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Conserved variable in the perturbed hydrodynamic world model
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We introduce a scalar-type perturbation variablevhich is conserved in the large-scale limit considering a
general sign of the three-space curvatuf¢,(the cosmological constafid), and the time varying equation of
state. In a pressureless medidmis exactly conserveth all scales]S0556-282(199)04418-5

PACS numbd(s): 98.80.Hw

[. INTRODUCTION tropic stresses, the angular momentum of the rotation is gen-
erally conserved, whereas the non transient solution of the
Relativistic cosmological perturbations with a hydrody- graviational wave is conserved in the super horizon scale in
namic energy-momentum tensor were originally studied bythe near flat case. These two conservation properties were
Lifshitz in 1946[1] based on the synchronous gauge. Morealready noticed iff1], and recently, we have elaborated on
convenient analyses based on better suited gauge conditioH¥Se conservation properties in some general situdtidi)s
were made by Harrison in 19¢2] and Nariai in 19693]. In the following we concentrate on the scalar-type perturba-
Although the variables used by Harrison and Nariai are fredion with the hydrodynamic energy-momentum tensor.
of gauge degrees of freedafthus, equivalent to correspond- ~ Although redundant, in order to make this paper self-
ing gauge-invariant variablgsthese gauge conditions be- contained, in the Appendix we present the complete set of
came widely known from a seminal paper by Bardeen inperturbed equations based on the Einstein equations. Our
1980[4]. We believe that these are the brighter side of thenew result is the conserved variable in E¢2) with the
history concerning gauge conditions in cosmological perturequation and the large-scale solution in EG$), (14).
bations: Lifshitz carefully traced the remaining gauge solu-
tions; Harrison and Nariai in fact hit the correct gauge con- Il. NOTATION AND STRATEGY

ditions for handling aspects of hydrodynamic perturbations . : .
g asp y y P We considethe most generacalar-type perturbations in

[see below Eq(8)]; Bardeen showed the gauge invariance of allv b qi : Id model. O
the variables used by Harrison and Nariai and demonstrate%l‘e s_an? y homogeneOL(st r?n Isotropic world model. Our
the diversity of gauge conditions and a gauge-invariant way'°tation for the metric and the energy-momentum tensor is

of handling them. On the other hand, there exist persistent

algebraic errors in the literature which are often claimed to ds?’=—a%(1+2a)dn?—a%B ,dydx®
be due to the wrong gauge conditidig. These errors prob- 2 (3) '
ably gave some researchers @nappropriatg impression +a’[go)(1+2¢)+2V,Vgyldxdx?, (1)

that the field is “plagued with gauge problems.” In any case,

there existmany gauge conditions waiting to be employed

with possible advantages in exploring cgrtain aspecps of ng_(ﬁ+ Sw), T3=—E(M+p)v,a,

problems. In 1988 Barded8] made a practical suggestion k

concerning the gauge condition which allows the maximal

use of the various different gauge conditions depending on

problems. In[9] we elaborated on the suggestion and re- a_ (e a i
Tg=(p+6p)dg+

cently termed our approachgauge-ready methodee Sec. a

Il

We may not need to emphasize the importance of conwhere 0=7, and an overbar indicates a background order

served quantities in physical processes. In cosmological pefuantity and will be ignored unless necessary. Spatial indices

turbations the conserved variable can provide an easy coffa.. . ..) andv,, are based og %) which is the three-space

nection between the final results and the initial conditionsmetric of the homogeneous and isotropic spageand y

Aspects of conserved perturbation variables were discussedways appear in a spatially gauge-invariant combinagion

in [10—14. In this paper, based on the gauge-ready method=a(8+ay); an overdot denotes the time derivative based

we will derive a scalar-type perturbation variable which ison t with dt=ad». Using y, all the perturbed metric and

conserved in the large-scale limit independently of theenergy-momentum tensor variables in E@S, (2) are spa-

changing background world model with genekal A, and  tially gauge invariant.

the perfect fluid equation of state. Perturbed order variables can be expanded in eigenfunc-

Besides the scalar-type perturbation we also have vectotions of the Laplace-Beltrami operat@ based org'?)) with

type (rotation and tensor-typégravitational waveperturba-  eigenvalues- k? wherek is a comoving wave numbé4]; to

tions which evolve independently to linear order in ourlinear order each eigenmode decouples, and without any con-

simple background world model. We also have conservedusion we can assume variables in either configuration space

guantities for these additional perturbations: ignoring anisoer phase space. For the flak £0) and the hyperbolicK

o, @

1
VeV 3A5,
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=—1) backgroundsk® takes a continuous value witk®> ignore thec2k?/a® term! and ignoring stresse@ and o),
=0, whereas in the sphericak& + 1) background we have Eq. (4) has an exact solution valid for genenél A, and
k?=n?-K(n=1,2,3,..) [1,2,16,17. The situation in the time-varying equation of state(x) [19,7):

