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and transport processes in a gravitational collapse
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We formulate a set of equations for a self-gravitating imperfect fluid that satisfies all the principles of both

general relativity and nonequilibrium thermodynamics, where the latter are condensed in the covariant version
of the recently proposed general equation for the nonequilibrium reversible-irreversible cqGHNERIO.
In doing so, Einstein’s field equation is supplemented by fundamental and clearly structured transport equa-
tions for the sources of gravitational fields. The GENERIC framework determines the selection of the appro-
priate variables and the structure of the field equations compatible with the fundamental laws of thermody-
namics. A nonzero cosmological constant cannot be ruled out by thermodynamic consistency criteria. In order
to discuss the relationship to previous approaches, the simplified equations for bulk viscous cosmology are
presented in some detail50556-282(99)06322-5

PACS numbgs): 98.80.Hw, 04.20.Cv, 04.40.Nr, 05.70.Ln

[. INTRODUCTION fect fluid (see, e.g., the standard textbodksl2], the recent
reference$13—20, and references thergirFor example, the
“The correct treatment of dissipative effects for relativis- beginnings of galaxy formation can be studied by looking at
tic fluids raises certain delicate questions of principle, whichperturbations of a spherically symmetric and homogeneous
do not arise in the nonrelativistic case. For this reason, anbniverse filled with an imperfect fluitsee Sec. 15.10 ¢t.]);
also because dissipation plays an increasingly important rolélearly, the structure of the hydrodynamic equations strongly
in theories of the early universe, it will be worth our while affects the stability of small perturbations. In any attempt to

here to develop the outlines of the general theory of relativinderstand the high entropy of the present universe one
istic imperfect fluids.” (Weinberg[1], p. 53) needs to incorporate a dissipative mechanism into the equa-

How can we guarantee that such a general theory of dist_ions for the expansion of the universe; within the spherically
sipative or imperfect relativistic fluids is consistent with all symmetric and homogeneous standard model of the universe

the principles of nonequilibrium thermodynamics? This isone can only introduce bulk or dilatational viscosity effects

the question we want to address in the present paper in th%ee Sec. 15.11 dfl), while other dissipative mechanisms

. : can only be introduced in more detailed, less symmetric de-
light of the recently developed general equation for the non y y

o A _ i scriptions of the universe. For such cosmological and astro-
equilibrium reversible-irreversible couplin@SENERIO of  jhygical applications it obviously is of crucial importance to
nonequilibrium thermodynamics.

) . ... have a set of hydrodynamic equations for a self-gravitating
In the usual procedure, the thermodynamic admissibilityiq that is consistent with all the established principles of

of relativistic hydrodynamics is implemented by formulating nonequilibrium thermodynamics.
an entropy balance equation and simply verifying that the |n cosmological and astrophysical applications, Einstein’s
source term therein is always non-negative. As the classicdlindamental equation for the gravitational field needs to be
theories obtained in this way by Eckd@] and by Landau supplemented by rather ambiguous transport equations for
and Lifshitz[3] have problems concerning causality and sta-mass, momentum, and energ$ee, e.g., the Introduction of
bility [4,5], most current analyses of dissipative phenomen§13]: “In the absence of any well founded theory of non-
are based on the causal second-order theory of Israel ardjuilibrium thermodynamics at very high energies or far
Stewart[6—8] or on extended irreversible thermodynamicsfrom equilibrium, the best current option appears to be to
[9]. More far-reaching principles of nonequilibrium thermo- apply standard relativistic non-equilibrium thermodynamics
dynamics have recently been condensed in the GENERI@ and beyond its own range. This option is not as straight-
structure[10,11]. The purpose of this paper is to develop aforward as it may sound, since there are difficulties and
set of equations for imperfect fluids which are in accordancesubtleties involved in standard relativistic thermodynamics.”
with both the principles of general relativity and that very Or see the Introduction dfl9]: “Moreover it is indispens-
restrictive new framework of nonequilibrium thermodynam- able to calculate the bulk and shear viscous pressure. Un-
ics. luckily the solution of the Einstein equations does not pro-
The general relativistic hydrodynamic equations proposedide any information about it. This is why a set of transport
in this paper are expected to be relevant to describing thequations must be adopted.Ih this paper, a covariant ver-
expansion of the universe, the formation of galaxies, and theion of the GENERIC structure is first proposed and then
gravitational collapse of stars into neutron stars wheneveused for constructing unambiguous, clearly structured trans-
one needs to go beyond the frequently used model of a peport equations for self-gravitating fluids, deeply rooted in
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nonequilibrium thermodynamics. Finally, the equations for While Eq. (1) replaces the fundamental time-evolution
bulk viscous cosmology are considered in some detail. In thequation of the noncovariant GENERIC formalism, the mu-
companion papel21], the predictions of the new equations tual degeneracy requirements of that formalism are replaced
for bulk viscous cosmology are compared to those of varioupy

