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Thermodynamically admissible equations for causal dissipative cosmology, galaxy formation,
and transport processes in a gravitational collapse

Hans Christian O¨ ttinger
ETH Zürich, Department of Materials, Institute of Polymers, and Swiss F.I.T. Rheocenter, CH-8092 Zu¨rich, Switzerland

~Received 12 February 1999; published 21 October 1999!

We formulate a set of equations for a self-gravitating imperfect fluid that satisfies all the principles of both
general relativity and nonequilibrium thermodynamics, where the latter are condensed in the covariant version
of the recently proposed general equation for the nonequilibrium reversible-irreversible coupling~GENERIC!.
In doing so, Einstein’s field equation is supplemented by fundamental and clearly structured transport equa-
tions for the sources of gravitational fields. The GENERIC framework determines the selection of the appro-
priate variables and the structure of the field equations compatible with the fundamental laws of thermody-
namics. A nonzero cosmological constant cannot be ruled out by thermodynamic consistency criteria. In order
to discuss the relationship to previous approaches, the simplified equations for bulk viscous cosmology are
presented in some detail.@S0556-2821~99!06322-5#

PACS number~s!: 98.80.Hw, 04.20.Cv, 04.40.Nr, 05.70.Ln
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I. INTRODUCTION

‘‘The correct treatment of dissipative effects for relativi
tic fluids raises certain delicate questions of principle, wh
do not arise in the nonrelativistic case. For this reason,
also because dissipation plays an increasingly important
in theories of the early universe, it will be worth our whi
here to develop the outlines of the general theory of rela
istic imperfect fluids.’’~Weinberg@1#, p. 53.!

How can we guarantee that such a general theory of
sipative or imperfect relativistic fluids is consistent with a
the principles of nonequilibrium thermodynamics? This
the question we want to address in the present paper in
light of the recently developed general equation for the n
equilibrium reversible-irreversible coupling~GENERIC! of
nonequilibrium thermodynamics.

In the usual procedure, the thermodynamic admissibi
of relativistic hydrodynamics is implemented by formulatin
an entropy balance equation and simply verifying that
source term therein is always non-negative. As the class
theories obtained in this way by Eckart@2# and by Landau
and Lifshitz@3# have problems concerning causality and s
bility @4,5#, most current analyses of dissipative phenome
are based on the causal second-order theory of Israel
Stewart@6–8# or on extended irreversible thermodynami
@9#. More far-reaching principles of nonequilibrium therm
dynamics have recently been condensed in the GENE
structure@10,11#. The purpose of this paper is to develop
set of equations for imperfect fluids which are in accorda
with both the principles of general relativity and that ve
restrictive new framework of nonequilibrium thermodynam
ics.

The general relativistic hydrodynamic equations propo
in this paper are expected to be relevant to describing
expansion of the universe, the formation of galaxies, and
gravitational collapse of stars into neutron stars whene
one needs to go beyond the frequently used model of a
0556-2821/99/60~10!/103507~9!/$15.00 60 1035
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fect fluid ~see, e.g., the standard textbooks@1,12#, the recent
references@13–20#, and references therein!. For example, the
beginnings of galaxy formation can be studied by looking
perturbations of a spherically symmetric and homogene
universe filled with an imperfect fluid~see Sec. 15.10 of@1#!;
clearly, the structure of the hydrodynamic equations stron
affects the stability of small perturbations. In any attempt
understand the high entropy of the present universe
needs to incorporate a dissipative mechanism into the e
tions for the expansion of the universe; within the spherica
symmetric and homogeneous standard model of the univ
one can only introduce bulk or dilatational viscosity effec
~see Sec. 15.11 of@1#!, while other dissipative mechanism
can only be introduced in more detailed, less symmetric
scriptions of the universe. For such cosmological and as
physical applications it obviously is of crucial importance
have a set of hydrodynamic equations for a self-gravitat
fluid that is consistent with all the established principles
nonequilibrium thermodynamics.

