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Residual velocity dispersion in cold dark matter induces stresses which lead to effects that are absent in the
idealized dust model. A previous Newtonian analysis showed how this approach can provide a theoretical
foundation for the phenomenological adhesion model. We develop a relativistic kinetic theory generalization
which also incorporates the anisotropic velocity dispersion that will typically be present. In addition to density
perturbations, we consider the rotational and shape distortion properties of clustering. These quantities together
characterize the linear development of density inhomogeneity and we find exact solutions for their evolution.
As expected, the corrections are small and arise only in the decaying modes, but their effect is interesting. One
of the modes for density perturbations decays less rapidly than the standard decaying mode. The new rotational
mode generates precession of the axis of rotation. The new shape modes produce additional distortion that
persists during the subsequélibear evolution, despite the rapid decay of the terms that caused it.
[S0556-282(99)02220-1

PACS numbd(s): 98.80.Cq, 98.70.Vc, 98.80.Hw

[. INTRODUCTION permit and could be used to connect studies of large scale
structures with those of smaller ones. This aspect remains to
The cold dark mattefCDM) model has had considerable be investigated.
success, based on using adiabatic perturbations of pressure-A well known problem with the Vlasov hierarchy of mo-
free dust on a Friedmann-Robertson-WalkERW) back- ment equations is that it is infinifel], and some additional
ground to study the growth of structure in the matter distri-information has to be provided. Without collisions, there is
bution. The model is simple and the solutions are easy t&" general no mechanism for eliminating the quadrupole and
interpret(see, e.g.[1]). The idealized dust assumption, i.e., higher moments. The simplest approach is to truncate above
exactly zero velocity dispersion, breaks down when densitghe dipole and use a dust model, but this has no velocity
fluctuations begin to go nonlinear; caustics and infinite dendispersion. A physically reasonable model is obtainefBin
sity layers form through shell crossing, precisely becaus®y assuming small velocity dispersion, leading to truncation
velocity dispersion is forced to vanish. Theoretical modifica-2bove the quadrupole. This closes the hierarchy and allows
tions to complement the extensive numerical simulations animited velocity dispersion.
deal with the multi-stream flow problem are few in number. In this paper, we develop a relativistic generalization of
One of the most successful is the adhesion m2ElThis their approach, based on the Einstein-Liouville equations.
model has relied on a phenomenological justification rathefne limitation of their model is that they assume the velocity
than a theoretical derivation. Recently Buchert anddispersion is isotropic, so that the strépsessurgis purely
Dominguez[3] developed theoretical models which contain iSotropic. Our generalization eliminates the isotropy assump-
the adhesion one as a special case. Furthermore, their modé@n, allowing for anisotropic stressWe are able to find
do not have the problem of the possible non-conservation of€lf-consistenti.e., based on kinetic theory, rather thad
momentum which occurs in the adhesion model. hoc phenomenology evolution equations for the isotropic
In a Newtonian framework, with Comoving coordinates and aniSOtl’OpiC stresses. Furthermore, we use a covariant
on an expanding background, they use the Poisson-Vlasd§auge-invariant approa¢h,7] to describe not only the mag-
equations to obtain consistent models of a self-gravitatindtitude of density inhomogeneities, i.e., the density perturba-
collisionless gas. The models are designed to allow for a
small amount of velocity dispersion in the gas. The outcome
of their approximation scheme is a system of equations thatirecently Hu and Eisensteif] have investigated anisotropic
includes an effective viscosity term which is more generaktress effects in general, by postulating phenomenological param-
than the adhesion term, but which can be specialized to ittrizations of stress evolution. Our model is of more limited appli-
They point out that the inclusion of the velocity dispersion cability, but is self-consistent, since the stress evolution is governed
allows access to smaller spatial scales than previous modeby the kinetic-theory Liouville equation.
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tions, but also their rotational and shape distortion properties. d®\  N2dhdQ
This leads to a unified system of equations governing the " T=>\dEdﬂ,
linear evolution of density inhomogeneity in a physically

