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Constructing exact perturbations of the standard cosmological models
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In this paper we show a procedure to construct cosmological models which, according to a covariant
criterion, can be seen as exact~nonlinear! perturbations of the standard Friedmann-Lemaıˆtre-Robertson-Walker
~FLRW! cosmological models. The special properties of this procedure will allow us to select some of the
characteristics of the models and also to study in depth their main geometrical and physical features. In
particular, the models are conformally stationary, which means that they are compatible with the existence of
isotropic radiation, and the observers that would measure this isotropy are rotating. Moreover, these models
have two arbitrary functions~one of them is a complex function! which control their main properties, and in
general they do not have any isometry. We study two examples, focusing on the case when the underlying
FLRW models are flat dust models. In these examples we compare our results with those of the linearized
theory of perturbations about a FLRW background.@S0556-2821~99!08320-4#

PACS number~s!: 98.80.Hw, 04.20.2q
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I. INTRODUCTION

The standard picture of the universe is based on the w
known cosmological principle~see @1,2# for recent ac-
counts!, which states that the universe is homogeneous
isotropic. This principle implies that the geometry of spac
time is of the Robertson-Walker type and therefore the m
els that describe the dynamics are Friedmann-Lemaˆtre-
Robertson-Walker ~FLRW! solutions of Einstein’s
equations. However, as astronomical and astrophysical
servations indicate, the cosmological principle should
considered as an approximation valid only to a certain
tent. In order to get a precise description of the universe
need to consider that there are inhomogeneities as we
anisotropies in the distribution of the energy-matter cont
of the universe. Taking into account these considerations
study of perturbations of FLRW models has been an imp
tant subject of research for a long time~see@3# for a review!,
and even today important developments on this issue
appearing in the literature.

The aim of this paper is to contribute to the study
cosmological models that areclose to the FLRW standard
models, but instead of using approximate methods we
use exact techniques, dealing in this way with models t
are exact solutions of the Einstein~nonlinear! equations. This
kind of approach has two obvious advantages: first, we
study gravitational nonlinear effects in a cosmological s
nario, and second, the fact that the models are exact solu
allows us to compute and study any physical quantity.
contrast, in the linearized theory of perturbations, in orde
avoid spurious gauge mode solutions it is necessary to fix
gauge freedom in the map between the background and
turbed spacetimes~see@4,5#!, but for some physical quanti
ties, as for instance the spatial variation of the energy d
sity, the results are difficult to interpret~see @5# for a
extensive discussion!. An alternative is to use a gauge
invariant approach@6,5#, but not all the physical quantitie
are gauge invariant, only those which in the backgrou
spacetime vanish, or are constant scalars, or linear comb
tions ~with constant coefficients! of Kroneckerd ’s ~see@4#!.
0556-2821/99/60~10!/103515~12!/$15.00 60 1035
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Then, other related gauge-invariant quantities must be u
The particular method we employ in this work is a com

bination of different transformations of spacetimes: we w
start from the static FLRW models, then we will make
generalized Kerr-Schild transformation, and finally, we w
apply to the result a conformal transformation. This proc
dure provides the necessary tools to control some prope
of the final spacetimes and facilitates the study of the ph
cal properties. As we will see, choosing adequately the
rameters of these transformations we will find stationary c
mological models, that is, we find cosmological models t
allow the existence of isotropic radiation~see@7,8#!, and this
radiation can represent the cosmic microwave backgro
radiation ~CMBR!. The models have not, in general, an
Killing symmetry and they have two arbitrary functions, on
of them corresponds to the conformal factor, which plays
role of the scale factor for the world lines of the observe
that would observe the CMBR isotropic~the motion of these
observers will be shear free, but in general it will be rotati
and nongeodesic!. The other function is a complex functio
that will control other properties, as for instance, the rotat
of the preferred observers and the Petrov type.

In order to give a meaning to the termclose toFLRW we
are going to use a covariant criterion. This criterion is
generalization of that given in@9,10#, where the characteriza
tion of when a perfect-fluid spacetime is close to a FLR
model is introduced. Here, we give the generalization
arbitrary cosmological models, since our models will not
in general of the perfect-fluid type. This criterion is form
lated in terms of the well-known hydrodynamical formalis
introduced by Ehlers@11# and popularized by Ellis and col
laborators~see, e.g.,@12–14#!. We do not enter here in de
tails about this formalism, they can be consulted in the r
erences just given.

Then, the criterion we are going to use to say that a giv
cosmological model is close to a FLRW model is the follo
ing: ‘‘A cosmological model is said to beclose to FLRWin
some open domain of the spacetime if and only if there
observers, moving with a unit velocityu (uaua521), such
©1999 The American Physical Society15-1
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CARLOS F. SOPUERTA PHYSICAL REVIEW D60 103515
that for some suitable small positive constante the following
inequalities hold in that domain:1

Kinematical variables. Expansionu, shearsab , rotation
vab and accelerationaa:

usabu
u

,e,
uvabu

u
,e,

uaau
u

,e,
uD auu

u2
,e.

Matter variables. Energy density%, isotropic pressurep,
heat flowqa and anisotropic pressurePab :

uDa%u
u%

,e,
uDapu
u%

,e,
uqau
%

,e,
uPabu

%
,e.

Weyl tensor variables. Electric Eab and magneticHab
parts:

uEabu

u2
,e,

uHabu

u2
,e. ’ ’

Where for any spatial~orthogonal tou) tensorAa•••
b••• we

have defined the following scalar:

uAa•••
b•••u[~hac•••hbd

•••Aa•••
b•••A

c•••
d•••!

1/2,

which vanishes if and only ifAa•••
b••• vanishes~wherehab

[gab1uaub denotes the orthogonal projector tou). More-
over, we have used the derivativeD, defined as follows
D aAb•••

c•••[hb
e•••hc

f
•••ha

d¹dAb•••
c••• . Obviously, we

are assuming in this criterion that the model is neithe
vacuum spacetime nor the observers under consideration
expansion free. Note that all the quantities compared wite
are dimensionless quantities, they have been formed by
viding by the expansionu and the energy density%, which
we have assumed to be nonvanishing. The form of the qu
tities compared withe is such that all of them can be taken
first-order terms in the theory of linear perturbations
FLRW cosmological models, because they have a vanish
background value that makes them gauge invariant. In
case,e would correspond with the parameter or functi
controlling the strength of the perturbation. In the mod
that we are going to present in this work, we will be able
control the value of the quantities compared withe by means
of a function, in such a way that when this function is equ
to zero we recover the FLRW models. This is also wh
happens with much of the cosmological models known in
literature ~see@15# for a wide review of models containin
FLRW cosmologies!.

