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Scaling property of the global string in the radiation dominated universe

Masahide Yamaguchi
Department of Physics, University of Tokyo, Tokyo 113-0033, Japan

~Received 8 June 1999; published 25 October 1999!

We investigate the evolution of the global string network in the radiation dominated universe by use of
numerical simulations in 311 dimensions. We find that the global string network settles down to the scaling
regime where the energy density of global strings,rs , is given byrs5jm/t2 with m the string tension per unit
length and the scaling parameter,j;(0.9– 1.3), irrespective of the cosmic time. We also find that the loop
distribution function can be fitted with that predicted by the so-called one scale model. Concretely, the number
densitynl(t) of the loop with the lengthl is given bynl(t)5n/@ t3/2( l 1kt)5/2#, wheren;0.0865 andk is
related with the Nambu-Goldstone~NG! boson radiation power from global stringsP as P5km with k
;0.535. Therefore, the loop production function also scales and the typical scale of produced loops is nearly
the horizon distance. Thus, the evolution of the global string network in the radiation dominated universe can
be well described by the one scale model in contrast with that of the local string network.
@S0556-2821~99!07720-6#
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I. INTRODUCTION

Cosmic strings could be formed as a consequence of
cosmological phase transition in the very early universe@1#.
They are divided into global and local~gauged! strings ac-
cording to the property of broken symmetry. Though th
have similar properties, such as that they are line obje
with false vacuum energy, they intercommute at cross
@2,3#, and so on, there are also many differences betw
them. While a local string has two cores comprised o
magnetic flux core and a scalar field core, a global string
only a scalar field core. For local strings, the gradient ene
of the scalar field can be cancelled out by the gauge field
from the core so that the core is well localized and
vacuum energy of the core is dominant. Therefore,
Nambu–Goto action is adequate to follow the evolution
the local string network except at crossing. On the ot
hand, there is no gauge field in the global string model
that the total energy of global strings is dominated not by
vacuum energy of the core but the gradient energy of
scalar field, namely, the Nambu–Goldstone~NG! boson
field. So, we need to consider not only the core but also
associated NG boson field and the coupling between the
contrast with the case of local strings. Thus we must use
Kalb-Ramond action instead of the Nambu-Goto action as
effective action@4#.

The dynamics of the local string network has been exa
ined by use of the Nambu-Goto action. Kibble@5# first pro-
posed the so-called one scale model, where the behavio
the system can be characterized by only a parameter, nam
the scale lengthL and an unknown loop-production function
He showed that either the local string network goes into
scaling regime where the scale lengthL grows with the ho-
rizon distance@1,6# or, the universe becomes string dom
nated. In the scaling regime, infinite strings intercommute
produce closed loops so that at any time the number
strings stretching across the horizon distance within each
rizon volume is almost constant and produced loops de
through radiating gravitational waves@7#. Bennett@8# devel-
0556-2821/99/60~10!/103511~10!/$15.00 60 1035
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oped the Kibble’s one scale model and showed that un
most of produced loops self-intersect and fragment i
smaller loops with the typical length smaller thanL, the re-
connection rate is large enough to prevent scaling. Mitch
and Turok@9# studied the statistical mechanics of the stri
network in the flat spacetime and found that the equilibriu
distribution of the string network is dominated by the sma
est loops allowed, which suggested that strings tend to br
into very small pieces in the expanding universe. Albre
and Turok@10# modeled the network as the hot body rad
tion where loops are radiated from the long strings a
showed that the scaling solution is inevitable. However,
application of the flat spacetime statistical mechanics to
string dynamics in the expanding universe is not necessa
justified. Thus, numerical simulations are unavoidable to
cide whether the local string network settles down to
scaling regime or not.

