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Natural vacua in hyperbolic Friedmann-Robertson-Walker spacetimes
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Recent evidence indicates that the Universe is open, i.e., spatially hyperbolic, long-standing theoretical
preferences to the contrary notwithstanding. This makes it possible to select a vacuum state, Fock space, and
particle definition for a quantized field by requiring concordance with ordinary flat-spacetime theory at late
times. The particle-number basis states thus identified span the physical state space of the field at all times.
This construction is demonstrated here explicitly for a massive, minimally coupled, linear scalar field in an
open, radiation-dominated Friedmann-Robertson-Walker spacetime.@S0556-2821~99!05118-8#

PACS number~s!: 04.62.Cv, 98.80.Cq, 98.80.Hw
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I. INTRODUCTION

For more than 20 years it has been well known that
definitions of a vacuum state and ‘‘particles’’ for a quantiz
field in curved spacetime are problematical. Not that a Fo
space basis of particle-number eigenstates cannot be de
for such a field; rather, these can be defined in an infinity
inequivalent ways. It is not even necessary to consider gr
tation to find this problem, which arises even in flat spa
time.

For a similar length of time it had been widely held th
the Universe, as approximated by a homogeneous, isotr
Friedmann-Robertson-Walker spacetime geometry, mus
spatially flat.~It was not always so; for many years a mod
with closed, positively curved spatial sections was believ
to be the only natural choice@1#.! The preference for a spa
tially flat model was upheld either as a consequence of in
tionary cosmology or a motivation for it, or on the basis
various considerations of ‘‘naturalness.’’ Spatially flat
positive-curvature models require a cosmological mass d
sity at or above critical density; this underlies the enormo
body of theoretical and observational work on the cosm
logical dark-matter problem. But the weight of evidenc
greatly strengthened by recent observations, indicates
the Universe is not spatially flat or positively curved—it
best described by an open model with hyperbolic spatial s
tions, theoretical preferences to the contrary notwithstand
@2,3#.

Remarkably, these two conundra may be related. It pro
easy to select a particularly simple vacuum state for a qu
tized field in a hyperbolic Friedmann-Robertson-Walk
~FRW! spacetime; the corresponding particle-number eig
states span the state space of the field. Conversely, hy
bolic ~open! FRW models are distinguished from spatia
flat and positive-curvature models in admitting such a ‘‘na
ral’’ definition of particles.

The choice of this ‘‘natural’’ vacuum state arises from t
asymptotic behavior of the hyperbolic FRW spacetime.
the absence of a cosmological constant, any such space
approaches the empty Milne spacetime geometry@4,5# at late
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times, as the expansion of the model drives its mass-en
density to zero. But Milne spacetime is a portion of fl
~Minkowski! spacetime. A vacuum choice can be made fo
quantized field in Milne spacetime which is equivalent to t
familiar vacuum state of flat-spacetime theory, with all of
desirable physical properties@6#. Hence a vacuum state i
selected on the original spacetime: that which approac
this ‘‘physical’’ Milne vacuum at late times, thus inheritin
all of its features. The choice of a vacuum determines a F
space of states for the field; basis states for this space d
particles in the spacetime.

Of course, this defines an ‘‘out’’ vacuum and ‘‘out’’ par
ticles, notions long familiar in curved-spacetime quantu
field theory. But in an open universe~with ordinary matter-
energy content!, the asymptotically Minkowskian ‘‘out’’ re-
gion is physical. The behavior of a quantized fieldmustac-
cord with familiar Minkowski-spacetime field theory ther
The state of the field must lie in the Fock space spanned
the usual Minkowski vacuum and many-particle states in
late-time limit, hence, by this ‘‘natural’’ choice of basi
states. Since both the actual field state and the basis state
exact solutions of the field theory, the actual state must
the same superposition of basis states at all times. Tha
this choice of basis states spans the physical state spa
the field, at all times.

