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G1 spacetimes with gravitational and scalar waves

Ruth Lazkoz
Astronomy Unit, School of Mathematical Sciences, Queen Mary & Westfield College, London E1 4NS, United Kingdom

~Received 21 December 1998; published 15 October 1999!

A new algorithm to generate families of inhomogeneous massless scalar field spacetimes is presented. New
solutions to Einstein field equations, having a single isometry, are generated by breaking the homogeneity of
massless scalar fieldG2 models along one direction. As an illustration of the technique, spacetimes which in
their late time limit represent perturbations in the form of gravitational and scalar waves propagating on a
non-static inhomogeneous background are considered. Several features of the obtained metrics are discussed,
such as their early and late time limits, structure of singularities and physical interpretation.
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PACS number~s!: 04.20.Jb, 04.30.2w, 98.80.Hw
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I. INTRODUCTION

The high degree of isotropy observed in the Universe
large scales today is usually combined with the Coperni
principle to justify the assumption of homogeneity on t
same scales. However, there is no known reason to ass
that the Universe was isotropic nor homogeneous at v
early epochs. The puzzling question of how the Unive
might have evolved from an initially irregular state into th
current isotropic and apparently homogeneous state lac
complete answer at present. To date, several regulariza
mechanisms have been put forward, such as Misner’s cha
cosmological program@1,2#, the standard inflationary sce
nario @3–6# and, more recently, the alternative pre-big ba
inflationary scenario@7#. However, none of these is com
pletely satisfactory, and in general one cannot know for c
tain which range of initial conditions could have allowed t
Universe to evolve into its present form. Such scenarios
only provide one with partial indications of what initial con
ditions would have led a generic universe into the one
served at present. One way to maximize the amount of
formation obtainable from any cosmological program, su
as those mentioned above, relies on studying the evolutio
models with as many degrees of freedom as possible.
idea has motivated the special attention paid to inhomo
neous cosmological models in the last decades~see Krasinski
@8# for a review!.

In general, attempts to obtain new inhomogeneous me
involve some symmetry assumption, so that the full implic
tions of the non-linearity of the theory are compromised
some extent. In addition, non-vacuum spacetimes are
quired to have a physically meaningful matter content,
that they portray realistic situations. Motivated by the pos
bility of the existence of non-trivial massless scalar fields
the early universe, I will concern myself here with non-sta
inhomogeneous solutions to the Einstein equations indu
by such matter sources. In particular, I present a new a
rithm to generate families of massless scalar fieldG1 met-
rics, i.e. time-dependent spacetimes with a single isome
These new sets of solutions will be generated starting fr
generalized vacuum Einstein-Rosen spacetimes, which a
an Abelian group of isometriesG2 acting transitively on
0556-2821/99/60~10!/104008~10!/$15.00 60 1040
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spacelike surfaces. In the last decades there has been i
sive study ofG2 vacuum and matter filled cosmologica
models and several major reviews on the subject have b
written @9,10,8#.

Given the large number of knownG2 cosmologies and the
various available techniques to generate further ones, a
rithms transforming such spacetimes intoG1 metrics repre-
sent powerful tools for generating new inhomogeneous s
tions. Explicit examples ofG1 metrics are rare, and
therefore, new solutions of this kind are significant items
the collection of exact solutions of Einstein’s field equation
The new algorithm displays the nice property of reducing
symmetry while keeping the type of matter source unalter
Nonetheless, the input and output solutions may not ad
the same physical interpretation, or even share some of t
relevant features. For this reason, if one wishes to grasp
physical meaning of every new solution, an independ
analysis of it will have to be carried out.

Herein, I construct and analyzeG1 models representing
the propagation of gravitational and matter waves on a s
tially curved non-static background. The study of primord
inhomogeneities in the form of waves is an active area
research. This is motivated by the fact that wave-like prim
dial perturbations originating from vacuum fluctuations du
ing inflation may be responsible for structure formation. U
like other types of inhomogeneities formed in the ea
universe, they would have remained nearly unaltered up
the present, therefore allowing the possibility of their dete
tion.

The exact inhomogeneousG1 spacetimes seeded b
gravitational and matter waves studied here represent a
eralization of more symmetric configurations considered
Charach and Malin@11#, because in those models the bac
ground hosting the waves was homogeneous. Another
portant difference between the two sets of solutions is t
the new models are manifestly degenerate atx50, and for
that reason, it seems inadequate to refer to them as cosm
gies.

In the context of colliding plane waves,G2 diagonal
spacetimes with waves of scalar and gravitational nat
have also been considered. Spacetimes such as those st
by Wu @12# or any solution generated by the methods
©1999 The American Physical Society08-1
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RUTH LAZKOZ PHYSICAL REVIEW D 60 104008
Barrow @13# and Wainwrightet al. @14# could be taken as
starting points to construct newG1 metrics modeling inter-
actions of waves on a curved background.

