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Stress effects in structure formation
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Residual velocity dispersion in cold dark matter induces stresses which lead to effects that are absent in the
idealized dust model. A previous Newtonian analysis showed how this approach can provide a theoretical
foundation for the phenomenological adhesion model. We develop a relativistic kinetic theory generalization
which also incorporates the anisotropic velocity dispersion that will typically be present. In addition to density
perturbations, we consider the rotational and shape distortion properties of clustering. These quantities together
characterize the linear development of density inhomogeneity and we find exact solutions for their evolution.
As expected, the corrections are small and arise only in the decaying modes, but their effect is interesting. One
of the modes for density perturbations decays less rapidly than the standard decaying mode. The new rotational
mode generates precession of the axis of rotation. The new shape modes produce additional distortion that
persists during the subsequent~linear! evolution, despite the rapid decay of the terms that caused it.
@S0556-2821~99!02220-1#

PACS number~s!: 98.80.Cq, 98.70.Vc, 98.80.Hw
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I. INTRODUCTION

The cold dark matter~CDM! model has had considerab
success, based on using adiabatic perturbations of pres
free dust on a Friedmann-Robertson-Walker~FRW! back-
ground to study the growth of structure in the matter dis
bution. The model is simple and the solutions are easy
interpret~see, e.g.,@1#!. The idealized dust assumption, i.e
exactly zero velocity dispersion, breaks down when den
fluctuations begin to go nonlinear; caustics and infinite d
sity layers form through shell crossing, precisely beca
velocity dispersion is forced to vanish. Theoretical modific
tions to complement the extensive numerical simulations
deal with the multi-stream flow problem are few in numb
One of the most successful is the adhesion model@2#. This
model has relied on a phenomenological justification rat
than a theoretical derivation. Recently Buchert a
Domı́nguez@3# developed theoretical models which conta
the adhesion one as a special case. Furthermore, their m
do not have the problem of the possible non-conservatio
momentum which occurs in the adhesion model.

In a Newtonian framework, with comoving coordinat
on an expanding background, they use the Poisson-Vla
equations to obtain consistent models of a self-gravita
collisionless gas. The models are designed to allow fo
small amount of velocity dispersion in the gas. The outco
of their approximation scheme is a system of equations
includes an effective viscosity term which is more gene
than the adhesion term, but which can be specialized t
They point out that the inclusion of the velocity dispersi
allows access to smaller spatial scales than previous mo
0556-2821/99/60~10!/103503~8!/$15.00 60 1035
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permit and could be used to connect studies of large s
structures with those of smaller ones. This aspect remain
be investigated.

A well known problem with the Vlasov hierarchy of mo
ment equations is that it is infinite@4#, and some additiona
information has to be provided. Without collisions, there
in general no mechanism for eliminating the quadrupole a
higher moments. The simplest approach is to truncate ab
the dipole and use a dust model, but this has no velo
dispersion. A physically reasonable model is obtained in@3#
by assuming small velocity dispersion, leading to truncat
above the quadrupole. This closes the hierarchy and all
limited velocity dispersion.

In this paper, we develop a relativistic generalization
their approach, based on the Einstein-Liouville equatio
One limitation of their model is that they assume the veloc
dispersion is isotropic, so that the stress~pressure! is purely
isotropic. Our generalization eliminates the isotropy assum
tion, allowing for anisotropic stress.1 We are able to find
self-consistent~i.e., based on kinetic theory, rather thanad
hoc phenomenology! evolution equations for the isotropi
and anisotropic stresses. Furthermore, we use a cova
gauge-invariant approach@6,7# to describe not only the mag
nitude of density inhomogeneities, i.e., the density pertur

1Recently Hu and Eisenstein@5# have investigated anisotropi
stress effects in general, by postulating phenomenological par
etrizations of stress evolution. Our model is of more limited app
cability, but is self-consistent, since the stress evolution is gover
by the kinetic-theory Liouville equation.
©1999 The American Physical Society03-1
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tions, but also their rotational and shape distortion propert
This leads to a unified system of equations governing
linear evolution of density inhomogeneity in a physica
realistic model of dark matter. We find the exact solutions
these equations for a flat background~i.e., Vcdm51). These
solutions are relevant for the study of dark matter halo f
mation, neglecting baryons and assuming zero cosmolog
constant.