This basis-state construction is illustrated here by me
of an example: a massive, minimally coupled, linear sca
field in radiation-dominated FRW spacetime.~The present
Universe is matter dominated, but this example is simpl!
The relevant spacetime geometries and quantum field th
are described in Sec. II. The choice of a vacuum state for
field in Milne spacetime, equivalent to the familia
Minkowski-spacetime vacuum, is shown in Sec. III. The s
lection of a vacuum state for the field in the radiatio
dominated spacetime, which matches this Milne vacuum
late times, is demonstrated in Sec. IV. The results are
cussed in Sec. V. I use units here with\5c51, and sign
conventions and general notation as in Misner, Thorne,
Wheeler@7#.

II. FUNDAMENTALS

A. Spacetime geometries

The spacetimes of interest here are open Friedm
Robertson-Walker geometries, with hyperbolic spatial s
©1999 The American Physical Society04-1
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tions and curvature parameterk521. They have metrics o
the form

ds252dt21a2~ t !@dx21sinh2 x~du21sin2 u df2!#, ~2.1!

with tP@0,1`), xP@0,1`), uP@0,p#, and fP@0,2p).
The scale factora(t) completely characterizes each spac
time.

The Milne universe@4,5# is identified by the scale facto

aM~ t !5t. ~2.2!

The resulting geometry corresponds, via the Einstein fi
equations, to an empty universe. It is simply a portion
Minkowski spacetime, in coordinates tied to observers m
ing radially with all possible velocities. In coordinatesT
5t coshx, R5t sinhx, u, andf, metric ~2.1! with scale fac-
tor aM takes on the familiar flat-spacetime form.

The radiation-dominated FRW model has a scale fac
given parametrically by

aR~h!5a* sinhh, ~2.3a!

t~h!5a* ~coshh21!, ~2.3b!

with conformal-time parameterhP@0,1`) and a* a con-
stant. According to the Einstein field equations, the result
geometry corresponds to a density which decreases with
as aR

24 and a pressure one-third of this density, hence ‘‘
diation dominated.’’ Forh@1 the density and pressure ra
idly approach zero, andaR approaches the Milne formaM .

B. Quantized scalar field

A suitable example is a real scalar fieldw interacting only
with the spacetime geometry, with massm and minimal cou-
pling. The corresponding field equation is

~h2m2!w50, ~2.4!

with h the covariant d’Alembertian corresponding to met
~2.1!. The quantized field is expanded in terms of norm
mode solutions of this equation and operator coefficients

w5(
l ,m

E
0

`

dkH bk lmuk~ t !F)
j 50

l

~ j 21k2!1/2G
3~sinhx!21/2P21/21 ik

2~ l 11/2!~coshx!Ylm~u,f!1H.c.J . ~2.5!

HereYlm is a spherical harmonic andP21/21 ik
2( l 11/2) is an associ-

ated Legendre function; the parameterk represents radia
momentum in the hyperbolic spatial sections of the spa
time. The time dependenceuk(t) is a solution of the equa
tion

d2uk

dt2
1

3

a

da

dt

duk

dt
1S m21

11k2

a2 Duk50, ~2.6!

satisfying the ‘‘positive-frequency’’ normalization conditio
10400
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ia3S uk*
]J

]t
ukD 51. ~2.7!

Consequently, the canonical commutation relations for
field w impose on the operatorsbk lm and their Hermitian
conjugates commutation relations appropriate to annihila
and creation operators, respectively. The vacuum state o
field is defined by the conditionbk lmu0&50 for all modes
k lm; a Fock-space basis of particle states is obtained
applying the creation operatorsbk lm

† to this vacuum state.
The positive-frequency functionsuk are not uniquely de-

termined by Eqs.~2.6! and ~2.7!. In general, there is a one
complex-parameter family of such functions for each mo
Each choice ofuk corresponds to a different operatorbk lm ,
which defines a different vacuum and particle states. T
Fock spaces spanned by these various bases can be un
inequivalent.