Furthermore, interest in this generation procedure is
restricted to the relativistic framework; solutions to Ei
stein’s equations with a massless scalar field~MSF! may be
used to generate solutions to alternative theories of grav
such as Brans-Dicke theory or string theory in its low ene
limit. In the latter case, one could even take those spaceti
to generate new solutions with other massless modes in
characteristic spectrum of the theory as recently discusse
Clancyet al. @15#.

The plot of the paper is as follows: First, theG1 massless
scalar field solution generating algorithm is introduce
Then, I construct new inhomogeneous metrics starting fr
a infinite dimensional family of solutions which in the
WKB limit admit an interpretation in terms of waves. It wi
be shown that at early times these solutions behave lik
Belinskii-Khalatnikov generalized model@16# with homoge-
neity broken along one spatial direction. The structure
spacelike singularities of the new solutions in the early ti
limit will be analyzed as well, and the special features due
the presence of the matter source will be indicated. Next,
solutions will be considered in their high frequency limit a
it will be shown that these models can be thought of in
same physical terms as theirG2 counterparts. In particula
they represent spacetimes with a spatially inhomogene
background filled with a scalar field and a null fluid
‘‘gravitons’’ and ‘‘scalar particles.’’ In this regime, the sca
lar field is made of the addition of a time dependent term a
another one depending on a spatial coordinate. As t
grows the null fluid’s contribution to the energy-momentu
tensor grows faster than the one associated with the ho
geneous part of the scalar field generating the backgro
geometry. However, that will not be necessarily the c
with the contribution of the inhomogeneous part of the sca
field; initial conditions will determine whether at very la
times the matter content corresponds to a null fluid, a sc
field, or a combination of both. Finally, the main conclusio
will be outlined.

II. SOLUTION GENERATION ALGORITHM

Basically, the new generating technique is a prescript
to break homogeneity along one direction inG2 MSF cos-
mologies, ending up with new spacetimes possessing a s
isometry, but having the same type of matter content.
markably, the pioneering investigations on matter filled u
verses of Einstein-Rosen type, carried out respectively
Tabenski and Taub@17# and Liang@18# considered models
with noninteracting scalar fields, even though at the ti
there was no clear physical motivation.

According to a conjecture due to Belinskii, Lifshitz an
Khalatnikov ~BLK ! @19–24#, G2 metrics seem to be spe
cially relevant for the description of the early universe,
such solutions give the leading approximation to a gen
solution near the singularity att50. Their claim has recently
found the support of numerical results@25–31#. In particular
BLK considered approximate Einstein-Rosen solutions
10400
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performed an analysis of their local behavior in the early a
late time regime. An interesting result reached in the cou
of those investigations, which is specially relevant for t
present paper, was the prediction of a high frequency gr
tational wave regime in the late epochs of the Universe.

Before going any further it is convenient to explain ho
G2 spacetimes induced by a MSF can be generated sta
from vacuum solutions to Einstein’s equations with the sa
symmetry. For the sake of simplicity, the discussion will
restricted here to a particular case of a well-known gene
procedure @11,13,14,32–35#. The generic diagonal line
element withG2 symmetry will be taken as a starting poin

dsv
25ef v~ t,z!~2dt21dz2!1Gv~ t,z!~epv~ t,z!dx2

1e2pv~ t,z!dy2!, ~1!

where the subscriptv stands for vacuum. A new solutiongmn

of the Einstein equations with a massless scalar fieldw as a
source, and line element:

ds25ef ~ t,z!~2dt21dz2!1G~ t,z!~ep~ t,z!dx21e2p~ t,z!dy2!,
~2!

can be obtained by the following transformations:

G5Gv , ~3a!

p5Bpvv1C logGv , ~3b!

f 5 f v1Epv1F logGv , ~3c!

w5Apv1D logGv ; ~3d!

provided that the constantsA, B, C, D, EandF are subject to
the constraints:

BC12AD5E, ~4a!

C212D252F, ~4b!

B212A251. ~4c!

Conditions~4! arise by demanding the following equation
to be satisfied:

Rmn5w ,mw ,n , ~5a!

¹g¹gw50. ~5b!

In principle, a large number of new MSFG2 cosmologies
can be obtained by simply applying the procedure sketc
above to any of the representatives of the populated fam
of vacuum Einstein-Rosen spacetimes. However, genera
MSF solutions with a lower degree of symmetry is a mo
cumbersome task. At this point, attention should be drawn
a method given by Feinsteinet al. @36#, which allows one to
generate families of solutions with a two-dimensional deg
of inhomogeneity and a self-interaction term for the massl
field of the form
8-2
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V5V0~l!e2lw. ~6!

