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G, spacetimes with gravitational and scalar waves
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A new algorithm to generate families of inhomogeneous massless scalar field spacetimes is presented. New
solutions to Einstein field equations, having a single isometry, are generated by breaking the homogeneity of
massless scalar field, models along one direction. As an illustration of the technique, spacetimes which in
their late time limit represent perturbations in the form of gravitational and scalar waves propagating on a
non-static inhomogeneous background are considered. Several features of the obtained metrics are discussed,
such as their early and late time limits, structure of singularities and physical interpretation.
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[. INTRODUCTION spacelike surfaces. In the last decades there has been inten-
sive study of G, vacuum and matter filled cosmological

The high degree of isotropy observed in the Universe ormodels and several major reviews on the subject have been
large scales today is usually combined with the Copernicamwritten[9,10,8.
principle to justify the assumption of homogeneity on the Given the large number of know®, cosmologies and the
same scales. However, there is no known reason to assuraarious available techniques to generate further ones, algo-
that the Universe was isotropic nor homogeneous at veryithms transforming such spacetimes ifsg metrics repre-
early epochs. The puzzling question of how the Universesent powerful tools for generating new inhomogeneous solu-
might have evolved from an initially irregular state into the tions. Explicit examples ofG; metrics are rare, and,
current isotropic and apparently homogeneous state lackstherefore, new solutions of this kind are significant items to
complete answer at present. To date, several regularizatiche collection of exact solutions of Einstein’s field equations.
mechanisms have been put forward, such as Misner’s chaotithe new algorithm displays the nice property of reducing the
cosmological progranjl,2], the standard inflationary sce- symmetry while keeping the type of matter source unaltered.
nario [3—6] and, more recently, the alternative pre-big bangNonetheless, the input and output solutions may not admit
inflationary scenarid7]. However, none of these is com- the same physical interpretation, or even share some of their
pletely satisfactory, and in general one cannot know for cerrelevant features. For this reason, if one wishes to grasp the
tain which range of initial conditions could have allowed the physical meaning of every new solution, an independent
Universe to evolve into its present form. Such scenarios caanalysis of it will have to be carried out.
only provide one with partial indications of what initial con-  Herein, | construct and analyZ8, models representing
ditions would have led a generic universe into the one obthe propagation of gravitational and matter waves on a spa-
served at present. One way to maximize the amount of intially curved non-static background. The study of primordial
formation obtainable from any cosmological program, suchinhomogeneities in the form of waves is an active area of
as those mentioned above, relies on studying the evolution gesearch. This is motivated by the fact that wave-like primor-
models with as many degrees of freedom as possible. Thidial perturbations originating from vacuum fluctuations dur-
idea has motivated the special attention paid to inhomogeng inflation may be responsible for structure formation. Un-
neous cosmological models in the last decddee Krasinski  like other types of inhomogeneities formed in the early
[8] for a review. universe, they would have remained nearly unaltered up to

In general, attempts to obtain new inhomogeneous metricthe present, therefore allowing the possibility of their detec-
involve some symmetry assumption, so that the full implica-tion.
tions of the non-linearity of the theory are compromised to The exact inhomogeneou&; spacetimes seeded by
some extent. In addition, non-vacuum spacetimes are regravitational and matter waves studied here represent a gen-
quired to have a physically meaningful matter content, sceralization of more symmetric configurations considered by
that they portray realistic situations. Motivated by the possi-Charach and Malii11], because in those models the back-
bility of the existence of non-trivial massless scalar fields inground hosting the waves was homogeneous. Another im-
the early universe, | will concern myself here with non-staticportant difference between the two sets of solutions is that
inhomogeneous solutions to the Einstein equations inducetthe new models are manifestly degenerata=al, and for
by such matter sources. In particular, | present a new algahat reason, it seems inadequate to refer to them as cosmolo-
rithm to generate families of massless scalar fiéldmet-  gies.
rics, i.e. time-dependent spacetimes with a single isometry. In the context of colliding plane wave$, diagonal
These new sets of solutions will be generated starting frongspacetimes with waves of scalar and gravitational nature
generalized vacuum Einstein-Rosen spacetimes, which adntiave also been considered. Spacetimes such as those studied
an Abelian group of isometrie§, acting transitively on by Wu [12] or any solution generated by the methods of
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Barrow [13] and Wainwrightet al. [14] could be taken as performed an analysis of their local behavior in the early and
starting points to construct ne@; metrics modeling inter- late time regime. An interesting result reached in the course
actions of waves on a curved background. of those investigations, which is specially relevant for the
Furthermore, interest in this generation procedure is nopresent paper, was the prediction of a high frequency gravi-
restricted to the relativistic framework; solutions to Ein- tational wave regime in the late epochs of the Universe.
stein’s equations with a massless scalar fitM&F) may be Before going any further it is convenient to explain how
used to generate solutions to alternative theories of gravityGG, spacetimes induced by a MSF can be generated starting
such as Brans-Dicke theory or string theory in its low energyfrom vacuum solutions to Einstein’s equations with the same
limit. In the latter case, one could even take those spacetimesymmetry. For the sake of simplicity, the discussion will be
to generate new solutions with other massless modes in thestricted here to a particular case of a well-known general
characteristic spectrum of the theory as recently discussed lprocedure [11,13,14,32—-3p The generic diagonal line-

