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Natural vacua in hyperbolic Friedmann-Robertson-Walker spacetimes
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Recent evidence indicates that the Universe is open, i.e., spatially hyperbolic, long-standing theoretical
preferences to the contrary notwithstanding. This makes it possible to select a vacuum state, Fock space, and
particle definition for a quantized field by requiring concordance with ordinary flat-spacetime theory at late
times. The particle-number basis states thus identified span the physical state space of the field at all times.
This construction is demonstrated here explicitly for a massive, minimally coupled, linear scalar field in an
open, radiation-dominated Friedmann-Robertson-Walker spacd$6656-282(99)05118-§

PACS numbs(s): 04.62.Cv, 98.80.Cq, 98.80.Hw

[. INTRODUCTION times, as the expansion of the model drives its mass-energy
density to zero. But Milne spacetime is a portion of flat
For more than 20 years it has been well known that théMinkowski) spacetime. A vacuum choice can be made for a
definitions of a vacuum state and “particles” for a quantizegduantized field in Milne spacetime which is equivalent to the

field in curved spacetime are problematical. Not that a Fockiamiliar vacuum state of flat-spacetime theory, with all of its

space basis of particle-number eigenstates cannot be defind§Sirable physical propertig§]. Hence a vacuum state is

for such a field; rather, these can be defined in an infinity o e]egted on tbe quglnal spacetime: .that which gpprqaches
inequivalent ways. It is not even necessary to consider graw-hIS phy5|cal Milne vacuum at late times, thus !nherltmg
tation to find this problem, which arises even in flat space-aII of its features. The ch0|ce of a vacuum dete_rmmes a FO(-:k
time ' space of states for the field; basis states for this space define

- L . particles in the spacetime.
For a similar length of time it had been widely held that ™ ¢ course, this defines an “out” vacuum and “out” par-

the Universe, as approximated by a homogeneous, isotropigies, notions long familiar in curved-spacetime quantum
Friedmann-Robertson-Walker spacetime geometry, must bge|d theory. But in an open universwith ordinary matter-
spatially flat.(It was not always so; for many years a model energy content the asymptotically Minkowskian “out” re-

with closed, positively curved spatial sections was believe@jion is physical. The behavior of a quantized fietdistac-

to be the only natural choidel].) The preference for a spa- cord with familiar Minkowski-spacetime field theory there.
tially flat model was upheld either as a consequence of inflaThe state of the field must lie in the Fock space spanned by
tionary cosmology or a motivation for it, or on the basis of the usual Minkowski vacuum and many-particle states in the
various considerations of “naturalness.” Spatially flat or late-time limit, hence, by this “natural” choice of basis
positive-curvature models require a cosmological mass derstates. Since both the actual field state and the basis states are
sity at or above critical density; this underlies the enormousxact solutions of the field theory, the actual state must be
body of theoretical and observational work on the cosmothe same superposition of basis states at all times. That is,
logical dark-matter problem. But the weight of evidence,this choice of basis states spans the physical state space of
greatly strengthened by recent observations, indicates th#te field, at all times. o

the Universe is not spatially flat or positively curved—it is This basis-state construction is illustrated here by means

best described by an open model with hyperbolic spatial se@f an éxample: a massive, minimally coupled, linear scalar
eld in radiation-dominated FRW spacetim@he present

tions, theoretical preferences to the contrary notwithstandin% . . ; : M=
[2,3] niverse is matter dominated, but this example is simpler.
S ghe relevant spacetime geometries and quantum field theory

Remarkably, thes:_a two con_undra may be related. It PTOVE2 e described in Sec. II. The choice of a vacuum state for the
easy to select a particularly simple vacuum state for a quark.y in Milne spacetime, equivalent to the familiar

tized field in. a_hyperbolic I:rieqmann'RObertson'wa.lkerMinkowski-spacetime vacuum, is shown in Sec. Ill. The se-
(FRW) spacetime; the correspondmg.part|cle-number 19€Mection of a vacuum state for the field in the radiation-
states span the state space of the field. Conversely, hyp&§pminated spacetime, which matches this Milne vacuum at

bolic (oper) FRW models are distinguished from spatially |ate times, is demonstrated in Sec. IV. The results are dis-
flat and positive-curvature models in admitting such a “natu-cyssed in Sec. V. I use units here with-c=1, and sign

ral” definition of particles. . conventions and general notation as in Misner, Thorne, and
The choice of this “natural” vacuum state arises from the\yneeler[7].
asymptotic behavior of the hyperbolic FRW spacetime. In
the absence of a cosmological constant, any such spacetime Il. FUNDAMENTALS
approaches the empty Milne spacetime geomelyy] at late _ _
A. Spacetime geometries
The spacetimes of interest here are open Friedman-
*Email address: redmount@hypatia.slu.edu Robertson-Walker geometries, with hyperbolic spatial sec-
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tions and curvature parametes — 1. They have metrics of ]
the form a3l u*—u,

forUe] =1 2.7)
d2= —dt2+a(t)[dx?+sint? x(d?+sir? 0d¢?)], (2.1)