With this procedure new metrics are obtained by introduc
an x-dependent conformal factor on an inputG2 metric, and
where in general the potential term only vanishes forulu
56. This difficulty in canceling the self-interaction term fo
the scalar field can be traced back to the highly symme
x-dependence of the models.

In order to find a prescription for introducing an add
tional degree of symmetry in MSFG2 metrics without
switching on a potential in the process, I have considered
possibility of allowing the metric to depend onx in a more
general way. In particular, I have sought metrics of the for

ds̃25V~x!ef ~ t,z!~2dt21dz2!1G~ t,z!@ep~ t,z!dx2

1J~x!e2p~ t,z!dy2#, ~7!

and made the following ansatz for the scalar field:

w̃~ t,z,x!5w~ t,z!1L~x!. ~8!

Note that the massless scalar field case included in the s
tions of Feinsteinet al. is also a particular case of the mode
here. Since the requirement here is that no potential sh
arise in the transformations, the equations that must hold

R̃mn5w̃ ,mw̃ ,n , ~9a!

¹̃g¹̃gw̃50. ~9b!

Explicitly, Eq. ~9a! is equivalent to the set of equations

R̃005R001ef 2p
J ,xV ,x12JV ,xx

4GJ
5w̃ ,t

2, ~10a!

R̃115R112ef 2p
J ,xV ,x12JV ,xx

4GJ
5w̃ ,z

2 , ~10b!

R̃015R015w̃ ,tw̃ ,z , ~10c!

R̃225R221
J ,x

2 22JJ ,xx

4J2 1
V ,x

2 22VV ,xx

2V2 5w̃ ,x
2 ,

~10d!

R̃125
G,zV ,x

2GV
1

J ,xp,z

2J
5w̃ ,zw̃ ,x , ~10e!

R̃025
G,tV ,x

2GV
1

J ,xp,t

2J
5w̃ ,tw̃ ,x , ~10f!

R̃335R331e22p
J ,x

2 22JJ ,xx

4J
2e22p

J ,xV ,x

2V
50;

~10g!

whereas Eq.~9b! in explicit form reads

gmn¹m¹nw

V
1e2p

~VJ1/2w̃ ,x! ,x

J1/2 50. ~11!
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Inspection of Eqs.~10! indicates that a solution to Eqs.~10!,
~11! is given by

V~x!5xk, ~12a!

J~x!5xn, ~12b!

L~x!5m loguxu; ~12c!

subject to the following constraints on the parametersk, n
andm:

k~2k1n22!50, ~13a!

n~2k1n22!50, ~13b!

k1nC52Dm, ~13c!

nB52Am, ~13d!

2m254k23k2. ~13e!

In this case, Eq.~11! reduces to

m~2k1n22!50, ~14!

which is automatically satisfied provided that~13a!,~13b!,
~13e! hold. Note that the parameterk must be non-negative
and not larger than 4/3. Consistency of the solutions is
flected by the fact that for the choice

m5n5k50, ~15!

the set of equations~13!,~14! is satisfied for any value ofA,
B, C andD, and the inputG2 MSF is recovered. On the on
hand, formÞ0 andkÞ1, if k and C are taken as free pa
rameters, one can parametrize the solution’s constants in
form:

n5222k, ~16a!

m5sgn~m!
A4k23k2

&
, ~16b!

A5& sgn~A!U12k

22kU, ~16c!

B5sgn~Am!U12k

22kU A4k23k2

12k
, ~16d!

D5sgn~m!
k1~222k!C

A8k26k2
, ~16e!

E5sgn~Am!U222k

22k U C~22k!21~222k!k

A4k23k2
,

~16f!

F5
C2

2
1

@k1~222k!C#2

8k26k2 . ~16g!
8-3
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RUTH LAZKOZ PHYSICAL REVIEW D 60 104008
Four different subcases can be distinguished, dependin
the choice of the sign ofA andm. On the other hand, in the
particular casemÞ0, k51, the constants take the values:

&umu5&uDu5uBu ~17a!

A50 ~17b!

C21152F ~17c!

E5sgn~B!. ~17d!

Whatever the values of the parameters, the metricg̃mn

will only admit one Killing vector, namelyjkv5]/]y.
An important feature of the new models is the manif

degeneracy of their line element atx50. In order to prove
that this singularity is essential, and not a mere effect of
coordinate system chosen, one can compute the curva
scalars for a generic exact solution belonging to this cla
Due to the inhomogeneous character of the metric it is p
sible in principle to have a conspiracy between the para
eters of the solutions, so that on certain hypersurfaces s
of those invariants are identically null, and therefore do
reveal the presence of a singularity in the spacetime. In
case here, however, either the Kretchmann scalarK
5RglsdRglsd or the Ricci scalarRsdRsd are non-negative
everywhere and they can be used to spot singularities.
instance, in the case of a generic solution one has

RsdRsd5
1

x2k F ~f t
41fz

4!

e2 f 1
m2

xne2pG . ~18!