Albrecht and Turok@11# gave the first numerical investi
gation for the scaling property. Later three groups@10,12,13#
improved numerical codes and all groups concluded that
large scale behavior of the local string network goes into
scaling regime with the scaling parameterj equal to (50
625) @10#, (1362.5) @12#, and (1664) @13# in the
radiation-dominated era. Though Albrecht and Turok@10#
found that the loop distribution function also scales, t
higher resolution simulations performed by the other t
groups @12,13# showed that long strings have significa
small structures and loops are typically produced at sc
much smaller than the horizon distance, which is close to
cutoff scale. In response, Austinet al. @14# proposed the
three scale model withj, the step lengthj̄, and the scalez
describing the small scale structure. They found thatj and j̄
grow with the horizon distance butz begin growing only
when the gravitational back reaction becomes in effect w
z/j;1024. However, Vincentet al. @15# recently claimed
from the flat spacetime simulations that instead of loop p
duction due to intercommutation, long strings directly em
massive particles so that the dominant energy loss me
©1999 The American Physical Society11-1
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MASAHIDE YAMAGUCHI PHYSICAL REVIEW D 60 103511
nism of local strings is not gravitational radiation but partic
production.

Thus, though there is a consensus that the large s
structure of the local string network obeys the scaling so
tion, the loop production and the dominant energy lo
mechanism are now in dispute. This is mainly because in
sion of gravitational radiation to the numerical simulations
impossible and gravitational radiation is so weak that kin
live for a long time.

On the other hand, the evolution of the global string n
work has been less studied. Its manifestation, howeve
essential to estimation of abundances of relic axions radi
from axionic strings@16–18#, which may be the cold dark
matter. Also, the scaling property is indispensable for
scenario where global strings become the seed of the s
ture formation of the universe and produce the cosmic
crowave background anisotropy@19#. Thus, it is important to
clarify the dynamics of the global string network, in partic
lar, whether it enters a scaling regime such as the local st
network.

So far, the result for the local string network has be
applied to the global string network because global stri
also intercommute with the probability of the order unity@2#.
But global strings have the associated Nambu-Goldst
bosons, which lead to long-range forces between strings
become the dominant energy loss mechanism of glo
strings. Therefore, instead of the Nambu-Goto action
have to use the Kalb-Ramond action@4#, which is comprised
of three components, the Nambu-Goto action, the kin
term of the associated Nambu-Goldstone fields, and the
pling term between them. But the Kalb-Ramond action h
difficulty of logarithmic divergence due to self-energy of th
string. Dabholkar and Quashnock@20# solved this difficulty
by the similar prescription as given by Dirac in the elect
magnetic system@21#, where divergence is renormalized in
the electron mass. They gave the renormalized equatio
motion for a global string comprised of the free part deriv
from the Nambu-Goto action with the damping term, whi
becomes negligible for a circular loop in the cosmologi
scale where ln(t/d);O(100). Then they concluded that th
global string network can be well approximated by the m
tion of the Nambu-Goto action. However, as shown by B
tye and Shellard@22# though the calculation is done in th
flat spacetime, the kinks on long string are substantia
rounded due to the back reaction of NG boson radiati
which may significantly affect the small scale structure~if at
all! of the global network system. Also, the above approa
cannot include the long-range force between long strin
which may decrease the energy density of long strings. T
the examination of the dynamics of global strings by use
the Kalb-Ramond action is not yet complete.

In a previous paper@23#, we manipulated the equation o
motion of the complex scalar field instead of the Kalb
Ramond action. Then, we showed that the large scale be
ior of the global string network goes into the scaling regim
andj for the global string network becomesO(1), which is
significantly smaller than that for the local string network

In this paper, we give a comprehensive analysis of
evolution of the global string network based on the mo
10351
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adopted in Ref.@23#. We show the scaling of the globa
string network under more general situations and investig
the dependence ofj on boundary conditions and some p
rameters. Then, the loop distribution function is given
order to decide whether the small scale structure exists as
local string network.

The paper is organized as follows. In the next section,
give the formulation of numerical simulations. In Sec. III, w
give the method of the identification of string segments a
closed loops. Then, the scaling parameterj and the loop
distribution function are given. Finally, we discuss our r
sults and give our conclusions.