Free-streaming effects tend to smooth density fluct
tions, while the energy density supported by stresses
enhance them. The exact solution shows that the grow
mode of density perturbations is unchanged, while there
two extra decaying modes, one decaying less rapidly than
standard dust mode, and one more rapidly. Velocity disp
sion will have a purely dissipative effect on angular mome
tum, and this is confirmed by the exact solution of the ro
tional equation, which shows an extra decaying mode
decays more rapidly than the standard mode. However,
new mode has the interesting effect of changing the direc
of the axis of rotation.

The main impact of velocity dispersion is on the evoluti
of shape-distortion in the density distribution. The stress
though small and decaying, have a significant effect, prod
ing ‘‘active’’ distortion in addition to the inertial distortion
that arises in dust models purely from the shear anisotro
Despite being sourced by decaying terms, these distort
remain during the subsequent evolution~until the nonlinear
regime!.

In Sec. II we develop the self-consistent kinetic theo
analysis of stress in CDM. Section III presents the covari
evolution equations for density perturbations, rotation a
shape distortion, and gives the exact solutions of these e
tions. Finally, concluding remarks are made in Sec. IV. W
follow the notation of@7,8#. The signature is (2111),
units are such that 8pG515c andkB51, spacetime indices
are a,b,•••, and ~square! round brackets enclosing indice
denote~anti-! symmetrization. The spacetime metric isgab ,
and the spacetime alternating tensor ishabcd

52A2g d [a
0db

1dc
2dd]

3.

II. KINETIC MODEL OF CDM STRESSES

We use the covariant Lagrangian approach to relativi
kinetic theory @9,10,8,11#, in which all the variables are
physically measurable and which allows for a clear Newt
ian interpretation. Given a 4-velocity fieldua, we decompose
the 4-momentumpa of a particle of massm as

pa5Eua1la, ~1!

whereE is the particle energy relative to comoving obse
ers, and

la5lea5mg~v !va

is the particle 3-momentum, witheaea51, eaua50, andl
5mv(12vava)21/25(E22m2)1/2. The covariant volume el-
ement in momentum space is
10350
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d3l

E
5

l2dldV

E
5ldEdV,

where dV is the solid angle spanned by two independe
dea. The distribution functionf (x,E,ea) can be expanded in
tensor multipolesFa1•••al

(x,E), i.e.,

f 5F1Faea1Fabe
aeb1Fabce

aebec1•••. ~2!

This is the covariant generalization of the spherical harmo
expansionf 5( f lmYlm . The covariant multipoles are irre
ducible, i.e.,Fa•••b5F ^a•••b& , where the angled brackets de
note the spatially projected symmetric tracefree~PSTF! part.
They are given by

Fa1•••al
5

~2l 11!!

4p~ l ! !22lE f e^a1
ea2

•••eal &
dV. ~3!

The energy-momentum tensor is

Tab5E f papb

d3l

E
5ruaub1phab12q(aub)1pab ,

~4!

where hab5gab1uaub is the spatial projector. The energ
density, pressure, energy flux~momentum density!, and an-
isotropic stress are given by

r54pE
m

`

E2lFdE, ~5!

p5
4p

3 E
m

`

l3FdE, ~6!

qa5
4p

3 E
m

`

El2FadE, ~7!

pab5
8p

15Em

`

l3FabdE. ~8!

Higher-level dynamical anisotropy thanpab is defined via
the l>3 multipoles. For example, the octopole anisotropy

zabc5
8p

35Em

`

El2FabcdE. ~9!

The number density is given by@10#

n54pE
m

`

ElFdE,

and we can derive a useful relation between the monop
dynamical terms~compare the similar relation found i
@11#!:

mn1 3
2 p5r2 1

2 M ~10!

where
3-2
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M54pE
m

`S 12
m

E D 2

E2lFdE.

In the massless limitm→0, we haveM→r, and Eq.~10!

reduces top5 1
3 r. Equation~10! is a generalized ‘‘equation
.,

r

e
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e

t
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u

10350
of state,’’ which adopts a simple form in the massless lim
and the limit of low velocity dispersion~see below!, but
which is more complicated in intermediate regimes.