III. ‘‘PHYSICAL’’ VACUUM IN MILNE SPACETIME

For the Milne geometry, Eq.~2.6! assumes a familiar
form; a general solution can be written

uk~ t !5
1

t
@ck

~1!Hik
~1!~mt !1ck

~2!Hik
~2!~mt !#, ~3.1!

where ck
(1,2) are constants andHik

(1,2) are Hankel functions.
Condition ~2.7! imposes the constraint

4

p
~e2pkuck

~2!u22epkuck
~1!u2!51 ~3.2!

on the constants. Each choice ofck
(1) , then, identifies a dif-

ferent positive-frequency mode function, giving rise to a d
ferent definition of vacuum and particle states.

There is a unique choice of coefficientsck
(1,2) , however,

for which the resulting mode functions consist of superpo
tions entirely of positive-frequency Minkowski-spacetim
mode functions. That choice is

ck
~1!50 and ck

~2!5
Ap

2
e2pk/2. ~3.3!

A standard integral representation of the Hankel functio
can be used to show

1

t
Hik

~2!~mt !~sinhx!21/2P21/21 ik
2~ l 11/2!~coshx!

5E
0

`

ak l~b!e2 ivTj l~kR!dk, ~3.4a!

with k5m sinhb, v5m coshb,

ak l~b!5
2 i

k21 l 2 F ]

]b
1tanhb2~ l 11!cothbGak,l 21~b!,

~3.4b!

and
4-2
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ak0~b!52S 2

p D 1/2e2pk/2

pk/2
sin~kb!tanhb. ~3.4c!

In Eq. ~3.4a!, j l is a spherical Bessel function; the integra
is the time and radial dependence of a positive-freque
normal-mode solution of Eq.~2.4! in Minkowski coordinates
(T,R,u,f), with angular momentuml. Consequently, the
Bogoliubov transformation between the Milne-spaceti
field decomposition with mode choice~3.3! and the usual
Minkowski-spacetime analysis is ‘‘trivial,’’ in the sense th
it does not mix positive- and negative-frequency mode fu
tions or creation and annihilation operators. The vacu
state associated with mode choice~3.3! is the same state a
the usual Minkowski-spacetime vacuum, with all its symm
try, regularity, and minimal-energy properties. Miln
spacetime particle states built on this vacuum span the fa
iar Fock space of the Minkowski-spacetime field. Thus mo
choice~3.3! may be distinguished as providing the physic
vacuum and particle definition@6# for the field w in Milne
spacetime.

IV. ‘‘NATURAL’’ VACUUM IN RADIATION-DOMINATED
FRW SPACETIME

Field-mode functions for the radiation-dominated FR
geometry can be found as functions of conformal timeh.
d

lu
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With uk(h)5yk(h)/aR(h), Eq. ~2.6! takes the form

d2yk

dh2
2@~ 1

2 m2a
*
2 2k2!2 1

2 m2a
*
2 cosh~2h!#yk50. ~4.1!

This is the modified form of Mathieu’s equation. Its sol
tions can be expressed in many different ways; for th
which approach the Milne-spacetime functionsHik

(2)(mt), the
form

yk~h!5 (
n52`

1`

cnHn1n
~2! ~ma* coshh! ~4.2!

is most appropriate. In consequence of Eq.~4.1!, the coeffi-
cientscn must satisfy the system of equations

1
4 m2a

*
2 ~cn121cn22!1@ 1

2 m2a
*
2 2k22~n1n!2#cn50 ~4.3!

for all n, with overall normalization determined by Eq.~2.7!.
The necessary and sufficient condition for system~4.3! to
have a solution is that the infinite determinant
D~n![*
... ... ... ... ... ... ...

... 0
q

A2~31n!2 0 0 0 ...

... 1 0
q

A2~21n!2 0 0 ...

... 0 1 0
q

A2~11n!2 0 ...

...
q

A2n2 0 1 0
q

A2n2 ...