Clancyet al.[15]. element withG, symmetry will be taken as a starting point:
The plot of the paper is as follows: First, tlg massless
scalar field solution generating algorithm is introduced. ds?=eVtI(—dt?+dZ) + G, (t,z)(eP+Pdx?

Then, | construct new inhomogeneous metrics starting from
a infinite dimensional family of solutions which in their
WKB limit admit an interpretation in terms of waves. It will
be shown that at early times these solutions behave like
Belinskii-Khalatnikov generalized modgL6] with homoge-
neity broken along one spatial direction. The structure o
spacelike singularities of the new solutions in the early time ; > ¢, 2 LD AY2 1 a—p(LZ) 402
limit will be analyzed as well, and the special features due todsz_e( (~dt*+d2) + G(t,2)(e"Wdx* +e P dy?),

+e Pt2dy?), (1)

\élhere the subscript stands for vacuum. A new soluti@),,
of the Einstein equations with a massless scalar felts a
gource, and line element:

the presence of the matter source will be indicated. Next, the 2
solutions will be considered in their high frequency limit and can pe obtained by the following transformations:

it will be shown that these models can be thought of in the

same physical terms as thé&®, counterparts. In particular G=G,, (33
they represent spacetimes with a spatially inhomogeneous

background filled with a scalar field and a null fluid of p=Bpv,+ClogG,, (3b)
“gravitons” and “scalar particles.” In this regime, the sca-

lar field is made of the addition of a time dependent term and f=f,+Ep,+FlogG,, (30
another one depending on a spatial coordinate. As time

grows the null fluid’s contribution to the energy-momentum ¢=Ap,+DlogG, ; (3d)

tensor grows faster than the one associated with the homo-

geneous part of the scalar field generating the backgroungrovided that the constants B, C, D, EandF are subject to
geometry. However, that will not be necessarily the casgne constraints:

with the contribution of the inhomogeneous part of the scalar

field; initial conditions will determine whether at very late BC+2AD=E, (48
times the matter content corresponds to a null fluid, a scalar
field, or a combination of both. Finally, the main conclusions C2+2D2=2F, (4b)

will be outlined.
B2+2A%2=1. (40
ll. SOLUTION GENERATION ALGORITHM " ) ) , ,
Conditions(4) arise by demanding the following equations
Basically, the new generating technique is a prescriptiono be satisfied:
to break homogeneity along one direction@ MSF cos-

mologies, ending up with new spacetimes possessing a single Ru=¢,0.0, (5a
isometry, but having the same type of matter content. Re-

markably, the pioneering investigations on matter filled uni- V'V ,e=0. (5b)
verses of Einstein-Rosen type, carried out respectively by

Tabenski and Taubl7] and Liang[18] considered models In principle, a large number of new MSE, cosmologies
with noninteracting scalar fields, even though at the timecan be obtained by simply applying the procedure sketched
there was no clear physical motivation. above to any of the representatives of the populated family

According to a conjecture due to Belinskii, Lifshitz and of vacuum Einstein-Rosen spacetimes. However, generating
Khalatnikov (BLK) [19-24, G, metrics seem to be spe- MSF solutions with a lower degree of symmetry is a more
cially relevant for the description of the early universe, ascumbersome task. At this point, attention should be drawn to
such solutions give the leading approximation to a generah method given by Feinstegt al.[36], which allows one to
solution near the singularity &= 0. Their claim has recently generate families of solutions with a two-dimensional degree
found the support of numerical resuf@5-31]. In particular  of inhomogeneity and a self-interaction term for the massless
BLK considered approximate Einstein-Rosen solutions andield of the form
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V=Vy(\)e ¢, (6) Inspection of Eqs(10) indicates that a solution to Eq€L0),
(12) is given hy
With this procedure new metrics are obtained by introducing

an x-dependent conformal factor on an ingl metric, and Q(x)=x, (123
where in general the potential term only vanishes [fofr _ N
=6. This difficulty in canceling the self-interaction term for E(x)=x", (120

the scalar field can be traced back to the highly symmetric
x-dependence of the models.