Note also that the conditions given in this criterion a
sufficient but not necessary, in some circumstances som
them can be a consequence of the rest of the conditions:
instance, when there are equations of state relating the m
variables, or in the perfect-fluid case, in which the inequa
for the acceleration follows from the conservation equatio
for the energy-momentum tensorTab ~see@11–13#! and the
inequalities for the pressure. However, this is not true in

1Throughout this paper we use units in which 8pG5c51.
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general case, since althoughqa and Pab are assumed to be
small, their derivatives could not be small. A remaining op
issue is finding the minimum set of inequalities that char
terizes when a cosmological model isclosed toa FLRW
model.

The plan of this paper is the following. In Sec. II, w
describe the techniques used to construct the models
give the expression of the line element, studying the m
geometrical properties that follow from the procedure a
the spacetimes used in the process. In Sec. III we focus
the main physical properties of these models. As we h
said before, the models are conformally stationary, then
consider the unit timelike vector field proportional to th
conformal Killing vector field, which correspond to the un
velocity of the observers that would measure isotropic rad
tion. We study the kinematics of these observers and t
consequences on the properties of our cosmological mod
Afterwards, we decompose the energy-momentum ten
with respect to these preferred observers and study the
ferent quantities. Moreover, we study two particular e
amples of interest focusing on the case of a dust FLR
background. The comparison with the results of the line
ized theory is also made. Finally, in Sec. IV we discuss
results obtained and the possible extensions of this work
the Appendix we give some useful formulas for the ba
associated with the different metrics that appear in this pa

II. CONSTRUCTION AND GEOMETRICAL PROPERTIES
OF THE MODELS

In this section we are going to give the explicit form
the line element of our models and also to study some
their geometrical properties. The procedure we are going
follow is based on the use of the generalized Kerr-Sch
~GKS! and conformal transformations. Broadly speakin
given a spacetime (V4 ,g), a GKS transformation is any
transformation of the formg→g85g12H l ^ l, such thatH is
a scalar andl is a null vector field~general properties of this
transformation can be found, for instance, in@16–18#!. On
the other hand, as is well known, a conformal transformat
is any transformation of the formg→g85F2g, whereF is
any scalar~see, e.g.,@19,20#!.

The manner in which these transformations will be a
plied in this paper and the kind of spacetimes that we ob
are represented in Fig. 1. We start from the static FLR
models (V4 ,g), then a GKS transformation is applied,
which we takel to be geodesic and shear free, such that
final spacetimes (Ṽ4 ,g̃) are perfect-fluid stationary space
times. Finally, we make a conformal transformation, obta
ing in this way conformally stationary spacetimes (V̂4 ,ĝ). In
fact, the global transformation, from (V4 ,g) to (V̂4 ,ĝ), can
be seen as a GKS transformation applied to conformally
spacetimes.

There are several reasons for considering the GKS tra
formation as the tool to find the exact perturbations of
FLRW models. First, as it has been shown in the plent
5-2
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CONSTRUCTING EXACT PERTURBATIONS OF THE . . . PHYSICAL REVIEW D 60 103515
literature on the KS and GKS transformations,2 they allow
one to integrate Einstein’s equations in cases of low sym
try and to obtain large families of solutions. Moreover,
most cases the properties of this transformation prov
simple ways of studying the final spacetimes. The sec
important reason is a theorem, shown first by Xanthopou
@21# for the vacuum to vacuum GKS transformation, whi
states that given two spacetimes (V4 ,g) and (V̂4 ,ĝ) related
by a GKS transformation, and such that the null vector fi
of the transformationl is geodesic, the equations for the te
sor 2H l ^ l, obtained from the Einstein equations for the m
ric ĝ, coincide with the linearized Einstein equations for
traceless perturbation, the initial spacetime (V4 ,g) being the
background spacetime. In fact, it can be shown that the E
stein tensor of the final spacetimesĜa

b is linear inH and its
derivatives, providedl is geodesic. As a consequence, t
proximity of these spacetimes to the FLRW models, in
sense explained in the Introduction, is controlled through
function H. Finally, it is also important to point out that th
GKS transformation preserves the volume four form, wh
is a useful property with which to study quantities defin
through integration.

When we choose the conformal factorF to be a function
of the proper timet of the fundamental observers in the sta
FLRW spacetimes (V4 ,g), namelyR(t), the metricR2g is
the metric of the FLRW models~see, e.g.,@22#!. Then, in
that particular case the final result is a metric of the formĝ
5gFLRW12HL^ L, where L5Rl is a geodesic and shea
free null vector field, and therefore, the global procedure
be seen as a GKS transformation of the FLRW models~that
is what is done for some particular vector fieldl in Refs.
@17,23#!. In this case, the term 2HL^ L satisfies the equa
tions for a traceless perturbation in a FLRW background

However, in order to get more general models contain
the FLRW spacetimes, we can consider the only restric

2The Kerr-Schild transformation is obviously a GKS transform
tion with the Minkowski spacetime as the initial one.

FIG. 1. Scheme followed in the construction of the cosmolo
cal models. Given the initial spacetime~in our case the static FLRW
models!, the GSK transformation is determined by the functionH
and the null vector fieldl, and the conformal transformation b
means of the conformal factorF.
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on the conformal factor, that in the limitH→0 becomes a
function of t only. On one hand, this allows us to choo
widely the conformal factor, and on the other hand, this
striction ensures that we can always recover the FLR
spacetimes by taking the limitH→0.

Now, let us carry out the procedure just outlined~see the
scheme in Fig. 1!. The starting point is the static FLRW
models, that is, those FLRW spacetimes without expans
(u50). The line element can be written in the followin
way:

ds252dt21a2~dx21Sk
2dS 2!, ~1!

wherea is an arbitrary constant andk is the curvature pa-
rameter of the hypersurfaces$t5constant% (k50,1,21 for
flat, closed and open models, respectively!, Sk5Sk(x) sat-
isfies the differential equationSk,x

2 1kSk
251 ( ,x[]/]x), or

alternatively it can be given by

Sk5H sinx for k51,

x for k50,

sinhx for k521,

and dS 2 is the line element of the unit two-dimension
sphere, which, using complex stereographic coordina

$j,j̄%, can be written as follows:

dS 25
4djdj̄

~11jj̄ !2
.