The energy-momentum conservation equations¹bTab
50 follow from the Liouville ~collisionless Boltzmann!
equation, and are@10#
ṙ1~r1p!Q1Daqa522Aaqa2sabpab , ~11!

q̇^a&1
4
3 Qqa1~r1p!Aa1Dap1Dbpab52sabq

b1«abcv
bqc2Abpab . ~12!
to

hat
lu-

i-

me
n

tion
se

ure
Here Da is the spatially projected covariant derivative, i.e

DaSb•••c5ha
dhb

e
•••hc

f¹dSe••• f ,

an overdot is the covariant time derivative, i.e.,Ṡa•••b
5uc¹cSa•••b , and «abc5habcdu

d is the spatial alternating
tensor. The expansion, acceleration, vorticity and shea
the 4-velocityua are given by

Q5Daua , Aa5u̇a , va52 1
2 curlua , sab5D^aub& .

The covariant spatial curl of vectors and rank-2 tensors
defined by@12#

curlVa5«abcD
bVc, curlSab5«cd(aDcSd

b) .

We are free to choose the 4-velocityua so thatqa50, i.e.,
so that in the comoving frame, no energy flux is observ
@10,13#. In general, there will be a non-vanishing partic
drift in this frame. To maintain vanishing energy flux, th
momentum conservation equation~12! shows that

~r1p!Aa1Dap1Dbpab52Abpab . ~13!

Thus the evolution equation~12! for qa becomes a constrain
equation~13! for the acceleration. Note also that in the e
ergy frame, the dipoleFa will satisfy *El2FadE50, from
Eq. ~7!. From now on, we assume that the energy frame
chosen, i.e.qa50.

In a universe that is close to an FRW model, i.e. w
small inhomogeneity and anisotropy, we have that@6,14#

Aa

Q
,
va

Q
,
sab

Q
,
pab

r
,
aDap

r
,
aDar

r
,
aDaQ

Q
5O~e!,

wheree is a dimensionless smallness parameter, anda is the
cosmic scale factor in the FRW background.~In the back-
ground,Q53H, whereH is the Hubble rate.! The higher-
level dynamical anisotropy tensors are alsoO(e):

zabc

r
,•••5O~e!.

To linear order in such a universe, the conservation eq
tions ~11! and ~13! reduce to
of

is

d

-

is

a-

ṙ1~r1p!Q50, ~14!

~r1p!Aa1Dap1Dbpab50. ~15!

From now on, we will consider a universe that is close
FRW, i.e., we drop allO(e2) terms. The Liouville equation
may be decomposed into multipole evolution equations t
are PSTF@8#. The monopole, dipole and quadrupole evo
tion equations are

EḞ1 1
3 lDaFa2 1

3 l2Q
]F

]E
50,

(16)

EḞa1 2
5 lDbFab2 1

3 l2Q
]Fa

]E
1lDaF2lE

]F

]E
Aa50,

(17)

EḞab1 3
7 lDcFabc2

1
3 l2Q

]Fab

]E
1lD^aFb&2l2

]F

]E
sab50.

~18!

~Note that the vorticity does not enter the Liouville mult
poles at the linear level.! Multiplying Eq. ~16! by El and
integrating over all energies, and using the energy fra
condition*El2FadE50, we derive the energy conservatio
equation~14!. Similarly, multiplying Eq.~17! by l2 and in-
tegrating, we arrive at the momentum conservation equa
~15!. When integrating by parts to obtain some of the
terms, we use the assumption that asE→`, Fa1•••al

( l

>0) tends to zero more rapidly thanEn for any n,0.
We can derive a new evolution equation for the press

after multiplying the monopole equation~16! by l3/E:

ṗ1 5
3 Qp5 1

3 QP2 1
3 DaQa , ~19!

where

P5
4p

3 E
m

`S 12
m2

E2 Dl3FdE,
3-3
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Qa5
4p

3 E
m

`S 12
m2

E2 DEl2FadE.

In the massless limit, Eq.~19! reduces to the energy conse
vation equation. But in general, Eq.~19! is a new and non-
trivial evolution equation arising from the Liouville equa
tion.