realistic model of dark matter. We find the exact solutions ofyhere d) is the solid angle spanned by two independent

these equations for a flat backgroufie., cgm=1). These  ge2 The distribution functiorf (x,E,e?) can be expanded in
solutions are relevant for the study of dark matter halo foryensor multipoles, ..., (x,E), i.e
l. . | 1 1 - "

mation, neglecting baryons and assuming zero cosmological
constant. _ _ f=F+F e+ F,,e%®+ F 4, e%e%e’+ - - .. )
Free-streaming effects tend to smooth density fluctua-
tions, while the energy density supported by stresses camhis is the covariant generalization of the spherical harmonic
enhance them. The exact solution shows that the growingxpansionf==f,,,Y,,. The covariant multipoles are irre-
mode of density perturbations is unchanged, while there argucible, i.e.F,...,=F,...;,, where the angled brackets de-
two extra decaying modes, one decaying less rapidly than theote the spatially projected symmetric traceftBSTH part.
standard dust mode, and one more rapidly. Velocity disperThey are given by
sion will have a purely dissipative effect on angular momen-
tum, and this is confirmed by the exact solution of the rota- 21+ 1)!
tional equation, which shows an extra decaying mode that Fa,...a= 2 (122
decays more rapidly than the standard mode. However, this am(l1)%2
new mode has the interesting effect of changing the direction
of the axis of rotation.

f fe, €, - - €q)dQd. (3)

The energy-momentum tensor is

The main impact of velocity dispersion is on the evolution d3\
of shape-distortion in the density distribution. The stresses, Tab:J fpapb?:puaub"_ Phapt 20Uy + 7ap
though small and decaying, have a significant effect, produc- )

ing “active” distortion in addition to the inertial distortion

that arises in dust models purely from the shear anisotropywhere h,,=g,,+ u,U;, is the spatial projector. The energy

Despite being sourced by decaying terms, these distortiongensity, pressure, energy fldmomentum density and an-
remain during the subsequent evolutiamtil the nonlinear isotropic stress are given by

regime.
In Sec. Il we develop the self-consistent kinetic theory B % 5
analysis of stress in CDM. Section Ill presents the covariant p=am " E°AFdE, ®)

evolution equations for density perturbations, rotation and
shape distortion, and gives the exact solutions of these equa- Ao [
tions. Finally, concluding remarks are made in Sec. IV. We p= ?j N3FdE, (6)
follow the notation of[7,8]. The signature is €+ ++), m
units are such that8G=1=c andkg=1, spacetime indices
area,b,- - -, and(square round brackets enclosing indices _ 4_7Tf°° 2

. L . 2 Ja= ENFLdE, (7
denote(anti-) symmetrization. The spacetime metricgis,, 3
and the spacetime alternating tensor i%.pcq

=—V=098.°6," 326>

m

T _ 87 w)\3F dE 8
ab 15 m ab .

Il. KINETIC MODEL OF CDM STRESSES _ _ _ _ _ _
Higher-level dynamical anisotropy tham,, is defined via

We use the covariant Lagrangian approach to relativistighe | >3 multipoles. For example, the octopole anisotropy is
kinetic theory[9,10,8,13, in which all the variables are

physically measurable and which allows for a clear Newton- m(e_
ian interpretation. Given a 4-velocity field, we decompose §abc:gfm EN“FapdE. 9
the 4-momentunp? of a particle of massn as

The number density is given 0]

p?=Eu?+\?, (1)
. . . ) n=477f ENFdE,

whereE is the particle energy relative to comoving observ- m

ers, and
and we can derive a useful relation between the monopole

A2=\ef=my(V)v? dynamical terms(compare the similar relation found in

[11]):

is the particle 3-momentum, wite,e®=1, e?u,=0, and\ mn+3p=p—1 (10)