II. FORMULATION OF NUMERICAL SIMULATIONS

We consider the following Lagrangian density for a com
plex scalar fieldF(x):

L@F#5gmn~]mF!~]nF!†2Veff@F,T# , ~1!

where gmn is identified with the Robertson-Walker metr
and the effective potentialVeff@F,T# is given by

Veff@F,T#5
l

2
~FF†2h2!21

l

3
T2FF† . ~2!

For T.Tc5A3h, the potentialVeff@F,T# has a minimum
at F50, and theU(1) symmetry is restored. On the othe
hand, new minimauFumin5hA12(T/Tc)

2 appear and the
symmetry is broken forT,Tc ~Fig. 1!. In this case the phas
transition is of second order.

The equation of motion is given by

F̈~x!13HḞ~x!2
1

R~ t !2
¹2F~x!52Veff8 @F,T# , ~3!

where the prime represents the derivative]/]F† andR(t) is
the scale factor. The Hubble parameterH5Ṙ(t)/R(t) and
the cosmic timet are given by

FIG. 1. One-loop finite temperature effective potent
Veff@F,T# of the complex scalar field.
1-2
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H25
8p

3mPl
2

p2

30
g* T4, t5

1

2H
5

j

T2
, ~4!

wheremPl51.231019 GeV is the Plank mass,g* is the total
number of degrees of freedom for the relativistic particl
and radiation domination is assumed. We define the dim
sionless parameterz as

z[
j

h
5S 45MPl

2

16p3g* h2D 1/2

. ~5!

In our simulation, we takez510, which corresponds toh
;(1015– 1016) GeV with g* 51000 and later investigatez
dependence on the result. The energy density at each la
point is written as

r~x!5Ḟ~x!Ḟ†~x!1
1

R~ t !2
¹F~x!•¹F†~x!1Veff@F,T# .

~6!

We take the initial timet i5tc/4 and the final timet f575t i
518.75tc , where tc is the epochT5Tc . Since theU(1)
symmetry is restored at the initial timet5t i , we adopt as the
initial condition the thermal equilibrium state with the ma
squared

m25
d2Veff@ uFu,T#

duFu2 U
uFu50

, ~7!

which is the inverse curvature of the potential at the origin

t5t i . In the thermal equilibrium state,F andḞ are Gauss-
ian distributed with the correlation functions

^buF~x!F†~y!ub&equal time

5E dk

~2p!3

1

2Ak21m2
coth

bAk21m2

2
eik•(x2y) ,

~8!

TABLE I. Five different sets of the simulations under the pe
odic boundary condition.

Lattice number
Lattice spacing
@unit5t iR(t)# z Realization j

(1) 1283 2A3/25 10 300 0.9060.06
(2) 643 4A3/25 10 10 0.9060.05
(3) 2563 A3/25 10 10 0.9960.09
(4) 2563 2A3/25 10 10 0.9760.04

(7) 1283 2A6/25 5 10 0.8860.07
10351
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^buḞ~x!Ḟ†~y!ub&equal time

5E dk

~2p!3

Ak21m2

2
coth

bAk21m2

2
eik•(x2y) .

~9!

The functionsF(x) andḞ(y) are uncorrelated forxÞy. We
generate these fields for the initial condition in the mome

tum space, because the corresponding fieldsF̃(k) and F̃̇(k)
are uncorrelated there. Then these fields are inverse Fo
transformed into the configuration spaces by the FFT form
ism.

Hereafter we measure the scalar field in units oft i
21 , t,

andx in units of t i , and the energy density in units oft i
24 .

The equation of motion and the total energy density
given by

F̈~x!1
3

2t
Ḟ~x!2

1

t
¹2F~x!52S uFu21

z2

36t
2

z2

144DF† ,

~10!

r~x!5Ḟ~x!Ḟ†~x!1
1

t
¹F~x!•¹F†~x!

1
1

2 S uFu22
z2

144D
2

1
z2

36t
uFu2 , ~11!

wherel is set to unity for brevity. The scale factorR(t) is
normalized asR(1)51.