In cosmological and astrophysical applications, Einstei
fundamental equation for the gravitational field needs to
supplemented by rather ambiguous transport equations
mass, momentum, and energy.~See, e.g., the Introduction o
@13#: ‘‘In the absence of any well founded theory of no
equilibrium thermodynamics at very high energies or
from equilibrium, the best current option appears to be
apply standard relativistic non-equilibrium thermodynam
in and beyond its own range. This option is not as straig
forward as it may sound, since there are difficulties a
subtleties involved in standard relativistic thermodynamics
Or see the Introduction of@19#: ‘‘Moreover it is indispens-
able to calculate the bulk and shear viscous pressure.
luckily the solution of the Einstein equations does not p
vide any information about it. This is why a set of transpo
equations must be adopted.’’! In this paper, a covariant ver
sion of the GENERIC structure is first proposed and th
used for constructing unambiguous, clearly structured tra
port equations for self-gravitating fluids, deeply rooted
©1999 The American Physical Society07-1



fo
th
s

ou

o
el
e-
c
m

n
io
on
,

ar
n
e
ry
re
ar
of
el
a-

h
ad
fu
h
b

ing
rs
riv
e

s-
os

u
la
ex

u
b

n
u-
ced

e
va-
n-
wn

pa-
ics,
his

ms
e-

of

m
ator
,
l-
ns

on-
ng
fter
ut

le,
s,
ure
b-

e
h
um
en
ua-
er-

the

the
-
dy-
gy-
ese
ile

HANS CHRISTIAN ÖTTINGER PHYSICAL REVIEW D60 103507
nonequilibrium thermodynamics. Finally, the equations
bulk viscous cosmology are considered in some detail. In
companion paper@21#, the predictions of the new equation
for bulk viscous cosmology are compared to those of vari
previous theories.

II. COVARIANT GENERIC

In a recent series of papers, a general formalism for n
relativistic nonequilibrium systems, GENERIC, was dev
oped by considering the compatibility of two levels of d
scription @10#, by studying a large number of specifi
examples@11#, and by a projection-operator derivation fro
Hamilton’s equations of motion@22#. Although the core part
of the GENERIC formalism is an explicit time-evolutio
equation, it was shown to contain a set of covariant equat
for relativistic hydrodynamics as a special realizati
@23,24#. In formulating a relativistic hydrodynamic theory
one is forced to introduce additional generalized force v
ables ~related to velocity and temperature gradients a
hence eventually also to the fluxes of momentum and
ergy!, which are known to be essential for a causal theo
Moreover, the structure of the transport equations is seve
restricted by the combination of the rather complement
principles of relativity and GENERIC. The previous set
hydrodynamic equations could be generalized to s
gravitating imperfect fluids by replacing all partial deriv
tives by covariant derivatives~minimal coupling!. One can
even verify that the system of equations obtained by suc
replacement and by including Einstein’s equation for the
ditional gravitational field variables possesses the
GENERIC structure, as we have checked explicitly for t
original noncovariant formalism. However, in order to esta
lish confidence in the GENERIC formalism and the result
equations for a self-gravitating imperfect fluid, we here fi
propose a covariant version of the formalism and then de
a much wider class of hydrodynamic equations obtain
within the covariant formalism.

In the original formulation of GENERIC, equivalent Poi
son operator and bracket representations have been prop
Inspired by the work of Marsdenet al. @25# for reversible
relativistic field theories, we here propose a covariant form
lation of the GENERIC idea based on the bracket formu
tion. In the proposed formalism, the field equations are
pressed in the form

$A,I %5@A,J#, ~1!

whereI is an action integral,J is the integral of the entropy
density over space and time, andA is an arbitrary functional
of the fields.$A,B% is a Poisson bracket, and@A,B# is a
Ginzburg-Landau or dissipative bracket with@A,B#5@B,A#
for arbitrary functionalsA, B, and@A,A#>0 for all A. The
two contributions to the field equations generated byI andJ
in Eq. ~1! are called the reversible and irreversible contrib
tions, respectively. In the reversible situation considered
Marsdenet al. @25#, the right-hand side of Eq.~1! is zero.
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While Eq. ~1! replaces the fundamental time-evolutio
equation of the noncovariant GENERIC formalism, the m
tual degeneracy requirements of that formalism are repla
by

$A,J%50 ~2!

and

@A,I #50, ~3!

where, again,A is an arbitrary functional of the fields. Thes
requirements, which are strong formulations of the conser
tion of entropy by the reversible dynamics and of the co
servation of energy by the irreversible dynamics, are kno
to be important parts of the GENERIC framework.

