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Expanding, axisymmetric pure-radiation gravitational fields with a simple twist

B. V. Ivanov
Institute for Nuclear Research and Nuclear Energy, Tzarigradsko Shausse 72, Sofia 1784, Bulgaria

~Received 1 June 1999; published 14 October 1999!

New expanding, axisymmetric pure-radiation solutions are found, exploiting the analogy with the Euler-
Darboux equation for aligned colliding plane waves.@S0556-2821~99!05520-4#

PACS number~s!: 04.20.Jb
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I. INTRODUCTION

There exist many papers dealing with algebraically s
cial, expanding and twisting pure-radiation solutions of t
Einstein equations@1–7#. The standard form of the metric i
@1#

ds25
2dzdz̄

rr̄P2
22V~dr1Wdz1W̄dz̄1HV!, ~1!

V5du1Ldz1L̄dz̄. ~2!

Herer is the coordinate along the null congruence of geo
sics,u is the retarded time, and the complex coordinatesz, z̄
span a two-dimensional surface. The metric components
determined by ther-independent real functionsP, m, M and
the complex functionL:

2iS5P2~ ]̄L2]L̄ !, ~3!

r52
1

r 1 iS
, ~4!

W5r21Lu1 i ]S, ~5!

H52r ~ ln P!u2~mr1MS!rr̄1
K

2
, ~6!

K52P2 Re@]~ ]̄ ln P2L̄u!#, ~7!

where]5]z2L]u andS is the twist. The basic functionsP,
L, m, M satisfy the system

~]23Lu!~m1 iM !50, ~8!

P23M5Im ]]]̄]̄V, ~9!

n2522P3@P23~m1 iM !#u12P3~]]]̄]̄V!u

22P2~]]V!u~ ]̄ ]̄V!u , ~10!

whereVu5P, n is the energy density of pure radiation an
the Newton constant is set to 1. Equations~8!, ~9!, and~10!
are in fact Eqs.~26.32! and ~26.33! from Ref. @1#.

It has been noticed in different contexts that the condit
M50 @vanishing Newman-Unti-Tamburino~NUT! param-
eter# simplifies the equations@4–6,8,9#. Twisting gravita-
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tional fields withM50 generalize the classes of Robinso
Trautman @10# and Kerr-Schild fields @11# which are
physically realistic, their simplest representatives being
Schwarzschild, Kerr, and Vaidya solutions.

In the present paper we explore this condition apply
the method of Stephani@2#. We discuss axisymmetric field
with the simplest possible twist. In Sec. II Eqs.~8!–~10! are
reformulated in terms of an invariant potential which leads
the Lu50 gauge. In Sec. III the main equation~9! for sim-
plest twist is shown to be equivalent to the Euler-Darbo
equation, which is central in the theory of aligned collidin
plane waves~CPW!. We use the known solutions and tec
niques to find solutions for our problem. In Sec. IV a closi
discussion is presented.

II. FIELD EQUATIONS IN THE L u50 GAUGE

Following @2# we introduce the invariant complex poten
tial f which solves Eq.~8!:

m1 iM 5fu
3 , ~11!

L5
fz

fu
. ~12!

WhenM50 we can apply the gauge transformation

u85 f ~u,s!, ~13!

~m1 iM !85 f u
23~m1 iM ! ~14!

to make the mass parameterm a positive or negative constan
m0 so that

f5m0
1/3@u1 iq~s!#, ~15!

L5 i z̄q~s!s , ~16!

whereq is real and due to the axial symmetry depends o
on s5zz̄. The complex coordinatez is related to the angula
coordinatesu, w on the distorted spheres (r 5r 0 , u5u0)
according to

z5A2 tan~u/2!eiw. ~17!

Obviously Lu50. This gauge differs from the usual Kerr’
gauge@12# Pu50, but is very suitable when the NUT param
eter vanishes. Equations~9! and ~10! simplify
©1999 The American Physical Society05-1
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]]]̄]̄V5 ]̄ ]̄]]V, ~18!

n256m0P21Pu12P3]]]̄]̄P22P2]]P]̄ ]̄P. ~19!

The second equation is in fact an inequality. WhenPuÞ0, n2

can be made positive by the choice ofm0 at least for some
region of spacetime@1,4,8#. The expressions for the metri
components simplify too, e.g., the gauge invariantsS andK
read

S5P2Q, ~20!

K5P2~ ]̄]1]]̄ !ln P, ~21!

whereQ5qzz̄ .
When m1 iM 50 ~Petrov types III and N! Eq. ~8! is an

identity but still a potentialf may be introduced with the
property]f50 and the subclass of solutions satisfying E
~15! and ~16! ~with m051) can be studied. This results i
settingm050 in all other equations.

In both cases the main equation~18!, which is of fourth
order with respect toV, becomes a linear second order equ
tion for P. Let us choose the simplest possible twistq5s,
Q51, L5 i z̄. Then Eqs.~18! and ~19! read

~ ]̄]1]]̄ !P50, ~22!

n256m0P21Pu26P3Puu22s2P2

3F S 2Puu1
1

s
PsD 2

14Pus
2 G . ~23!

The last term in Eq.~23! is obviously negative, so necessa
ily the first must be positive for a type II solution and th
second must be positive for a type III orN solution.