Consequently, the canonical commutation relations for the
with te[0,4%), ye[0,+%), [0,7], and ¢e[0,27). fielq ¢ impose on thg opera’gorls,dm and t_heir Hermi_ti:.;m.
The scale factoa(t) completely characterizes each Space_conjugatés commutation relatlons appropriate to annihilation
time. and creation operators, respectively. The vacuum state of the
The Milne universd4,5] is identified by the scale factor field is defined by the conditioh,;|0)=0 for all modes
xlm; a Fock-space basis of particle states is obtained by
ay(t)=t. (2.2 applying the creation operatotéIm to this vacuum state.
The positive-frequency functions, are not uniquely de-
The resulting geometry corresponds, via the Einstein fieldermined by Eqs(2.6) and (2.7). In general, there is a one-
equations, to an empty universe. It is simply a portion ofcomplex-parameter family of such functions for each mode.
Minkowski spacetime, in coordinates tied to observers movEach choice ofi, corresponds to a different operatoy,, ,
ing radially with all possible velocities. In coordinatds  which defines a different vacuum and particle states. The
=t coshy, R=tsinhy, 6, and ¢, metric (2.1) with scale fac- Fock spaces spanned by these various bases can be unitarily

tor ay takes on the familiar flat-spacetime form. inequivalent.
The radiation-dominated FRW model has a scale factor
given parametrically by lll. “PHYSICAL” VACUUM IN MILNE SPACETIME
agr(n)=a, sinhp, (2.3 For the Milne geometry, Eq(2.6) assumes a familiar

form; a general solution can be written
t(7)=a,(coshp—1), (2.3b

K K

1
= reMWy@ (2)4(2)
with conformal-time parametepe[0,+>) anda, a con- u(t) t[C Hiw (ut) +CHi (u)], @D

stant. According to the Einstein field equations, the resulting

geometry corresponds to a density which decreases with timeghere 05(1,2) are constants anHIi(,f’z) are Hankel functions.
asag” and a pressure one-third of this density, hence “ra-Condition(2.7) imposes the constraint

diation dominated.” Forp>1 the density and pressure rap- 4

idly approach zero, andg approaches the Milne forray, . ;(ef WK|C(Kz)|2_em|CE(1)|2)= 1 3.2

B. Quantized scalar field . ) . . .
on the constants. Each choicea}’, then, identifies a dif-

_Asuitable example is a real scalar figtdnteracting only  ferent positive-frequency mode function, giving rise to a dif-
with the spacetime geometry, with magssand minimal cou-  ferent definition of vacuum and particle states.
pling. The corresponding field equation is There is a unique choice of coefficiert§"?, however,
0= u?)o=0 24 for which the resulting mode functions consist of superposi-
(O=un%)e=0, 249 , - : . :
tions entirely of positive-frequency Minkowski-spacetime

with O the covariant d’Alembertian corresponding to metric mode functions. That choice is
(2.1). The quantized field is expanded in terms of normal- i
mode solutions of this equation and operator coefficients: cﬁ(l)=0 and c(KZ)=77Te’”"’2. 3.3

H (j2+K2)1/2

A standard integral representation of the Hankel functions

o= f:dx[ DramUi(D)

hm =0 can be used to show
. _ _ 1
X(sinhy) " Y2P~ {312 (coshy) Y (6, ¢) +H.c.i. (2.5 SHI () (sinhy) 2P~ 12 coshy)
HereY,,, is a spherical harmonic arfel_{};,*? is an associ- _ f“’ T
ated Legendre function; the parametermepresents radial o a,q (B)e”? jiI(kRydK, (3.43

momentum in the hyperbolic spatial sections of the space-
time. The time dependenag,(t) is a solution of the equa- with k= u sinh, o= pu coshg,

tion
- J
d’u, 3dadu, , 1+k? aku(ﬂ)=—2+|2£+tanh/3—(l+1)cothﬁ a,1-1(B),
[ = K
52 tadr gt I gz /w0, (29 (3.4b

satisfying the “positive-frequency” normalization condition and
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2\ 2g=mxl2 With u,(7)=v,(7)/ar(7n), Eq. (2.6 takes the form
aKo(B)=—(;) — 5 Sin(kB)tanhp. (349

2
In Eq. (3.4, j, is a spherical Bessel function; the integrandd Yk
is the time and radial dependence of a positive-frequencyl »?
normal-mode solution of Eq2.4) in Minkowski coordinates

(T.R,0,¢), with angular momentunt. Consequently, the This is the modified form of Mathieu’s equation. Its solu-

Bogoliubov transformation between the Milne—spacetimet.onS can be expressed in manv different wavs: for those
field decomposition with mode choio®.3) and the usual ! xp ! y d ays,

i i : )
Minkowski-spacetime analysis is “trivial,” in the sense that }Nrr'r'gh approach the Milne-spacetime functidt)(ut), the

it does not mix positive- and negative-frequency mode funci©
tions or creation and annihilation operators. The vacuum

state associated with mode choi@&3) is the same state as +o

the usual Minkowski-spacetime vacuum, with all its symme- v(n)= > c,H? (ua, coshy) (4.2
try, regularity, and minimal-energy properties. Milne- n=-e

spacetime particle states built on this vacuum span the famil-

iar Fock space of the Minkowski-spacetime field. Thus mode&g most appropriate. In consequence of E41), the coeffi-
choice(3.3) may be distinguished as providing the phySicalcientscn must satisfy the system of equations

vacuum and particle definitiofg] for the field ¢ in Milne

spacetime.