A new evolution equation for the anisotropic stresspab
may also be found after multiplying the quadrupole equat
~18! by l3/E:

ṗab1 5
3 Qpab12psab52 2

5 Psab2 2
5 D^aQb&

1 1
3 QRab2DcSabc , ~20!

where

Rab5
8p

15Em

`S 12
m2

E2 Dl3FabdE,

Sabc5
8p

35Em

`S 12
m2

E2 DEl2FabcdE.

In the massless limit, we haveQa→qa (50), Rab→pab ,
Sabc→zabc , and Eq.~20! reduces to the evolution equatio
for free-streaming radiation that was found in@14#.

The Liouville multipole equations~16!–~18! are the be-
ginning of an infinite hierarchy.~See@14,15# for the corre-
sponding equations in the massless case, which is much
le
n

th

10350
n

m-

pler.! The evolution equation~20! for anisotropic stress
contains the spatial divergence of the octopole, and the
topole evolution equation will contain the divergence of t
hexadecapole, and so on. In general, the evolution equa
for the l-pole has the spatial divergence of the (l 11)-pole as
an effective source term, so that power is transmitted ac
levels of the hierarchy. Thus the multipoles above the qu
rupole affect dynamical evolution, even though they do n
directly enter the Einstein field equations. The Liouville h
erarchy cannot in general be truncated, without some
proximation scheme to close the truncated system. For a
lisional gas, one expects on physical grounds t
interactions tend to thermalize, and the higher multipo
will tend to be suppressed. For a collisionless and mass
gas, anisotropy in the higher multipoles does not in gene
disappear through free-streaming in an expanding unive
since the velocity of particles is not affected by redshiftin
On the other hand, redshifting the momentum of mass
particles reduces the peculiar velocityv.

Up to this point, our results apply to any collisionless g
in a nearly FRW universe. Now we need to specialize to
case of CDM, for which the velocity dispersion is sma
This allows us to develop a consistent approximation sche
for truncating the Liouville hierarchy, following an approac
similar to that of@3#. Small velocity dispersion means tha
there is a small effective maximum velocityv* , above
which the distribution is effectively vanishing. More pre
cisely,
v
*
2 5O~e! and

1

rEE
*

`

E22nln11Fa1•••al
dE5O~e2! for l>0, n50,1,2.
-

We assume that the derivatives of the distribution multipo
are similarly restricted. With the small velocity dispersio
approximation, we can show that many of the terms in
equations above are second-order. For example,

p5
4p

3 E
m

`l2

E2 E2lFdE

5
4p

3 E
m

`

@v21O~v4!#E2lFdE

< 1
3 v

*
2 S 4pE

m

`

E2lFdED 1rO~e2!,

so that

p

r
< 1

3 v
*
2 1O~e2!.

Similarly, we find that
s

e

M
r

<v
*
4 1O~e2!,

P
r

< 1
3 v

*
4 1O~e2!,

uQau
r

<v
*
2 uqau

r
1O~e2!,

uRabu
r

<v
*
2 upabu

r
1O~e2!,

uSabcu
r

<v
*
2 uzabcu

r
1O~e2!.

To linear order, it follows that Eq.~10! produces the equa
tion of state

r5mn1 3
2 p, ~21!
3-4
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which simply expresses that each particle has rest masm
and kinetic energy1

2 mv2 to lowest order. The stress evolu
tion equations~19! and ~20! reduce to

ṗ1 5
3 Qp50, ~22!

ṗab1 5
3 Qpab50. ~23!

Since p/r5O(e), the termpsab is second order and fall
away from the stress evolution equation~23!. The octopole
anisotropy does not contribute to the stress evolution at
ear order, so that the multipole hierarchy can be trunca
after the quadrupole. The higher-multipole evolution eq
tions are decoupled from the Einstein-Liouville system
linear order. Equations~14!, ~22! and ~23! form a closed
system of evolution equations for the dynamical quantitiesr,
p andpab .

Our approximation scheme extends that of@3# from a
Newtonian to a relativistic treatment, but it also generaliz
the description of the matter. In@3#, it is assumed thatpab
50, implying the very restrictive condition ofisotropic ve-
locity dispersion. We do not make this assumption; on th
contrary, the anisotropic stresspab plays a crucial role in our
analysis.