previous theories.
{A,J}=0 2

Il. COVARIANT GENERIC and

In a recent series of papers, a general formalism for non- [A/l]=0, 3
relativistic nonequilibrium systems, GENERIC, was devel-
oped by considering the compatibility of two levels of de- where, againA is an arbitrary functional of the fields. These
scription [10], by studying a large number of specific requirements, which are strong formulations of the conserva-
exampleg11], and by a projection-operator derivation from tion of entropy by the reversible dynamics and of the con-
Hamilton’s equations of motiof22]. Although the core part servation of energy by the irreversible dynamics, are known
of the GENERIC formalism is an explicit time-evolution to be important parts of the GENERIC framework.
equation, it was shown to contain a set of covariant equations The covariant formulatiorl)—(3) retains the key innova-
for relativistic hydrodynamics as a special realizationtion in the GENERIC structure, that is, the use of two sepa-
[23,24. In formulating a relativistic hydrodynamic theory, rate generators for the reversible and irreversible dynamics,
one is forced to introduce additional generalized force varitogether with the symmetric degeneracy requirements. This
ables (related to velocity and temperature gradients andnnovation is of crucial importance when treating systems
hence eventually also to the fluxes of momentum and enwithout local equilibrium states, for example, systems de-
ergy), which are known to be essential for a causal theoryscribed by Boltzmann's kinetic equati¢@6]. The example
Moreover, the structure of the transport equations is severel§f Boltzmann’s equation furthermore shows that, in spite of
restricted by the combination of the rather complementaryhe linear appearance of Egd)—(3), the formalism is not
principles of relativity and GENERIC. The previous set of limited to the linear response regime. While nonequilibrium
hydrodynamic equations could be generalized to selfdynamics is usually expressed in terms of a single generator
gravitating imperfect fluids by replacing all partial deriva- (the effective Hamiltonian[27]), the two-generator idea,
tives by covariant derivativeéninimal coupling. One can  Which leaves more flexibility in the choice of variables, al-
even verify that the system of equations obtained by such lpws us to formulate the mutual degeneracy conditions
replacement and by including Einstein’s equation for the adf10,11].
ditional gravitational field variables possesses the full As a next step, we use the proposed formalism for con-
GENERIC structure, as we have checked explicitly for thestructing generally covariant equations for self-gravitating
original noncovariant formalism. However, in order to estab-imperfect fluids. We first select the state variables and, after
lish confidence in the GENERIC formalism and the resultingdetermining the building blocks of GENERIC, we write out
equations for a self-gravitating imperfect fluid, we here firstall the field equations.
propose a covariant version of the formalism and then derive
a much wider class of hydrodynamic equations obtained |||. GENERALLY RELATIVISTIC HYDRODYNAMICS
within the covariant formalism. . ) o