Clearly, curvature is infinite atx50. Moreover, some com
ponents of the energy-momentum tensor will become
bounded on this hypersurface as well. This suggest the p
ence of trapped energy on the hyperplanex50, a situation
that resembles the one occurring in topological defects
which, however, the associated singularity can be regular
in some circumstances~see for e.g.@37#!.

Bearing in mind the similarity between the new algorith
and the one of Feinsteinet al., one might wonder whethe
geometries like~7! can be also seeded by a scalar field w
an exponential potential. Such a situation, however, will o
be possible ifn5k, which is nothing but the case alread
found in Ref.@36#. In order to prove this, let us consider th
case where the generic geometry~7!, under the constrain
~12!, is induced by an exponential potentialṼ(w̃)
5V0(l)e2lw̃. In this case the field equations are

R̃mn5w̃ ,mw̃ ,n1g̃mnV0e2lw̃, ~19a!

¹̃g¹̃gw̃52
]Ṽ~ w̃ !

]̃w̃
. ~19b!

It is only necessary to look at the equations forR̃00 andR̃33
to realize the following constraint must hold:

k~222k2n!5n~222k2n!54V0Þ0. ~20!
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Compatibility of the latter set of equations in the case o
non-vanishing potential requiresn5k, or in other words,
that the x-dependence of the metric is given by a glob
conformal factor, as in the case already known.

It is important to note here that the generation techniq
does not restrict the character of the gradient of metric fu
tion G(t,z) of the input metric. This vector field determine
the local behavior of the spacetime, depending on wheth
is globally timelike, spacelike, null, or varies from point t
point. Although in what follows I am focusing on a case wi
a timelike character of the gradient ofG(t,z), a window is
left open for the study of other physically appealing case

Moreover, even though our generating prescription h
been used to break homogeneity of an input MSF solut
with a single degree of inhomogeneity, it is also possible
construct an equivalent algorithm to transform MSF sta
spacetimes into non-static ones. One should start with a M
model with two commuting Killing vectors, one of them be
ing timelike, and then generalize this solution by introduci
time dependent factors in the metric and scalar field as it
been done here.

III. SPACETIMES FILLED WITH GRAVITATIONAL AND
SCALAR WAVES

After having outlined our method to generate uniparam
ric families of G1 spacetimes, I shall illustrate the techniqu
by taking as a starting point the vacuum Gowdy-Berg
Misner models@38–42#, defined by:

Gv5t, ~21a!

pv5b log t1(
j 51

`

cos@ j ~z2zn!#a j J0~ j t !, ~21b!

f v5
b221

2
1b(

j 51

`

a j cos@a j~z2zj !#J0~ j t !

1
t2

4 (
j 51

`

j 2$@a j J0~ j t !#21@a j J1~ j t !#2%

2
t

2 (
j 51

`

j a j
2 cos2@a j~z2zj !#J0~ j t !J1~ j t !

1
t

2 (
l 51

`

(
j 51

`
l j

l 22 j 2 $sin@ l ~z2zl !#sin@ j ~z2zj !#

3@ la la j J1~ l t !J0~ j t !2 j a la j J0~ l t !J1~ j t !#

1cos@ l ~z2zl !#cos@ j ~z2zj !#@ j a la j J1~ l t !J0~ j t !

2 la la j J0~ l t !J1~ j t !#%. ~21c!

In this paper, however, theG1 derived from the latter
vacuum metrics solutions will only be considered in t
asymptotic limitst;0, and j t @1 for any value ofj.

Charach and Malin@11# studied MSFG2 counterparts of
the same vacuum models. These can be thought of as i
mogeneous sinusoidal perturbations of the Belins
8-4
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G1 SPACETIMES WITH GRAVITATIONAL AND SCALAR WAVES PHYSICAL REVIEW D 60 104008
Khalatnikov homogeneous solution@16#, which also has a
MSF as a seed. Charach and Malin’s cosmologies repre
propagation of gravitational and scalar waves on an an
tropically expanding flat background. The gravitational a
scalar degrees of freedom of those spacetimes satisfy li
wave equations, with the form of cylindrically symmetr
waves propagating on Minkowski spacetime, for which t
spatial and temporal coordinates have been interchan
Since the solutions have a standing wave form they are f
compatible with theS1

^ S1
^ S1 topology~three-torus!. Nev-

ertheless, theG1 counterparts of Gowdy-Berger-Misne
models cannot have the same topology as them. In the
mogeneity breaking process a term proportional to loguxu is
introduced in the scalar fieldw̃, and the coordinatex cannot
be cyclic any longer.