In order to find a prescription for introducing an addi- subject to the following constraints on the parameters
tional degree of symmetry in MSK5, metrics without andm:
switching on a potential in the process, | have considered the '
possibility of allowing the metric to depend onin a more k(2k+n—2)=0, (133
general way. In particular, | have sought metrics of the form:

A(x)=mlog|x|; (120

+n— =
d2=0(x)e' 2 (—dt2+d2) + G(t,2)[e 1D dx2 n(2k+n=2)=0, (139
+E(x)e” p(t,Z)dyZ]’ 7) k+nC=2Dm, (130
and made the following ansatz for the scalar field: nB=2Am, (130
?(t,z,x)=(t,2) + A(X). tS) 2m?=4k— 3k2. (13e

Note that the massless scalar field case included in the solun this case, Eq(11) reduces to
tions of Feinsteiret al.is also a particular case of the models
here. Since the requirement here is that no potential should m(2k+n—2)=0, (14

arise in the transformations, the equations that must hold are =~ ] o )
which is automatically satisfied provided théit3a),(13b),

R,,=%,%., (9a (13e hold. Note that the paramet&rmust be non-negative
o and not larger than 4/3. Consistency of the solutions is re-
Vv =0, (9b) flected by the fact that for the choice
Explicitly, Eq. (9a) is equivalent to the set of equations: m=n=k=0, (15
~ = .0.+2E0 the set of equationgl3),(14) is satisfied for any value o4,
Roo= Rog+ef P—= ZGW X=%% (108 B, CandD, and the inpuG, MSF is recovered. On the one
= hand, form#0 andk#1, if k and C are taken as free pa-
= 0.1220 rameters, one can parametrize the solution’s constants in the
Ry=Ry—e' p X ZG:H ’XX:TP,ZZ, (10b) form:
n=2-2k, (163
Ru=Ru=%,%,. (100 J4k=3K2
R m=sgnm) ————, (16b
Ezx_ZEE,xx Q,ZX_ZQQ,XX ~2 v2
Ro>=Rop+ 222 + 502 =0 -
(100 A=v2 SONA) |5 (160
= G ZQ X = Xp z
Rio=—-a+ 25 =98 (109 1—k| v4k—3k?
oe2ca 25 e B=SsgrAm)|5— |~ (160
2—-k| 1-k
~ Gy E.pr . -
Re=%gn T 25 ~@@x (10f) k+(2—2k)C
= D =sgnm) —————, (168
22 oo g 0 V8k—6k
Rog=Rggte 2P—*—— e =2 "X _q;
4= Q (109 E=sqnA )2—2ky C(2—Kk)?+(2—2k)k
=s m
? 2-k|  Jak—3k?
whereas Eq(9b) in explicit form reads (161)
9*'v,V.,e (QEY%5 ) 4 C? [k+(2-2k)C]?
-p T = = — _—
Q +e =T 0. (11 F 5 + B_6KZ (169
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Four different subcases can be distinguished, depending ddompatibility of the latter set of equations in the case of a

the choice of the sign oA andm. On the other hand, in the non-vanishing potential requires=k, or in other words,

particular casen# 0, k=1, the constants take the values: that thex-dependence of the metric is given by a global
conformal factor, as in the case already known.

v2|m|=v2|D|=|B| (179 It is important to note here that the generation technique
does not restrict the character of the gradient of metric func-
A=0 (17D tion G(t,z) of the input metric. This vector field determines
the local behavior of the spacetime, depending on whether it
C?+1=2F (179 s globally timelike, spacelike, null, or varies from point to
point. Although in what follows | am focusing on a case with
E=sgnB). (17d  a timelike character of the gradient 6f(t,z), a window is

) left open for the study of other physically appealing cases.

