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Scaling property of the global string in the radiation dominated universe
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We investigate the evolution of the global string network in the radiation dominated universe by use of
numerical simulations in-81 dimensions. We find that the global string network settles down to the scaling
regime where the energy density of global strings, is given byps= £u/t? with « the string tension per unit
length and the scaling parametér; (0.9-1.3), irrespective of the cosmic time. We also find that the loop
distribution function can be fitted with that predicted by the so-called one scale model. Concretely, the number
densityn,(t) of the loop with the length is given byn,(t) = v/[t¥%(1 + kt)%?], where v~0.0865 andx is
related with the Nambu-Goldston®&G) boson radiation power from global strings as P=xu with «
~0.535. Therefore, the loop production function also scales and the typical scale of produced loops is nearly
the horizon distance. Thus, the evolution of the global string network in the radiation dominated universe can
be well described by the one scale model in contrast with that of the local string network.
[S0556-282(199)07720-9

PACS numbd(s): 98.80.Cq

[. INTRODUCTION oped the Kibble's one scale model and showed that unless
most of produced loops self-intersect and fragment into
Cosmic strings could be formed as a consequence of themaller loops with the typical length smaller thlnthe re-
cosmological phase transition in the very early univgide  connection rate is large enough to prevent scaling. Mitchell
They are divided into global and locédauged strings ac- and Turok[9] studied the statistical mechanics of the string
cording to the property of broken symmetry. Though theynetwork in the flat spacetime and found that the equilibrium
have similar properties, such as that they are line objectdistribution of the string network is dominated by the small-
with false vacuum energy, they intercommute at crossingst loops allowed, which suggested that strings tend to break
[2,3], and so on, there are also many differences betweeinto very small pieces in the expanding universe. Albrecht
them. While a local string has two cores comprised of aand Turok[10] modeled the network as the hot body radia-
magnetic flux core and a scalar field core, a global string hagon where loops are radiated from the long strings and
only a scalar field core. For local strings, the gradient energgnowed that the scaling solution is inevitable. However, the

of the scalar field can be cancelled out by the gauge field fag,jication of the flat spacetime statistical mechanics to the

from the core so that the core is well localized and thegyng gynamics in the expanding universe is not necessarily
vacuum energy of the core is dominant. Therefore, th

Nambu—Got tion is ad te to follow th luti ustified. Thus, numerical simulations are unavoidable to de-
thaen]ogzgl s(:r?n acnlgtr\]/v E’rka e?(%:ateato c:)osO:;,iVn eoenvﬁhueloonthoef:ide whether the local string network settles down to the
9 P 9. scaling regime or not.

hand, there is no gauge field in the global string model so , L .
that the total energy of global strings is dominated not by the Albrecht and Turo{ 11] gave the first numerical investi-

vacuum energy of the core but the gradient energy of thgatlon forthe scgllng property. Later three grolip8, 12,13
scalar field, namely, the Nambu—GoldstofidG) boson improved numerical codes and all groups concluded that the

field. So, we need to consider not only the core but also théarge scale behavior of the local string network goes into the

associated NG boson field and the coupling between them iﬁcgflsmg[ lrg]glmels\kaltththe[ 132(]:61"”9 dparlaétniﬁr?f;]al_to t(hSO
contrast with the case of local strings. Thus we must use th(—fd. )t' d’ (. ?d ) Th anh ,glb r)]t d 'Il'n {dk)(]a
Kalb-Ramond action instead of the Nambu-Goto action as aff¢'ation-dominated era. houg recht and Tu

effective actior[4]. ound that the loop distribution function also scales, the

The dynamics of the local string network has been examhigher resolution simulations performed by the .oth'e'r two
ined by use of the Nambu-Goto action. Kib§ first pro- groups [12,13 showed that long strings have significant

posed the so-called one scale model, where the behavior gfnall structures and Ioop_s are _typically pr_odu_ced at scales
the system can be characterized by only a parameter, name@?,UCh smaller than the horizon dl_stance, which is close to the
the scale length and an unknown loop-production function. utoff scale. In response, Austiet al. [i4] proposed the