The covariant formulation~1!–~3! retains the key innova-
tion in the GENERIC structure, that is, the use of two se
rate generators for the reversible and irreversible dynam
together with the symmetric degeneracy requirements. T
innovation is of crucial importance when treating syste
without local equilibrium states, for example, systems d
scribed by Boltzmann’s kinetic equation@26#. The example
of Boltzmann’s equation furthermore shows that, in spite
the linear appearance of Eqs.~1!–~3!, the formalism is not
limited to the linear response regime. While nonequilibriu
dynamics is usually expressed in terms of a single gener
~the effective Hamiltonian@27#!, the two-generator idea
which leaves more flexibility in the choice of variables, a
lows us to formulate the mutual degeneracy conditio
@10,11#.

As a next step, we use the proposed formalism for c
structing generally covariant equations for self-gravitati
imperfect fluids. We first select the state variables and, a
determining the building blocks of GENERIC, we write o
all the field equations.

III. GENERALLY RELATIVISTIC HYDRODYNAMICS

Before presenting the thermodynamically admissib
generally covariant equations for relativistic imperfect fluid
some introductory remarks comparing the general proced
within the new thermodynamic framework and in the esta
lished theory of Israel and Stewart are in order~as outlined in
@24# and @8#, respectively!. In the Israel-Stewart theory, th
basic~thermodynamic flux! variables are introduced throug
a straightforward decomposition of the energy-moment
tensor; a quadratic expansion in the flux variables is th
postulated for the entropy current vector, and evolution eq
tions for the flux variables are chosen such that the div
gence of the entropy current is non-negative~there is a num-
ber of possibilities of formulating such equations; see
note added in proof in@8#!. Within the GENERIC frame-
work, the choice of the basic~thermodynamic force! vari-
ables is strongly restricted by the Poissonian structure of
reversible dynamics~in particular, by the Jacobi identity ex
pressing the time-structure invariance of the reversible
namics!. Furthermore, the dependence of the ener
momentum tensor and of the entropy current vector on th
variables is determined by the GENERIC structure. Wh
7-2
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THERMODYNAMICALLY ADMISSIBLE EQUATIONS FOR . . . PHYSICAL REVIEW D 60 103507
the second law of thermodynamics is crucial for formulati
the Israel-Stewart equations, in the general approach to
equilibrium thermodynamics it basically leads to stabil
conditions for the thermodynamic potential expressing
internal energy as a nontrivial function of the thermod
namic variables. The quadratic expression for the entr
current in the Israel-Stewart theory, for which there is
counterpart in the new thermodynamic approach, can be
garded as the result of an expansion around equilibrium;
is a severe restriction which is not shared by the approac
this paper. As a consequence of all these differences,
structure of the resulting equations is considerably differ
in general nonequilibrium situations, but coincides for t
linearized equations@23,24#. ~Note that only the linearized
equations are relevant to the discussion of stability and c
sality @8#.! In the companion paper, the solutions of the n
equations are compared to those of previously propo
equations in the context of bulk viscous cosmology@21#.

A. State variables

Before applying GENERIC, we first need to specify t
list of state variables for our thermodynamic system of int
est, that is, for a self-gravitating imperfect fluid. Througho
this paper, following Eckart’s approach, the velocity fou
vectorum is taken to be the velocity of particle transport. A
the basic hydrodynamic variables we use the particle num
density per unit rest volume,n, the entropy density per uni
rest volume,s, and the momentum-density four-vector,Mm
(m50,1,2,3).