... 0
q

A2~211n!2 0 1 0 ...

... 0 0
q

A2~221n!2 0 1 ...

... 0 0 0
q

A2~231n!2 0 ...

... ... ... ... ... ... ...

* , ~4.4!
cal
e

m
ibit

ki-
um
his
with q[ 1
4 m2a

*
2 and A[ 1

2 m2a
*
2 2k2, equal zero. Standar

methods exist for the treatment of such determinants@8#. The
conditionD(n)50 determines the parametern, viz.,

n5
1

p
arcsin@AD~0! sin~pAA!#. ~4.5!

The coefficientscn can then be found, establishing the so
tion ~4.2!.

Every term in series~4.2! behaves asymptotically as
-

~ma* coshh!21/2e2 ima
*

coshh;~mt !21/2e2 imt ~4.6!

for h@1. Hence the resulting solution matches the physi
positive-frequency mode function for the Milne-spacetim
field determined above, in the late-time limit. The vacuu
state and Fock space based on this mode choice will exh
the same regularity~lack of extraneous singularities@6#!,
analyticity, and other properties as standard Minkows
spacetime field theory in that limit—as indeed does quant
field theory in the actual Universe at the present time. In t
4-3
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IAN H. REDMOUNT PHYSICAL REVIEW D 60 104004
sense, then, this choice may be termed the ‘‘natur
vacuum and particle definition in open, radiation-domina
FRW spacetime.

V. CONCLUSIONS

This example illustrates how a possible ‘‘natural’’ choi
of positive-frequency normal modes, vacuum, and part
states for a quantized field can be made, specifically in
openor hyperbolic FRW spacetime geometry. That choice
based on correspondence with standard Minkows
spacetime theory at late times, in accordance with all of
perimental particle physics.

Conversely, hyperbolic or open cosmological models c
be viewed as ‘‘natural,’’ in that they admit such a definitio
of vacuum and particle states. The construction illustra
here can be applied to any hyperbolic FRW spacetime w
out a cosmological constant, i.e., any spacetime which
proaches the Milne geometry at late times. Of course,
includes the matter-dominated model to which the pres
Universe more closely corresponds, though the forms of
~2.6! and its solutions are then more unwieldy and less
miliar than in the radiation-dominated example.

Current evidence also admits the possibility that the c
mological constant may be nonzero@2,3#. If it is positive,
then the Universe will ultimately approach a de Sitter geo
etry, as its expansion suppresses all other density contr
tions. In that case a similar ‘‘natural’’ vacuum can also
chosen, on physical grounds akin to those in the ze
D
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cosmological-constant case: The ‘‘natural’’ vacuum is th
which approaches the Euclidean~Chernikov-Tagirov@9# or
Bunch-Davies@10#! vacuum in de Sitter space at late time
An explicit example would be more involved than th
shown above and will not be attempted here.

Though identified by their behavior at late times, t
vacuum and particle states chosen as described here
serve to describe the physical state of the field at all tim
The mode functions used are exact, not approximate, s
tions of the field equation—equivalently, the vacuum a
particle states are exact solutions of the functional Sch¨-
dinger equation for the field. Consequently, the actual s
of the field is the same superposition of these basis state
early as at late times~though physical properties of the stat
may be very different!. This choice of vacuum state coul
even serve as the ‘‘preferred natural, geometrical vacu
state’’ in the normal-ordering program described by Brow
and Ottewill @11#.

The dependence of this construction on the particular
havior of the spacetime geometry suggests the possib
that the formulation of physics might be more intimate
related to the actual structure of the Universe than is of
supposed. It may be noted, however, that no ‘‘teleology’’
involved in the notion that the vacuum and particle state
hence, the state space of the field—are determined a
times by particular late-time behavior. Since both the spa
time geometry and the mode functions of the field are so
tions of second-order differential equations, the late-time
havior of both is implicit in their initial conditions.
7
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