In the original formulation of GENERIC, equivalent Pois- ~ Before presenting the thermodynamically admissible,
son operator and bracket representations have been proposganera}lly covariant equations for re_Iat|V|st|c imperfect fluids,
Inspired by the work of Marsdeat al. [25] for reversible ~SOme introductory remarks comparing the general procedure
relativistic field theories, we here propose a covariant formuWithin the new thermodynamic framework and in the estab-
lation of the GENERIC idea based on the bracket formulalished theory of Israel and Stewart are in or¢&s outlined in

tion. In the proposed formalism, the field equations are ext24] and[8], respectively. In the Israel-Stewart theory, the
pressed in the form basic(thermodynamic fluxvariables are introduced through

a straightforward decomposition of the energy-momentum
tensor; a quadratic expansion in the flux variables is then
{A1}=[A]], (1) postulated for the entropy current vector, and evolution equa-
tions for the flux variables are chosen such that the diver-
gence of the entropy current is non-negafithere is a num-
wherel is an action integral] is the integral of the entropy ber of possibilities of formulating such equations; see the
density over space and time, aAds an arbitrary functional note added in proof if8]). Within the GENERIC frame-
of the fields.{A,B} is a Poisson bracket, arfdA,B] is a  work, the choice of the basitthermodynamic forgevari-
Ginzburg-Landau or dissipative bracket wjth,B]=[B,A] ables is strongly restricted by the Poissonian structure of the
for arbitrary functionalsA, B, and[A,A]=0 for all A. The reversible dynamicén particular, by the Jacobi identity ex-
two contributions to the field equations generated lapdJ  pressing the time-structure invariance of the reversible dy-
in Eq. (1) are called the reversible and irreversible contribu-namicg. Furthermore, the dependence of the energy-
tions, respectively. In the reversible situation considered bynomentum tensor and of the entropy current vector on these
Marsdenet al. [25], the right-hand side of Eq1) is zero. variables is determined by the GENERIC structure. While
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the second law of thermodynamics is crucial for formulatingused for introducing these additional variables for the ex-
the Israel-Stewart equations, in the general approach to noample of the four-vectow,, , which will turn out to describe
equilibrium thermodynamics it basically leads to stability an entropy-flux contribution that is not proportional to the
conditions for the thermodynamic potential expressing theselocity four-vector(further details can be found [23,24)).
internal energy as a nontrivial function of the thermody-The nonrelativistic description of dissipative phenomena,
namic variables. The quadratic expression for the entropkych as heat flow, typically involves second-order space de-
current in the Israel-Stewart theory, for which there is noyjyatives, but only first-order time derivatives. For example,
counterpart in the new thermodynamic approach, can be r§ne energy equation involves the divergence of the heat flux,
garded as the result of an expansion around equilibrium; thig hich is itself proportional to the gradient of temperature.
is_a severe restriction which is not shared by th_e approach he standard procedure for avoiding such unmatched higher-
this paper. As a consequence of 3” these_z d|fferen(_:es, th rder space derivatives is to introduce additional variables
structure of the resulting equations is considerably different . o

which are closely related to these space derivatives. For ex-

in general nonequilibrium situations, but coincides for the : . S .
linearized equation&23,24. (Note that only the linearized ample, we introduce a simple dissipative relaxation mecha-
' lism by which an additional vector variable rapidly con-

equations are relevant to the discussion of stability and cal? . . .
sality [8].) In the companion paper, the solutions of the new"€'9€S to the temperature grad|e_nt, while _the_dlvergence of
equations are compared to those of previously proposeﬁ“s variable occurs in the revgrsmle contrlbutlor_1 to the en-

equations in the context of bulk viscous cosmoldBy]. ergy or entropy balance equation. If the new variable is sup-

posed to play the role of temperature gradients, it needs to be
a covariant vector variable of intensive nature.