We next need to introduce a four-vectorwm closely re-
lated to the temperature gradient and a symmetric ten
variableCmn closely related to the velocity gradient tensor
order to render a thermodynamically admissible theory p
sible @23,24#. These additional variables are required
GENERIC, and they are crucial for the causality of t
theory. For completeness, we here repeat some argum
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used for introducing these additional variables for the
ample of the four-vectorwm , which will turn out to describe
an entropy-flux contribution that is not proportional to th
velocity four-vector~further details can be found in@23,24#!.
The nonrelativistic description of dissipative phenome
such as heat flow, typically involves second-order space
rivatives, but only first-order time derivatives. For examp
the energy equation involves the divergence of the heat fl
which is itself proportional to the gradient of temperatu
The standard procedure for avoiding such unmatched hig
order space derivatives is to introduce additional variab
which are closely related to these space derivatives. For
ample, we introduce a simple dissipative relaxation mec
nism by which an additional vector variable rapidly co
verges to the temperature gradient, while the divergenc
this variable occurs in the reversible contribution to the e
ergy or entropy balance equation. If the new variable is s
posed to play the role of temperature gradients, it needs t
a covariant vector variable of intensive nature.

In addition to the hydrodynamic fieldsn, Mm , s, wm ,
andCmn , we use the components of the contravariant sy
metric tensor representing the dual metric,gmn, and the
Christoffel symbolsGmn

l as state variables. As usual,gmn is
used for raising indices, while its inverse, the metric ten
gmn , is used for lowering indices. The signature of t
space-time metricgmn is (2111), and g is the absolute
value of the determinant ofgmn . Semicolons~;! denote co-
variant derivatives compatible with the metricgmn , and Ein-
stein’s summation convention is used.

B. Reversible contribution

As a first step, we generalize the Poisson bracket
action integral proposed by Marsdenet al. @25# by including
the variableswm and Cmn @28#. We use the following
bracket:
$A,B%5E Ag nS dB

dMm
]m

dA

dn
2

dA

dMm
]m

dB

dn Dd4x1E Ag MnS dB

dMm
]m

dA

dM n
2

dA

dMm
]m

dB

dM n
Dd4x

1E Ag sS dB

dMm
]m

dA

ds
2

dA

dMm
]m

dB

ds Dd4x1E VlS dA

dgmn

dB

dGmn
l

2
dB

dgmn

dA

dGmn
l D d4x

1E Ag ~]lwm!S dA

dMl

dB

dwm
2

dB

dMl

dA

dwm
Dd4x1E Ag wmS dB

dwl
]l

dA

dMm
2

dA

dwl
]l

dB

dMm
Dd4x

1E AgS dB

dwm
]m

dA

ds
2

dA

dwm
]m

dB

ds Dd4x1E Ag ~]lCmn!S dA

dMl

dB

dCmn
2

dB

dMl

dA

dCmn
Dd4x

1E Ag CmnS dB

dCml
]l

dA

dM n
2

dA

dCml
]l

dB

dM n
Dd4x1E Ag CmnS dB

dCln
]l

dA

dMm
2

dA

dCln
]l

dB

dMm
Dd4x. ~4!
7-3
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HANS CHRISTIAN ÖTTINGER PHYSICAL REVIEW D60 103507
The symbols]m denote partial derivatives with respect to t
coordinates, which could equivalently be replaced by co
riant derivatives in the proposed bracket expression.
functional derivatives in Eq.~4! are defined as scalars, ve
tors or tensors, not as densities; for example,

d

dl U
l50

A~n1ldn!5E dn
dA

dn
Ag d4x. ~5!

The only exception is made in order to keep the Christo
symbols as convenient state variables,

d

dl U
l50

A~n1ldG!5E dGmn
l

dA

dGmn
l

d4x. ~6!

The first three integrals in the Poisson bracket~4! repre-
sent the convection mechanism for the standard hydro
namic fields. The fourth contribution involves only the va
ables of the gravitational field,gmn andGmn

l , and an arbitrary
vector fieldVl; the occurrence ofVl is related to the free-
dom of arbitrary coordinate transformations in fou
dimensional space. Two further integrals express the con
tion mechanism for the covariant four-vector fieldwm , and a
further contribution, involvingwm ands, establishes the re
lation betweenwm and the temperature gradients@23,24#.
This coupling ofwm and s is the only non-standard contr
bution in the bracket~4!; it implies thatwm has the dimen-
sions of temperature~this differs by a factor of the speed o
light, c, compared to previous work@23,24#!. The last three
integrals express the convection mechanism for the cova
four-tensor fieldCmn .