Whatever the values of the parameters, the méyi¢ Moreover, even though our generating prescription has
will only admit one Killing vector, namely, = d/dy. _ been used to break homogeneity of an input MSF solution

An important feature of the new models is the manifestyjth a single degree of inhomogeneity, it is also possible to
degeneracy of their line elementat0. In order to prove  construct an equivalent algorithm to transform MSF static
that this singularity is essential, and not a mere effect of thgpacetimes into non-static ones. One should start with a MSF
coordinate system chosen, one can compute the curvatuggogel with two commuting Killing vectors, one of them be-
scalars for a generic exact solution belonging to this classpg timelike, and then generalize this solution by introducing

Due to the inhomogeneous character of the metric it is posgme dependent factors in the metric and scalar field as it has
sible in principle to have a conspiracy between the parampeen done here.

eters of the solutions, so that on certain hypersurfaces some

of those invariants are |der_1t|cally_nul_l, and theref(_)re do notm. SPACETIMES FILLED WITH GRAVITATIONAL AND
reveal the presence of a singularity in the spacetime. In the

. SCALAR WAVES

case here, however, either the Kretchmann scddar
=R, ,sR™7° or the Ricci scalaR,;R’° are non-negative After having outlined our method to generate uniparamet-
everywhere and they can be used to spot singularities. Faic families of G, spacetimes, | shall illustrate the technique
instance, in the case of a generic solution one has by taking as a starting point the vacuum Gowdy-Berger-
Misner modeld38-42, defined by:

1 [(df+¢y) m?
RU5R"‘$=X—2R o2 : Xe2p |- (18) G,=t, (219

[’

Clearly, curvature is infinite at=0. Moreover, some com- ) ]
ponents of the energy-momentum tensor will become un- py=pBlogt+ Zl cogj(z—zn)]a;do(jt), (21D
bounded on this hypersurface as well. This suggest the pres- .
ence of trapped energy on the hyperplare0, a situation 5 o
that resembles the one occurring in topological defects, in ¢ :ﬁ —1 +ﬂ2 a; co$ ai(z—2,)1do(jt)
which, however, the associated singularity can be regularized " = ) 1720
in some circumstancesee for e.g[37]). 2

Bearing in mind the similarity between the new algorithm v 2 12 a2
and the one of Feinsteiet al, one might wonder whether "2 le 1@ 3o (IO + (VT
geometries likg7) can be also seeded by a scalar field with
an exponential potential. Such a situation, however, will only
be possible ifn=k, which is nothing but the case already
found in Ref.[36]. In order to prove this, let us consider the
case where the generic geomef), under the constraint t

(12), is induced by an exponential potentiaV (%) +
=Vo(N\)e *¢. In this case the field equations are

] jof cos a;j(z—2))10(jt)Ja(jt)

I
N —
M s

J

S
S, 3, sl z-z)sirli(z-7)]

N |

X[leayajd (1) Io(jt) — jeyajJo(lt) I1(jt) ]

R,L=%,%,+7,,Voe 19 . . .
i~ Pt Vo (193 +cog(z—2))Icog j (z— )1l ar; J1(1)3o( 1)
~ ~ N(P) —laja;do(1t)I1(j) 1} (219
Vv, o=——. (19b
Je In this paper, however, th&,; derived from the latter

vacuum metrics solutions will only be considered in the
It is only necessary to look at the equations Ry andRg; ~ asymptotic limitst~0, andjt>1 for any value ofj.

to realize the following constraint must hold: Charach and Malii11] studied MSFG, counterparts of
the same vacuum models. These can be thought of as inho-
k(2—2k—n)=n(2—2k—n)=4Vy#0. (20 mogeneous sinusoidal perturbations of the Belinskii-

104008-4



G, SPACETIMES WITH GRAVITATIONAL AND SCALAR WAVES PHYSICAL REVIEW D 60 104008

Khalatnikov homogeneous solutidi6], which also has a this way the metric can be recognized as a simple inhomo-
MSF as a seed. Charach and Malin’s cosmologies represegeneous generalization of a Belinskii-KhalatniKds| solu-
propagation of gravitational and scalar waves on an anisaion. Their structure is very similar to that of BianchiKas-
tropically expanding flat background. The gravitational andner vacuum models.