These spacetimes have a perfect-fluid energy-momen
tensor,Tab5(%1p)uaub1pgab , where the fluid velocity
u (uaua521), energy density%, and pressurep are given
by

u5
­

­t
, %5

3k

a2
523p. ~2!

For k51, the line element~1! represents the Einstein stat
universe, fork50 the Minkowski flat spacetime, and fork
521 a negative curvature model that we will call here t
anti-Einstein universe. As we can see from Eq.~2!, the
energy-momentum content of the anti-Einstein universe d
not satisfy the usual energy conditions@19#. It is important to
remark that applying a conformal transformation to the
spacetimes we obtain all the FLRW models, the conform
factor being the usual scale factor, that is to say, a function
t only ~see, e.g.,@22#!.

The first step of our procedure~see Fig. 1! is to perform
the most general GKS transformation

gab→g̃ab5gab12Hl al b , ~3!

which leads from the initial spacetimes~1! to stationary
perfect-fluid spacetimes. Hereafter we will use a tilde to d
note objects associated with the spacetimes (Ṽ4 ,g̃). In this
transformationl is taken to be the most general geodesic a
shear-free null vector field for the metrics~1!, and it can be

-

-

5-3
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CARLOS F. SOPUERTA PHYSICAL REVIEW D60 103515
shown that it has the same properties with respect to the
metrics~3!. The case with a nonrotatingl was given in@24#,
whereas the rotating case was treated in@22# ~see also@18#!.
Here we present an unified treatment for both cases.

The expression forl is the following:

l5
2a

A2~11VV̄!
F ~11VV̄!

dt

a
2~12VV̄!dx

1
2Sk

11jj̄
~V̄dj1Vdj̄ !G , ~4!

whereV is a complex function of the coordinates$x,j,j̄%
such that it satisfies the following two complex partial d
ferential equations:

~11jj̄ !VV ,j2 j̄V25~SkV! ,x , ~5!

~11jj̄ !V ,j̄1jV52Sk
2VS V

Sk
D

,x

. ~6!

This system of partial differential equations comes from
shear-free and geodesic character ofl, and the nondepen
dence on the coordinatet is a consequence of imposing th
stationary character on the GKS spacetimes~3!. The multi-
plicative factor ofl was chosen so that it is affinely param
etrized (l b¹bl a50).

Then, from Eqs.~3!,~1!,~4! the line element of these sta
tionary spacetimes is

ds̃252dt21a2S dx21
4Sk

2djdj̄

~11jj̄ !2 D 1
a2H

~11VV̄!2 F ~1

1VV̄!
dt

a
2~12VV̄!dx1

2Sk

11jj̄
~V̄dj1Vdj̄ !G 2

.

~7!

On the other hand, from part of the Einstein equations
get partial differential equations for the functionH ~the rest
of Einstein’s equations determine completely the ener
momentum content!. A remarkable feature of these equatio
is the fact that when we write them in an adequate Newm
Penrose~NP! basis~see the basis in the Appendix!, they can
be solved without introducing a coordinate system. The
lution depends on whetherl has rotation or not, equivalently
on whether the complex divergencer of l ~the definition of
this quantity can be found for, instance, in@20#! is real or
not. We can write the expression found forH in the follow-
ing form:

H5H 2mr1wH2 when r5 r̄,

m~r1 r̄ ! when rÞr̄,
~8!

wherem andw are arbitrary constants, andH2 is given by
10351
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H25H 11A2ar tan21~A2ar! for k51,

1/r2 for k50,

12A2ar tanh21~A2ar! for k521.

~9!

As we have said before, the caser5 r̄ was solved in@24#,
where the result was given in a different form, and the c
rÞr̄ was solved in@22#. As we can see from these expre
sions, the functionH depends only on the expansion ofl
@21/2(r1 r̄)51/2¹al a#.

We can compute for both cases the expression ofr, which
is also a spin coefficient, using the NP basis constructe
the Appendix. Taking into account Eqs.~5!,~6! we find the
following result:

r55
1

A2a

V ,x

V
for VÞ0

1

A2a

Sk,x

Sk
for V50.

~10!

Once we have found the possible functionsV, expres-
sions ~8!,~9!,~10! determine the functionH, and hence we
have determined completely the line element~7!. As is clear,
in order to findV we need to solve the system of parti
differential equations~5!,~6!. As it can be shown,~5!,~6! is a
quasilinear system that can be solved completely@22# ~more
details are given in@18#!, in such a way thatV is given
implicitly by the following equation:

GS e2A2kxV2j

11 j̄e2A2kxV
,
~12jj̄ !Sk,xV2j1 j̄V2

~11jj̄ !SkV
D 50,

~11!

where G(z1 ,z2) is any analytic complex function of two
complex variables$z1 ,z2%. In the casesk50,1 we must im-
pose]z2

GÞ0, otherwise we would obtain a vanishing fun
tion H, which means that the transformation~3! is the iden-
tity. On the other hand, it turns out that in the nonrotati
case (r5 r̄) Eqs. ~5!,~6! can be solved explicitly. The ex
pression forV can be written as follows:

V5~B1A11B 2!U, U5AZ
Z̄, ~12!

whereB andZ are real and complex functions, respective
whose expressions are

B5
1

AZZ̄
$c~11jj̄ !Sk2@~12jj̄ !cosf

1~j1 j̄ !sinf#Sk,x%,

Z52j cosf2~12j2!sinf,

wherec andf are arbitrary constants.
5-4
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CONSTRUCTING EXACT PERTURBATIONS OF THE . . . PHYSICAL REVIEW D 60 103515
As we have already said, we have performed the G
transformation in such a way that the final metricsg̃ab are of
the perfect-fluid type. Then, the energy-momentum ten
has the formT̃ab5(%̃1 p̃)ũaũa1 p̃g̃ab , where

ũ5
1

A12H

­

­t
, %̃5

3k

a2
~12H !523p̃. ~13!