He showed that either the local string network goes into thdhree scale model witl, the step lengtt¥, and the scalg
scaling regime where the scale lendtlgrows with the ho-  describing the small scale structure. They found ¢hahd &
rizon distance[1,6] or, the universe becomes string domi- grow with the horizon distance but begin growing only
nated. In the scaling regime, infinite strings intercommute tovhen the gravitational back reaction becomes in effect with
produce closed loops so that at any time the number of/é~10 *. However, Vincentet al. [15] recently claimed
strings stretching across the horizon distance within each hdrom the flat spacetime simulations that instead of loop pro-
rizon volume is almost constant and produced loops decagiuction due to intercommutation, long strings directly emit
through radiating gravitational wav¢g]. Bennett{ 8] devel- massive particles so that the dominant energy loss mecha-
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nism of local strings is not gravitational radiation but particle Veff[®]  T>T¢ T=T¢ T=0
production.

Thus, though there is a consensus that the large scale
structure of the local string network obeys the scaling solu-
tion, the loop production and the dominant energy loss
mechanism are now in dispute. This is mainly because inclu-
sion of gravitational radiation to the numerical simulations is
impossible and gravitational radiation is so weak that kinks
live for a long time.

On the other hand, the evolution of the global string net-
work has been less studied. Its manifestation, however, is
essential to estimation of abundances of relic axions radiated
from axionic stringg16—18, which may be the cold dark
matter. Also, the scaling property is indispensable for the
scenario where global strings become the seed of the struc- ||
ture formation of the universe and produce the cosmic mi- 0
crowave background anisotrop$9]. Thus, it is important to
clarify the dynamics of the global string network, in particu-
lar, whether it enters a scaling regime such as the local strin&

network. . .
So far, the result for the local string network has beenfdopted in Ref[23]. We show the scaling of the global

applied to the global string network because global string§tri”9 network under more general situ_qtions and investigate
also intercommute with the probability of the order urjizy.  the dependence &f on boundary conditions and some pa-
But global strings have the associated Nambu-GoldstonfMeters. Then, the loop distribution function is given in
bosons, which lead to long-range forces between strings arfyder to_demde whether the small scale structure exists as the
become the dominant energy loss mechanism of globdPc@l String network. _
strings. Therefore, instead of the Nambu-Goto action we . 1h€ Paper is organized as follows. In the next section, we
have to use the Kalb-Ramond actipH, which is comprised give the formulation of numerical simulations. In Sec. IIl, we
of three components, the Nambu-éoto action. the kinetidive the method of the identification of string segments and
term of the associated Nambu-Goldstone fields, and the co¢/0Sed l0ops. Then, the scaling parameeand the loop
pling term between them. But the Kalb-Ramond action haé1|str|but|on.funct|on are given. Finally, we discuss our re-
difficulty of logarithmic divergence due to self-energy of the SUlts and give our conclusions.

string. Dabholkar and Quashnof&0] solved this difficulty

by the similar prescription as given by Dirac in the electro- Il FORMULATION OF NUMERICAL SIMULATIONS

magnetic systerf21], where divergence is renormalized into . . . . i
the electron mass. They gave the renormalized equation Ofle\)/(V(:C(;clJ;\;s;?I;;;)h&)fplIowmg Lagrangian density for a com
motion for a global string comprised of the free part derived” '

from the Nambu-Goto action with the damping term, which L[D]=g,,(0*D)(3"D) =V ®,T] (1)
becomes negligible for a circular loop in the cosmological mr e

scale where I(6)~0(100). Then they concluded that the whereg,,, is identified with the Robertson-Walker metric

global string network can be well approximated by the mo-and the effective potential ¢ ®,T] is given by
tion of the Nambu-Goto action. However, as shown by Bat-

FIG. 1. One-loop finite temperature effective potential
=i ®,T] of the complex scalar field.