=mv(1—v,v?)  ¥?=(E?—m?)¥2 The covariant volume el-

ement in momentum space is where
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o m) 2 of state,” which adopts a simple form in the massless limit
M=47Tf (1_E> E*\FdE. and the limit of low velocity dispersiorisee below; but
" which is more complicated in intermediate regimes.
The energy-momentum conservation equationT
In the massless limin—0, we haveM—p, and Eq.(100 =0 follow from the Liouville (collisionless Boltzmann
reduces tq= 3 p. Equation(10) is a generalized “equation equation, and argl0]

p+(p+p)O+D,=—2A%,— 0* gy, (1D)
Q<a)+ %®qa+ (p+Pp)As+Dap+ DbTrab: - O'abqb+ 8abcwch_Abﬂ'ab . (12
|
Here D, is the spatially projected covariant derivative, i.e., p+(p+p)O=0, (14)

DaSb~--c:hadhbe’ e hchdSe-~-f )
(p+p)As+Dap+DPrryp=0. (15
an overdot is the covariant time derivative, i.Sa,,,b
=U°V.S,. .., andeap.= 7apcdl? is the spatial alternating From now on, we will consider a universe that is close to
tensor. The expansion, acceleration, vorticity and shear dfFRW, i.e., we drop altd(e?) terms. The Liouville equation

the 4-velocityu? are given by may be decomposed into multipole evolution equations that
) are PSTHS8]. The monopole, dipole and quadrupole evolu-
0=D%I,, A,=U,, w,=—3curlu,, o= D(aUp) - tion equations are
The covariant spatial curl of vectors and rank-2 tensors is _ 9F
defined by[12] EF+3AD?F,—3\%0 E-O
CUrIVa:&‘abCDbVC, CUrlSab: Scd(aDchb) . (16)
We are free to choose the 4-velocity so thatg,=0, i.e., _ OF IF
so that in the comoving frame, no energy flux is observed EF,+ Z\D°F,,— $)%0 (9Ea+)\DaF—)\E(9—EAa=O,
[10,13. In general, there will be a non-vanishing particle
drift in this frame. To maintain vanishing energy flux, the (17)
momentum conservation equati¢t?) shows that
b b EFu+ D F gpe— 5020 20 4 \D(F N2 0y =0
(ptpP)A;+Dap+D°mrp=—Amyp. (13 abt 7 abc™ 3 JE +AD¢a b) Egab_ .

Thus the evolution equatiaid 2) for g, becomes a constraint (18

equation(13) for the acceleration. Note also that in the en-
ergy frame, the dipolé&, will satisfy [EA?F,dE=0, from
Eq. (7). From now on, we assume that the energy frame i
chosen, i.eq,=0.

In a universe that is close to an FRW model, i.e. with
small inhomogeneity and anisotropy, we have {itqt4]

(Note that the vorticity does not enter the Liouville multi-
é)oles at the linear levelMultiplying Eq. (16) by EN and
integrating over all energies, and using the energy frame
condition [EXN2F ,dE=0, we derive the energy conservation
equation(14). Similarly, multiplying Eq.(17) by A2 and in-
tegrating, we arrive at the momentum conservation equation
A, w, Tap Tap aDsp aD,p aD,O (15. When integrating by parts to obtain some of these
= terms, we use the assumption that Bs»oo, Fa, g (I
=0) tends to zero more rapidly th&f for anyn<O0.
wheree is a dimensionless smallness parameter, aisithe We can derive a new evolution equation for the pressure
cosmic scale factor in the FRW backgrourith the back- ~ after multiplying the monopole equatigi6) by \3/E:
ground,®=3H, whereH is the Hubble rat¢.The higher-

6’6'@’7’ o ' p 0 O(e),

level dynamical anisotropy tensors are af36e): p+i0p=10P-1iD%Q,, (19)
gabc,. . =0(e). where
o 2
To linear order in such a universe, the conservation equa- P= 4_77 ( _ E))ﬁFdE
tions (11) and (13) reduce to 3 Jm = ’
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A m> pler) The evolution equation20) for anisotropic stress
Qa= ?j 1-%= EN?F,dE. contains the spatial divergence of the octopole, and the oc-
topole evolution equation will contain the divergence of the