We perform the simulations in four different sets of latti
sizes and spacings~see Table I!: ~1! 1283 lattices with the
physical lattice spacingdxphys52A3t iR(t)/25, ~2! 643 lat-
tices with dxphys54A3t iR(t)/25, ~3! 2563 lattices with
dxphys5A3t iR(t)/25, ~4! 2563 lattices with dxphys

52A3t iR(t)/25. In all cases, the time step is taken asdt
50.01t i . In case~1!, the box size is nearly equal to th
horizon volume (H21)3 and the lattice spacing to a typica
width d;1.0/(A2h) of a string at the final timet f . Further-
more, in order to investigate the dependence ofz, we arrange
the case withz55, ~7! 1283 lattices with the physical lattice
spacingdx phys52A6t iR(t)/25. In this case we follow the
time development of the system until the final time,t f
5150t i537.5tc , when the box size is nearly equal to th
horizon volume (H21)3 and the lattice spacing to a typica
width of a string. For each case, we simulate the system f
10 @~2!, ~3!, ~4!, and~7!# or 300 ~1! different thermal initial
conditions. Since the simulation box is larger than the ho
zon volume even at the final time of the simulation, we ad
the periodic boundary condition. But, under the period
boundary conditions, there exists no infinite string so tha
is possible that string completely disappears in the simu
tion box. Therefore, in order to verify the dependence
boundary conditions, we also simulate the cases in Tabl
1-3
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MASAHIDE YAMAGUCHI PHYSICAL REVIEW D 60 103511
under the reflective boundary condition where¹2F(x) on
the boundary points disappears.1

Using the second order leap-frog method and the Cra
Nicholson scheme, the discretized equation of motion re

Ḟ i,n11/25
1

11
3dt

4t

F S 12
3 dt

4 t D Ḟ i,n21/21
dt

t
¹2F i,n

2dtH uF i,nu21
z2

36t
2

z2

144J F i,n
2 G ,

F i,n115F i,n1dt Ḟ i,n11/2, ~12!

¹2F i,n[ (
s5x,y,z

F i s11s ,n22F i s ,n1F i s21s ,n

~dx!2
,

wherei represents spatial index andn temporal one.

III. RESULTS

In order to judge whether the global string network r
laxes into the scaling regime, we give time developmen
j, which is defined as

r5jm/t2 , ~13!

wherem[2ph2 ln„t/(dj1/2)… is the average energy per un
length of global strings.

A. String identification

Before obtainingj and the loop distribution function, we
must identify the string segment. Since spacetime is
cretized in our simulations, a point withF50 corresponding
to a string core is not necessarily situated at a lattice poin
the worst case, a point withF50 lies at the center of a

1Note that this condition is different from the open boundary co
dition where¹F(x) on the boundary points disappears. Under
open boundary condition, the string feels attractive forces from
boundary so that the number of the strings tends to decrease
that in the real universe as under the periodic boundary condit

TABLE II. Six different sets of the simulations under the refle
tive boundary condition.

Lattice number
Lattice spacing
@unit5t iR(t)# z Realization j

(1) 1283 2A3/25 10 10 1.7760.03
(2) 643 4A3/25 10 10 1.5760.04
(3) 2563 A3/25 10 10 2.0060.05
(4) 2563 2A3/25 10 10 1.3060.02
(5) 1283 4A3/25 10 10 1.1860.03
(6) 2563 4A3/25 10 10 1.0360.03
10351
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plaquette. Therefore, we use a static cylindrically symme
solution, which is obtained by solving the equation

d2f

dr2
1

1

r

d f

dr
2

f

r 2
2Veff8 @ f ,T#50 , ~14!

with F(r ,u)[ f (r )eiu and the winding numbern51. The
boundary conditions are given by

f ~r !→uFumin ~r→`! , ~15!

f ~0!50 . ~16!