] i ] In addition to the hydrodynamic fields, M, s, w,,

~ Before applying GENERIC, we first need to specify the 5 C,.. we use the components of the contravariant sym-

list of state variables for our t_hermodynamlc system of intermetric tensor representing the dual metri’, and the

est, that is, for a self-gravitating imperfect fluid. ThroughOUtChristoﬁel symbolsl",ﬁv as state variables. As usugt” is

th'st Paper. IOII(I0W|tnng(irl§artsl apfro?ch, tt_hf \t/elocny IOZr' used for raising indices, while its inverse, the metric tensor
vectoru™ IS taken 1o be the velocily of parlicle transport. AS is used for lowering indices. The signature of the

the basic hydrodynamic variables we use the particle number””’

densit it rest vol th f densit i pace-time metrig,, is (—+++), andg is the absolute
erES| yl per uni rgsthvo ume, te eg rop}; fenS| Y pfd;nun' value of the determinant a,,,. Semicolons(;) denote co-

Ees \C/)olugg,s, and the momentum-density Tour-vectl,, v ariant derivatives compatible with the metgg, , and Ein-
/‘L: L 1 1 -

. stein’s summation convention is used.
We next need to introduce a four-vectar, closely re-

lated to the temperature gradient and a symmetric tensor
variableC,, closely related to the velocity gradient tensor in
order to render a thermodynamically admissible theory pos- As a first step, we generalize the Poisson bracket and
sible [23,24. These additional variables are required byaction integral proposed by Marsdenal.[25] by including
GENERIC, and they are crucial for the causality of thethe variablesw, and C,, [28]. We use the following
theory. For completeness, we here repeat some argumerigacket:

A. State variables

B. Reversible contribution

oA  OA

AB—J\/— 5B o8 5B OA  OA _ oB
{ABE= | VO S 9u5n ™ 5w, % on

4 _ 4
d x+J @M”<5M#’9“5M,, M, P oM d*x

S6A OB 6B S6A
v N v N
sgr ST, 5giv o,

4

+ff 0B oA 5A(958d4+ka
99\ 5m, " 5s oM, r s |0

+JJ— SA SB OB OA
9N\ SM Sw, ~ oM, ow,,

+JJ— 5B 0A OA 0B
9\ ow, s ow, »5s

6B oA oA

6B
4 _ 4
d x+J’ Vg WM< Aax oM, Aax oM, d*x

y ff o (oh BB oAl
X* | NOOCw) 5 5., T oy, 5c,,) 4

oB oA oA

. f e SB B SA  SA
9wl 5c oM, ~ 5C,, N om,

5B
4 _ 4
d x+f \/§CM< 50”(9X M 5cw‘9h 5M“>d X. (4
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The symbols,, denote partial derivatives with respect to the Sl M

coordinates, which could equivalently be replaced by cova- ut=— M- U (13)
riant derivatives in the proposed bracket expression. The r

functional derivatives in Eq(4) are defined as scalars, vec-
tors or tensors, not as densities; for example,

which implies the constraint

g“*"M M ,=—-U? (12)

dA

SA
A(n+)\6n)=J Sn—+/g d*x. (5) _ o _ _
on This constraint is to be imposediter all the functional de-
rivatives are taken. The final continuity equation for the par-
The only exception is made in order to keep the Christoffekicle current[see Eq.(38) below] will show that this defini-

=0

symbols as convenient state variables, tion of the velocity four-vectou” is indeed consistent with
the approach of Eckart adopted in this paper.
B \ OA In calculating further functional derivatives ffit is con-
dn A_OA(”J”“SI‘)_f 5F/w51-)\ d’x. ®  venient to introduce the quantities
- e
The first three integrals in the Poisson bracibtrepre- p= EU +V q= EU—V (13)
sent the convection mechanism for the standard hydrody- 2 ’ 2 '

namic fields. The fourth contribution involves only the vari-

ables of the gravitational fielg** andI'},,, and an arbitrary to be interpreted below, and the derivatives