III. REDUCTION TO THE EULER-DARBOUX EQUATION

Let us introduce the complex variablez5 1
2 (s1 iu). Then

Eq. ~22! becomes

2~z1 z̄!Pzz̄1Pz1Pz̄50. ~24!

Whenz andz̄ are two real variables this is the Euler-Darbo
equation, the main equation in the theory of aligned CP
@13#. We can adapt the numerous solutions for our proble
We must ensure thatP is real and investigate the region
wheren2.0.

In the original variables Eq.~24! may be written as

Puu1Pss1
1

s
Ps50, ~25!

which is the analogue of the equation for vacuum Gow
cosmologies@14#. Equation~25! has been derived from an
other viewpoint in Ref.@8# and discussed there. Solution
with separated variables behave as (u1c)ln s or eauJ0(bs)
10400
.
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wherea, b, c are constants andJ0 is a Bessel function. The
first class includes the simplest CPW solutionP52 ln(z
1z̄).

A simple solution is obtained by separating the variab
in Eq. ~24! @13#:

P5A@~a1z!~a2 z̄!#21/2, ~26!

whereA, a are constants.A is ignorable, whilea must vanish
for a realP. Hence

P5B21/2, ~27!

B5s21u2. ~28!

The energy density becomes

n2526m0uB21212B23. ~29!

We shall discuss only positive retarded timesu.u0.0. The
energy density is regular inu and s. If m0,0 and 2m0

.2/u0
5 thenn2.0. Type III solutions, however, always hav

negative energy and are not realistic. The gauge invaria
are also regular and vanish for bigu:

S5B21, ~30!

K522sB22. ~31!

The Weyl scalars@1,15# have the following leading terms:

C25m0r3, ~32!

C352r2P3]I 1O~r3!, ~33!

C45rP2I u1O~r2!, ~34!

whereI 5P21]̄ ]̄P. Plugging Eq.~27! into Eqs.~33! and~34!
we obtain

C3526r2z~s1 iu !2B27/21O~r3!, ~35!

C456irz2~s1 iu !3B241O~r2!. ~36!

It can be shown, using the full expressions forC3 and C4
@15#, that the Weyl scalars are regular ins and u. Whenu
→`, C3, andC4 vanish, whileC2→2m0 /r 3.

There is an analogue of the cosh21 solution for CPW.
Suppose thatP5P(y) where

y5
i ~ z̄2z!

z1 z̄
5

u

s
. ~37!

Then Eq.~24! yields the solution

P5sinh21 y. ~38!

The energy density is given by the expression
5-2
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n25
6m0

uP~11y22!1/2
1

6P3y3

u2~y211!3/2
2

2P2y2~y214!

u2~y211!
.

~39!

The first term is regular iny and positive whenm0.0. When
y→` the energy density becomes negative andn
;2y2 ln2 y no matter how bigm0 may be.

Equation~25! is the starting point for the procedure lea
ing to the first Yurtsever solution@13,16#. It comprises the
expressions

P5Bl /2Pl~x!, ~40!

P5Bl /2Ql~x!, ~41!

where Pl and Ql are Legendre functions of the first an
second kinds andx5uB21/2. Solutions withPl grow infi-
nitely when s→`, u→` and change sign. A promisin
solution is

P52Q0~x!5 ln
11x

12x
. ~42!

Its energy density is

n25
12m0

u S P

x D 21

1
12

u2
~xP!328P2

4s21u2

Bs2
. ~43!

The range ofx is 0<x,1 and the first two terms are alway
positive whenm0.0. The last term has a negative pole f
s→0, (x→1) of the types22 ln2 s and it can not be com
pensated by the positive singularity of the second term wh
is ; ln3 s. Hencen2,0 for s→0.

In Ref. @13# a general method is presented for obtaini
solutions of the Euler-Darboux equation. Angular coor
nates are introduced, which is possible for CPW because
variables are bounded. This method does not have an
um

um
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logue for expanding and twisting solutions. At last, it shou
be mentioned that any linear combination of the solutio
derived above is also a solution of Eq.~24!.

IV. DISCUSSION

We have shown that when the NUT parameter vanis
and the gaugeLu50 is used, the main equation~22! for
axisymmetric expanding pure radiation fields with the si
plest twist becomes the second order, linear, Euler-Darb
equation forP. This is the central equation in the theory
aligned colliding plane waves. We have found analogues
some of the numerous known solutions adapted to our p
lem and studied the region of spacetime where the ene
density of pure radiation is positive.

It is interesting that the interaction region of two collidin
aligned plane waves is mathematically equivalent to an
panding distorted spherical wave with a simple twist. Ho
ever, this is not the first example of such kind. It was sho
in Ref. @17# that the field equations for nonaligned collidin
electrogravitational plane waves coincide with the Er
equations@18# for stationary axisymmetric Einstein-Maxwe
fields. The Bell-Szekeres interacting solution is equivalen
the twistless conformally flat Bertotti-Robinson solutio
@13#. Colliding gravitational waves are algebraically gene
due to the presence of bothC1 and C4. When an electro-
magnetic wave collides with a gravitational one sometim
the solution is of type II@19# without twist and falls in a class
of solutions generalizing the Robinson-Trautman solutio
~distorted spherical twistless waves! @20#. The structure of
time-dependent expanding and twisting algebraically spe
pure-radiation solutions obviously is very rich, because
the case of simplest possible twist they coincide mathem
cally with the large variety of aligned colliding plane wave
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