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Conserved variable in the perturbed hydrodynamic world model
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We introduce a scalar-type perturbation variableF which is conserved in the large-scale limit considering a
general sign of the three-space curvature (K), the cosmological constant~L!, and the time varying equation of
state. In a pressureless mediumF is exactly conservedin all scales.@S0556-2821~99!04418-5#

PACS number~s!: 98.80.Hw
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I. INTRODUCTION

Relativistic cosmological perturbations with a hydrod
namic energy-momentum tensor were originally studied
Lifshitz in 1946 @1# based on the synchronous gauge. Mo
convenient analyses based on better suited gauge cond
were made by Harrison in 1967@2# and Nariai in 1969@3#.
Although the variables used by Harrison and Nariai are f
of gauge degrees of freedom~thus, equivalent to correspond
ing gauge-invariant variables!, these gauge conditions be
came widely known from a seminal paper by Bardeen
1980 @4#. We believe that these are the brighter side of
history concerning gauge conditions in cosmological per
bations: Lifshitz carefully traced the remaining gauge so
tions; Harrison and Nariai in fact hit the correct gauge co
ditions for handling aspects of hydrodynamic perturbatio
@see below Eq.~8!#; Bardeen showed the gauge invariance
the variables used by Harrison and Nariai and demonstr
the diversity of gauge conditions and a gauge-invariant w
of handling them. On the other hand, there exist persis
algebraic errors in the literature which are often claimed
be due to the wrong gauge conditions@5#. These errors prob
ably gave some researchers an~inappropriate! impression
that the field is ‘‘plagued with gauge problems.’’ In any cas
there existmanygauge conditions waiting to be employe
with possible advantages in exploring certain aspects
problems. In 1988 Bardeen@8# made a practical suggestio
concerning the gauge condition which allows the maxim
use of the various different gauge conditions depending
problems. In@9# we elaborated on the suggestion and
cently termed our approach agauge-ready method; see Sec.
II.

We may not need to emphasize the importance of c
served quantities in physical processes. In cosmological
turbations the conserved variable can provide an easy
nection between the final results and the initial conditio
Aspects of conserved perturbation variables were discu
in @10–14#. In this paper, based on the gauge-ready meth
we will derive a scalar-type perturbation variable which
conserved in the large-scale limit independently of
changing background world model with generalK, L, and
the perfect fluid equation of state.

Besides the scalar-type perturbation we also have vec
type ~rotation! and tensor-type~gravitational wave! perturba-
tions which evolve independently to linear order in o
simple background world model. We also have conser
quantities for these additional perturbations: ignoring ani
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tropic stresses, the angular momentum of the rotation is g
erally conserved, whereas the non transient solution of
graviational wave is conserved in the super horizon scal
the near flat case. These two conservation properties w
already noticed in@1#, and recently, we have elaborated o
these conservation properties in some general situations@15#.
In the following we concentrate on the scalar-type pertur
tion with the hydrodynamic energy-momentum tensor.

Although redundant, in order to make this paper se
contained, in the Appendix we present the complete se
perturbed equations based on the Einstein equations.
new result is the conserved variable in Eq.~12! with the
equation and the large-scale solution in Eqs.~16!, ~14!.

II. NOTATION AND STRATEGY

We considerthe most generalscalar-type perturbations in
the spatially homogeneous and isotropic world model. O
notation for the metric and the energy-momentum tensor

ds252a2~112a!dh22a2b ,adhdxa

1a2@gab
(3)~112w!12¹a¹bg#dxadxb, ~1!

T0
052~m̄1dm!, Ta

052
1

k
~m1p!v ,a ,

Tb
a5~ p̄1dp!db

a1
1

a2 S ¹a¹b2
1

3
Ddb

aDs, ~2!

where 05h, and an overbar indicates a background ord
quantity and will be ignored unless necessary. Spatial ind
(a,b, . . . ) and¹a are based ongab

(3) which is the three-space
metric of the homogeneous and isotropic space.b and g
always appear in a spatially gauge-invariant combinationx
[a(b1aġ); an overdot denotes the time derivative bas
on t with dt[adh. Using x, all the perturbed metric and
energy-momentum tensor variables in Eqs.~1!, ~2! are spa-
tially gauge invariant.