scalar degrees of freedom of those spacetimes satisfy linear In broad terms, breakdowns of the coordinate systems,
wave equations, with the form of cylindrically symmetric and in particular a spacelike singularity at the beginning of
waves propagating on Minkowski spacetime, for which thetime, will be reflected in the behavior of the curvature invari-
spatial and temporal coordinates have been interchangednts. Again, we choose one of the two such invariants which
Since the solutions have a standing wave form they are fulljare non-negative everywhere, in particular the Kretchmann
compatible with thes'® S'® S* topology (three-torus Nev-  scalarK=R,,,,,sR**?%, and address the question of whether
ertheless, theG; counterparts of Gowdy-Berger-Misner the spacetime’s curvature becomes unboundeée @t In the
models cannot have the same topology as them. In the h@ase of the models under discussion it explicitly reads:
mogeneity breaking process a term proportional tdxloig

introduced in the scalar fiel@, and the coordinate cannot

2
3
— 0 2\2 2
be cyclic any longer. K= grstoraysrl (14 P0)"+2(fot 1)1+ ggaroraar

—n)\2 2 2 RY)
A. Early time behavior and singularities X[(1=po)*(1+f+p)°+(1+p)*(1+f—p)7].
From the analysis of the neW, solution’s early time @7
behavior it can be determined whether spacelike singularitiegecayse 0f25), K is singular att=0 for any value of the
arise at the time origit=0. A look at expressions21)  three free parameters of the solution, indicating thus the ge-
shows that in the case here, the periodic inhomogeneities cafric presence of a spacelike singularity at the time origin.
be neglected in the very first stages of that spacetime’s evo- |t s also possible to study the spacelike singularity struc-
lution. Our metrics will be therG, inhomogeneous space- yre of the solutions in a more refined way, in particular by
times generalizing the cosmological ~models ofjnyestigating the expansion along each spatial axis. In gen-
Doroshkevich-Zeldovich-NovikoADZN) [43], which have  grg| the behavior will strongly depend on the values of the
three commuting Killing vectors. In this limit, the metric and parameter, C and 8. It can be shown analytically that for
scalar field read large enoughg there will necessarily be contraction along
ok K n the z axis; moreover, ik>1 that will be the case regardless
Gy~ diag=xes(1), X (1), €2(1), X"e5(1)) - (229 the value ofB andC. Another fact one can easily check is the
impossibility of having simultaneous contraction along axes

&= @ologt+mlog|x (220 x andy. Three main types of singular behavior exist:
where (@ Point-like singularitiegQuasi-Friedmann behavior
ot All three spatial directions shrink as the initial tinhe
€=teo, (233 =0 is approached; or explicitly lim oe;=0Vi. De-
_41+p pending on how many directions have the same expan-
e;=1"7Po, (23b . . . . .
sion rate, the behavior will be completely anisotropic,
- axially symmetric or isotropic.
=tk (239 (b) Finite lines
and This type of singular behavior occurs when in the vi-
cinity of t=0 one of the spatial directions neither ex-
po=BB+C, (249 pands nor contracts with time. In other words, it is said
that the direction is a finite line if lim_ qe;=1. The
B*—1 subcases can be classified according to which direction
fo=——+EB+F, (24b) behaves in that way. In general, there will be a single
finite line, though it is possible to have particular cases
©0o=AB+D. (240 for which a second finite line exists.
(c) Infinite lines(Quasi Kasner regime
In addition, the following relation holds: An infinite line along thei direction exists when
lim,_,oe;=2. Again, three cases can be seen to occur,
p(z)— 1, depending on which is the axis displaying that feature.
fO:T t ¢o- (25) For some particular values of the parameters the maxi-
mum allowed number of two infinite lines can be
Following Charach and Malin, the metric can be rewritten reached.
using a synchronous set of coordinates in which the new
time coordinater is defined It is interesting to compare the main features of the new
models with those of Kasner spacetimes, to which they are
dr= e (1)dt; (26) closely related. Kasner models are genuinely anisotropic, in
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C=0.5 . C=05

sgn(A m)=1

sgn(A m)=1

e
e ——

FIG. 1. Structure of singularities of the inhomogeneous generalization of Belinskii-Khalatnikov's mod€l=f6r5 (l.h.s) and C
=—0.5(r.h.s) with sgn@am)=1. The black lines indicate the value gfas a function ok for which a given direction behaves as a finite line.
The black continuous, dashed and dashed-dotted lines correspond to a finite line along dirgaifotrespectively. The gray lines indicate
the value of 8 as a function ofk for which two spatial directions have the same expansion rate. The gray continuous, dashed and
dashed-dotted lines correspond respectively,te €5, €;=€; ande;=¢,.

the sense that particular cases with isotropic expansion a@ having isotropic expansion, and for the tWovalues cho-
excluded. It is worth mentioning as well that in Kasner mod-sen that point lies in th&>1 region.

els finite lines always come in pairs, and the fact there cannot
be more than one infinite line.