As we can see,ũ (ũaũa521) can only be defined whe
12H.0. As is obvious, this condition depends on t
choice of the functionV @more precisely, it depends on th
choice of the functionG in Eq. ~11!# and the constantsm,w.
It is possible that in some cases this condition is autom
cally fulfilled, but in some other cases it would imply that w
can only define this vector field in the region determined
the inequality 12H.0 ~see@22# for more details!.

The nonvanishing kinematical quantities associated w
ũ are the accelerationãa and the rotationṽab . Using the NP
basis constructed in the Appendix~and the associate differ
ential operators!, their expressions are

ṽab52S d̄H

12H
ṽ [am̃b]1c.c.D 2

A2~r2 r̄ !H

A12H
m̃[am! b] ,

~14!

ãa52
DH

A2~12H !
ṽa2S d̄H

12H
m̃a1c.c.D , ~15!

where c.c. stands for complex conjugation. It is interesting
note that from Eq.~14! we can deduce that the rotationṽab

of ũ vanishes if and only if so does the rotationr2 r̄ of l a.
On the other hand, the vector field­/­t is the timelike

Killing vector field. In general there are no more Killin
vectors~see@22#!, although there are special cases~special
forms of the complex functionV) in which there is an ad-
ditional Killing vector. With regard to the algebraic structu
of these spacetimes, they are in general Petrov type-II un
the following condition holds:

V~kV21V ,x
2 !V ,xxx5@3~VV ,xx2V ,x

2 1kV2!V ,xx

2kV~4V ,x
2 1kV2!#V ,x . ~16!

In that case the Petrov type is D and the fluid velocity do
not lie in the preferred two-space spanned by the two m
tiple null principal directions of the Weyl tensor. As it can b
checked, the functionV given in Eq.~12! satisfies this equa
tion and, therefore, all the spacetimes in this case (r5 r̄) are
Petrov type-D.

Now, we are going to carry out the second step of
procedure~see Fig. 1!, that is, we are going to make a co
formal transformationg̃→ĝ5F2g̃. To that end, in what fol-
lows we considerF to be any arbitrary functionR(xc) such
that in the limitH→0 @which can be done by taking in Eq
~8! the limit m,w→0# becomes a function oft only. Then,
the complete transformation from the seed spacetimes~1! to
the perturbedFLRW ones looks as follows:
10351
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ĝab5R2g̃ab5R2gab12H~Rla!~Rlb!, ~17!

where we use a hat to denote objects associated with the
spacetimes (V̂4 ,ĝ). Then, we can see Eq.~17! as a GKS
transformation in which the seed spacetimes are confor
to the metrics~1!, which include the FLRW spacetimes, an
the null vector field of the transformation isR(xa) l. This
vector field is also geodesic and shear free in the final sp
times, for any conformal transformation preserves th
properties.

The line element of these spacetimes can be obtaine
substituting expressions~1!,~4! or Eq. ~7! in Eq. ~17!, which
yields to the following result:

ds25R2H 2dt21dx21
4Sk

2djdj̄

~11jj̄ !2
1

H

~11VV̄!2

3F ~11VV̄! dt2~12VV̄!dx

1
2Sk

11jj̄
~V̄dj1Vdj̄ !G 2J , ~18!

where we have eliminated the constanta by absorbing it into
the conformal factorR and rescalingt.

Now, we are going to study the main geometrical prop
ties of the final spacetimes (V̂4 ,ĝ) that follow from this con-
struction and the properties of the spacetimes involved~see
Fig. 1!. In the next section we will discuss the main physic
consequences of these properties.

First of all, these models have no symmetry in gene
that is, there are in general no Killing vector fields. As w
have pointed out above, in general the only Killing vect
field in the (Ṽ4 ,g̃) spacetimes is­/­t, which is now a con-
formal Killing vector field with a timelike character whe
12H.0 ~this condition depends onV and m,w). There-
fore, the spacetime is conformally stationary in the reg
12H.0, or in the whole spacetime in the case that t
condition holds everywhere.

With regard to the algebraic structure of the spacetim
(V̂4 ,ĝ), we have to take into consideration the fact that t
Weyl tensor is conformally invariant, and therefore, the fin
spacetimes will have the same algebraic structure, tha
they will be Petrov type-II in general, and type-D when co
dition ~16! is fulfilled. Again, the caser5 r̄ imply type-D.
Moreover, the null vector fieldl̂5Rl̃5Rl is the null multiple
eigenvector of the Weyl tensor.

Depending on the form we take for the conformal fact
some special features can appear~see Sec. III!. The most
simple case is when we take the conformal factorF to be a
function of the coordinatet, namelyR(t). In that case, Eq.
~17! is a GKS transformation in which the seed spacetim
are now the FLRW spacetimes,R(t) l being the null, geode-
sic, and shear-free vector field of the transformation. Wit
this special case, the particular subcase defined byk51 and
the choice in Eq.~11! of G(z1 ,z2)5z21 i /(A2c), c being
5-5
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an arbitrary real constant, was already given in@23,17#,
where the models were interpreted as the Kerr metrics
cosmological background~it is important to note that thes
models are special particular cases of our models!. More-
over, although the techniques used in these papers allo
one to find models containing only the closed (k51) FLRW
models, the extension to the other cases (k50,21) can be
done by reparametrizations or limiting processes~see@15#,
and references therein!. The extension to the Kerr-Newma
case is given in@25# ~see@15# for more information!. Finally,
it is important to remark that all the solutions of the type~17!
previously known belong to this particular case in whichF
5R(t).

III. PHYSICAL PROPERTIES OF THE MODELS

In this section we are going to study the main physi
characteristics and properties of the spacetimes (V̂4 ,ĝ), con-
structed in the previous section. To that end, we are goin
consider the preferred unit timelike vector field of the
spacetimes,û (ĝabû

aûb521), which is given by

ûa[R21ũa5
1

RA12H
ua. ~19!

As we can see, it is privileged because it is the unit timel
vector field proportional to the conformal Killing vector fiel
­/­t. In the same way as it happened with the vector fielũ
~13!, û can be defined only in the region 12H.0.

From the results obtained in the previous section, we
duce that the nonzero kinematical quantities ofû are the
expansionû, the rotationv̂ab , and the accelerationâa, that
is to say,û is shear free. The expression for these kinem
cal quantities is given by

û53R21ûa]aR[3R21Ṙ, ~20!

v̂ab5Rṽab , ~21!