tye and Shellard22] though the calculation is done in the A N

flat spacetime, the kinks on long string are substantially Veﬁ[<1),-r]:§(q>q)’r_7]2)2+ §T2®¢T- v
rounded due to the back reaction of NG boson radiation,

which may significantly affect the small scale struct(fet For T>T.= 37, the potentiaV ¢ ®,T] has a minimum

all) of the global network system. Also, the above approachy; ¢ =0, and theU(1) symmetry is restored. On the other
cannot include the long-range force between long stringSyand. new minima®| = 71— (T/T.)2 appear and the

which may decrease the energy density of long strings. Thu%ymmetry is broken fof <T. (Fig. 1). In this case the phase
the examination of the dynamics of global strings by use ot 5sition is of second order.

the Kalb-Ramond action is not yet complete. The equation of motion is given by
In a previous pap€i23], we manipulated the equation of
motion of the complex scalar field instead of the Kalb— _
Ramond action. Then, we showed that the large scale behav- <'I'>(x)+3H<I>(x)—
ior of the global string network goes into the scaling regime (t)?
and ¢ for the global string network becomé¥ 1), which is ) o )
significantly smaller than that for the local string network. Where the prime represents the derivaed " andR(t) is
In this paper, we give a comprehensive analysis of theéhe scale factor. The Hubble paramekts=R(t)/R(t) and
evolution of the global string network based on the modelthe cosmic time are given by

V2D(x)= -V D, T], (3
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TABLE I. Five different sets of the simulations under the peri-

odic boundary condition. <B|®(X)®T(y)|'8>eq“a' time
N2 2 .2 2
Lattice spacing :f dk k"+m Coth'B k™+m ek (x-y)
Lattice number [unit=t;R(t)] ¢ Realization £ (2m)° 2 2
(1) 128 2J3/25 10 300  0.96:0.06 9
(2) 64 4\3/25 10 10 0.96-0.05
(3) 256 V3125 10 10 0.99-0.09 The functionsb(x) andd(y) lated ot v. W
4 256 2J3/25 10 10  0.9%-0.04 € functionsb(x) and®{y) are uncorreiated fax=y. Ve
) V3125 generate these fields for the initial condition in the momen-
(7) 128 26/25 5 10 0.88-0.07 tum space, because the corresponding fididk) and® (k)

are uncorrelated there. Then these fields are inverse Fourier
transformed into the configuration spaces by the FFT formal-

) ism.
2 87 T g.T% t= 1_¢ , 4) Hereafter we measure the scalar field in units;of, t,
3mg, 30 2H T2 andx in units oft;, and the energy density in units gf*.

The equation of motion and the total energy density are

wheremp=1.2x 10" GeV is the Plank mass, is the total ~ 91Ven by
number of degrees of freedom for the relativistic particles,
and radiation domination is assumed. We define the dimen-__

. 3. 1
sionless parametef as d(x)+ Zq)(x) — YV2q>(x): _( |D?+ o= — ——| P
112 (10

45M2
(= §= ( 5 5)

167739* 7]2

. . 1
p(X)=P(X)DT(x)+ TV<I>(x)-VcI>T(x)
In our simulation, we tak& =10, which corresponds te
~(10-10% GeV with g, =1000 and later investigaté
dependence on the result. The energy density at each lattice + 2
point is written as

L L P NP
144 36t|¢)| ' (D

2\2 g2
§)+§

_ _ 1 where\ is set to unity for brevity. The scale fact®(t) is
p(X)=D(X)DT(X)+ —=VD(x)- VO (X)+ Ve P, T] . normalized aRR(1)=1.
R(t)? We perform the simulations in four different sets of lattice
(6)  sizes and spacingsee Table)t (1) 128 lattices with the
physical lattice spacin@xphys=2\/§tiR(t)/25, (2) 64° lat-
We take the initial time;=t./4 and the final time;=75t; tices with 5xphys=4\/§tiR(t)/25, (3) 256° lattices with
=18.75t., wheret, is the epochT=T,. Since theU(1) OXphys= JV3tiR(1)/25, (4) 256 lattices with Xphys
symmetry is restored at the initial time-t;, we adopt asthe =2./3t;R(t)/25. In all cases, the time step is taken &ts
initial condition the thermal equilibrium state with the mass=0.01;. In case(1), the box size is nearly equal to the

squared horizon volume H™1)3 and the lattice spacing to a typical
width 6~1.0/(\27) of a string at the final timé; . Further-
42V o[ | D], T] more, in order to investigate the depgndence,wﬁg arrange