In the massless limit, E19) reduces to the energy conser- hexadecapole, and so on. In general, the evolution equation
vation equation. But in general, EQL9) is a new and non- for thel-pole has the spatial divergence of tie-(L)-pole as
trivial evolution equation arising from the Liouville equa- an effective source term, so that power is transmitted across
tion. levels of the hierarchy. Thus the multipoles above the quad-
A new evolution equation for the anisotropic stresg, rupole affect dynamical evolution, even though they do not
may also be found after multiplying the quadrupole equatiordirectly enter the Einstein field equations. The Liouville hi-

(18) by N%/E: erarchy cannot in general be truncated, without some ap-
, ; , , proximation scheme to close the truncated system. For a col-
Tapt 30 Tap+2P0ap= —5P0ap— 5D(aQb) lisional gas, one expects on physical grounds that

(20) interactions tend to thermalize, and the higher multipoles

+1OR,,— D Sape, . .
3T tab abe will tend to be suppressed. For a collisionless and massless

where gas, anisotropy in the higher multipoles does not in general
5 disappear through free-streaming in an expanding universe,

R = 8_7Tf°°( 1 m_))\gF dE since the velocity of particles is not affected by redshifting.

T E2 ab On the other hand, redshifting the momentum of massive

particles reduces the peculiar velocity
8w (= m? s Up to this point, our results apply to any collisionless gas
%fm 1= gz |EMFapdE in a nearly FRW universe. Now we need to specialize to the

case of CDM, for which the velocity dispersion is small.
In the massless limit, we hav@,—q,(=0), Ra,— map,  This allows us to develop a consistent approximation scheme
Sabe— Labe, and Eq.(20) reduces to the evolution equation for truncating the Liouville hierarchy, following an approach
for free-streaming radiation that was found[ . similar to that of[3]. Small velocity dispersion means that

The Liouville multipole equation$16)—(18) are the be- there is a small effective maximum velocity, , above

ginning of an infinite hierarchy(See[14,15 for the corre- which the distribution is effectively vanishing. More pre-
sponding equations in the massless case, which is much simisely,

Sabc=

1 0
v2Z=0(e) and ;JE EZ*“A““Fal__.aldE:(O(ez) for 1=0, n=0,1,2.

We assume that the derivatives of the distribution multipoles M
are similarly restricted. With the small velocity dispersion —=<vi+0(e)),
approximation, we can show that many of the terms in the p
equations above are second-order. For example,

‘Dlﬁ

, <3V +O(e),
At [\
p=— gEz)\FdE
; [Qal_ 2 19l
a pa +O( 2)

4 S
= —Wf [v2+O(v*) JEP\FdE
3 Jm

|Rab| 2 |7Tab|

o0 _|,_O 2
<iv <4wf E2\FdE | + pO(€?), p (€9,
S g
so that | abc| | abc| +O( 2)
p p

Eg%vi +0(é?). To linear order, it follows that Eq10) produces the equa-

p tion of state
Similarly, we find that p=mn+3p, (21)
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which simply expresses that each particle has rest mmass tions for a general energy-momentum tensor is derived and
and kinetic energymv? to lowest order. The stress evolu- discussed ir{6,7]. The formalism is based on constructing

tion equationg19) and(20) reduce to covariant quantities which vanish in the background, thus
. ensuring that they are gauge-invariant. Density inhomogene-
p+30p=0, (22) ity is described by the comoving fractional density gradient
(which fulfills the above requirements
Tapt 3O m,=0. (23 ) aDy ,
Since p/p=0(¢€), the termpo,, is second order and falls a p (25

away from the stress evolution equati®@8). The octopole

anisotropy does not contribute to the stress evolution at linwherea is the background scale factor.

ear order, so that the multipole hierarchy can be truncated This quantity carries information about the magnitude, ro-
after the quadrupole. The higher-multipole evolution equaiational and shape-distortion properties of inhomogeneity,
tions are decoupled from the Einstein-Liouville system atobtained by irreducibly splitting its comoving gradiei6:
linear order. Equation$14), (22) and (23) form a closed

system of evolution equations for the dynamical quantjties aDp8,=(56)Napt &ap W+ Eap - (26)
p and 7 .
Our approximation scheme extends that[8f from a Here
Newtonian to a relativistic treatment, but it also generalizes (aD)?p
the description of the matter. 8], it is assumed thatr,,, s=aD?§,=

=0, implying the very restrictive condition a$otropic ve-
locity dispersion We do not make this assumption; on the
contrary, the anisotropic stress, plays a crucial role in our
analysis.