Since the metric functions of the worked-out examples
depends on the three free parameters in a rather cumbersomeWith regard to the physical interpretation of the new so-
way, graphic methods will be the most convenient to providdutions constructed here, it is their high-frequency limit
further insight in the structure of spacelike singularities. Forwhich turns out to be most interesting. This limit, also called
simplicity, the paramete€ will be kept fixed. In Fig. 1 two the WKB regime, corresponds to the epoch when the time
different sets of lines can be distinguished. On the one handlapsed since the beginning of the Universe is much larger
the black lines in each plot correspond to the curves alonghan the period of any perturbation mode. By taking-1,
which a spatial direction becomes a finite line. In the regionfor every value ofj, in the normal mode expansions of the
delimited by the black continuous line and the axes, a infinitescalar field and metric functions, Charach and Malin were
line type of singularity arises along directianHere one can able to show that the relativistic solutions taken here as in-
see how forC=0.5 it is possible to have simultaneously the put, represent scalar and gravitational waves propagating on
same behavior along directionsand z. For k>1, in the an spatially flat background. In this limit, such universes are
region above the black dashed line, there is contraction alongausally connected because the particle horizon is larger than
direction y, though this behavior gets reversed forxl.  the wavelength of any of the modes of the independent de-
Similarly, for 8 values less than those along the dashedgrees of freedom, namely the transverse part of the gravita-
dotted line contraction takes place, and the contrary happerienal field p and the scalar field.
for k>1. The points where two black lines intersect corre- In this vein, it will be proved here that th&,; counter-
spond to having two finite lines. On the other hand, the grayarts to Charach and Malin’'s cosmological models can also
lines represent the curves along which two spatial directionbe thought of in terms of non-static spacetimes containing
display the same expansion rate. The fact there is one poimtave-like perturbations. Thus, the physical interpretation is
at which the three gray lines intersect, reflects the possibilitynot spoiled in the process of homogeneity breaking. A direct

B. WKB limit
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consequence of the additional degree of inhomogeneity | et us now proceed to analyze the, tensor and thereby
present in the5; solutions, as compared to their more sym-show that it represents tensor perturbations of a background

metric counterparts, is that the background on which the L e -
waves live is not spatially flat. This can be checked by directSpacet'rne”“”' The wave equatioR *V,h,,, =0 is satisfied

computing of the curvature of the= constantthree dimen- becauseh,,, is proEortion_aI to the transversal _gravitatio_nal
sional hypersurfaces. Non-static backgrounds perturbed begree of freedonp, which is in turn a solution to this
waves have also been considered in a series of paper mgguation. One has to make sure however, thatis free of
Centrella and Matznef44—44 who studied collisions of trace and divergence, thus not containing pieces which trans-
plane gravitational waves in Kasner cosmologies. Exact soform as scalars or vectof§3-53, i.e.:

lutions describing propagation of waves in MSF Friedman-

Robertson-Walker(FRW) universes have also been thor- F1$=0, (31)
oughly studied47-52. B
Let us consider now the late time expressions for the met- ﬁvhﬂzq (32)

ric functions and the scalar field of te, spacetimes ob- _
tained by applying the new technique to Gowdy-Berger-with y, A\=2,3, and where the D’Alambertian and the cova-

Misner cosmological model®1): riant derivative must be calculated using the corresponding
o background metric,,, .
pP~pologt+Bp, (283 Since it is straightforward to see that the trace-free condi-

tion (31) is satisfied by construction, the problem reduces to

t ) ) checking the fulfilment of the divergence-free condit{@a),
f~fologt+|5— le Jay, (28D which in this case reads:
I T2F _
P~ ¢glogt+Ap+mlog|x|, (280 ho2x—2I'5022=0, (333

i 2 o F133><_2f§2?‘33:0- (33b
p=z mai co ]t—z
=1

On the one hand, expressi@B83g is identically null because

xcodj(z—z)]. (28d  heithery, nor h,, arex-dependent. On the other hand, it can
. be seen thaf33b) is also satisfied by just having in mind that

Since in this regime@<1, the metridj,, can be split into a

backgrounds,,, plus a perturbation metrig,,,, that is h3s=B7zs, (349
’guv~77,uv+’ﬁ,uv ' (29@ F%ZZ (lOg V7733),X . (34b)
7,00=diag(— xKtfoefat xKtfoef1t t1+Po xNt1=Po), (29b) Then,ﬁw describes metric tensor perturbations in the form

of gravitational waves, and as such, they are gauge invariant
f,,=diag 0,011 *PoB, — x"t! " PoB ). (299  [53-53.