Perturbed order variables can be expanded in eigenfu
tions of the Laplace-Beltrami operator~D based ongab

(3)! with
eigenvalues2k2 wherek is a comoving wave number@4#; to
linear order each eigenmode decouples, and without any
fusion we can assume variables in either configuration sp
or phase space. For the flat (K50) and the hyperbolic (K
©1999 The American Physical Society12-1
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521) backgroundsk2 takes a continuous value withk2

>0, whereas in the spherical (K511) background we have
k25n22K(n51,2,3,. . . ) @1,2,16,17#. The situation in the
hyperbolic background may deserve special attention. P
ably because any square integrable function can be expa
using harmonics withk2>1 ~subcurvature! modes only,
most of the cosmology literature ignored 0<k2,1 ~super-
curvature! modes, and gave the wrong impression that sup
curvature modes do not exist@1,2#: the state of affairs was
well summarized in@17#. In the spherical background, th
lack of physically relevant perturbations for the lowest tw
harmonicsn51(k250) andn52(k223K50) was pointed
out in @1#. Later, we will use a vanishingcs

2k2 term as the
large-scale limit. Thus the results in such a limit will b
relevant in all scales for generalK in the pressureless me
dium (cs

250), and in the large-scale limit (k2→0) for flat
and hyperbolic situations in a medium withcs

2;1([c2).
Complete sets of equations for the background and

perturbed orders are presented in the Appendix. Equat
~A2!–~A8! are written in a gauge-ready form. In this for
we still have aright to choose a temporal gauge conditio
@9#. Equations are designed so that imposing the gauge
dition is as simple as the following: the synchronous gau
choosesa[0, the comoving gauge choosesv/k[0, the
zero-shear gauge choosesx[0, the uniform-curvature gaug
choosesw[0, the uniform-expansion gauge choosesk[0,
the uniform-density gauge choosesdm[0, etc. Except for
the synchronous gauge, since any of the other gauge co
tions completely fixes the temporal gauge degree of freed
@see Eq.~A10!#, any variable in such a gauge condition
equivalent to a unique gauge-invariant combination of
variable concerned and the variable used in the gauge
dition. Examples of some useful gauge-invariant combi
tions can be constructed using Eq.~A10!:

wv[w2
aH

k
v, wx[w2Hx,

dv[d13~11w!
aH

k
v, vx[v2

k

a
x. ~3!

In this way, we can flexibly use the gauge degree of freed
as anadvantagein handling problems@8,9#.

III. CONSERVED VARIABLE

From Eqs.~A2!, ~A3!, ~A5!, ~A6! we can derive@18#

m1p

H F H2

~m1p!a S a

H
wxD •G •1cs

2 k2

a2 wx5stresses. ~4!

In the large-scale limit, super-sound-horizon scale where
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ignore thecs
2k2/a2 term,1 and ignoring stresses~e and s!,

Eq. ~4! has an exact solution valid for generalK, L, and
time-varying equation of statep(m) @19,7#:

wx~x,t !5C~x!4pG
H

a E
0

t ~m1p!a

H2 dt1d~x!
H

a
, ~8!

where C(x) and d(x) are coefficients of the growing an
decaying solutions, respectively.wx most closely resemble
the behavior of perturbed Newtonian potential@7#. The vari-
ables most closely resembling the Newtonian behaviors
the density and velocity perturbations aredv andvx , respec-
tively @2–4,7#. From Eqs.~A3!, ~A4!, and Eqs.~A2!, ~A4!,
~A5!, we can derive, respectively,

k223K

a2 wx54pGmdv , ~9!

ẇx1Hwx524pG~m1p!
a

k
vx28pGHs. ~10!

Solutions fordv andvx follow from these equations. We ca
similarly derive a solution forwv using

wv[w2
aH

k
v5wx2

aH

k
vx . ~11!