vector fieldV*; the occurrence of/* is related to the free-

dom of arbitrary coordinate transformations in four- T— 5_0| (14)
dimensional space. Two further integrals express the convec- as’

tion mechanism for the covariant four-vector figlg , and a

further contribution, involvingw,, ands, establishes the re- aq

lation betweenw, and the temperature gradier{t23,24. UZZW’ (15

This coupling ofw, ands is the only non-standard contri-

bution in the bracket4); it implies thatw, has the dimen-

sions of temperaturéhis differs by a factor of the speed of b=4

light, c, compared to previous woil23,24]). The last three

integrals express the convection mechanism for the covariant

four-tensor fieldC,,, . As the functiondJ andV, the transformed functionsandq
The action of Marsdeet al. [25], depend om, s, y, andz In the following, the derivatives,

o, and ¢ are required to be non-negative.

Jq
o (16)

':f @( A LT N
167G wr 2 U ' C. Irreversible contribution
In constructing the dissipative bracket we make a quite
- general ansatz which includes our previous work on special
only on the scalar quantitiesands, but also on the further relativistic hydrodynamici23,24. Only the entropy density,

scalar variablesy=y(w,,C,,,g*") and z=z(C,,,g"") .
(g*” needs to be considered in addition to the thermody-.S and the new variablesy, andC,,,, are assumed to be

. ) . involved in the dissipative brackets. The following expres-
namic force variables/, andC,, in order to make the for- _." ~. . ! L

. J © sion is obviously symmetric and covariant:
mation of scalars possibleFor example, one could use ex-

is modified only by letting the functiond andV depend not

pressions of the form s SA  SA _ 5B B
[A,B]=J g(w"———)fw(wV—— )d“x
y=ajw,g""w, +ajw,g" Ch g Wt ..., (8 os oW, os oW,
~,0A OA | — — o o
z=aj+ajg"C,,+a39*'C,,g"C,,+ ..., (9 + | Vo[ C* 55 s Fwfatiud)
y7a%
where the quantitiea? anda/ are constant coefficients. af ~a0B 6B
; N X| CN—~— d?x, (17)
is nonzero, then we assume that the normalization is such 55  SC,y

thataY=1. In Eq.(7), G is Newton’s gravitational constant,
and the Ricci tensor

o

wheref_ﬂ,, is arbitrary andf ,,, f,, are assumed to be posi-
tive semidefinite and symmetric. The remaining unknowns in

— N A A K _ T\ K
Ruv= =0 T, — T b (10 Eq. (17) are determined by the degeneracy requirent@nt

KV™ N

depends on the Christoffel symbols alone.
For later convenience, we introduce the velocity four- WH=— ——
vector as 2T ow,,

o Jdy 18
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~ oy ¢ 9z The proper choice of the pressure according to &8
’“’:ﬁ aC + AT oC - (19 hence guarantees the consistency of the field equégibn
e mr with the Bianchi identities, which can be derived once the
As the entropy density is among the state variables, w&XPression for the Einstein tensor in terms of the Christoffel

can immediately write the entropy integrhis symbols[see Eqgs.(10) and (22)] is related to the metric
tensor[see Eq(37)]. In order to rewrite Eq(28) in a more

familiar form, we introduce the quantities
sz svg d*x. (20)
1
. . . . . Si=S+ —u“P u” 29
While sis the entropy density per unit three space, the inte- f T ald (29)
gration is not only over three space but also over time. The
degeneracy requireme(®) is trivially fulfilled. and
1
D. Field equations yi=y+ —u“PWuV; (30)
g

After defining the brackets and the integrasndJ in the
preceding subsections, we can now write out all the explicis; is the conventional local-equilibrium entropy density
field equations. If we apply the fundamental equatidthto  which, in the presence of the thermodynamic force variable
an arbitrary functionalA=A(I"), we obtain the condition w,, can be different from the total entropy density
sl186g#7=0, which implies Einstein’s field equation If we consider the total differential gf=p(n,s;,ys,z) of
Eg. (26) and impose the constraints