âa5R22ãa1R21D̂aR, ~22!

respectively. The expressions forãa and ṽab are given in
Eqs.~14!,~15!.

From these expressions we can deduce some intere
properties of the cosmological models~18!. The first impor-
tant physical feature of these models is a consequence o
existence of the conformal timelike vector field­/­t. Studies
of kinetic theory in general relativity@7,8# led to the conclu-
sion that the spacetimes allowing the existence of isotro
radiation must be conformally stationary and the distribut
function describing the radiation~gas of photons! must de-
pend only on the first integral of the null geodesic equati
which is defined by the conformal Killing vector field~see
also @26#!. This result led to the establishment of the we
known Ehlers-Geren-Sachs theorem@8#. Recently, an exten
sion of this result foralmost-FLRW models has been give
in @27#.
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Therefore, the models here obtained can be considere
inhomogeneous exact perturbations of the FLRW cosmolo
cal models, compatible with the existence of isotropic rad
tion ~see@28# for a different study of the rotation-free case!.
In our case, the observers who see the radiation isotropic
those moving along the world lines of the unit velocity fie
û. Then, we can use these models to study a universe
taining an isotropic CMBR. As is well known, in this cas
the changes in the redshift measured by the preferred obs
ers are due only to the expansion~isotropic contribution! and
to the acceleration~gravitational redshift!

l21dl5~ 1
3 û1âaêa!d l̂ ,

whereêa is a unit spacelike vector representing an orthog
nal direction toû andd l̂ is a proper distance element relativ
to û ~see@11,12,14#, and references therein!. Since the mag-
nitude of the accelerationuâau depends on the functionH, we
can control the term corresponding to the gravitational r
shift.

From the expressions for the nonzero kinematical qua
ties ~20!–~22!, we can deduce other properties of these m
els. Looking at the expansion~20! of û, it follows that the
preferred congruence of world lines is in general expand
~or contracting!, and the conformal factorR is a scale factor,3

which reduces to the scale factor of the FLRW models in
limit H→0. Moreover, from Eq.~21! we can see that thes
models have, in general, rotation. The rotation vanishes o
when the rotation~14! of the stationary spacetimes~7! van-
ishes, that is, only when the rotation ofl vanishes (r5 r̄).
This kind of cosmological model, in which there is a she
free and irrotational timelike congruence, has been stud
recently in connection with the study of the Newtonian lim
of general relativity in a cosmological context@29# ~see also
@30#!. Following the naming of this work, the spacetim
(V̂4 ,ĝ) in which v̂ab vanishes would bequasi-Newtonian
cosmologiesand the preferred congruence would be
Newtonian-liketimelike congruence. Later, we will study th
effect of the rotation on these cosmological models in t
examples. Finally, the expression for the acceleration~22!
tells us that in general the world lines of the preferred o
servers are not geodesics.

Now, we are going to study the energy-momentum co
tent of these cosmological models. To that end we need
compute the energy-momentum tensor associated with
metrics~18!. This calculation can be done by computing t
Einstein tensor of the metrics~18! and using Einstein’s equa
tionsĜab5T̂ab . A simple way to carry out this calculation i
to use the well-known formulas for a conformal transform
tion ~see, e.g.,@19,20#!, which allow us to compute all the
quantities for the final spacetimes (V̂4 ,ĝ) in terms of the

3The scale factor is always fixed up to a general first integra
the velocity field, since given the expansionu, the scale factor is
defined by 3R21ua]aR5u.
5-6
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initial ones (Ṽ4 ,g̃) and the conformal factorF. On the other
hand, in order to express the results of the calculations an
facilitate the study of the energy-momentum content, we
going to decompose the energy-momentum tensorT̂ab with
respect to the unit velocityû ~19! of the preferred observers
This decomposition is standard and is as follows:

T̂ab5%̂ûaûb1 p̂ĥab12q̂(aûb)1P̂ab ,

where ĥab[ĝab1ûaûb is the orthogonal projector an

%̂, p̂, q̂a, P̂ab are the energy density, isotropic pre
sure, heat flow, and anisotropic pressures relative toû, re-
spectively~see@11# for more details!. For a generic confor-
mal factorF5R(xa) they are given by

%̂5%023kR22H13R22~D̂aR!~D̂aR!22R21D̂aD̂aR,
~23!

p̂5p01kR22H23R22~D̂aR!~D̂aR!

1 4
3 R21D̂aD̂aR12âaD̂aR, ~24!

q̂a5 2
3 D̂aû12R21v̂abD̂bR, ~25!

P̂ab522R21D̂^aD̂b&R, ~26!

where here the angled brackets on indices denote the s
metric and trace-free part. Moreover,%0 andp0 are given by

%05
3

R2
~Ṙ21k!, p052

1

R2
~Ṙ212RR̈1k!. ~27!

As we can see, these terms of the density and pressure
the same dependence on the scale factor as the density
pressure of the FLRW models have, and in the limitH→0
they coincide.

With regard to the covariant criterion exposed in the
troduction, we can check, by studying the dependence of
derivative D̂aR on the functionH, that given ae we can
always choose the constants contained in the functionH ~m
and w! so that the kinematical variables~20!–~22! and the
matter variables~23!–~26! associated with the fluid velocity
û satisfy the corresponding inequalities.

On the other hand, as is well-known the energ
momentum tensor determines part of the Riemann curva
tensor, the Ricci tensor~through Einstein’s equations!. The
other part of the curvature tensor is described by the W
tensor Ĉabcd. Their components can be decomposed w
respect to a given unit timelike vector field@we consider here
the preferred timelike vector fieldû given in Eq.~19!# into
the electricÊab and magneticĤab parts~see, e.g.,@12,13#!,
which are spacelike symmetric and trace-free tensors. In
case, these tensors are in general nonzero, but when th
tation v̂ab vanishes, we can show that the magnetic p
vanishes,
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This is in fact a consequence of the Ricci identities for t
velocity field û ~see@12,13# for details on the Ricci identities
for a unit timelike vector field! and the vanishing of the
shear. Furthermore, taking into account that when the r
tion vanishes we haver5 r̄, and since in this case the Petro
type of our models is D, we deduce that the electric partÊab
becomes degenerate, that is, at least two of their eigenva
are equal~see@20# for details on the Petrov classification i
terms of the electric and magnetic parts of the Weyl tens!.
Finally, we can also check that for a givene, we can choose
the constantm andw so that the electric and magnetic par
associated withû satisfy the conditions of the criterion
showing that our models are closed to the FLRW cosmolo
cal models in the sense already explained.