Introduce

F[wv2
K/a2

4pG~m1p!
wx5wv2

K

k223K

dv

11w
,

~12!

where we used Eq.~9! @20#. Using Eqs.~11!, ~10!, ignoring
s, we can show that

F5
H2

4pG~m1p!a S a

H
wxD •. ~13!

Thus, using the large-scale solution in Eq.~8! we have

F~x,t !5C~x!, ~14!

where the decaying solution has vanished. Therefore,F is
generaly conserved in the super-sound-horizon scale con

1We would like to comment on our large-scale limit used in Eq
~4!, ~16!. Consider an equation of a form

1

Z
~Zḟ!•1cs

2
k2

a2 f50. ~5!

In terms ofc[AZ/af we have (8[]/]h)

c91@cs
2k22~AZ/a!9/AZ/a#c50. ~6!

By ignoring thecs
2k2 term in either equation we have

f } const, E
0

t

dt/Z. ~7!

Thus, when we ignore thecs
2k2/a2 term in Eq.~5! as the large-scale

limit, we assume that the second term in Eq.~6! is negligible com-
pared with the third term.
2-2
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ering general K, L, and time-varying p(m). On the other
hand, from Eqs.~4!, ~13!, thus ignoring stresses, we have

Ḟ52
Hcs

2

4pG~m1p!

k2

a2 wx . ~15!

Thus,in the pressureless caseF(x,t)5C(x) is an exact so-
lution valid in general scale; this was noticed in@13#. Com-
bining Eqs.~13!, ~15! we have a closed form equation forF:

H2cs
2

~m1p!a3 F ~m1p!a3

H2cs
2 ḞG •1cs

2 k2

a2 F50, ~16!

which is valid for cs
2Þ0. Thus, for the vanishingcs

2k2/a2

term1 we have a general solution

F~x,t !5C~x!1d̃~x!E
0

t H2cs
2

4pG~m1p!a3 dt, ~17!

which includes thecs
250 limit. We can show easily that th

d̃ term in Eq.~17! is higher order in the large-scale expa
sion compared with thed term in Eq.~8!: by comparing the
two solutions of Eqs.~8!,~17! in Eq. ~15! we can showd̃5
2k2d5Dd. Therefore, the solution in Eq.~14! is valid in the
large scale~super-sound-horizon scale! with vanishing domi-
nating decaying solution.

IV. OTHER CONSERVATION VARIABLES

F differs from the well-known conserved variablez in
@10,8#. In @10# z was introduced in the flat background and
that background it is the same as

z5w1
d

3~11w!
[wd , ~18!

whereas in the flat background we haveF5wv @21#. It is
interesting to note thatwd is also conserved in the large-sca
limit considering generalK @7#: from Eqs.~9!, ~12!, ~18!, we
can derive

wd5F1
1

12pG~m1p!

k2

a2 wx . ~19!

According to the solutions in Eqs.~8!, ~14!, or Eq. ~17!, we
can see that for vanishingk2 order the termwd is conserved
considering generalK. However, we also see that due to t
second term the conservation property ofwd breaks down
near and inside the horizon (k/@aH#>1) even for K50,
whereasF is conserved independently of the horizon cro
ing in the matter dominated era. We can also show the c
servation property ofwk : from Eqs. ~A3!, ~A10! we can
show that

wk[w1
Hk

3Ḣ2k2/a2
5

wd

11
k223K

12pG~m1p!a2

. ~20!
10351
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Thus, the conservation property ofwk breaks down forK
Þ0 or near and inside the horizon. In theK50 situation,w
in many different gauge conditions shows conserved beh
ior in the large-scale limit: for an ideal fluid see Eq
~41!,~73! in @22# and Eqs.~34!, ~35! in @23#, for the scalar
field see Eqs.~92! in @24#, and for the generalized gravity se
Sec. VI in @25#. Conservation properties ofw in various
gauge conditions were also discussed in@13,14# where the
arguments were based on first order equations of the typ
Eq. ~15!.