87G
G,,= v T, (21 w,u’=— (32)
. . and
where the Einstein tensor
1 C,,u"=0, (32
Cur= R 38R REIT R, 22 then we obtain
is expressed in terms of the Ricci tensor and the curvature T— ap (39
scalar. For the energy-momentum ten3qr, we find s’
T »=qu uv+ph V+P v (23) J
S e =222 (34)
with s
= d
Nu=0utu,u, (24) p=42 (35)
0z
and
These identities allow us to identify the variableas the
gy 1 oz ) absolute temperaturédefined for constant intensive vari-
= + = . . .
Py Uag“” 27 ygnr (25 ablesy; andz), and to rewrite Eq(28) in the form
. . . ap dap
Equation(23) allows us to identifyp as the pressure and p= na_+sfa__p' (36)
n St

p=q+u~pP,u” (26) . . .
Equation (36) has the form of the familiar Gibbs-Duhem

as the fluid mass-energy per unit rest three volume. relation betweeip andp. Note, however, that the functiops
After obtaining an explicit expression for the energy-andp in Eq.(36) depend not only om ands; but also ory;

momentum tensor in Einstein’s field equation, it is interest-andz.

ing to consider the equation for the momentum-density four- We can now list the remaining equations implied by the

vector, as obtained by choosiny=A(M). Equation (1)  covariant GENERIQ1). ChoosingA=A(g) in Eg. (1) im-

implies plies 5I/5Fi‘w=0, which can be rewritten as the anticipated

expression for the Christoffel symbols,

T”V;ﬂ:O, (27)
1
provided that the following condition holds: Fﬁvzzgm[%gxﬁ 39k~ G prl (37)
p= n‘;_q +S‘9_q —q. (28) _By choosingAzA(n) andA=A(s), we obtain the continu-
an - " ds ity equation
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(nu¥). = (39
and the entropy balance equation
S, =WEE , W CE(T ,, f o+ L6, T, (39)
where
St=sut+TwH (40)

is the total entropy four-vector. EquatiqB8) justifies the

definition (11) of u* according to Eckart’s approach. Equa-

tion (40) clarifies the physical role ofv* in accounting for

an entropy flux not proportional to the velocity four-vector.

Finally, choosingA=A(w) andA=A(C) in Eq. (1) gives
the relaxation equations

u)\(W/.L;)\_W)\;,u.):_f,u.)\ W)\ (41)
and
u}\(C,LLV;)\_C)\V;,U._C,U,)\;V) f,u,VfK)\CK}\ %/.LKAC’K}\%)\V'
(42)

At this point, we have derived the complete set of equations

[Einstein’s field equatior(21), (37) and the new hydrody-
namic equation$27), (38), (39), (41), (42)] from the cova-

riant GENERIC formalism. If we assume*f,,=u*f,,

=u“?ﬂv=0, then the constraintl12), (31) and (32) are
compatible with the field equatiorig4].

E. Special case

The previous work on hydrodynamic equations satisfying

the principles of special relativity and GENERIR3,24]
corresponds to the particular choices

y=w,g*'w,, (43
z=g*'g"*C,,C,\+29*"C,,+3. (44)

We then find the energy-momentum tensor contribution

P,,=oW,W,+¢(C,C",+C,,) (45)
and the entropy four-vector
St=su*+ owt=su*+ aoh*’w, (46)

The previously introduced relaxation processes oy

andC,,, are recovered for
_ T h 4
'U'V_CTj_O' mv ( 7)
R 48
7 CTZ¢ nv ( )

and

PHYSICAL REVIEW D60 103507

(49

uvo

— _ L1
o N3eplrg

70

where the relaxation times,, 71, and 7, representing the
dynamical material properties are assumed to be positive.
The resulting equations