Now, in order to go deeply into the study of the cosm
logical models obtained, let us consider some examp
Here, we will deal with the following two cases:~i! The case
R5R(t), and ~ii ! the caseR5R( t̂), where t̂ is the proper
time of û ~19!.

The case in whichR5R(t), which is the most simple one
has been the only one studied in the literature, and as
have pointed out before, only in some very special cas
The simple form of the conformal factor allows us to wri
the metric in the GKS form with the FLRW models as th
initial spacetimes, that isĝ5gFLRW12HL^ L ~see Sec. II for
more details!.

Taking into account this special form of the conform
factor we can expand the expressions~23!–~26!. After some
calculations we arrive at the following result:

%̂5%FLRW1
3

R2
~R,t

2 2k!H

1A2
R,t

R2 H 22H

12H
DH22~r1 r̄ !HJ

1
2

R2
~R,t

2 2RR,tt!
H2

12H
, ~28!

p̂5pFLRW2
1

R2
~R,t

2 12RR,tt2k!H

1
A2

3

R,t

R2 H 5H24

12H
DH14~r1 r̄ !HJ

1
2

3R2
~R,t

2 2RR,tt!
H2

12H
, ~29!

q̂a5
1

R2
$2~R,t

2 2RR,tt!H1A2R,tDH%
v̂a

12H

1
R,t

R2 H d̄H

A12H
m̂a1c.c.J , ~30!
5-7
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P̂ab5
4

3R2 H R,t

A2
F22H

12H
DH1~r1 r̄ !HG

1~R,t
2 2RR,tt!

H2

12HJ ~ v̂av̂b2m̂(amC b)!

12
R,t

R2 H d̄H

A12H
v̂ (am̂b)1c.c.J , ~31!

wheret is the proper time of the initial FLRW model, whic
is related to the conformal timet by dt5R(t)dt. On the
other hand, the terms%FLRW andpFLRW are the energy den
sity and the pressure of the initial FLRW spacetimes:

%FLRW5
3

R2
~R,t

2 1k!, pFLRW52
1

R2
~R,t

2 12RR,tt1k!,

which have the same form as~27! but changingûa¹a by
ua¹a . Moreover, as is obvious%FLRW and pFLRW do not
depend on the functionH.

Now, let us study some properties of these quantit
First of all, from their expressions~28!–~31!, we can see
explicitly how these models are close to the FLRW mod
in the sense exposed in the introduction. In particular, we
see how the functionH ~or the constant parametersm andw
that it contains! controls the magnitude of the quantities
the left-hand side of the inequalities of our criterion.

On the other hand, in the static limit (R,t50), we recover
obviously the GKS models~7!. We can also check that w
cannot impose the energy-momentum tensorT̂ab to be of the
perfect-fluid type with respect toû, otherwise either we ge
the stationary models~7! or the accelerationâa and rotation
v̂ab would vanish, which implies that our models are exac
FLRW models.

In what follows, and in order to study the evolution, w
are going to consider only those models in which the ini
FLRW spacetime is flat (k50) and has an equation of sta
p5g% @we will considergP(21,1) and%.0 in order that
they satisfy the dominant energy condition#, which implies
that their scalar factor grows as a power of the proper timt,
that is

R~t!5R0S t

t0
D 2/@3(11g)#

, ~32!

whereR0 andt0 are arbitrary constants. Now, it is importa
to notice that the proper time of the fundamental observer
the FLRW background and that of the preferred observer
the final spacetimes are related by~choosing the same origin!

t̂5tA12H,

and, therefore, both parameters,t̂ and t, trace properly the
evolution of the quantities in the final spacetimes~along the
world lines of the preferred observers!. Moreover, from Eq.
~32!, the expansionû in this case is
10351
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2

11g

1

t̂
, ~33!

and therefore, in this case it depends only on the proper t
t̂.

When we introduce Eq.~32! in expressions~28!–~31!, we
realize that these quantities evolve according to two differ
powers oft̂. There are terms that evolve like the backgrou
terms %FLRW and pFLRW, that is, like t̂22, and the other
terms evolve like t̂2(513g)/[3(11g)] . In the case of the
energy-density parameterV̂, from expressions~33!,~28!, we
obtain the following relationship:

V̂[
3%̂

û2
511gH21

~11g!t̂0

R0A2~12H !
@~22H !DH

22~r1 r̄ !~12H !H#S t̂

t̂0
D ~113g!/@3(11g)#

, ~34!

wheret̂0[t0A12H. This expression shows how terms co
taining H will become important~for 3g.21) as the mod-
els evolve. Furthermore, if we restrict ourselves to the c
of a dust FLRW background (g50), corresponding to the
well-known Einstein–de Sitter universe@31#, we can get
from Eq. ~34! the following equation:

V̂t̂215~V̂ t̂0
21!S t̂

t̂0
D 1/3

, ~35!

which shows how the density parameter deviates from
unity in a matter-dominated stage of the universe. Here
subscripts denote the proper time at which the density
rameter is evaluated.

To finish this example, we are going to see what is
behavior of the rotation and the acceleration of the prefer
observers. This can be studied by using expressi
~21!,~22!, from which we can get the following relations:

uv̂abu

û
5

~11g!t̂0

2R0
uṽabuS t̂

t̂0
D ~113g!/@3(11g)#

,

uâau2

û2
5

~11g!2t̂0
2

4R0
2

uãau2S t̂

t̂0
D 2(113g)/@3(11g)#

1
1

9
H2

1
~11g!t̂0

3A2R0

HDH

A12H
S t̂

t̂0
D ~113g!/@3(11g)#

. ~36!

As we can see, both kinematical quantities will become i
portant as the models evolve. Moreover, in the case of
rotation we find the following relation:

uv̂abu t̂5uv̂abu t̂0S t̂

t̂0
D 22/@3(11g)#

, ~37!
5-8
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which shows the fact that the rotation decays slower~for g
.21/3) than the expansion~33!.