2_ - Teftl®h ] ) (7)  the case withy=5, (7) 128 lattices with the physical lattice

d|®|? b|=0 spacing 8X pnys=24/6t;R(1)/25. In this case we follow the

time development of the system until the final timte,

which is the inverse curvature of the potential at the origin aﬁoﬁi%trgzvirdrsr:gﬂvﬂ()e? ;:3 ?r?ex Izltfiielssggg{rl\)é ?gu;ggig;?

t=t;. In the thermal equilibrium state&) and® are Gauss- idth of a string. For each case, we simulate the system from

ian distributed with the correlation functions 10[(2), (3), (4), and(7)] or 300(1) different thermal initial
conditions. Since the simulation box is larger than the hori-
<ﬁ|q)(x)(bT(y)|ﬁ>equal fime zon volume even at the final time of the simulation, we adopt
the periodic boundary condition. But, under the periodic
dk 1 ,8\/k7+ m? K (x—y) boundary conditions, there exists no infinite string so that it
=f (2m)3 2 ket m? coth 2 € ' is possible that string completely disappears in the simula-

tion box. Therefore, in order to verify the dependence of
(8) boundary conditions, we also simulate the cases in Table Il

103511-3
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TABLE Il. Six different sets of the simulations under the reflec- plaquette. Therefore, we use a static cylindrically symmetric
tive boundary condition. solution, which is obtained by solving the equation

Lattice spacing d’f  1df f

Lattice number [unit=t;R(t)] ¢ Realization & a2 T 2 —Ve £,T]=0, (14)

(1) 128 24325 10 10 1.77-0.03

2 64 10 10 1.57:0.04 . i .

23; 256 4\/\/5//2255 10 10 2 08-0.05 with ®(r,0)=f(r)e'’ and the winding numben=1. The

' ' boundary conditions are given by

(4) 256 2325 10 10 1.36-0.02

(5) 128 4\3/25 10 10 1.18-0.03

(6) 256 4y3/25 10 10  1.03-0.03 f(r)—=[®[pn  (r—=), (15
under the reflective boundary condition whéréd(x) on f(0)=0. (16)

the boundary points disappears.
Using the second order leap-frog method and the Crankwe require that a lattice is identified with a part of a string

Nicholson scheme, the discretized equation of motion readﬁore if the potential energy density there is larger than that
corresponding to the field value of a static cylindrically sym-

(pi’nﬂ/zz;{ ( 1— ﬁ) (i)i,n—1/2+ ﬂvszi,n metric solution at = 8xphy5/\/§. Then only one lattice within
14 ﬂ 4t t a section of a straight string core is identified with a string
4t segment except the case where a point wlith O lies at the
2 2 center of a plaquette. Of course, the real string is not exactly
— 8t |, |2+ g__ 4“_](1)_2 } straight but bent and more complex. But, as seen in Fig. 2,
b 36t 144 TN our identification is good and only one lattice within a sec-

tion of a string core is identified with a part of a string core.
D, 1 1=D; -+ Ot q‘,i 1 (12) In order to solve the abpve equa_tion of m'otio'n, we have to
‘ ’ ‘ use the standard shooting technique, which is the repeated
process so that it is bothersome to follow the above proce-
Pir1,n= 2P nFt Pi—1 dure for each time step. Instead, we obtain the solutions ev-
(5%)2 ' ery 5006t and make the fitting formula. For intermediate
time steps, we judge whether a lattice point belongs to the
string segment by comparing the potential energy obtained
from the simulation and that from the fitting formula. Thus,
by counting the number of the lattices identified with a part
of a string core, we can evaluate the total length of strings

In order to judge whether the global string network re-Within the horizon volume (8°, from which the energy
laxes into the scaling regime, we give time development ofl€nsity can be obtained.
&, which is defined as

ViD= 2

S=X,Y,Z

wherei represents spatial index amdemporal one.