A. Early time behavior and singularities

From the analysis of the newG1 solution’s early time
behavior it can be determined whether spacelike singular
arise at the time origint50. A look at expressions~21!
shows that in the case here, the periodic inhomogeneities
be neglected in the very first stages of that spacetime’s e
lution. Our metrics will be thenG2 inhomogeneous space
times generalizing the cosmological models
Doroshkevich-Zeldovich-Novikov~DZN! @43#, which have
three commuting Killing vectors. In this limit, the metric an
scalar field read

g̃mn;diag„2xke1~ t !,xke1~ t !,e2~ t !,xne3~ t !… ~22a!

w̃5w0 log t1m loguxu ~22b!

where

e15t f 0, ~23a!

e25t11p0, ~23b!

e35t12p0, ~23c!

and

p05Bb1C, ~24a!

f 05
b221

2
1Eb1F, ~24b!

w05Ab1D. ~24c!

In addition, the following relation holds:

f 05
p0

221

2
1w0

2. ~25!

Following Charach and Malin, the metric can be rewritt
using a synchronous set of coordinates in which the n
time coordinatet is defined

dt5Ae1~ t !dt; ~26!
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this way the metric can be recognized as a simple inhom
geneous generalization of a Belinskii-Khalatnikov@16# solu-
tion. Their structure is very similar to that of Bianchi I~Kas-
ner! vacuum models.

In broad terms, breakdowns of the coordinate syste
and in particular a spacelike singularity at the beginning
time, will be reflected in the behavior of the curvature inva
ants. Again, we choose one of the two such invariants wh
are non-negative everywhere, in particular the Kretchma
scalarK5RmnsdRmnsd, and address the question of wheth
the spacetime’s curvature becomes unbounded att50. In the
case of the models under discussion it explicitly reads:

K5
3 f 0

2

8t6 f 014x6k @~11p0
2!212~ f 011!2#1

3

16t2 f 014x2k

3@~12p0!2~11 f 1p!21~11p!2~11 f 2p!2#.

~27!

Because of~25!, K is singular att50 for any value of the
three free parameters of the solution, indicating thus the
neric presence of a spacelike singularity at the time origi

It is also possible to study the spacelike singularity str
ture of the solutions in a more refined way, in particular
investigating the expansion along each spatial axis. In g
eral, the behavior will strongly depend on the values of
parametersk, C andb. It can be shown analytically that fo
large enoughb there will necessarily be contraction alon
the z axis; moreover, ifk.1 that will be the case regardles
the value ofb andC. Another fact one can easily check is th
impossibility of having simultaneous contraction along ax
x andy. Three main types of singular behavior exist:

~a! Point-like singularities~Quasi-Friedmann behavior!
All three spatial directions shrink as the initial timet
50 is approached; or explicitly limt→0e i50; i . De-
pending on how many directions have the same exp
sion rate, the behavior will be completely anisotrop
axially symmetric or isotropic.

~b! Finite lines
This type of singular behavior occurs when in the v
cinity of t50 one of the spatial directions neither e
pands nor contracts with time. In other words, it is sa
that the directioni is a finite line if limt→0e i51. The
subcases can be classified according to which direc
behaves in that way. In general, there will be a sin
finite line, though it is possible to have particular cas
for which a second finite line exists.

~c! Infinite lines ~Quasi Kasner regime!
An infinite line along the i direction exists when
limt→0e i5`. Again, three cases can be seen to occ
depending on which is the axis displaying that featu
For some particular values of the parameters the m
mum allowed number of two infinite lines can b
reached.

It is interesting to compare the main features of the n
models with those of Kasner spacetimes, to which they
closely related. Kasner models are genuinely anisotropic
8-5
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FIG. 1. Structure of singularities of the inhomogeneous generalization of Belinskii-Khalatnikov’s model forC50.5 ~l.h.s.! and C
520.5 ~r.h.s.! with sgn(Am)51. The black lines indicate the value ofb as a function ofk for which a given direction behaves as a finite lin
The black continuous, dashed and dashed-dotted lines correspond to a finite line along directionz, yor x respectively. The gray lines indicat
the value ofb as a function ofk for which two spatial directions have the same expansion rate. The gray continuous, dash
dashed-dotted lines correspond respectively toe25e3 , e15e3 ande15e2 .
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the sense that particular cases with isotropic expansion
excluded. It is worth mentioning as well that in Kasner mo
els finite lines always come in pairs, and the fact there can
be more than one infinite line.