V. DISCUSSIONS

We would like to emphasize again that the conservat
property of theF is valid in the limit of the vanishing
cs

2k2/a2 term. Thus, in the pressureless medium (cs
250) it

appliesin all scales for general K, and in the medium with
dominant pressure (cs

2;1) it appliesin the large-scale limit
(k2→0) for the flat and the hyperbolic situation. As long as
these conditions are met,F is conserved independently o
the time-varying equation of statesp(m). Since we antici-
pates a time-varying equation of states during an equal t
from the radiation-dominated era (p5 (1/3)m) to the
matter-dominated era (p50), and during the~p!reheating
period from the acceleration era (p,2 (1/3)m) to the radia-
tion era, and since the observationally relevant scales sta
in the large-scale limit during the transitions,F is a practi-
cally important quantity in tracing the evolution of scala
type perturbation from the early universe until the recent
before nonlinear evolution takes over.

We would like to conclude with remarks on the history
the variables in Eq.~12!: wx anddv in their gauge-invariant
forms became widely known from Bardeen’s work in 19
~these areFH andem in @4#!. However,wx is the same asw
in the zero-shear gauge@which fixesx50 as the tempora
gauge condition; see Eq.~3!# which was first used by Harri-
son in 1967@2#, and dv is the same asd in the comoving
gauge~which fixesv/k50! which was first used by Nariai in
1969@3#. For K50, the variablewv is widely recognized as
a conserved variable in the literature. To our knowledge
was first introduced asw in the comoving gauge by Lyth in
1985 @11#, and later was used in the context of the sca
field and generalized gravity as the large-scale conser
variable@26#.
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APPENDIX

In the following we derive Einstein equations based o
Eqs. ~1!, ~2!. To the background order, from the,T0

0 and
Ta

a23T0
0 components of the Einstein equations andT0;b

b

50, respectively, we can derive
2-3
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H25
8pG

3
m2

K

a2 1
L

3
, Ḣ524pG~m1p!1

K

a2 ,

~A1!
ṁ523H~m1p!,

whereH[ ȧ/a. To the perturbed order we can derive

k[3~2ẇ1Ha!1
k2

a2 x, ~A2!

2
k223K

a2 w1Hk524pGmd, ~A3!

k2
k223K

a2 x512pG~m1p!
a

k
v, ~A4!

ẋ1Hx2a2w58pGs, ~A5!

k̇12Hk5S k2

a2 23Ḣ Da14pG~113cs
2!md112pGe,

~A6!

ḋ13H~cs
22w!d13H

e

m
5~11w!S k23Ha2

k

a
v D ,

~A7!

v̇1~123cs
2!Hv5

k

a
a1

k

a~11w!

3 S cs
2d1

e

m
2

2

3

k223K

a2

s

m D ,

~A8!
.
ro

ug

y

ic

b-
6

10351
where we have introduced

dp~k,t ![cs
2~ t !dm~k,t !1e~k,t !,

d[
dm

m
, w~ t ![

p

m
, cs

2~ t ![
ṗ

ṁ
. ~A9!

In Eq. ~A2! we introduced a variablek which is the per-
turbed part of the trace of the extrinsic curvature; similar
for meanings of the other perturbation variables, see Sec
of @9#. Equations~A3!–~A6! follow from the T0

0, Ta
0 , Tb

a

2 1
3 db

aTg
g , and Ta

a2T0
0 components of the Einstein equa

tions, respectively, and Eqs.~A7!, ~A8! follow from T0;b
b

50 and Ta;b
b 50, respectively. This set of equations w

originally derived in Eqs.~41!–~47! of @8#, see also Eqs
~22!–~28! in @9#.

Under the gauge transformationx̃a5xa1ja, we have~see
Sec. 2.2 in@9#!

ã5a2 j̇ t, w̃5w2Hj t, x̃5x2j t, ṽ5v2
k

a
j t,

k̃5k1 S 3Ḣ2
k2

a2D j t, d̃5d13~11w!Hj t.

~A10!
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