The second example we are going to consider here,
case whenR5R( t̂), is an example of a different choice o
the conformal factor. It has the special feature that alw
the scale factor and expansion associated with the prefe
observers only depend on the proper timet̂, and the same
happens with thebackgroundterms%0 andp0 in the energy
density and pressure~23!,~24!.

In this case the explicit calculation of the quantities~23!–
~26! is more involved. Here, for the sake of brevity, we on
give the expression for the energy density:

%̂5%o2
3k

R2
H12

Ṙ

R2 H A2~12H !@~223H !DH2~r1 r̄ !H#

1 t̃FDDH2~r1 r̄ !DH22~r2 r̄ !2
H

12H
1

dH d̄H

~12H !2G J
2

Ṙ212RR̈

2~12H !R2
@~HA2~12H !1 t̃DH !21 t̃dH d̄H#, ~38!

where t̃ is the proper time of the fluid velocityũ of the
stationary spacetimes (Ṽ4 ,g̃). The relation betweent̃ and t̂

is R21( t̂)dt̂5dt̃, that is,t̃ is a function oft̂ only and vice
versa. If we consider, like in the previous example, the p
ticular case in whichk50 andR( t̂) is a power oft̂ @like in
Eq. ~32!#, apart from the terms evolving like the powerst̂22

~background terms! and t̂2(513g)/[3(11g)] , which also ap-
peared in this previous example, we find terms evolving l
t̂24/[3(11g)] . Therefore, for ordinary matter, terms evolvin
with this new power oft̂ are the slowest terms going to zer
and hence, for large enough values of the proper timet̂ they
will dominate. With regard to the kinematical quantities,
the case of the rotation the relation~37! remains valid,
whereas in the case of the acceleration, the quantityuâau2/ û2

has the same dependence ont̂ that in the previous exampl
~36!, but with different coefficients.

Considering now the case in which the underlying FLR
model is the Einstein–de Sitter universe (g50), the analo-
gous equation to Eq.~35! is

V̂t̂215~V̂ t̂0
21!H F1~r,r̄ !

F1~r,r̄ !1F2~r,r̄ !
S t̂

t̂0
D 1/3

1
F2~r,r̄ !

F1~r,r̄ !1F2~r,r̄ !
S t̂

t̂0
D 2/3J , ~39!

where the explicit expression of the functionsF1 andF2 can
be obtained from Eq.~38!.

We finish this section by comparing the results obtain
in these two examples with the solutions in the lineariz
theory about a dust flat-FLRW background~see, e.g.,@6#!. In
particular we focus on the solutions for the energy-den
perturbations. In order to study the perturbations of t
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quantity, several approaches~see @6#! use some gauge
invariant variables related directly with the dimensionle
density contrast.4 In the covariant and gauge-invariant a
proach to the linearized perturbations of a FLRW cosmolo
cal model@5#, one of the most used quantities is thecomov-
ing fractional density gradient~see @5,14# and references
therein!, which in our notation isR%̂21D̂a%̂[ĉa . In all
these approaches, the solution of the evolution equation
two different modes, a growing mode which evolves li
t̂3/2, and a decaying mode which evolves liket̂21. In our
case, if we consider the quantityV̂21, which gives the in-
formation about the deviation of the density parameter fr
the unity~its value in a dust FLRW model!, from expressions
~35!,~39!, we can see that two differences appear: first, th
are not decaying terms and second, there are two grow
terms@in the first case~35! there is only one#, the usual term
proportional tot̂3/2 ~that is, proportional to the scale facto!

and another term proportional tot̂1/3. On the other hand, we
can compute in our models the comoving fractional dens
gradient ĉa . As we can see below, this quantity is not
linear combination of powers oft̂, which is a consequence o
the fact that our study is nonperturbative, in contrast with
form of the solutions in the linearized theory, which com
from the linearized dynamical equations. After some cal
lations, we get the following expression forĉa :

ĉa5
1

11Q1~ t̂/ t̂0!1/31Q2~ t̂/ t̂0!2/3
$P1a~ t̂/ t̂0!21/31P2a

1P3a~ t̂/ t̂0!1/31P4a~ t̂/ t̂0!2/3%, ~40!

where the form of the objectsQ1 , Q2 , P1a , P2a , P3a ,
andP4a can be obtained from the expressions for the ene
density~28!,~38!. In the case of the first example we find th
Q25P4a50. In general, the scalarsQ1 andQ2 are functions
of r and r̄ only, and thereforeQ̇15Q̇250. On the other
hand, the one-formsPIa (I 51, . . . ,4) satisfy uPIau•

5ûb]buPIau50. Moreover, whenH→0, all these objects
tend to zero likeH. As we can see, the scalar associated w
this quantity~40!, that is uĉau, has the following asymptotic
behavior:

uĉau →
t̂→0

uP1au S t̂
t̂0

D 21/3

,

uĉau →
t̂→`

K, K̇50.

The first equation shows how this quantity becomes sing
at t̂50, like in the linearized theory. However, the typic
behavior of a decaying mode in the linearized theory is of

4The dimensionless density contrast is usually defined by%p

2%b)/%b , where%p and%b are the energy density of the perturbe
and background spacetimes, respectively. However, this quantit
in general, gauge dependent.
5-9
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CARLOS F. SOPUERTA PHYSICAL REVIEW D60 103515
type t̂21. The second equation, whereK is uP3au/uQ1u in the
first example anduP4au/uQ2u in the second example, show
how the growth ofuĉau is bounded, contrary to what happe
in the linearized theory, where the growing mode, wh
evolves liket̂2/3, goes to infinity. Note also thatK is for both
examples the quotient of two quantities of first order inH
and therefore,K will be a zero-order quantity inH, or in
other words, in general it does not go to zero whenH does.

IV. CONCLUSIONS AND DISCUSSION

In this paper we have constructed cosmological mod
which according to the covariant criterion exposed in
introduction can be seen as exact~nonlinear! perturbations of
the standard FLRW cosmological models. The advantage
this approach are, on one hand, that we can study any ph
cal quantity without having the problems of interpretati
that some quantities have in the linearized theory of per
bations~specially those which are not gauge invariant!, and
on the other hand, the possibility of taking into account no
linear effects. We have also seen how the special chara
istics of the method used here provided the necessary too
make an exhaustive study of the geometrical and phys
properties of these models. In this study we have conside
two particular examples, in which we have looked at so
interesting quantities, and also we have been able to com
our models with the results of the linearized theory, show
the differences and similarities.