Ill. RESULTS

B. Scaling property

p=Eéult?, (13
Time development of in cases from(1) to (4) is de-
whereu=2m7?In(t/(5¢Y?)) is the average energy per unit scribed in Fig. 3. We find that after some relaxation peripd,
length of global strings. becomes a constant irrespective of time w(ith0.99+0.09,
(2)0.97+0.04,(3)0.90+0.06, and4)0.90+0.05. They all are
consistent within the standard deviation. Thus we can con-
clude that a global string network relaxes into scaling regime
Before obtainingt and the loop distribution function, we in the radiation domination. We also show time development
must identify the string segment. Since spacetime is dispf & in case(7) in Fig. 4. Then¢ asymptotically becomes a
cretized in our simulations, a point with=0 corresponding constant, 0.88 0.07, which is also consistent with the above
to a string core is not necessarily situated at a lattice point. 1R cases withy = 10 within the standard deviation. Hence we
the worst case, a point with =0 lies at the center of a can also conclude th@tdoes not change the essential result.
Note that the standard deviation in cd&eis much smaller
than the other cases because the box in ¢asencludes
Note that this condition is different from the open boundary con-more horizon volumes at each time. Alspseems to oscil-
dition whereV®(x) on the boundary points disappears. Under thelate at the early epoch because the homogeneous mode of the
open boundary condition, the string feels attractive forces from thdield oscillates in the radial direction of the potential, which
boundary so that the number of the strings tends to decrease th&apidly decays. In fact, the period of the oscillation coincides
that in the real universe as under the periodic boundary conditionwith 27 times the inverse mass at the potential minimum.

A. String identification

103511-4
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t=35 t=45

Z-axis &
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=55 =65
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or <>‘\-J) \
60 - \

30
120
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FIG. 2. Snapshots of a realizationtat 35,45,55,65,75 in casd) under the periodic boundary condition. Lattices identified with a part
of a string core are shown.

Figure 5 represents the results under the reflective bounatondition within the factor 2, the former tends to become
ary condition, where¢ becomes a constant irrespective of larger than the latter. This is because under the reflective
time with (1)1.77+0.03, (2)1.57+0.04, (3)2.00+0.05, (4) boundary condition, strings are repulsed by the boundary and
1.30+0.02,(5)1.18+0.03, and6)1.03+0.03. Though all re-  the string near the boundary intercommutes less often than
sults are consistent with that under the periodic boundaryhat near the center of the simulation box because the partner
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FIG. 3. Time development of in cases from(l) to (4) under FIG. 5. Time development of in cases under the reflective

the periodic boundary coqdltlop. The squares represent the .t'mSoundary condition. The squares represent the time development of
development of¢é. The vertical lines denote a standard deV|at|onf The vertical lines denote a standard deviation

over different initial conditions.

toint i v lies in the i directi f the bound segment. Then we connect it with the nearest neighbor
oin 1e_rr]commulte (_Jnly |e3|t;1 e_lnn?rt_ we; |orgo € boun “among lattice points belonging to the string segment. We
ary. The resufts in farge box simu a.IOF( )—(6), are con- ._ proceed this process one after another until the connection
verging so that it is safe to say that if we take the box S'Zér)eturns to the starting lattice point

larger than 2 times the horizon volume, the reflective Kibble’s one scale model predicts the loop distribution as
boundary condition has no effect on the results.

C. Loop distribution ni(t)= (17

t3/2(| + Kt)S/Z !

We also investigate the loop distribution. Since in our
simulations it is judged by the potential energy whether ayhere » is a constant] is the length of a loop, and the
lattice point is a part of the string, the string is not necessartpg-dependence of. is neglected. Different from a local
ily continuous. Therefore, we identify a closed loop as fol-string, the dominant energy loss mechanism for global
lows; First we select a lattice point belonging to the stringstrings is radiation of the associated Nambu-Goldstone field
[24]. We define the radiation poweP, asP= ku wherex is
5 T T T a constant. An example of decay of a closed loop is depicted
l in Fig. 6.