We require that a lattice is identified with a part of a stri
core if the potential energy density there is larger than t
corresponding to the field value of a static cylindrically sym
metric solution atr 5dxphys/A2. Then only one lattice within
a section of a straight string core is identified with a stri
segment except the case where a point withF50 lies at the
center of a plaquette. Of course, the real string is not exa
straight but bent and more complex. But, as seen in Fig
our identification is good and only one lattice within a se
tion of a string core is identified with a part of a string cor
In order to solve the above equation of motion, we have
use the standard shooting technique, which is the repe
process so that it is bothersome to follow the above pro
dure for each time step. Instead, we obtain the solutions
ery 500dt and make the fitting formula. For intermedia
time steps, we judge whether a lattice point belongs to
string segment by comparing the potential energy obtai
from the simulation and that from the fitting formula. Thu
by counting the number of the lattices identified with a p
of a string core, we can evaluate the total length of strin
within the horizon volume (2t)3, from which the energy
density can be obtained.

B. Scaling property

Time development ofj in cases from~1! to ~4! is de-
scribed in Fig. 3. We find that after some relaxation periodj
becomes a constant irrespective of time with~1!0.9960.09,
~2!0.9760.04,~3!0.9060.06, and~4!0.9060.05. They all are
consistent within the standard deviation. Thus we can c
clude that a global string network relaxes into scaling regi
in the radiation domination. We also show time developm
of j in case~7! in Fig. 4. Thenj asymptotically becomes a
constant, 0.8860.07, which is also consistent with the abo
all cases withz510 within the standard deviation. Hence w
can also conclude thatz does not change the essential resu
Note that the standard deviation in case~2! is much smaller
than the other cases because the box in case~2! includes
more horizon volumes at each time. Also,j seems to oscil-
late at the early epoch because the homogeneous mode o
field oscillates in the radial direction of the potential, whic
rapidly decays. In fact, the period of the oscillation coincid
with 2p times the inverse mass at the potential minimum

-

e
an
.
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FIG. 2. Snapshots of a realization att535,45,55,65,75 in case~1! under the periodic boundary condition. Lattices identified with a p
of a string core are shown.
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Figure 5 represents the results under the reflective bou
ary condition, wherej becomes a constant irrespective
time with ~1!1.7760.03, ~2!1.5760.04, ~3!2.0060.05, ~4!
1.3060.02,~5!1.1860.03, and~6!1.0360.03. Though all re-
sults are consistent with that under the periodic bound
10351
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condition within the factor 2, the former tends to becom
larger than the latter. This is because under the reflec
boundary condition, strings are repulsed by the boundary
the string near the boundary intercommutes less often t
that near the center of the simulation box because the pa
1-5
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MASAHIDE YAMAGUCHI PHYSICAL REVIEW D 60 103511
to intercommute only lies in the inner direction of the boun
ary. The results in large box simulations,~4!–~6!, are con-
verging so that it is safe to say that if we take the box s
larger than 23 times the horizon volume, the reflectiv
boundary condition has no effect on the results.

C. Loop distribution

We also investigate the loop distribution. Since in o
simulations it is judged by the potential energy whethe
lattice point is a part of the string, the string is not necess
ily continuous. Therefore, we identify a closed loop as f
lows; First we select a lattice point belonging to the stri

FIG. 3. Time development ofj in cases from~1! to ~4! under
the periodic boundary condition. The squares represent the
development ofj. The vertical lines denote a standard deviati
over different initial conditions.

FIG. 4. Time development ofj in case~7!. The squares repre
sent the time development ofj. The vertical lines denote a standa
deviation.
10351
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segment. Then we connect it with the nearest neigh
among lattice points belonging to the string segment.
proceed this process one after another until the connec
returns to the starting lattice point.

Kibble’s one scale model predicts the loop distribution

nl~ t !5
n

t3/2~ l 1kt !5/2
, ~17!

where n is a constant,l is the length of a loop, and the
log-dependence ofm is neglected. Different from a loca
string, the dominant energy loss mechanism for glo
strings is radiation of the associated Nambu-Goldstone fi
@24#. We define the radiation power,P, asP5km wherek is
a constant. An example of decay of a closed loop is depic
in Fig. 6.

