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I. INTRODUCTION

There exist many papers dealing with algebraically spe

tional fields withM =0 generalize the classes of Robinson-
Trautman [10] and Kerr-Schild fields[11] which are
physically realistic, their simplest representatives being the

cial, expanding and twisting pure-radiation solutions of theSchwarzschild, Kerr, and Vaidya solutions.

Einstein equationgl—7]. The standard form of the metric is

[1]
~2dgdg

P2

ds?

—2Q0(dr+WdZ+WdZ+HQ), ()

pp

Q=du+Ldz+Ld{. )

Herer is the coordinate along the null congruence of geode

sics,u is the retarded time, and the complex coordindtes
span a two-dimensional surface. The metric components a
determined by the-independent real functiori®, m, M and
the complex functiori:

2i3=P?(gL—dL), )
1
P @
W=p_1Lu+i(92, (5
_ K
H=—r(InP),—(mr+M32)pp+ =, (6)
K=2P2Rg a(anP—L,)], (7)

whered=d,—Ld, andX is the twist. The basic functior,
L, m, M satisfy the system

(9—3Ly,)(m+iM)=0, (8)

P 3M=1ImddadV, (9)
n2=—2P3 P~ 3(m+iM)],+2P3(33daV),

—2P2(3aV) (3dV),, (10)

whereV,=P, n is the energy density of pure radiation and
the Newton constant is set to 1. EquatidBs (9), and(10)
are in fact Eqs(26.32 and(26.33 from Ref.[1].

In the present paper we explore this condition applying
the method of Stephaf2]. We discuss axisymmetric fields
with the simplest possible twist. In Sec. Il E¢8)—(10) are
reformulated in terms of an invariant potential which leads to
theL,=0 gauge. In Sec. Ill the main equati@®) for sim-
plest twist is shown to be equivalent to the Euler-Darboux
equation, which is central in the theory of aligned colliding
plane wavegCPW). We use the known solutions and tech-
niques to find solutions for our problem. In Sec. IV a closing
discussion is presented.

re
Il. FIELD EQUATIONS IN THE L, ,=0 GAUGE

Following [2] we introduce the invariant complex poten-
tial ¢ which solves Eq(8):

m+iM = ¢2, (11)
¢,
L=—. 12
%, 12
WhenM =0 we can apply the gauge transformation
u’'=f(u,0), (13
(Mm+iM)" =f3(m+iM) (14)

to make the mass parameteia positive or negative constant
m, so that

p=mgTu+ig(o)], (15)

L=i{q(0),, (16)

whereq is real and due to the axial symmetry depends only
ono={{. The complex coordinatgis related to the angular

coordinatesf, ¢ on the distorted spheres€r,, u=ug)
according to

{=\[2tan(612)e'¢. (17)

It has been noticed in different contexts that the conditionObviously L ,=0. This gauge differs from the usual Kerr's

M =0 [vanishing Newman-Unti-TamburinNUT) param-
eter] simplifies the equation$4—6,8,9. Twisting gravita-
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gaugd12] P,=0, but is very suitable when the NUT param-
eter vanishes. Equatiort8) and(10) simplify
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999N = daaoV (18) wherea, b, ¢ are constants ani} is a Bessel function. The
’ first class includes the simplest CPW soluti® —In(z
+2).

A simple solution is obtained by separating the variables
in Eq. (24) [13]:

n2=6myP P, +2P393dP — 2P230PJiP. (19

The second equation is in fact an inequality. WiRgm: 0, n?
can be made positive by the choicerof at least for some

_ N1-12
region of spacetim¢l,4,8. The expressions for the metric P=Al(a+2)(a=2)]" ™ (26)
components simplify too, e.g., the gauge invariantandK . . .
readp plity ¢ gaug a whereA, a are constantd\ is ignorable, whilea must vanish
for a realP. Hence
_p2
2 P Ql (20) P: B*l/z, (27)

K=P2(dd+3dd)InP, (21) B 0?4 U2, 29

whereQ=q,. . The energy density becomes
Whenm+iM =0 (Petrov types Ill and NEq. (8) is an

identity but still a potentialp may be introduced with the n?=—-6myuB 1-12B73. (29

propertyd¢=0 and the subclass of solutions satisfying Eqgs.
(15 and (16) (with mo=1) can be studied. This results in We shall discuss only positive retarded timesuy>0. The
settingmo=0 in all other equations. o energy density is regular in and o. If my<0 and —m,

In both cases the main equati¢t8), which is of fourth > 2.3 thenn?>0. Type Il solutions, however, always have
order with respect t&, becomes a linear second order equanegative energy and are not realistic. The gauge invariants
tion for P. Let us choose the simplest possible twist o, are also regular and vanish for hig
Q=1,L=i{. Then Eqs(18) and(19) read

S=B71, (30)
(99+da)P=0, (22)
K=-20B 2 (31)
n?=6myP~'P,—6P3P,,—20°P? _ _
The Weyl scalar$1,15] have the following leading terms:

1 2

X|| 2Py + ;P(,) +4P2 |. (23 W,=myp°, (32)
The last term in Eq(23) is obviously negative, so necessar- W3=—p?P331+0(p°), (33
ily the first must be positive for a type Il solution and the ) 5
second must be positive for a type 1l brsolution. W,4=pP1,+0(p9), (34
Ill. REDUCTION TO THE EULER-DARBOUX EQUATION Wherg]{% P~19dP. Plugging Eq(27) into Eqs.(33) and(34)

we obtain
Let us introduce the complex varialde- 3 (o+iu). Then

Eq. (22) becomes W3=—6p?{(o+iu)?B~"?+0(p?), (39

2(z+2z)P,;+P,+ P;=0. (24) W,=6ipl2(o+iu)®B 4+ 0(p?). (36)

Whenz andz are two real variables this is the Euler-Darboux It can be shown, using the full expressions fbg and ¥,
equation, the main equation in the theory of aligned CPW15], that the Weyl scalars are regularénandu. Whenu
[13]. We can adapt the numerous solutions for our problem—%, ¥3, and¥, vanish, whileW ,— —mg/r>.

We must ensure tha® is real and investigate the regions  There is an analogue of the coshsolution for CPW.
wheren?>0. Suppose thaP = P(y) where
In the original variables Eq24) may be written as .

i(z—z) u

1 y= —=—. (37)

Puu+ P0'0'+ ;PUZO! (25) Zt+z 7

Then Eq.(24) yields the solution
which is the analogue of the equation for vacuum Gowdy
cosmologied 14]. Equation(25) has been derived from an- P=sinhly. (38
other viewpoint in Ref[8] and discussed there. Solutions
with separated variables behave as-(c)In o or e2"Jy(bo) The energy density is given by the expression
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, 6Mo 6P3y3 2P2y2(y2+ 4) Itc)Jgue f0( exp(;anﬂing andl_twisting sotl)gtior)s. Atflar?t, it slhquld
n?= — 5t T 5 _ e mentioned that any linear combination of the solutions
uP(1+y™*) us(y=+1) us(y=+1) @9 derived above is also a solution of E@4).
39

IV. DISCUSSION
The first term is regular iy and positive whemy>0. When ]
y—o the energy density becomes negative and We have shown that when the NUT parameter vanishes

~—y2In?y no matter how bign, may be. and the gaugé ,=0 is used, the main equatiof22) for

Equation(25) is the starting point for the procedure lead- axisymmetric expanding pure radiation fields with the sim-

ing to the first Yurtsever solutiofil3,16. It comprises the Plest twist becomes the second order, linear, Euler-Darboux
expressions equation forP. This is the central equation in the theory of

aligned colliding plane waves. We have found analogues of

p= B"2P|(x), (40) some of the numerous known solutions adapted to our prob-
lem and studied the region of spacetime where the energy
P=B"2Q,(x), (41)  density of pure radiation is positive.

It is interesting that the interaction region of two colliding
where P, and Q, are Legendre functions of the first and aligned plane waves is mathematically equivalent to an ex-

second kinds anat=uB~ 2. Solutions withP, grow infi-  panding distorted spherical wave with a simple twist. How-
nitely when o—o, u— and change sign. A promising €Ver, this is not the first example of such kind. It was shown
solution is in Ref.[17] that the field equations for nonaligned colliding

electrogravitational plane waves coincide with the Ernst

+ equationg 18] for stationary axisymmetric Einstein-Maxwell
P=2Qo(x)=In 37— (42 fields. The Bell-Szekeres interacting solution is equivalent to
the twistless conformally flat Bertotti-Robinson solution
Its energy density is [13]. Colliding gravitational waves are algebraically general
due to the presence of both; and¥,. When an electro-
5 12my [P\t 12 5 24(;2+ u? magnetic wave collides with a gravitational one sometimes
n“=—, (; +E(XP) —8P TBo? (43 the solution is of type I[19] without twist and falls in a class

of solutions generalizing the Robinson-Trautman solutions

The range ok is 0=<x<1 and the first two terms are always (distorted spherical twistless wayel20]. The structure of
positive whenm,>0. The last term has a negative pole for time-dependent expanding and twisting algebraically special

o—0, (x—1) of the types—2In?o and it can not be com- pure-radiation solutions obviously is very rich, because in
i L : : ﬁhe case of simplest possible twist they coincide mathemati-

is ~ In3 o~ Hencen2<0 for o—0. cally with the large variety of aligned colliding plane waves.

In Ref.[13] a general method is presented for obtaining
solutions of the Euler-Darboux equation. Angular coordi-
nates are introduced, which is possible for CPW because the This work was supported by the Bulgarian National Fund
variables are bounded. This method does not have an anter Scientific Research under Contract No. F-632.
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