There are some formal similarities here to the Grad
moment method as applied in the hydrodynamic ne
equilibrium regime. In that context, the Boltzmann hierarc
is also truncated beyond the quadrupole, and anisotr
stress obeys the Israel-Stewart transport equation@13#

tṗab1pab522hsab ,

wheret is a relaxation timescale, andh is the shear viscos
ity. This transport equation has a similar form to our equ
tion ~23!. However, the Israel-Stewart transport equatio
and the relativistic Grad method on which it is based, ap
to a collision-dominatedgas, whereas we are dealing with
collision-free gas.

Note that sincep/r5O(e), the momentum constrain
equation~15! reduces to

rAa1Dap1Dbpab50. ~24!

In the background (e→0), we havep→0. This means tha
the background distribution function reduces to a de
function, since there is no velocity dispersion, and we h
the kinetic theory form of the dust model@10,16#. In the
inhomogeneous perturbed universe, the monopoleF of the
distribution function is not a delta-function, since there
velocity dispersion. Thus perturbation of the background
only produces nonzero dipole and higher multipoles, but a
changes the monopole.

III. COVARIANT ANALYSIS OF DENSITY
INHOMOGENEITY

In this section we provide the basic equations govern
the evolution of density inhomogeneity in cold dark mat
when isotropic and anisotropic stresses are incorporated.
full set of covariant and gauge-invariant perturbation eq
10350
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tions for a general energy-momentum tensor is derived
discussed in@6,7#. The formalism is based on constructin
covariant quantities which vanish in the background, th
ensuring that they are gauge-invariant. Density inhomoge
ity is described by the comoving fractional density gradie
~which fulfills the above requirements!:

da5
aDar

r
, ~25!

wherea is the background scale factor.
This quantity carries information about the magnitude,

tational and shape-distortion properties of inhomogene
obtained by irreducibly splitting its comoving gradient@6#:

aDbda5~ 1
3 d!hab1«abcW

c1jab . ~26!

Here

d[aDada5
~aD!2r

r

corresponds to the gauge-invariant density perturbation
lar em in the metric-based formalism@17#. The quantity

Wa52 1
2 a curlda

describes the rotational properties of inhomogeneous clus
ing, and it is proportional to the vorticityva . Finally,

jab5aD^adb&

describes the volume-true distortion of inhomogeneous c
tering.

These quantities completely and covariantly describe
finitesimal inhomogeneities in the density. They obey evo
tion equations in which the stresses are source terms. S
the pressurep is O(e)r, we may neglect it in the back
ground. We assume a flat~i.e., Einstein–de Sitter! back-
ground, neglecting the baryonic component. Thus we are
vestigating density inhomogeneity in CDM in the line
regime, with potential applications to dark matter halo fo
mation. The background field equations give

r53H2, H5
2

3t
, a5a0S t

t0
D 2/3

. ~27!

The evolution equations~22! and ~23! for CDM stresses
in a nearly FRW universe can be integrated to give

pab5pab
(0)S a0

a D 5

, ~28!

p5p0S a0

a D 5

, ~29!

where

ṗab
(0)505 ṗ0 .

Using the linearized identity
3-5
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~aDaSb•••c!
•5aDaṠb•••c ,

which holds for any tensorSa•••b that vanishes in the back
ground, it follows that

~anDa1
•••Dan

pab
(0)!•505~anDa1

•••Dan
p0!•, ~30!

for any positive integern.

A. Density perturbations

We consider first the effect of stresses on density per
bations. The evolution equation ford, as given by Eq.~28! of
@7#, reduces to

d̈12H ḋ2 3
2 H2d5

a2

r
D2~D2p!13HṠ23H2S1D2S,

~31!

where the anisotropic stress term is

S[
a2DaDbpab

r
, ~32!

and H and r are given by Eq.~27!. Note that the isotropic
stressp occurs only via the gradient term Dap. Using Eqs.
~27!–~30!, we find that

S5 3
4 t0

2S0S a0

a D 2

,
a2

r
D4p5 3

4 S t0

a0
D 2

P0S a0

a D 4

whereṠ0505 Ṗ0 and

S0[a2DaDbpab
(0) , P0[a4D4p0 . ~33!