Since the metric functions of the worked-out examp
depends on the three free parameters in a rather cumber
way, graphic methods will be the most convenient to prov
further insight in the structure of spacelike singularities. F
simplicity, the parameterC will be kept fixed. In Fig. 1 two
different sets of lines can be distinguished. On the one ha
the black lines in each plot correspond to the curves al
which a spatial direction becomes a finite line. In the reg
delimited by the black continuous line and the axes, a infin
line type of singularity arises along directionz. Here one can
see how forC50.5 it is possible to have simultaneously th
same behavior along directionsy and z. For k.1, in the
region above the black dashed line, there is contraction a
direction y, though this behavior gets reversed fork,1.
Similarly, for b values less than those along the dash
dotted line contraction takes place, and the contrary happ
for k.1. The points where two black lines intersect cor
spond to having two finite lines. On the other hand, the g
lines represent the curves along which two spatial directi
display the same expansion rate. The fact there is one p
at which the three gray lines intersect, reflects the possib
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of having isotropic expansion, and for the twoC values cho-
sen that point lies in thek.1 region.

B. WKB limit

With regard to the physical interpretation of the new s
lutions constructed here, it is their high-frequency lim
which turns out to be most interesting. This limit, also call
the WKB regime, corresponds to the epoch when the ti
elapsed since the beginning of the Universe is much lar
than the period of any perturbation mode. By takingj t @1,
for every value ofj, in the normal mode expansions of th
scalar field and metric functions, Charach and Malin we
able to show that the relativistic solutions taken here as
put, represent scalar and gravitational waves propagating
an spatially flat background. In this limit, such universes
causally connected because the particle horizon is larger
the wavelength of any of the modes of the independent
grees of freedom, namely the transverse part of the grav
tional field p and the scalar fieldw̃.

In this vein, it will be proved here that theG1 counter-
parts to Charach and Malin’s cosmological models can a
be thought of in terms of non-static spacetimes contain
wave-like perturbations. Thus, the physical interpretation
not spoiled in the process of homogeneity breaking. A dir
8-6
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consequence of the additional degree of inhomogen
present in theG1 solutions, as compared to their more sym
metric counterparts, is that the background on which
waves live is not spatially flat. This can be checked by dir
computing of the curvature of thet5constantthree dimen-
sional hypersurfaces. Non-static backgrounds perturbed
waves have also been considered in a series of pape
Centrella and Matzner@44–46# who studied collisions of
plane gravitational waves in Kasner cosmologies. Exact
lutions describing propagation of waves in MSF Friedma
Robertson-Walker~FRW! universes have also been tho
oughly studied@47–52#.

Let us consider now the late time expressions for the m
ric functions and the scalar field of theG1 spacetimes ob-
tained by applying the new technique to Gowdy-Berg
Misner cosmological models~21!:

p;p0 log t1Bp̄, ~28a!

f ; f 0 log t1S t

2p D (
j 51

`

j a j
2, ~28b!

w̃;w0 log t1Ap̄1m loguxu, ~28c!

p̄5(
j 51

` A 2

j pt
a j cosS j t 2

p

4 D
3cos@ j ~z2zj !#. ~28d!

Since in this regimep̄!1, the metricg̃mn can be split into a
backgroundh̃mn plus a perturbation metrich̃mn , that is

g̃mn;h̃mn1h̃mn , ~29a!

h̃mn5diag(2xkt f 0ef 1t,xkt f 0ef 1t,t11p0,xnt12p0), ~29b!

h̃mn5diag~0,0,t11p0Bp̄,2xnt12p0Bp̄!. ~29c!

Here, in addition to ~24!, I have made the following
definition:1

f 15(
j 51

` j a j
2

2p
~B212A2!. ~30!

A peculiarity regarding the perturbations on the scalar a
gravitational degrees of freedom is that for 0,k,1 they
will be on phase, whereas for 1,k,4/3 they will be phase-
shifted byp. Nonetheless, it will be seen later that whatev
the value ofk the scalar and gravitational perturbations co
tribute constructively to the energy momentum tensor.

1Though the factorB212A2 equates to unity in the simple case
am dealing with, it has been deliberately introduced in the definit
of f 1 ; so that the trail of the separate contributions to the ene
momentum tensor of the graviton and scalar field pair can be
lowed. Had I considered the general case of the procedure to
erate aG2 massless scalar field solution, thenf 1ÞS j 51

` j a j
2/(2p).
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Let us now proceed to analyze theh̃mn tensor and thereby
show that it represents tensor perturbations of a backgro

spacetimeh̃mn . The wave equation¹̃g¹̃gh̃mn50 is satisfied
becauseh̃mn is proportional to the transversal gravitation
degree of freedomp̃, which is in turn a solution to this
equation. One has to make sure however, thath̃mn is free of
trace and divergence, thus not containing pieces which tra
form as scalars or vectors@53–55#, i.e.:

h̃g
g50, ~31!