There are some formal similarities here to the Grad 14- W,=—zacurl 5,
moment method as applied in the hydrodynamic near-
equilibrium regime. In that context, the Boltzmann hierarchydescribes the rotational properties of inhomogeneous cluster-
is also truncated beyond the quadrupole, and anisotropig, and it is proportional to the vorticity, . Finally,
stress obeys the Israel-Stewart transport equafiGh

corresponds to the gauge-invariant density perturbation sca-
lar €, in the metric-based formalisifii7]. The quantity

§ab= aD(a5b)

i —+ = — . . . .
TTabt Tab= ~ 27T ab, describes the volume-true distortion of inhomogeneous clus-

wherer is a relaxation timescale, anglis the shear viscos- tennr?. . letel d iantly d ibe i
ity. This transport equation has a similar form to our equa-, | Nese quantities completely and covariantly describe in-

tion (23). However, the Israel-Stewart transport equation,ﬁniteSimal inhomogeneities in the density. They obey evolu-

and the relativistic Grad method on which it is based, appb}lon equaﬂons in which the stresses are source terms. Since

to a collision-dominatedyas, whereas we are dealing with a '€ Pressure is O(e)p, we may neglect it in the back-
collision-free gas. ground. We assume a fldte., Einstein—de Sitt¢rback-

Note that sincep/p=0O(e€), the momentum constraint grou.nd,.neglectin'g the baryonic c;om'ponent. Thus we are in-
equation(15) reduces to vestigating densﬂy_mhom(_)ge_neny in CDM in the linear
regime, with potential applications to dark matter halo for-
pA,+Dyp+DPrr,,=0. (24) mation. The background field equations give

t 2/3

In the background —0), we havep—0. This means that N
to

the background distribution function reduces to a delta-
function, since there is no velocity dispersion, and we have
the kinetic theory form of the dust modgl0,16. In the The evolution equation&?) and (23) for CDM stresses
inhomogeneous perturbed universe, the monopolef the i & nearly FRW universe can be integrated to give
distribution function is not a delta-function, since there is

velocity dispersion. Thus perturbation of the background not J—()
only produces nonzero dipole and higher multipoles, but also ab™ Tab
changes the monopole.

2
p=3H? H=—, a=a, (27

3t’

5

%o, 29

a

5

S, 29

P=Po a

IIl. COVARIANT ANALYSIS OF DENSITY

INHOMOGENEITY
where
In this section we provide the basic equations governing

the evolution of density inhomogeneity in cold dark matter ;Tg%):o:bo_
when isotropic and anisotropic stresses are incorporated. The
full set of covariant and gauge-invariant perturbation equatsing the linearized identity
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(aD,S,.. o) =aD,Sy...c, ing terms. Note that one of the two new decaying modes
decays less rapidly than the standard decaying mode, and the
which holds for any tensd8,...,, that vanishes in the back- other decays more rapidly. The second, more rapidly decay-
ground, it follows that ing, term, is a purely anisotropic stress term, whereas the first
term has isotropicR,) and anisotropicR,) stress contribu-
(a"Dy,- - Dy mY) =0=(a"D, - --D, po)’,  (30)  tions and affects only small scales. When velocity dispersion
is forced to vanish exactly in the dust model, it is possible to

for any positive integen. remove the decaying mode by choosi@§’=0. When ve-
locity dispersion is incorporated, it is no longer possible to
A. Density perturbations remove decaying modes by choice of initial conditions. This