UM (W0 = Wy, p) = o7 N wh (50)
T
and
A 1
UNCrun = Crvn ™ Cnin) = — ¢ Mv_c_q-ZC
(52)
with the auxiliary tensors
C 1 KN\
Cur=| 1+ 3Cah™ [hy,, (52
KN\ 1 K\
C”'Vzh”“’(c h)\V_§CK)\h h;/,v; (53)

can also be reproduced with the alternative dissipative
bracket

oA TEA) ( oB

AB—J\/—:LU h
[ABI= —?WE‘;M Vs

T B J’\FlroéA To oA
cro T g #6C,,
B T
4 I
3s 1o K"&C dx+f(
(A T OANB T. B,
5s 1, M6C,, [\ 8s 1, M aCy )"
(54
where
ro= 2¢CMC"“” (55
and
1 o o "
r=56C,,Cr. (56)

For small relaxation times;, the solutions to Eqg50)
and(51) can be expanded in terms gf, thus eliminating the
thermodynamic forcew, andC,,, as dynamic variables. To
first order we obtain the explicit expressions

w,=T (57)

u,— chh;T;V— cryTu, ,u”

and
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2 . In an isotropically expanding univers€,,, must be of
C,LLV:_h;LV+§C(TO_ TZ)u ;)\h,uv the form

T crgh, JUS + UNAh, (58 C,,=(F=1h,,, (62)

These expressions clarify the role of the variablesand ~ and Eq.(51) implies the following time-evolution equation
C,. as the thermodynamic forces related to temperature an@r F,

velocity gradients. For example, if the expressi@?) is

inserted into'the' entropy four-vectd46), we find the ex- Iizcu"aAFzg(l—F) Cuk — iF. (63)
pected contribution to the entropy flux due to temperature 3 T

gradients. More precisely, the expressighg) and(58) can ) ) .

be rewritten in terms of the heat-flow vectq, and the To the lowest order in the time scatg, we hence obtain the

and 15.10 of 1)), scales for the relaxation of the bulk viscous stresses and for
the expansion of the universe:
w,=Tu,—crh,, Q" (59 5
and F= §7-oc Ve (64)
C =—h +crurh +cmh W . (60 More generally, the dlmenS|onIe'ss expansion Fat@ay be'
K ur T g CTOU NN T T2 we (60 regarded as the thermodynamic force variable associated

. _ . with bulk viscous stresses.
To first order in7;, the resulting energy-momentum tensor  We can rewrite Eq(63) as

and entropy four-vector coincide with the expressions given

by Weinberg, and we can identify the heat conduction coef- H(F+7oF)=E(1-F)c U, (65)

ficient 7,0 T/c?, the shear viscosity,¢, and the bulk vis- ’

cosity 279¢/3. where the bulk or dilatational viscosity=27,¢/3 has been
introduced(see[24]). The mass-energy density

F. Cosmological constant

Although there is no interest in the static Einstein uni- p=p(ns2) (€6)
verse as a realistic cosmological model, “the existence of gap alternatively be expressed in termsnps, and
cosmological constant remains a logical possibility, and cos-
mologists have thoroughly explored the dynamics of expand- 1
ing universes with a cosmological constariVeinberg[1], F2=§Z- (67)
p. 614. In view of the recently revived interest in this pos-

sibility, we mention that Einstein’s modified field equation Furthermore, we can rewrite the entropy balance equation