¹̃gh̃gl50, ~32!

with g, l52,3, and where the D’Alambertian and the cov
riant derivative must be calculated using the correspond
background metrich̃mn .

Since it is straightforward to see that the trace-free con
tion ~31! is satisfied by construction, the problem reduces
checking the fulfilment of the divergence-free condition~32!,
which in this case reads:

h̃22,x22G̃22
2 h̃2250, ~33a!

h̃33,x22G̃32
3 h̃3350. ~33b!

On the one hand, expression~33a! is identically null because
neitherh̃22 nor h̃22 arex-dependent. On the other hand, it ca
be seen that~33b! is also satisfied by just having in mind tha

h̃335Bh̃33, ~34a!

G̃32
3 5~ logAh̃33! ,x . ~34b!

Then, h̃mn describes metric tensor perturbations in the fo
of gravitational waves, and as such, they are gauge invar
@53–55#.

In order to give additional arguments in favor of the i
terpretation of the solution in terms of waves propagating
a nonflat background, I shall follow Charach and Malin a
analyze the energy-momentum tensor of the backgro
metric h̃mn . It will be shown that the stress-energy tensor
naturally manifested in terms of two components. One
these corresponds to a null fluid, supporting thus the in
pretation suggested above; while the other term correspo
to an inhomogeneous massless scalar field with
z-dependence. In particular,

~h!T̃m
n 5 ~1!T̃m

n 1 ~2!T̃m
n , ~35!

where (1)T̃n
nÞ0 and (2)T̃n

n50. Explicitly

~1!T̃0
052t2~11p0!

m2

2x22t2~21 f 0!
112 f 02p0

2

4ef 1txk , ~36a!

~1!T̃1
152t2~11p0!

m2

2x2 1t2~21 f 0!
112 f 02p0

2

4ef 1txk , ~36b!

n
y
l-
n-
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~1!T̃2
05t2~11 f 0!

2p0~k21!2k

2ef 1tx11k , ~36c!

~1!T̃2
25t2~11p0!

m2

2x2 1t2~21 f 0!
112 f 02p0

2

4ef 1txk , ~36d!

~1!T̃3
352t2~11p0!

m2

2x2 1t2~21 f 0!
112 f 02p0

2

4ef 1txk , ~36e!

~2!T̃0
052t2~11 f 0!

f 1

2ef 1txk , ~36f!

~2!T̃1
15t2~11 f 0!

f 1

2ef 1txk . ~36g!

I will now proceed to give an interpretation for the(1)T̃m
n

term. The Klein-Gordon equation for a scalar fieldc̃, calcu-
lated using the metrich̃mn , takes the form

~xc̃ ,x! ,x

x12k 2
~ tc̃ ,t! ,t

ef 1tt f 02p0
50, ~37!

a solution of which is

c̃5w0 log t1m loguxu. ~38!

The energy momentum tensor for the fieldc̃ propagating on
the spacetimeh̃mn yields (1)T̃m

n exactly. This being so, it
follows that the exact solution obtained after applying t
generating technique to~21! asymptotically evolves into a
solution with a single degree of inhomogeneity, and the si
soidal inhomogeneities along thez-axis vanish with time.

On the other hand, the traceless term(2)T̃m
n can be shown

to account for waves. It can also be separated into two p
namely:

~2!T̃mn5 ~GW!T̃mn1 ~SW!T̃mn , ~39a!

~GW!T̃mn5 (
j 52`

` B2a j
2

4u j u
km jkn j , ~39b!

~SW!T̃mn5 (
j 52`

` A2a j
2

2u j u
km jkn j . ~39c!

The null vectorkm is defined by

km j5
1

Apt
~ u j u, j ,0,0!. ~40!

It is clear that(2)T̃mn corresponds to a null fluid describ
ing a collisionless flow of ‘‘gravitons’’ and ‘‘scalar par
ticles.’’ It was to be expected, however, that the interpre
tion of the solutions’ matter content should be preserv
despite the homogeneity breaking process, because no
tional term was introduced in the traceless part of the ene
10400
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momentum tensor. So, like the cases studied by Charach
Malin, the new solutions represent in their WKB limi
waves propagating on a non-static spacetime, the differe
being the inhomogeneous character of the background.

There is an alternative approach to show how the ma
source behaves asymptotically. Let us calculate the ene
momentum tensor corresponding to the scalar fieldw̃ in the
late time limit and then just retain terms up to the ordert21.
Under this restriction the only non-null terms of the ener
momentum tensor areT̃00 and T̃11, which are given by:

T̃0052T̃115S A2

pt D(l 51

`

(
j 51

`

a la jAl j H sin@ l ~z2zl !#

3sin@ j ~z2zj !#cosF l t 2
p

4 GcosF j t 2
p

4 G
2cos@ l ~z2zl !#cos@ j ~z2zj !#sinF l t 2

p

4 G
3sinF j t 2

p

4 G J 1O~ t22!. ~41!

Averaging T̃00 over a region 0<t<2p, 0<z<2p on the
~t,z!-plane one obtains:

^T̃00&52^T̃11&5
1

4p2 E
0

2pE
0

2p

^T̃00&dzdt5
1

2pt (j 51

`

jA2

5 ~SW!T̃00. ~42!