The action of Marsdenet al. @25#,

I 5E AgS c4

16pG
gmnRmn2

1

2
gmn

MmM n

U
1VDd4x, ~7!

is modified only by letting the functionsU andV depend not
only on the scalar quantitiesn ands, but also on the further
scalar variablesy5y(wm ,Cmn ,gmn) and z5z(Cmn ,gmn)
(gmn needs to be considered in addition to the thermo
namic force variableswm andCmn in order to make the for-
mation of scalars possible!. For example, one could use e
pressions of the form

y5a1
y wmgmnwn1a2

y wmgmnCnlglkwk1 . . . , ~8!

z5a0
z1a1

z gmnCnm1a2
z gmnCnlglkCkm1 . . . , ~9!

where the quantitiesai
y andai

z are constant coefficients. Ifa1
y

is nonzero, then we assume that the normalization is s
that a1

y51. In Eq.~7!, G is Newton’s gravitational constan
and the Ricci tensor

Rmn5]lGmn
l 2]nGml

l 1Gkl
l Gmn

k 2Gkn
l Gml

k ~10!

depends on the Christoffel symbols alone.
For later convenience, we introduce the velocity fou

vector as
10350
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dI

dMm
5

Mm

U
, ~11!

which implies the constraint

gmnMmM n52U2. ~12!

This constraint is to be imposedafter all the functional de-
rivatives are taken. The final continuity equation for the p
ticle current@see Eq.~38! below# will show that this defini-
tion of the velocity four-vectorum is indeed consistent with
the approach of Eckart adopted in this paper.

In calculating further functional derivatives ofI, it is con-
venient to introduce the quantities

p5
1

2
U1V , q5

1

2
U2V, ~13!

to be interpreted below, and the derivatives

T5
]q

]s
, ~14!

s52
]q

]y
, ~15!

f54
]q

]z
. ~16!

As the functionsU andV, the transformed functionsp andq
depend onn, s, y, andz. In the following, the derivativesT,
s, andf are required to be non-negative.

C. Irreversible contribution

In constructing the dissipative bracket we make a qu
general ansatz which includes our previous work on spe
relativistic hydrodynamics@23,24#. Only the entropy density
s, and the new variables,wm and Cmn , are assumed to be
involved in the dissipative brackets. The following expre
sion is obviously symmetric and covariant:

@A,B#5E AgS w̃m
dA

ds
2

dA

dwm
D f mnS w̃n

dB

ds
2

dB

dwn
Dd4x

1E AgS C̃mn
dA

ds
2

dA

dCmn
D ~ f̄ mn f̄ kl1 f°mk f°ln!

3S C̃kl
dB

ds
2

dB

dCkl
Dd4x, ~17!

where f̄ mn is arbitrary andf mn , f°mn are assumed to be pos
tive semidefinite and symmetric. The remaining unknowns
Eq. ~17! are determined by the degeneracy requirement~3!,

w̃m5
s

2T

]y

]wm
, ~18!
7-4
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C̃mn5
s

2T

]y

]Cmn
1

f

4T

]z

]Cmn
. ~19!

As the entropy density is among the state variables,
can immediately write the entropy integralJ as

J5E sAg d4x. ~20!

While s is the entropy density per unit three space, the in
gration is not only over three space but also over time. T
degeneracy requirement~2! is trivially fulfilled.

D. Field equations

After defining the brackets and the integralsI andJ in the
preceding subsections, we can now write out all the exp
field equations. If we apply the fundamental equation~1! to
an arbitrary functionalA5A(G), we obtain the condition
dI /dgmn50, which implies Einstein’s field equation

Gmn5
8pG

c4
Tmn , ~21!

where the Einstein tensor

Gmn5Rmn2
1

2
gmn R , R5gmnRmn , ~22!

is expressed in terms of the Ricci tensor and the curva
scalar. For the energy-momentum tensorTmn we find

Tmn5qumun1phmn1Pmn , ~23!

with

hmn5gmn1umun ~24!

and

Pmn5s
]y

]gmn
1

1

2
f

]z

]gmn
. ~25!