We determine whether the loop distributions in the sim
lation coincides with the above predicted loop distributi
function. The loop distributions in case~1! at different times
(t545,55,65,75t i) are described in Fig. 7. Since long string
are rare, we cut the length of loops into bins with the wid
53dx. Also, we divide 300 realizations into 6 groups com
prised of 50 realizations and we summed the number
loops over 50 realizations for each groups. The dot rep
sents the number of loops averaged over six groups and
dash line represents the standard deviation. They can b
multaneously fitted with the above formula if one takesk
;0.535 andn;0.0865. Fittings fork andn are also given in
Fig. 8. Thus, the loop production function as well as t
large scale behavior of the string scales together for the
bal string network.

As an another evidence for the scaling of the loop prod
tion, we consider the NG boson spectrum radiated fr

e
FIG. 5. Time development ofj in cases under the reflectiv

boundary condition. The squares represent the time developme
j. The vertical lines denote a standard deviation.
1-6
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FIG. 6. Snapshots of a realization att535,45,55,65,75 in case~1! under the periodic boundary condition. Loops decay through radiat
NG bosons.
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strings. If loops are formed at scales much smaller than
horizon distance, there should be significant power of ra
ated NG bosons for modes corresponding to the scal
which loops are formed. For the purpose, we first repres
the complex fieldF(t,x) in terms of the radial modex(t,x)
and the NG boson fielda(t,x) as
10351
e
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F~ t,x!5Fh1
x~ t,x!

A2
GexpS ia~ t,x!

A2h
D . ~18!

Then the kinetic energy density of NG bosons is given b
1-7
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MASAHIDE YAMAGUCHI PHYSICAL REVIEW D 60 103511
1

2
ȧ~ t,x!25

h2

uF~ t,x!u4

3@2Im F~ t,x!ReḞ~ t,x!

1ReF~ t,x!Im Ḟ~ t,x!#2 . ~19!

One may wonder if the power spectrum obtained by the F

FIG. 7. Loop distributions att545,55,65,75 are depicted. Th
number is summed over the box size@128(dx)3# and 50 realiza-
tions for each groups. Bins are cut every 53dx.

FIG. 8. Fittings fork andn. The cross point represents the be
fit values fork andn. The solid circle denotes 68% C.L.
10351
-

rier transformation of the above kinetic energy density
what we want. But it includes the contribution from N
bosons formed at the symmetry breaking as well as that
diated from strings. Also, the decomposition of the field in
the radial and phase modes is inadequate for the lattice p
near the string segment.

Then, we evaluate the average energy density of
bosons radiated in the period betweent1 and t2 , r̄@ t1 ,t2#.
For this purpose, we subtract the redshifted kinetic energ
t1 from the kinetic energy att2 since emitted NG boson
damp like radiation. Thus,r̄@ t1 ,t2# is given by

r̄@ t1 ,t2#5
1

VE d3xr@ t1 ,t2 ;x#

5
1

VE d3xF1

2
ȧ~ t2 ,x!22

1

2
ȧ~ t1 ,x!2S t1

t2
D 2G

5
1

VE d3k

~2p!3 F1

2
uȧk~ t2!u22

1

2
uȧk~ t1!u2S t1

t2
D 2G

[E d3k

~2p!3
r̃k@ t1 ,t2#[E

0

` dk

2p2
rk@ t1 ,t2# , ~20!

where V is the simulation volume and ȧ(t,x)
5*@d3k/(2p)3#ȧk(t)exp(ik•x).