We consider first the effect of stresses on density perturiS related to the fact that the perturbations are no longer
X : . . adiabatic, given that the stresses are neglected in the back-
bations. The evolution equation fér as given by Eq(28) of g 9

ground. The new decaying terms depend on the initial spatial
[7], reduces to distribution of stresses, as described by the quanfiigsR,
' a2 _ and S, defined in Egs(33) and (34). By the momentum
5+ 2H 66— 2H?5=—D?(D?p) + 3HS— 3H?S+D?S, conservation equatiof24), we can replac®,+ R, by a term
P proportional to the Laplacian of the divergence of the

(31) 4-acceleration:
where the anisotropic stress term is £\2
a?DeDrr,, Po+Ro==podo| - (aD)*(aD?A,).
S= Ta’ (32

B. Rotational instability
andH andp are given by Eq(27). Note that the isotropic

stressp occurs only via the gradient term,p. Using Egs. The evolution equation for the rotational p&, of den-

(27)—(30), we find that sity inhomogeneity is given ifi7]:
. 3H
S=2t2s, 2 ? a—2D4p=§ to ? o ! Wa+§HWa=—<2— a’curl D°mryy, . (36)
40 a ’ p 4 aO 0 a P
. . Using EQs.(27)—(30), this becomes
whereS;=0=P, and 9 Eqs(27)~(30
) 1 tO 713
S=a’DDPy), Po=a’D’pq. (33 wa+(; W,=— %toNa(T) , (37
Thus the evolution equatiof81) becomes where
; - [2 3(t)? to| *° N,=a? curl DP7{®) (38)
s = |s=2|2 = = b
o+ 3t é (3t2) S 2l 3 (Po+Rp) I a a
£\ 1053 so thatN,=0. Note that we can use the linearized form of
_330(_0) the differential identities i112] to rewrite this as
t L
here N,=2a?D curlr?).
The solution of Eq(37) is
Ro=a’D?S,, (34)
t -1 5 —4/3
. L —cH| — 9 _
so thatRy=0 by Eq.(30). The solution is Wa=Cq (to +[4t0Na]<to) ' (39
t\23 £ -1 (0) o 0
5= C(”(— +c) _) whereC{)=0. The standard dust solution is t&& term,
to to and the effect of velocity dispersion is to introduce another
3t )2 —213 —43 decaying mode, which decays more rapidly. The main effect
— [3t§(4—0 (Po+ Ro)} (t_) —[%téso](t—) ' of fchis new mode is to break the constancy of direction of the
Qo 0 axis of rotation. It follows from Eq(39) that

35 .
%9 (Wa)li,=CS 7+ 58N, (Wa)li,= —to [CL7)+3tIN,].
whereC(*)=0.

The standard dust solution is given by the growd” In the absence of anisotropic stréss for anisotropic stress
and decayingC(™) terms. The effects of stregsourced in  with curl-free divergence Wa remains parallel tdV,, and
velocity dispersiopare encoded in the following two decay- the direction of the axis of rotation is constant along
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When anisotropic stresses are incorporatég=0 in gen-

eral, so thaWV, is no longer parallel t&V, , and the direction
of the axis evolves in time.

C. Shape distortion

From[7], the shape distortion pagt, obeys the evolution
equation

. . a? a? .

EabT2HEp— gHzgab:?D(an)sz_F?[sH D(aDCWb)c
+6H?D Dy
+D(aDp) DD ] (40)

Using again Eqs(27)—(30), we find that

. . 2 3[ty)? to) 83
Eapt 3t Eab— 3 §ab=—z EW (PapbtRap) T
tO 10/3
_3Sab(T) , (41
where we have defined
PabEa4D<an>D2va
Rap=a"D(qDpD°D7Y, (42

SabE a2D<aDc’7T(0)b>c )
so that
I.:)ab: I.qab: Sab: 0.