~[(3p%af —k*)—3paf cosh2p)]v,=0. (4.1

2 2
%Mza* (ChsatCpz)+ [%Mza* —Kk?=(n+ V)Z]ano 4.3
IV. “NATURAL” VACUUM IN RADIATION-DOMINATED

FRW SPACETIME . o .
for all n, with overall normalization determined by EQ.7).

Field-mode functions for the radiation-dominated FRW The necessary and sufficient condition for systehB) to
geometry can be found as functions of conformal time have a solution is that the infinite determinant

q
0 —_— 0 0 0
A—(3+)?
q
1 0 _— 0 0
A—(2+v)
q
0 1 0 0
A—(1+v)?
q q
= 0 1 0 .
A(V) A_ 1/2 A_ V2 y (44)
q
0 0 1 0
A—(—1+v)°
0 0 d 5 0 1
A—(—2+v)
q
0 0 0 _
A—(—3+v)
|

with g=3u%a? and A=3u?aZ —«?, equal zero. Standard (pa, coshy)~Y2e~inas cosh_ ()~ V2e=int (46
methods exist for the treatment of such determing@itsThe
conditionA(») =0 determines the parameterviz., for »>1. Hence the resulting solution matches the physical

positive-frequency mode function for the Milne-spacetime
1 . . field determined above, in the late-time limit. The vacuum
v=arcsinvA(0) sin(yA)] 49 state and Fock space based on this mode choice will exhibit
the same regularitflack of extraneous singularitigs]),

The coefficients,, can then be found, establishing the solu-analyticity, and other properties as standard Minkowski-
tion (4.2). spacetime field theory in that limit—as indeed does quantum

Every term in serie$4.2) behaves asymptotically as field theory in the actual Universe at the present time. In this
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sense, then, this choice may be termed the “natural’cosmological-constant case: The “natural” vacuum is that
vacuum and particle definition in open, radiation-dominatedvhich approaches the Euclide&@hernikov-Tagirov{9] or
FRW spacetime. Bunch-Davieq§ 10]) vacuum in de Sitter space at late times.
An explicit example would be more involved than that
V. CONCLUSIONS shown above and will not be attempted here.
Though identified by their behavior at late times, the
This example illustrates how a possible “natural” choice vacuum and particle states chosen as described here can
of positive-frequency normal modes, vacuum, and particleserve to describe the physical state of the field at all times.
states for a quantized field can be made, specifically in aifhe mode functions used are exact, not approximate, solu-
openor hyperbolic FRW spacetime geometry. That choice igions of the field equation—equivalently, the vacuum and
based on correspondence with standard Minkowskiparticle states are exact solutions of the functional Schro
spacetime theory at late times, in accordance with all of exdinger equation for the field. Consequently, the actual state
perimental particle physics. of the field is the same superposition of these basis states at
Conversely, hyperbolic or open cosmological models carearly as at late time@hough physical properties of the states
be viewed as “natural,” in that they admit such a definition may be very different This choice of vacuum state could
of vacuum and particle states. The construction illustratecgtven serve as the “preferred natural, geometrical vacuum
here can be applied to any hyperbolic FRW spacetime withstate” in the normal-ordering program described by Brown
out a cosmological constant, i.e., any spacetime which apand Ottewill[11].
proaches the Milne geometry at late times. Of course, this The dependence of this construction on the particular be-
includes the matter-dominated model to which the presenthavior of the spacetime geometry suggests the possibility
Universe more closely corresponds, though the forms of Ecthat the formulation of physics might be more intimately
(2.6) and its solutions are then more unwieldy and less farelated to the actual structure of the Universe than is often
miliar than in the radiation-dominated example. supposed. It may be noted, however, that no “teleology” is
Current evidence also admits the possibility that the cosinvolved in the notion that the vacuum and particle states—
mological constant may be nonzef®,3]. If it is positive, hence, the state space of the field—are determined at all
then the Universe will ultimately approach a de Sitter geom-+imes by particular late-time behavior. Since both the space-
etry, as its expansion suppresses all other density contribtime geometry and the mode functions of the field are solu-
tions. In that case a similar “natural” vacuum can also betions of second-order differential equations, the late-time be-
chosen, on physical grounds akin to those in the zerohavior of both is implicit in their initial conditions.
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