In order to give additional arguments in favor of the in-

Here, in addition to(24), | have made the following terpretation of the solution in terms of waves propagating on

definition a nonflat background, | shall follow Charach and Malin and
analyze the energy-momentum tensor of the background
ja? metric7,,, . It will be shown that the stress-energy tensor is
flzzl 2—771(Bz+ 2A2). (300  naturally manifested in terms of two components. One of
=

these corresponds to a null fluid, supporting thus the inter-
retation suggested above; while the other term corresponds
0o an inhomogeneous massless scalar field with no
z-dependence. In particular,

A peculiarity regarding the perturbations on the scalar an
gravitational degrees of freedom is that fokR<1 they
will be on phase, whereas forlk<<4/3 they will be phase-
shifted bysr. Nonetheless, it will be seen later that whatever ~ _ ~
the value ofk the scalar and gravitational perturbations con- Ty =0T + @77 (35

tribute constructively to the energy momentum tensor. _ -
where W70 and (@T*=0. Explicitly

o _ ~0 m? b 1H2f0—pg
Though the factoB2+ 2A? equates to unity in the simple case | WTo= —t’(“po)p—t*( " 0)—4flt_k_, (369
am dealing with, it has been deliberately introduced in the definition X erx
of f1; so that the trail of the separate contributions to the energy 2 2
; : i ~ m 1+2f,—p
momentum tensor of the graviton and scalar field pair can be fol- (DF1= _—(1+pg) +1-(2+f0) 0 (36b)
: - T pafityk 0
lowed. Had | considered the general case of the procedure to gen- 1 2x° 4ef1ty

erate aG, massless scalar field solution, thep# 3", ajZ/(Z'n').
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1) 2Po(k=1) =k

(1)':|"g:t_(1 S vs: , (360)
(152 (14pg) M m? (2+1, )1—I—2f0—p(2)
T5=t (1*Po o™ +t~ BN Tva (360
2 2
~ m 1+2f,—pg
(D33 _ s~ (1+pg) ' 1= (2+fg)
Ta=-t "ot * ek (369
(230 _ (1+fg)
TO -t 0 28 1tX (36f)
Z)Tl_t (1+fp) (369)

2e 1‘ k-

| will now proceed to give an interpretation for tH&T?,

term. The Klein-Gordon equation for a scalar figld calcu-
lated using the metrig;,,, , takes the form

(X x (L),
Ik eflttfo—pozo! (37)
a solution of which is
%= @glogt+mlog|x|. (39

The energy momentum tensor for the figldpropagating on

the spacetimép,,, vields (VT? exactly. This being so, it
follows that the exact solution obtained after applying the
generating technique t®1) asymptotically evolves into a
solution with a single degree of inhomogeneity, and the sinu:

soidal inhomogeneities along tlzeaxis vanish with time.

On the other hand, the traceless teﬁ?rﬁl'z can be shown
to account for waves. It can also be separated into two parts,

namely:
2% _(GWTF SW
( )T;w_( \A/)TMV+( V\bTMV' (393
- Z . B24?
(G\N)T/-’-V:_Z T”JKMJ'KVJ, (39b)
J— [ee]
~ Z o AZQ?
(SW)TM,, E JK Ky (390
=== 2]
The null vectorx, is defined by
= (1i1,1,0,0) (40)
K, i——F/— ,]1,Y,U).
M Tt )
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momentum tensor. So, like the cases studied by Charach and
Malin, the new solutions represent in their WKB limit,
waves propagating on a non-static spacetime, the difference
being the inhomogeneous character of the background.
There is an alternative approach to show how the matter
source behaves asymptotically. Let us calculate the energy-
momentum tensor corresponding to the scalar figlith the
late time limit and then just retain terms up to the ordet.
Under this restriction the only non-null terms of the energy

momentum tensor ar:éoo andfl'll, which are given by:

= = [AS <
TOO: _Tll:<ﬁ) IZ]_ ;1 alaj \/W[ Sir{I(Z_Z|)]

T T
co ]t—z

Xsir{j(z—zj)]cos{lt— 7

—cos{l(z—z|)]c05{j(z—zj)]sir{lt— ﬂ

X sin

jt—Z +0O(t7?). (41)

Averaging To, Over a region &t<2s, 0<z<2s on the
(t,2-plane one obtains:

oo

(Tod=—(T1)= 72 J f (Togdzdt=5— 2

=WT. (42

So, essentially some terms of the stress-energy tensor evolve
into those of a null fluid. One must be careful, however,
when dealing with the rest of terms. Since in this approxi-
mation

2

~ ~ ~ m
T§=—T§=—T=t’(”p0>ﬁ, (43

these three terms will only be negligible with respecﬁ@}
provided 1+ py>1 holds. Summarizing, the null fluid’s con-
tribution to the energy-momentum tensor dominates eventu-
ally the one due to the homogeneous part of the scalar field.
Depending on the initial conditions, another term corre-
sponding to anx-dependent scalar field may give a non-
negligible contribution to the energy-momentum tensor.
Even more, in the casg,>1 this other term will represent
the leading contribution td ,, . Thus, as far as the evolution

of the model is concerned, the presence of the additional
degree of inhomogeneity in the model plays a crucial role.
The scalar curvature of the backgroundatl will be given

by:

It is clear that®®T,, corresponds to a null fluid describ-
ing a collisionless flow of “gravitons” and ‘“scalar par-
ticles.” It was to be expected, however, that the interpreta-
tion of the solutions’ matter content should be preservedo, depending on the value p§, it will either vanish like in
despite the homogeneity breaking process, because no adtlie G, counterpart models, or become unboundet=at.
tional term was introduced in the traceless part of the energ¥his is thus one more peculiarity arising in the singular be-

(44)
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havior of the models which is entirely due to the presence of ij= p§j (493
an additional degree of inhomogeneity.

The WKB regime of the solutions under discussion ad-
mits a reformulation in terms of the density of particles con- ij=p(_5j . (49b

tributing to the modes of two fields. | shall strictly follow
here an approach which consists of performing a quasi- . .
classical treatment based on the geometrical optics energI 1 the G, models considered here, the volume of the spatial

momentum tensdib6-58. A family of Lorentz local frames
is introduced so that the density of particles in each norm

mode can be defined through

N@=\[7,,]6 (no summation overv), (45

a

ectionst= constantis not finite; for that reason the total
r|1umber of particles in each mode of the two degrees of free-
dom has no upper bound.
In light of this reformulation it was suggested that one
should regard the evolution @&, models filled with waves
as describing a process of transforming the initial inhomoge-

where7,, represents the components of the inhomogeneouseities alongz into quanta of various fields. Clearly, this
generalization of the DZN metric. A set of observers corre-nterpretation’s validity is extendible to models with just one
sponding to this tetrad are characterized by the 4-velocity: isometry, like the ones here.

u'=x{p,=(%"0,0,0. (46)

Let us consider now Eq$39b),(39¢), which give the WKB
stress-energy tensors of the model with gravitational and sca-

lar wave perturbations, namely:

B2a?

GW)T _ J

( \N)TMV]__4|J| K,LLJKVj (47@
A2a?

SWTF _ J

The density of scalar and gravitational particles in thth
mode is given by

=(0)SW 2 2
s 1) A

pi= 0 (489
okl 2tyxke
TOGW g2 2
,o— T~ _ By (a8b
Foonky arxke

where x,,,
sides, since the description here is based on unt& =1,
the Planck constant has dimensions (ngth? where h

is a null vector with dimensions of length. Be-

IV. CONCLUSIONS

Before | finish, | will summarize the main results. | have
presented the first method to generate uniparametric families
of general relativistic spacetimes having a two-dimensional
inhomogeneity and a MSF as a source. In the context of
either General Relativity or alternative theories of gravity,
one can obtain a large number of new inhomogeneous met-
rics using this algorithm, where moreover the only input
needed is any of the many known vacuum relativistic cos-
mologies with two commuting Killing vectors.

It has also been shown that this technique allows one to
construct families of spacetimes which represent waves
propagating on a spatially curved cosmological background.
The spacelike singularity structure of these solutions has
been studied, and several peculiarities due to the matter con-
tent have been elucidated.
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