Then, as in the scalar case, E41) can be solved to give

) t 2/3 - t -1
€ab=Cap E +Cab’|

) 3t0 2 —2/3
3t04_8‘0 (Pab+Rab) E

—413
0

(43

PHYSICAL REVIEW @D 103503

2.2 to ’ v X
Jap=13510 a_o [Pan(Xo) + Rap(Xo) ],

KabE%thab()zo)-
Then Eq.(43) gives

Ean=[% ?H1-1 5/3)]Vab
+[ (4457 P+ 41775913,

+[ 7~ 4+49753- 4577 %) K. (45)
Thus for a dust model, in which,,=0=K,,, the evo-
lution of shape distortion is purely inertial, i.e., it is fixed by
the initial velocity ellipsoidV,,, and no further distortion
can develop as the fluctuation evolve®mpare[18]). All
the covariant time derivatives &f,, are proportional t&/,,:

Eab™* Eap™ Eap™ - - *Vap. (46)

By contrast, when velocity dispersion is incorporated via
stress effects, the same initial conditions in &) lead to a
non-trivial evolution of distortion, away from that initially
determined by the velocity ellipsoid,,. The simple rela-
tion in Eq. (46) is broken, and the evolution of distortion is
no longer fixed by the initial velocity ellipsoid. Although the
stress terms that cause the additional “non-inertial” distor-
tion are small and decaying, once the extra distortion is in-
troduced, there is no mechanism for removing it, at least
during the linear regime. Thus the distortion persists during
the subsequent linear evolution.

The impact of stress on shape distortion is reminiscent of
the impact of stress on shear decay: for radiative anisotropic
stress, Barrow and Maarteht9] have shown that the decay
of shear due to expansion is slowed down. We expect that
the same qualitative result holds in the case of non-radiative
anisotropic stress, such as considered here.

IV. CONCLUSION

Density perturbation theory for the growth of structures in
a CDM framework has been generalized in a covariant form
which self-consistently incorporates small velocity disper-
sion. The analysis generalizes the Newtonian approach of
Buchert and Dormmguez[3] to general relativity; further-

yvhereC(af,):Q._Again we see the occurrence of new decay-more, it dispenses with their isotropic dispersion assumption,
ing modes arising from stress effects. One of the new termgnd considers the rotational and shape distortion properties
decays more slowly than the standard decaying term whiclf density inhomogeneity, in addition to the density pertur-

arises in the dust case.

bations. The evolution equations are integrated exactly for all

These new terms have the following important implica-these parts of density inhomogeneity in the linear regime.

tion. We consider an initially isotropic infinitesimal fluctua-

tion at a pointio, and follow its evolution alongi®. The

As a special caser,,=0), our results contain the gen-
eralization of the adhesion model, as shown[3}. More

initial velocity is described via the PSTF and constant tensogenerally, our solutions show explicitly how the decaying

Vap, 1-€.
Ean(t0:X0) =0, &ap(to,Xo)=HoVap- (44)

Let r=t/ty, and define the constant PSTF tensors

modes are modified by stress effects induced via velocity
dispersion. These modifications are small, but they have
some important implications.

(1) First, as argued ip3], the presence of velocity disper-
sion avoids some of the problems that arise in the dust
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model, which is pathological in enforcing strictly zero dis- distortion effects will take place in the nonlinear regime, this
persion. linear effect has some interest, and it may be worth investi-

(2) Second, the new decaying modes of density perturbagating the statistics of the phenomenon in order to be able to
tions reflect non-adiabatic features introduced by the stressesiake more general assertions about the distortion conditions
One of these modes decays less rapidly than the standagd the onset of nonlinear structure formation.
decaying mode. The stress effects on rotational and shape-distortion prop-

(3) Third, the new decaying mode in the rotational part oferties of the density distribution are qualitatively similar to
density inhomogeneity has the effect of breaking the conthe effects of a magnetic fielc@0].
stancy of the direction of rotation axis.

(4) Fourth, the new decaying modes in the shape distor-
tion mean that additional “non-inertial” distortion is gener-
ated, which is not present in the dupurely inertia) model.
The additional distortion remains during the linear regime, We thank Marco Bruni for incisive comments on funda-
despite the decaying nature of the source terms, since therensental aspects. R.M. and J.T. are partially supported by a
no (linear) mechanism to reverse it. Although the dominantEuropean Science Exchange Program grant.
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