(39 as
871G
G/LV_I_Ag/LV:?T,MV (61) _(¢F)2 -
T CéT ( )
with the cosmological constantf\ possesses the full
GENERIC structure. and the energy-momentum teng@s) as
For a reversible realization of the cosmological term, we
need to modify the action properly. In fact, we only need to T=pu,u,+[p—@F(1-F)]h,,. (69)
add the contribution- [ \/gAc?* (87G)d*x to the action(7)
in order to reproduce the field equati¢dl). A reversible For the lowest-order approximation in the small quantity
cosmological term hence fits very naturally into the generaF, Ed. (65 for the bulk viscous pressure contribution,
thermodynamic framework. — ¢F, agrees with the often assumed Maxwell-Cattaneo type
equation(cf. the “truncated” equations 0f13-16,18,19.
IV. BULK VISCOUS COSMOLOGY Beyond that approximation, however, the usual equations

based on the second-order theory of Israel and Stewart or on

Bulk viscosity is a particularly interesting dissipative ef- extended irreversible thermodynamics differ from the
fect because it can occur in an isotropic, spatially homogepresent equatiof65), which is not directly for the bulk vis-
neous universe. While the bulk viscosity vanishes for a fluidcous pressure but for the related generalized thermodynamic
with a purely relativistic equation of state, it may be impor- force F. While the usual equations are often truncated for
tant for mixtures of radiation and matter. Also, particle pro-reasons of tractability, the full time-evolution equati@b)
duction processes may be phenomenologically described iis of a relatively simple form. A detailed comparison of vari-
terms of an effective bulk viscosify{L4]. We hence study this ous approaches to bulk viscous cosmology can be found in
important phenomenon separately. the companion papg¢21].
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In a highly nonlinear situation, in whiclp might be a The GENERIC framework provides a more structured set
complicated function of, s, and z=3F?, the GENERIC of dissipative transport equations for the sources of gravita-
structure implies certain Maxwell-type relationships betweertional fields. The corresponding structure can be established
the appropriate derivatives of T, and ¢ with respect to the without changing Einstein’s famous field equation, however,
independent variabldsf. Egs.(33), (35), and(36)]. All the  the previous generalized hydrodynamic equations need to be
material information required to obtain a closed set of equamodified. The consequences of this modification of the full
tions can consistently be condensed into the assumed funtieory of gravitation remain to be explored in more detail.
tional form of p (instead of assuming several “independent” As a starting point, we have derived the explicit equations

equations of staje for an isotropic, spatially homogeneous model of the uni-
verse with bulk viscositysee alsd21]).
V. SUMMARY AND DISCUSSION Within the thermodynamic framework, all the time-

evolution equations for a self-gravitating imperfect fluid are

We have proposed and applied a covariant version of thgompletely determined once the following properties for a
GENERIC structure, which represents the most reStriCtiV%pecifiC material are detailed: the genera“zed thermody_
set of principles of nonequilibrium thermodynamics ever apmamic relationship for the mass-energy density and the relax-
plied to a general relativistic imperfect fluid. As a benefit of gtion timesry, 71, 7, in Egs.(41) and(42). All other equi-
the thermodynamic framework, the necessity of additionaliprium and nonequilibrium properties of the material can be
generalized force variables related to velocity and temperagetermined from these basic inputs. The formulation of non-
ture gradients, which are known to be essential for a stablgquilibrium thermodynamics in terms of the building blocks
and causal theory, is here motivated by the structure of thehas the same great advantages as the use of thermodynamic
modynamically admissible equations rather than by the bepotentials in equilibrium thermodynamics: in an experimen-
havior of their solutions. tal or kinetic theory investigation of the system, one knows

As an application of the covariant GENERIC formalism, || the redundancies in the various material properties, and
we have developed a set of generally covariant equations fgne can focus on the determination of the minimum required
a self-gravitating imperfect fluid—the generalized hydrody-independent propertiegouilding blocks. Actually, the ex-
namic equationg27), (38), (39), (41), (42) together with  perimental procedure or kinetic theory calculatiof29]

Einstein’s field equatioli21) and the energy-momentum ten- could be tailored to the structure of the equations proposed
sor expression23). The various material functionfEgs.  here.

(14)—(16), (28)] occurring in the energy-momentum tensor

(23) can be expressed as derivatives of the single generalized

the_rmodynami_c rellatio.nship for the mass-energy density. ACKNOWLEDGMENTS

This observation impliedand actually expressesa pro-
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