Equation~23! allows us to identifyp as the pressure and

r5q1umPmnun ~26!

as the fluid mass-energy per unit rest three volume.
After obtaining an explicit expression for the energ

momentum tensor in Einstein’s field equation, it is intere
ing to consider the equation for the momentum-density fo
vector, as obtained by choosingA5A(M ). Equation ~1!
implies

Tmn
;m50, ~27!

provided that the following condition holds:

p5n
]q

]n
1s

]q

]s
2q. ~28!
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The proper choice of the pressure according to Eq.~28!
hence guarantees the consistency of the field equation~21!
with the Bianchi identities, which can be derived once t
expression for the Einstein tensor in terms of the Christo
symbols @see Eqs.~10! and ~22!# is related to the metric
tensor@see Eq.~37!#. In order to rewrite Eq.~28! in a more
familiar form, we introduce the quantities

sf5s1
1

T
umPmnun ~29!

and

yf5y1
1

s
umPmnun; ~30!

sf is the conventional local-equilibrium entropy densi
which, in the presence of the thermodynamic force varia
wm , can be different from the total entropy densitys.

If we consider the total differential ofr5r(n,sf ,yf ,z) of
Eq. ~26! and impose the constraints

wnun52T ~31!

and

Cmn un50, ~32!

then we obtain

T5
]r

]sf
, ~33!

s52
]r

]yf
, ~34!

f54
]r

]z
. ~35!

These identities allow us to identify the variableT as the
absolute temperature~defined for constant intensive var
ablesyf andz), and to rewrite Eq.~28! in the form

p5n
]r

]n
1sf

]r

]sf
2r. ~36!

Equation ~36! has the form of the familiar Gibbs-Duhem
relation betweenp andr. Note, however, that the functionsp
andr in Eq. ~36! depend not only onn andsf but also onyf
andz.

We can now list the remaining equations implied by t
covariant GENERIC~1!. ChoosingA5A(g) in Eq. ~1! im-
plies dI /dGmn

l 50, which can be rewritten as the anticipate
expression for the Christoffel symbols,

Gmn
l 5

1

2
glk@]mgkn1]ngmk2]kgmn#. ~37!

By choosingA5A(n) andA5A(s), we obtain the continu-
ity equation
7-5
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~num! ;m50 ~38!

and the entropy balance equation

Sm
;m5w̃m f mnw̃n1C̃mn~ f̄ mn f̄ kl1 f°mk f°ln!C̃kl, ~39!

where

Sm5sum1Tw̃m ~40!

is the total entropy four-vector. Equation~38! justifies the
definition ~11! of um according to Eckart’s approach. Equ
tion ~40! clarifies the physical role ofwm in accounting for
an entropy flux not proportional to the velocity four-vecto

Finally, choosingA5A(w) andA5A(C) in Eq. ~1! gives
the relaxation equations

ul~wm;l2wl;m!52 f ml w̃l ~41!

and

ul~Cmn;l2Cln;m2Cml;n!52 f̄ mn f̄ klC̃kl2 f°mkC̃kl f°ln .

~42!

At this point, we have derived the complete set of equati
@Einstein’s field equation~21!, ~37! and the new hydrody-
namic equations~27!, ~38!, ~39!, ~41!, ~42!# from the cova-
riant GENERIC formalism. If we assumeum f mn5um f̄ mn

5um f°mn50, then the constraints~12!, ~31! and ~32! are
compatible with the field equations@24#.

E. Special case

The previous work on hydrodynamic equations satisfy
the principles of special relativity and GENERIC@23,24#
corresponds to the particular choices

y5wmgmnwn , ~43!

z5gmngklCmkCnl12gmnCmn13. ~44!

We then find the energy-momentum tensor contribution

Pmn5swmwn1f~CmlCl
n1Cmn! ~45!

and the entropy four-vector

Sm5sum1swm5sfu
m1shmnwn . ~46!