The models found in this work have some interest
properties. Among them we can mention the fact that in g
eral they have no Killing vector field, but they have a co
formal timelike vector field, which means that the models
compatible with the existence of isotropic radiation. Furth
more, the motion of the observers that would ‘‘see’’ the
diation as isotropic is in general rotating. Moreover, we ha
two free functions in order to fix a particular model. On o
hand, the complex functionG Eq. ~11!, in which can control,
for instance, the rotation of the preferred observers, and
the other hand we have the conformal factorF, which plays
the role of a scale factor@see Eq.~20!# and controls the
underlying FLRW model. Apart from this freedom, we ha
also the arbitrary constantsm and w, which control the de-
viation from the FLRW models. It is important to rema
that we have seen that the quantities associated with the
ferred observers~with unit velocity û) satisfy the inequalities
of the criterion given in the introduction, provided the arb
trary constantsm andw are chosen properly for a givene.

With regard to the lacks of these cosmological models,
can mention that although they are very general in the se
that they do not possess any isometry, they are not so ge
from the point of view of the Petrov classification, since th
are algebraically special~although they have a minimum de
gree of degeneration given that their Petrov type is II
general!. With regard to the matter content, in the procedu
here described we have not introduced any description of
matter, we have just decomposed the energy-momentum
sor like a general fluid with velocityû, and then we have
seen how in the limitH→0 it reduces to a perfect fluid, an
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û becomes the fluid velocity of the resulting FLRW spac
times. However, we could try to give such a description,
instance, by means of the kinetic theory, or using a con
tent thermodynamical scheme, or we can divide the to
energy-momentum tensor in several components and
interpret each of them separately.

On the other hand, the procedure shown in this paper i
example of how we can get exact cosmological mod
which can describe deviations from the standard FLR
models. This procedure can be generalized in different wa
Within the scheme presented here, we could relax the co
tion of obtaining perfect-fluid solutions in the first step of th
procedure~the GKS transformation, see Fig. 1!, although it
is possible that in such a case the remaining system of e
tions could not be integrated completely. On the other ha
there are other procedures similar to the GKS transformat
which can be exploited in order to get exact families of co
mological models with general properties~see, e.g.,@16,32#!.
An example of these procedures can be seen in the pape
Bonanos@32#. In this work, the author considers the follow
ing transformation: gab→gab22z (ab)1zcaz

c
b and gab

→gab12z (ab)1zaczb
c , where zab is a tensor~in general

nonsymmetric! associated with the initial spacetime and su
ject to the conditionza

cz
c
b50. As we can see, it include

the GKS transformation (zab52Hl al b). In @32# a particular
case of this transformation is studied in the case o
Minkowski background. It is shown that this transformatio
has some special properties similar to those of the G
transformation. In this sense, it could be interesting to stu
it in the case of a FLRW background.

There are other models in cosmology that can be see
exact perturbations of the FLRW models. For instance,
perfect-fluid models given in@33#, which have also been
constructed using the GKS transformation~in that casel is
geodesic but not shear free!. In general, they only have on
Killing vector field, but on the other hand, they include on
some particular FLRW models~within the three classes
k50,1,21). Other examples are provided by the the we
known Szekeres dust models@34#: in @35# an analogy of the
equations of these models with those of the linearized the
is given~see also@15,36,37#!, and in@38# they are reobtained
by using approximation methods based on the Hamilt
Jacobi approach to irrotational dust models.
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APPENDIX: NEWMAN-PENROSE
AND ORTHONORMAL BASIS

In this appendix we give a Newman-Penrose~NP! and an
orthonormal basis~see @39,20#! for each of the different
spacetimes used in our construction. The NP basis will
adapted to the null vector fieldl Eq. ~4! of the GKS trans-
formation. First of all, we are going to consider the initi
metrics ~1!. In that case the Newman-Penrose ba
5-10
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$ l,k,m,m̄% is given byl Eq. ~4! and

k5
2a

A2~11VV̄!
F ~11VV̄!

dt

a
1~12VV̄!dx

2
2Sk

11jj̄
~V̄dj1Vdj̄!G ,

m5
A2a

11VV̄
FAVV̄dx1SkAV̄

V
~dj2V2dj̄!G .

As is obvious,$R(t) l,R(t)k,R(t)m,R(t)m̄% is a Newman-
Penrose basis for the FLRW metrics. An orthonormal ba
$u,v,e1 ,e2% @u is the timelike vector field given in Eq.~2!#
for Eq. ~1! can be constructed in the usual way

u5
1

A2
~ l1k!, v5

1

A2
~ l2k!, e15

1

A2
~m1m̄!,

e25
1

A2i
~m2m̄!,

and obviously,$R(t)u,R(t)v,R(t)e1 ,R(t)e2% is an orthonor-
mal basis for the FLRW metrics.

From the NP basis given above we can construct a
basis for the metrics~7!, namely$ l̃ ,k̃,m̃,m! %, which is given
by
er

ia

.-

10351
is

P

l̃ a5 l a, k̃a5ka1Hl a, m̃a5ma,

l̃ a5 l a , k̃a5ka2Hl a , m̃a5ma .

An orthonormal basis$ũ,ṽ,ẽ1 ,ẽ2% is given by

ũ5
~12H ! l̃1 k̃

A2~12H !
, ṽ5

~12H ! l̃2 k̃

A2~12H !
,

ẽ15
1

A2
~m̃1m! !, ẽ25

1

A2i
~m̃2m! !.

It is clear that a NP basis for the final metrics~18!, which we
call $ l̂ ,k̂,m̂,mC %, is given by $Rl̃ ,Rk̃,Rm̃,Rm! %. And in the
same way, we have an orthonormal basis$û,v̂,ê1 ,ê2% by tak-
ing $Rũ,Rṽ,Rẽ1 ,Rẽ2%.

Finally, we introduce the differential operators associa
with the NP basis$ l,k,m,m̄% ~see, e.g.,@20#!:

D[ l a¹a , D[ka¹a , d[ma¹a , d̄[m̄a¹a .

For a functionf that does not depend ont, like H, we have
D f 52D f .
96.
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