So, essentially some terms of the stress-energy tensor ev
into those of a null fluid. One must be careful, howev
when dealing with the rest of terms. Since in this appro
mation

T̃2
252T̃3

352T̃5t2~11p0!
m2

2x2 , ~43!

these three terms will only be negligible with respect to^T̃0
0&

provided 11p0.1 holds. Summarizing, the null fluid’s con
tribution to the energy-momentum tensor dominates eve
ally the one due to the homogeneous part of the scalar fi
Depending on the initial conditions, another term cor
sponding to anx-dependent scalar field may give a no
negligible contribution to the energy-momentum tens
Even more, in the casep0.1 this other term will represen
the leading contribution toTmn . Thus, as far as the evolutio
of the model is concerned, the presence of the additio
degree of inhomogeneity in the model plays a crucial ro
The scalar curvature of the background att@1 will be given
by:

~h!R;
m2

x2t11p0
, ~44!

so, depending on the value ofp0 , it will either vanish like in
the G2 counterpart models, or become unbounded att5`.
This is thus one more peculiarity arising in the singular b
8-8



o

d
n

as
rg

m

o
re
y:

sc

-

io

tial
l
ee-

ne

ge-
s
e

e
ilies
nal
t of
ty,

et-
ut
os-

to
ves
nd.
has
con-

en-

ar-
ov-

G1 SPACETIMES WITH GRAVITATIONAL AND SCALAR WAVES PHYSICAL REVIEW D 60 104008
havior of the models which is entirely due to the presence
an additional degree of inhomogeneity.

The WKB regime of the solutions under discussion a
mits a reformulation in terms of the density of particles co
tributing to the modes of two fields. I shall strictly follow
here an approach which consists of performing a qu
classical treatment based on the geometrical optics ene
momentum tensor@56–58#. A family of Lorentz local frames
is introduced so that the density of particles in each nor
mode can be defined through

l~a!5Auh̃nnudn
~a! ~no summation overn!, ~45!

whereh̄nn represents the components of the inhomogene
generalization of the DZN metric. A set of observers cor
sponding to this tetrad are characterized by the 4-velocit

un[l~0!
n 5~Ah̃00,0,0,0!. ~46!

Let us consider now Eqs.~39b!,~39c!, which give the WKB
stress-energy tensors of the model with gravitational and
lar wave perturbations, namely:

~GW!T̃mn j5
B2a j

2

4u j u
km jkn j ~47a!

~SW!T̃mn j5
A2a j

2

2u j u
km jkn j . ~47b!

The density of scalar and gravitational particles in then-th
mode is given by

r j
S5

T̃~0! j
~0!SW

hkm j
~0! 5

A2a j
2

2tAxkef
~48a!

r j
G5

T̃~0! j
~0!GW

hkm j
~0! 5

B2a j
2

4tAxkef
, ~48b!

wherekmn is a null vector with dimensions of length. Be
sides, since the description here is based on unitsc5G51,
the Planck constant has dimensions of~length!2, where h
;10266cm2. The density does not depend on the direct
along which the particles propagate, that is
10400
f
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n

r j
S5r2 j

S ~49a!

r j
G5r2 j

G . ~49b!

In the G1 models considered here, the volume of the spa
sectionst5constant is not finite; for that reason the tota
number of particles in each mode of the two degrees of fr
dom has no upper bound.

In light of this reformulation it was suggested that o
should regard the evolution ofG2 models filled with waves
as describing a process of transforming the initial inhomo
neities alongz into quanta of various fields. Clearly, thi
interpretation’s validity is extendible to models with just on
isometry, like the ones here.

IV. CONCLUSIONS

Before I finish, I will summarize the main results. I hav
presented the first method to generate uniparametric fam
of general relativistic spacetimes having a two-dimensio
inhomogeneity and a MSF as a source. In the contex
either General Relativity or alternative theories of gravi
one can obtain a large number of new inhomogeneous m
rics using this algorithm, where moreover the only inp
needed is any of the many known vacuum relativistic c
mologies with two commuting Killing vectors.

It has also been shown that this technique allows one
construct families of spacetimes which represent wa
propagating on a spatially curved cosmological backgrou
The spacelike singularity structure of these solutions
been studied, and several peculiarities due to the matter
tent have been elucidated.
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