We determine whether the loop distributions in the simu-
lation coincides with the above predicted loop distribution
function. The loop distributions in cag#) at different times
(t=45,55,65,7§) are described in Fig. 7. Since long strings
are rare, we cut the length of loops into bins with the width
5X éx. Also, we divide 300 realizations into 6 groups com-
prised of 50 realizations and we summed the number of
loops over 50 realizations for each groups. The dot repre-
sents the number of loops averaged over six groups and the
dash line represents the standard deviation. They can be si-
multaneously fitted with the above formula if one takes
~0.535 andv~ 0.0865. Fittings foik andv are also given in

0 5Otime[t/ti]100 150 Fig. 8. Thus, the loop production function as well as the
large scale behavior of the string scales together for the glo-

FIG. 4. Time development of in case(7). The squares repre- bal string network.
sent the time development éf The vertical lines denote a standard ~ As an another evidence for the scaling of the loop produc-
deviation. tion, we consider the NG boson spectrum radiated from

case (7)

|

r e T
& "“'!'w"”"'nmun||uu||||||||‘|||||\||||||||Immmmmlmm|
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FIG. 6. Snapshots of a realizationtat 35,45,55,65,75 in cadd) under the periodic boundary condition. Loops decay through radiating
NG bosons.

strings. If loops are formed at scales much smaller than the %ia(t,x))

horizon distance, there should be significant power of radi- d(t,x)= ex . (18
ated NG bosons for modes corresponding to the scale at V27

which loops are formed. For the purpose, we first represent

the complex fieldb(t,x) in terms of the radial modg(t,x)

and the NG boson field(t,x) as Then the kinetic energy density of NG bosons is given by

x(t,X)

V2

n+

103511-7
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rier transformation of the above kinetic energy density is
what we want. But it includes the contribution from NG

T T
X .

bosons formed at the symmetry breaking as well as that ra-
diated from strings. Also, the decomposition of the field into
the radial and phase modes is inadequate for the lattice point
near the string segment.

Then, we evaluate the average energy density of NG

bosons radiated in the period betwegnandt,, p[t;,t5].
For this purpose, we subtract the redshifted kinetic energy at
t, from the kinetic energy at, since emitted NG bosons

damp like radiation. Thus;[tl,tz] is given by

number
3

_ 1 3
P[tlytz]:vf d“xp[ty,t5;%]
1
_ | 43
—Vfdx
RN :_:. L

_1f d3k
— - V) (2m)?
0 20 40 60 80 0_ 20 40 60 80

length [1/6%,.] f N = dk

w;k[tl,tz]z . ﬁpk[tlatz] :

simulation ]
i, —— fitting 1

1. 1. ti)?
Fa(t2 X)°~ §a<t1,x>2(é) }

1. 1. t;)?
St~ glakm)lz(i) }

= (20
FIG. 7. Loop distributions at=45,55,65,75 are depicted. The
number is summed over the box siz#28(5x)3] and 50 realiza-

tions for each groups. Bins are cut every 5x. volume and a(t,X)

where V is the simulation
= [[d3K/(27)3] i (t) explik- X).
7? Furthermore, to avoid contamination of string cores to the
:W spectrum of emitted axions, we divide the simL_llation box
' into eight cells and stock the field data of a cell if there are
no string cores in that cell betweépandt,. Over all such
cells, we average power spectra of kinetic energy of axions
obtained through Fourier transformation. We follow the
above procedure betweép=65t; andt,=75t; for the case
One may wonder if the power spectrum obtained by the Fou¢3) under the periodic boundary condition, which is the high-
est resolution simulation, but with the zero temperature po-
tential Vg @, T=0] aftert=20t; because the decomposition
of the field becomes well defined. One may suspect that this
spectrum is dominated by the kinetic energy of NG bosons
associated with global stringstring NG bosongsrather than
that of free NG bosons radiated from global strings. But this
is incorrect for the following reason. The total energy of
string NG bosons is almost as much as that of free NG
bosons. However, the contribution to the energy of string NG
bosons is dominated by the gradient energy because the ki-
netic energy of string NG bosons is much smaller than their
gradient energy by the factar? (v is the velocity of the
string core and/<1 except just before the disappearance of
the loop. On the other hand, the gradient and the kinetic
energy of free NG bosons is the same. Therefore the kinetic
energy of free NG bosons is much larger than that of string
NG bosons, that is, our spectrum is dominated by the former.
Also, even if it contributed, the kinetic energy of string NG
bosons would decay in proportion to?, so that its contri-
bution has been removed from the spectrum in our method as
done in Eq.(20).
The result is depicted in Fig. 9, which has already been
FIG. 8. Fittings forx andv. The cross point represents the best given in Ref.[23] in the different context. The spectrum of
fit values fork andv. The solid circle denotes 68% C.L. emitted NG bosons is highly peaked at the horizon scale.