hyperbolic background may deserve special attention. Prob-
ably because any square integrable function can be expanded
using harmonics withk?=1 (subcurvaturge modes only,
most of the cosmology literature ignored<&?<1 (super-
curvature modes, and gave the wrong impression that superwhere C(x) and d(x) are coefficients of the growing and
curvature modes do not exift,2]: the state of affairs was decaying solutions, respectively, most closely resembles
well summarized i17]. In the spherical background, the the behavior of perturbed Newtonian potenfidl. The vari-
lack of physically relevant perturbations for the lowest twoables most closely resembling the Newtonian behaviors of
harmonicsn=1(k?=0) andn=2(k?—3K=0) was pointed the density and velocity perturbations d@teandv  , respec-

out in [1]. Later, we will use a vanishing?k? term as the tively [2—4,7. From Egs.(A3), (A4), and Egs(A2), (A4),
large-scale limit. Thus the results in such a limit will be (A5), we can derive, respectively,

relevant in all scales for generll in the pressureless me-

H (t(ut+tp)a H
goX(x,t)=C(x)47rGEJO(MH—Zp)de(x)E, ®)

2_
dium (c§=O), and in the large-scale limitkf—0) for flat K 23K @, =47Gus, (9)
and hyperbolic situations in a medium wi¢t§~1(zcz). a X
Complete sets of equations for the background and the a
perturbed orders are presented in the Appendix. Equations . +Ho. =—47G(u+D)—v. —87GH 10
(A2)—(A8) are written in a gauge-ready form. In this form PxT X mG(utp) KV~ T (10

we still have aright to choose a temporal gauge condition i .
[9]. Equations are designed so that imposing the gauge corgolutions foré, andv, follow from these equations. We can
dition is as simple as the following: the synchronous gaugéimilarly derive a solution fok, using

choosesa=0, the comoving gauge choosegk=0, the aH aH

zero-shear gauge chqoge% 0, the quorm-curvature gauge o ,=¢— Ve Ve (12)
choosesp=0, the uniform-expansion gauge choosesO,
the uniform-density gauge chooség=0, etc. Except for

the synchronous gauge, since any of the other gauge conc”]tmduce

tions completely fixes the temporal gauge degree of freedom K/a? K s,
[seg Eq.(A10)], any variable in such a gauge condition is b=¢p, — m(pxz O T3 Tow
equivalent to a unique gauge-invariant combination of the (12)

variable concerned and the variable used in the gauge con-
dition. Examples of some useful gauge-invariant combinawhere we used Eq9) [20]. Using Eqgs.(11), (10), ignoring
tions can be constructed using E&10): o, we can show that

H2

=
aH A7G(pu+p)a
Pv=eT V. e =e—Hy,

a

H Px (13

Thus, using the large-scale solution in Eg§) we have

d(x,t)=C(x), (14
H k
S5, =0+ 3(1+W)a—v, V,=V— =X 3 where the decaying solution has vanished. Therefdrés
k a generaly conserved in the super-sound-horizon scale consid-

In this way, we can flexibly use the gauge degree of freedom

as anadvantagen handling problem$s,d]. We would like to comment on our large-scale limit used in Egs.

(4), (16). Consider an equation of a form

1. K2

- . 2 g

IIl. CONSERVED VARIABLE 7(2P) G2 4=0. ®
. In terms ofy=Z/a¢$ we have (=d/dn)
From Egs.(A2), (A3), (A5), (A6) we can derived 18]
a W'+~ (\Zla)"I\Zla]y=0. (6)
By ignoring thecgk2 term in either equation we have
wtp[ H?2 [a , K2 ¢ o const, f dvz. @)
H |(wipalH @y +c5a2<px—stresses. (4) 0

Thus, when we ignore tf’nﬂékzla2 term in Eq.(5) as the large-scale
limit, we assume that the second term in E).is negligible com-
In the large-scale limit, super-sound-horizon scale where weared with the third term.
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ering general K A, and time-varying pu). On the other
hand, from Eqgs(4), (13), thus ignoring stresses, we have

Hc? K2

= TGutp) 2%

(15
Thus,in the pressureless case(x,t) = C(x) is an exact so-
lution valid in general scalethis was noticed if13]. Com-
bining Egs.(13), (15) we have a closed form equation fér

2

H2C2 . Kk
> +c§;q>=o,

(n+p)a’

(u+ p)a3c-p
H2c2

(16)

which is valid for c2#0. Thus, for the vanishing2k?/a?
termt we have a general solution

H2c?
*_dt,

A7G(u+p)a (7

~ t
P (x,t)=C(x)+ d(x)f
0

which includes theZ=0 limit. We can show easily that the

d term in Eq.(17) is higher order in the large-scale expan-

sion compared with thd term in Eq.(8): by comparing the

two solutions of Eqs(8),(17) in Eq. (15) we can showd=
—k?d=Ad. Therefore, the solution in Eql4) is valid in the
large scaldsuper-sound-horizon scaleith vanishing domi-
nating decaying solution.