The previously introduced relaxation processes forwm
andCmn are recovered for

f mn5
T

ct1s
hmn , ~47!

f°mn5A 2T

ct2f
hmn , ~48!

and
10350
s

g

f̄ mn5A 2T

3cf S 1

t0
2

1

t2
D hmn , ~49!

where the relaxation timest0 , t1, and t2 representing the
dynamical material properties are assumed to be posit
The resulting equations

ul~wm;l2wl;m!52
1

ct1
hml wl ~50!

and

ul~Cmn;l2Cln;m2Cml;n!52
1

ct0
C̄mn2

1

ct2
C° mn ,

~51!

with the auxiliary tensors

C̄mn5S 11
1

3
CklhklDhmn , ~52!

C° mn5hmkCklhln2
1

3
Cklhkl hmn , ~53!

can also be reproduced with the alternative dissipa
bracket

@A,B#5E Ag
1

ct1

s

T S wm
dA

ds
2

T

s

dA

dwm
DhmnS wn

dB

ds

2
T

s

dB

dwn
Dd4x1E Ag

1

ct0

r 0

T S dA

ds
2

T

r 0
C̄mn

dA

dCmn
D

3S dB

ds
2

T

r 0
C̄kl

dB

dCkl
Dd4x1E Ag

1

ct2

r 2

T

3S dA

ds
2

T

r 2
C° mn

dA

dCmn
D S dB

ds
2

T

r 2
C° kl

dB

dCkl
Dd4x,

~54!

where

r 05
1

2
f C̄mnC̄mn ~55!

and

r 25
1

2
f C° mnC° mn. ~56!

For small relaxation timest i , the solutions to Eqs.~50!
and~51! can be expanded in terms oft i , thus eliminating the
thermodynamic forceswm andCmn as dynamic variables. To
first order we obtain the explicit expressions

wm5Tum2ct1hm
n T;n2ct1Tum;nun ~57!

and
7-6
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Cmn52hmn1
2

3
c~t02t2!ul

;lhmn

1ct2hmk@uk;l1ul;k#hln . ~58!

These expressions clarify the role of the variableswm and
Cmn as the thermodynamic forces related to temperature
velocity gradients. For example, if the expression~57! is
inserted into the entropy four-vector~46!, we find the ex-
pected contribution to the entropy flux due to temperat
gradients. More precisely, the expressions~57! and ~58! can
be rewritten in terms of the heat-flow vectorQm and the
shear tensorWmn introduced by Weinberg~see Secs. 2.11
and 15.10 of@1#!,

wm5Tum2ct1hmnQn ~59!

and

Cmn52hmn1
2

3
ct0ul

;lhmn1ct2hmkWklhln . ~60!

To first order int i , the resulting energy-momentum tens
and entropy four-vector coincide with the expressions giv
by Weinberg, and we can identify the heat conduction co
ficient t1sT/c2, the shear viscosityt2f, and the bulk vis-
cosity 2t0f/3.

F. Cosmological constant

Although there is no interest in the static Einstein u
verse as a realistic cosmological model, ‘‘the existence o
cosmological constant remains a logical possibility, and c
mologists have thoroughly explored the dynamics of expa
ing universes with a cosmological constant’’~Weinberg@1#,
p. 614!. In view of the recently revived interest in this po
sibility, we mention that Einstein’s modified field equation

Gmn1Lgmn5
8pG

c4
Tmn ~61!

with the cosmological constantL possesses the fu
GENERIC structure.

For a reversible realization of the cosmological term,
need to modify the action properly. In fact, we only need
add the contribution2*AgLc4/(8pG)d4x to the action~7!
in order to reproduce the field equation~61!. A reversible
cosmological term hence fits very naturally into the gene
thermodynamic framework.

IV. BULK VISCOUS COSMOLOGY

Bulk viscosity is a particularly interesting dissipative e
fect because it can occur in an isotropic, spatially homo
neous universe. While the bulk viscosity vanishes for a fl
with a purely relativistic equation of state, it may be impo
tant for mixtures of radiation and matter. Also, particle pr
duction processes may be phenomenologically describe
terms of an effective bulk viscosity@14#. We hence study this
important phenomenon separately.
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In an isotropically expanding universe,Cmn must be of
the form

Cmn5~F21!hmn , ~62!

and Eq.~51! implies the following time-evolution equation
for F,

Ḟ5cul]lF5
2

3
~12F ! c um

;m2
1

t0
F. ~63!

To the lowest order in the time scalet0, we hence obtain the
following physical interpretation ofF as the ratio of the time
scales for the relaxation of the bulk viscous stresses and
the expansion of the universe:

F5
2

3
t0 c um

;m . ~64!