Furthermore, to avoid contamination of string cores to
spectrum of emitted axions, we divide the simulation b
into eight cells and stock the field data of a cell if there a
no string cores in that cell betweent1 and t2. Over all such
cells, we average power spectra of kinetic energy of axi
obtained through Fourier transformation. We follow th
above procedure betweent1565t i and t2575t i for the case
~3! under the periodic boundary condition, which is the hig
est resolution simulation, but with the zero temperature
tentialVeff@F,T50# aftert520t i because the decompositio
of the field becomes well defined. One may suspect that
spectrum is dominated by the kinetic energy of NG boso
associated with global strings~string NG bosons! rather than
that of free NG bosons radiated from global strings. But t
is incorrect for the following reason. The total energy
string NG bosons is almost as much as that of free
bosons. However, the contribution to the energy of string N
bosons is dominated by the gradient energy because th
netic energy of string NG bosons is much smaller than th
gradient energy by the factorv2 (v is the velocity of the
string core andv!1 except just before the disappearance
the loop!. On the other hand, the gradient and the kine
energy of free NG bosons is the same. Therefore the kin
energy of free NG bosons is much larger than that of str
NG bosons, that is, our spectrum is dominated by the form
Also, even if it contributed, the kinetic energy of string N
bosons would decay in proportion tot22, so that its contri-
bution has been removed from the spectrum in our metho
done in Eq.~20!.

The result is depicted in Fig. 9, which has already be
given in Ref.@23# in the different context. The spectrum o
emitted NG bosons is highly peaked at the horizon sc

t
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Thus, loops are formed not at much smaller scale than
horizon distance but around the horizon scale.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper we gave a comprehensive investigation
the evolution of the global string network in the radiatio
dominated universe by use of the numerical simulation ba
on the complex scalar field model which spontaneou
breaks the U~1! symmetry.

In order to decide whether the large scale behavior of
global string network goes into the scaling regime, we f
lowed time development of the scaling parameterj which
characterizes the average energy density of global stri
We found thatj is almost constant irrespective of cosm
time under both the periodic and the reflective boundary c
dition. All the results are consistent within the factor 2. Buj
under the reflective boundary condition tend to beco
larger than that under the periodic boundary condition. T

FIG. 9. Filled dots represent the power spectrumrk , which is
already averaged over the direction ofk and multiplied by the
phase-space factor as defined in Eq.~20!. Bins are cut every 5dk.
k564dk corresponds to string cores.
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can be understood as follows. Under the periodic bound
condition, there are no infinite strings and strings with tw
boundary points on the opposite planes always intercomm
with the partner so thatj tends to become small. On th
other hand, under the reflective boundary condition, stri
are repulsed by the boundary. Furthermore the string nea
boundary intercommutes less often than that near the ce
of the simulation box because the partner to intercomm
only lies in the inner direction of the boundary. Thus,j tends
to become large. Therefore,j in the real world should lie
between that under the periodic boundary condition and
under the reflective boundary condition. Considering all
cases under the periodic boundary condition and cases~4!–
~6! of the large box simulations under the reflective bound
condition, it is safe to say thatj;(0.9– 1.3).

You should note thatj is much smaller than that of a
local string, which is of the order of 10. This is mainly b
cause global strings can intercommute more often than lo
strings since an attractive force proportional to the inve
separation works between a global string and a global a
string.

We have also investigated the loop distribution. It can
well fitted to that predicted by the one scale model if we ta
n;0.0865 andk;0.535. Thus, the loop production grow
with the horizon distance and we did not observe the sm
scale structure. This is because the Nambu-Goldstone~NG!
boson radiation from strings is so efficient that the sm
scale structures on strings are damped out. The dam
scale is typicallykt, which is near the horizon distance i
contrast withGmt!t (G: the gravitational constant! if at all
for the local string network. Bennett@8# showed that unless
produced loops with the length of the horizon distance of
self-intersect and fragment into smaller loops with the ty
cal length smaller than the horizon distance, the reconnec
rate is large enough to prevent scaling. In the global str
network, parent loops do not fragment into smaller loo
with the typical length smaller than the horizon distanc
instead they rapidly shrink through radiating NG bosons
that the reconnection rate of parent large loops beco
small and scaling should be kept.
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