IV. OTHER CONSERVATION VARIABLES

® differs from the well-known conserved variablein
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Thus, the conservation property @f, breaks down forK

#0 or near and inside the horizon. In the=0 situation,¢

in many different gauge conditions shows conserved behav-
ior in the large-scale limit: for an ideal fluid see Egs.
(41),(73) in [22] and EQgs.(34), (35) in [23], for the scalar
field see Eqs(92) in [24], and for the generalized gravity see
Sec. VI in [25]. Conservation properties ap in various
gauge conditions were also discussed 18,14 where the
arguments were based on first order equations of the type in
Eq. (15).

V. DISCUSSIONS

We would like to emphasize again that the conservation
property of the® is valid in the limit of the vanishing
c2k?/a? term. Thus, in the pressureless mediugd=0) it
appliesin all scales for general Kand in the medium with
dominant pressurec§~1) it appliesin the large-scale limit
(k*>—0) for the flat and the hyperbolic situatiofs long as
these conditions are me® is conserved independently of
the time-varying equation of statggw). Since we antici-
pates a time-varying equation of states during an equal time
from the radiation-dominated erap€ (1/3)u) to the
matter-dominated erap&0), and during thep)reheating
period from the acceleration erp€ — (1/3) 1) to the radia-
tion era, and since the observationally relevant scales stayed
in the large-scale limit during the transition®, is a practi-
cally important quantity in tracing the evolution of scalar-
type perturbation from the early universe until the recent era
before nonlinear evolution takes over.

We would like to conclude with remarks on the history of
the variables in Eq12): ¢, andé, in their gauge-invariant

[10,8]. In [10] { was introduced in the flat background and in forms became widely known from Bardeen’s work in 1980

that background it is the same as

6

§:¢+m5%, (18

whereas in the flat background we ha®e= ¢, [21]. It is

(these argby, and ey, in [4]). However,p, is the same ag
in the zero-shear gaudevhich fixes y=0 as the temporal
gauge condition; see E@)] which was first used by Harri-
son in 1967[2], and &, is the same a® in the comoving
gauge(which fixesv/k=0) which was first used by Nariai in
1969(3]. For K=0, the variablep, is widely recognized as

interesting to note thap s is also conserved in the large-scale g conserved variable in the literature. To our knowledge it

limit considering generak [7]: from Egs.(9), (12), (18), we
can derive

k2

T 12nG(utp) a2¥r (19

ps=o

According to the solutions in Eq$8), (14), or Eq.(17), we
can see that for vanishirf order the termp is conserved

considering generd{. However, we also see that due to the

second term the conservation property @f breaks down
near and inside the horizork/{aH]=1) even forK=0,

whereasd is conserved independently of the horizon cross
ing in the matter dominated era. We can also show the co

servation property ofp,: from Egs. (A3), (A10) we can
show that

Hx
P =t — = o (20
BH—K¥a? |,  K-3K
127G(u+p)a®

was first introduced ag in the comoving gauge by Lyth in
1985[11], and later was used in the context of the scalar
field and generalized gravity as the large-scale conserved
variable[26].
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APPENDIX

In the following we derive Einstein equations based on
Egs. (1), (2). To the background order, from thé’g and
T*—3TS components of the Einstein equations a'ﬁ@!b
=0, respectively, we can derive
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, 87G K A : K where we have introduced
H _TM_?+§' H——47TG(,LL+p)+a7,
Al
ii=—3H(utp), (AD 8p(k,H) =c2(0) (kD +e(k.b),
whereH= a/a. To the perturbed order we can derive
o p p
. k? s=—, wt=—, cAt)=-. A9
k=3(—p+Ha)+ 22X (A2) o (t) M s(t) " (A9)
k?—3K . . o
— ———@+Hk=—47Gus, (A3) In Eq. (A2) we introduced a variabl& which is the per-
a turbed part of the trace of the extrinsic curvature; similarly,
2 3K for meanings of the other perturbation variables, see Sec. 2.1
PR X=127rG(,u+p)§v, (A4) ofl[9]. Equations(A3)O—(A6) follow from the TB, Tg, TS
a k —30,T7, and T;— T, components of the Einstein equa-
tions, respectively, and Eq$A7), (A8) follow from T5.
X+Hxy—a—¢=8nGo, (A5) b y q$A7), (A8) 0;b

K2
k+2Hk= (;—SH a+4m7G(1+3c2)ud+127Ge,

(AB)

: )
k—3Ha——v/|,
a
(A7)

. e
5+3H(c§—w)6+3H;=(1+w)

=0 and T*;;bzo, respectively. This set of equations was
originally derived in Egs.(41)—(47) of [8], see also Eqgs.
(22-(28) in [9].

Under the gauge transformatitfi=x?+ £2, we have(see
Sec. 2.2 in9])

~ o o~ t ~ t <~ k’[
a=a—¢§, p=¢—HE, Y=x—-§¢&, v=v—5§,

R
3H—§2) &, B=5+3(1+w)HE.

K=K+

(A10)
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