More generally, the dimensionless expansion rateF may be
regarded as the thermodynamic force variable associ
with bulk viscous stresses.

We can rewrite Eq.~63! as

f~F1t0Ḟ !5j ~12F ! c um
;m , ~65!

where the bulk or dilatational viscosityj52t0f/3 has been
introduced~see@24#!. The mass-energy density

r5r~n,s,z! ~66!

can alternatively be expressed in terms ofn, s, and

F25
1

3
z. ~67!

Furthermore, we can rewrite the entropy balance equa
~39! as

Sm
;m5

~fF !2

c jT
~68!

and the energy-momentum tensor~23! as

Tmn5rumun1@p2fF~12F !# hmn . ~69!

For the lowest-order approximation in the small quant
F, Eq. ~65! for the bulk viscous pressure contributio
2fF, agrees with the often assumed Maxwell-Cattaneo t
equation~cf. the ‘‘truncated’’ equations of@13–16,18,19#!.
Beyond that approximation, however, the usual equati
based on the second-order theory of Israel and Stewart o
extended irreversible thermodynamics differ from t
present equation~65!, which is not directly for the bulk vis-
cous pressure but for the related generalized thermodyna
force F. While the usual equations are often truncated
reasons of tractability, the full time-evolution equation~65!
is of a relatively simple form. A detailed comparison of va
ous approaches to bulk viscous cosmology can be foun
the companion paper@21#.
7-7
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In a highly nonlinear situation, in whichr might be a
complicated function ofn, s, and z53F2, the GENERIC
structure implies certain Maxwell-type relationships betwe
the appropriate derivatives ofp, T, andf with respect to the
independent variables@cf. Eqs.~33!, ~35!, and~36!#. All the
material information required to obtain a closed set of eq
tions can consistently be condensed into the assumed f
tional form ofr ~instead of assuming several ‘‘independen
equations of state!.

V. SUMMARY AND DISCUSSION

We have proposed and applied a covariant version of
GENERIC structure, which represents the most restric
set of principles of nonequilibrium thermodynamics ever a
plied to a general relativistic imperfect fluid. As a benefit
the thermodynamic framework, the necessity of additio
generalized force variables related to velocity and temp
ture gradients, which are known to be essential for a sta
and causal theory, is here motivated by the structure of t
modynamically admissible equations rather than by the
havior of their solutions.

As an application of the covariant GENERIC formalism
we have developed a set of generally covariant equations
a self-gravitating imperfect fluid—the generalized hydrod
namic equations~27!, ~38!, ~39!, ~41!, ~42! together with
Einstein’s field equation~21! and the energy-momentum ten
sor expression~23!. The various material functions@Eqs.
~14!–~16!, ~28!# occurring in the energy-momentum tens
~23! can be expressed as derivatives of the single genera
thermodynamic relationship for the mass-energy dens
This observation implies~and actually expresses! a pro-
nounced underlying structure and hence predictive powe
the proposed equations.
-

f
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The GENERIC framework provides a more structured
of dissipative transport equations for the sources of grav
tional fields. The corresponding structure can be establis
without changing Einstein’s famous field equation, howev
the previous generalized hydrodynamic equations need t
modified. The consequences of this modification of the f
theory of gravitation remain to be explored in more deta
As a starting point, we have derived the explicit equatio
for an isotropic, spatially homogeneous model of the u
verse with bulk viscosity~see also@21#!.

Within the thermodynamic framework, all the time
evolution equations for a self-gravitating imperfect fluid a
completely determined once the following properties for
specific material are detailed: the generalized thermo
namic relationship for the mass-energy density and the re
ation timest0 , t1 , t2 in Eqs.~41! and~42!. All other equi-
librium and nonequilibrium properties of the material can
determined from these basic inputs. The formulation of n
equilibrium thermodynamics in terms of the building bloc
has the same great advantages as the use of thermodyn
potentials in equilibrium thermodynamics: in an experime
tal or kinetic theory investigation of the system, one kno
all the redundancies in the various material properties,
one can focus on the determination of the minimum requi
independent properties~building blocks!. Actually, the ex-
perimental procedure or kinetic theory calculations@29#
could be tailored to the structure of the equations propo
here.
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