where,
as above,A denotes the horizontal cross-sectional area of
box!, the contents of the box must satisfy the entropy bou
~2! if the GSL is to hold. We now briefly review Beken
stein’s assumptions and conclusions, and then reconcile t
with the results of the previous section.

In his analysis, Bekenstein assumes that unconfined t
mal matter can be modelled as anN-species mixture of non-
interacting massless particles, so that

P5
e

3
5

Np2T4

45
. ~17!

Bekenstein then makes the approximation4 that

x~ l !'k l ~18!

wherek denotes the surface gravity of the black hole. Usi
this approximation, Bekenstein finds that the exact float
point condition~14! reduces to

~ l 0
22b2/4!3

3l 0
2b41b6/4

5
NA

720p2E~ l 0!b3
~19!

whereE( l 0)5*rdV is the locally measured energy of th
box at the floating point.

Bekenstein then argues that at the floating point, the qu
tity

h3[
NA

720p2E~ l 0!b3
~20!

must satify h!1. In making this argument, Bekenste
makes two additional assumptions:~1! that b@1/E and ~2!
that N is of order unity.~It is easy to see that these assum
tions together withA&b2 imply h!1.! However, these as

is

ly
py
h

4Equation~18! is a good approximation sufficiently near the bla
hole. Bekenstein’s justification for this approximation is somew
circular in nature, but Eq.~18! is not the source of any difficulties in
Bekenstein’s analysis.
9-3
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sumptions are not innocuous ones since, in conjunction w
Eq. ~17! they would imply that entropy bound~2! is already
satisfied by a wide margin for a box in Minkowski spac
time. Namely, since the box must have lower entropy th
unconstrained thermal matter at the same energy and
ume, we have, for the model of unconstrained thermal ma
assumed by Bekenstein,

S

E
<S S

ED
th

;
1

T
. ~21!

Hence, given thatb@1/E, N;1, andA&b2, we have

E;AbT4@
1

b
, ~22!

from which it follows that

S

E
!~Ab2!1/4&b52R. ~23!

Nevertheless, Bekenstein’s arguments correctly sh
that—irrespective of the above two addition
assumptions—if the floating point of the box is very close
the horizon@in which case, by Eqs.~19! and ~20!, we have
h!1#, then buoyancy effects are negligible, and the bou
~2! is needed for the validity of the GSL. However, we no
show that if unconstrained thermal matter is described by
~17!, then any box that floats very close to the horizon m
automatically satisfy Eq.~2!. Once again, we use the fact th
unconstrained thermal matter maximizes entropy at a fi
volume and energy at infinity,

S~E` ,l 0!<Sth~E` ,l 0!. ~24!

The unconstrained thermal matter is described by Eq.~17!
with T5T`( l 0)/x, whereT`( l 0) is determined by imposing
*exdV5E` . Evaluating this integral using the approxim
tion ~18!, we find

@T`~ l 0!#45
15~ l 0

22b2/4!2k3E`

Np2Abl0
. ~25!

The entropy density of the thermal radiation iss54e/3T, so
10400
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Sth~E`!5
4E`

3T`~ l 0!
. ~26!

It is convenient to expressE` in terms of the position,l c.m.,
of the center of mass of the box. Again applying thex} l
approximation, we obtain the simple relation

l c.m.[
E ~ l 1y!rdV

E~ l 0!
5

E`

kE~ l 0!
. ~27!

By Eqs.~24!, ~26! and ~27!, we have

S

E
<

8p

3 S Tbh

T`~ l 0! D l c.m., ~28!

and from Eq.~25! and the definition, Eq.~20!, of h, we find

S Tbh

T`~ l 0! D
4

5
3h3b4l 0

~ l 0
22b2/4!2l c.m.

. ~29!

Now, assumingh!1, the floating point condition~19! yields
l 0
2'(1/41h)b2. Consequently,

Tbh

T`~ l 0!
'S 3h

l 0

l c.m.
D 1/4

, ~30!

and, finally, to leading order inh,

S

E
<

8p

3
~3h l c.m.

3 l 0!1/4<
8p

3
b~3h!1/4!b52R. ~31!

Thus, we see that if the box floats very near the horizon
follows that the entropy bound~2! is already satisfied by a
wide margin. Consequently, the bound~2! does not have to
be postulated as an additional requirement.
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