—a(t,x)?

X[—Im®(t,x)Red(t,X)

+Red(t,x)Imd(t,x)]2 . (19

05T T T T T T T
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Spectrum of NG bosons emitted between t=65t, and t=75t, can be understood as follows. Under the periodic boundary
: condition, there are no infinite strings and strings with two
boundary points on the opposite planes always intercommute
with the partner so thaf tends to become small. On the
other hand, under the reflective boundary condition, strings
are repulsed by the boundary. Furthermore the string near the
boundary intercommutes less often than that near the center
3 of the simulation box because the partner to intercommute
. 1 only lies in the inner direction of the boundary. Thggends
. 1 to become large. Thereforg, in the real world should lie
between that under the periodic boundary condition and that
under the reflective boundary condition. Considering all the
cases under the periodic boundary condition and cébes
(6) of the large box simulations under the reflective boundary
condition, it is safe to say that~(0.9—-1.3).
- . ] You should note that is much smaller than that of a
local string, which is of the order of 10. This is mainly be-
cause global strings can intercommute more often than local
strings since an attractive force proportional to the inverse
P O S — separation works between a global string and a global anti-
wave number [(k/éok)'v 7Y k]60 string. , . o
21 We have also investigated the loop distribution. It can be
well fitted to that predicted by the one scale model if we take
FIG. 9. Filled dots represent the power spectrpygm which is »~0.0865 andk~0.535. Thus, the loop production grows
already averaged over the direction kfand multiplied by the  \ith the horizon distance and we did not observe the small
phase-space factor as defined in E2). Bins are cut every BK.  goaje strycture. This is because the Nambu-Goldsthi®
k=64k corresponds to string cores. boson radiation from strings is so efficient that the small

Th | f d not at h I le th thscale structures on strings are damped out. The damping
us, loops are formed not at much smaller scaie than thg., q g typicallyxt, which is near the horizon distance in
horizon distance but around the horizon scale.

contrast withGut<t (G: the gravitational constanif at all
for the local string network. Bennelt8] showed that unless
IV. DISCUSSIONS AND CONCLUSIONS produced loops with the length of the horizon distance often
In this paper we gave a comprehensive investigation orself-intersect and fragment int_o smaller loops with the typ_i-
the evolution of the global string network in the radiation €&l 1€ngth smaller than the horizon distance, the reconnection
dominated universe by use of the numerical simulation basefft€ iS large enough to prevent scaling. In the global string

on the complex scalar field model which spontaneoule?twork' parent loops do not fragment mto_smallgr loops
breaks the (L) symmetry. with the typical length smaller than the horizon distance,

In order to decide whether the large scale behavior of thdnStead they rapidly shrink through radiating NG bosons so
global string network goes into the scaling regime, we fol-that the reconnection rate of parent large loops becomes

lowed time development of the scaling paramegfewhich small and scaling should be kept.
characterizes the average energy density of global strings.
We found that¢ is almost constant irrespective of cosmic
time under both the periodic and the reflective boundary con- The author is grateful to Jun’ichi Yokoyama and Masa-
dition. All the results are consistent within the factor 2. But hiro Kawasaki for useful discussions. This work was par-
under the reflective boundary condition tend to becomaeially supported by the Japanese Grant-in-Aid for Scientific
larger than that under the periodic boundary condition. ThifResearch from the Monbusho, Grant No. 10-04558.
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