Thus the evolution equation~31! becomes

d̈1S 4

3t D ḋ2S 2

3t2D d5
3

4 S t0

a0
D 2

~P01R0!S t0

t D 8/3

23S0S t0

t D 10/3

,

where

R0[a2D2S0 , ~34!

so thatṘ050 by Eq.~30!. The solution is

d5C(1)S t

t0
D 2/3

1C(2)S t

t0
D 21

2F3t0
2S 3t0

4a0
D 2

~P01R0!G S t

t0
D 22/3

2@ 9
2 t0

2S0#S t

t0
D 24/3

,

~35!

whereĊ(6)50.
The standard dust solution is given by the growingC(1)

and decayingC(2) terms. The effects of stress~sourced in
velocity dispersion! are encoded in the following two decay
10350
r-

ing terms. Note that one of the two new decaying mod
decays less rapidly than the standard decaying mode, an
other decays more rapidly. The second, more rapidly dec
ing, term, is a purely anisotropic stress term, whereas the
term has isotropic (P0) and anisotropic (R0) stress contribu-
tions and affects only small scales. When velocity dispers
is forced to vanish exactly in the dust model, it is possible
remove the decaying mode by choosingC(2)50. When ve-
locity dispersion is incorporated, it is no longer possible
remove decaying modes by choice of initial conditions. T
is related to the fact that the perturbations are no lon
adiabatic, given that the stresses are neglected in the b
ground. The new decaying terms depend on the initial spa
distribution of stresses, as described by the quantitiesP0 , R0
and S0, defined in Eqs.~33! and ~34!. By the momentum
conservation equation~24!, we can replaceP01R0 by a term
proportional to the Laplacian of the divergence of t
4-acceleration:

P01R052r0a0S t

t0
D 2

~aD!2~aDaAa!.

B. Rotational instability

The evolution equation for the rotational partWa of den-
sity inhomogeneity is given in@7#:

Ẇa1 3
2 HWa52S 3H

2r Da2 curl Dbpab . ~36!

Using Eqs.~27!–~30!, this becomes

Ẇa1S 1

t DWa52 3
4 t0NaS t0

t D 7/3

, ~37!

where

Na[a2 curl Dbpab
(0) , ~38!

so thatṄa50. Note that we can use the linearized form
the differential identities in@12# to rewrite this as

Na52a2Dbcurlpab
(0) .

The solution of Eq.~37! is

Wa5Ca
(2)S t

t0
D 21

1@ 9
4 t0

2Na#S t

t0
D 24/3

, ~39!

whereĊa
(2)50. The standard dust solution is theCa

(2) term,
and the effect of velocity dispersion is to introduce anoth
decaying mode, which decays more rapidly. The main eff
of this new mode is to break the constancy of direction of
axis of rotation. It follows from Eq.~39! that

~Wa!u t05Ca
(2)1 9

4 t0
2Na , ~Ẇa!u t052t0

21@Ca
(2)13t0

2Na#.

In the absence of anisotropic stress~or for anisotropic stress
with curl-free divergence!, Ẇa remains parallel toWa , and
the direction of the axis of rotation is constant alongua.
3-6
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When anisotropic stresses are incorporated,NaÞ0 in gen-
eral, so thatẆa is no longer parallel toWa , and the direction
of the axis evolves in time.

C. Shape distortion

From@7#, the shape distortion partjab obeys the evolution
equation

j̈ab12H j̇ab2 3
2 H2jab5

a2

r
D^aDb&D

2p1
a2

r
@3HD^aDcṗb&c

16H2D^aDcpb&c

1D^aDb&D
cDdpcd]. ~40!

Using again Eqs.~27!–~30!, we find that

j̈ab1S 4

3t D j̇ab2S 2

3t2D jab52
3

4 S t0

a0
D 2

~Pab1Rab!S t0

t D 8/3

23SabS t0

t D 10/3

, ~41!

where we have defined

Pab[a4D^aDb&D
2p0 ,

Rab[a4D^aDb&D
cDdpcd

(0) , ~42!

Sab[a2D^aDcp (0)
b&c ,

so that

Ṗab5Ṙab5Ṡab50.

Then, as in the scalar case, Eq.~41! can be solved to give

jab5Cab
(1)S t

t0
D 2/3

1Cab
(2)S t

t0
D 21

2F3t0
2S 3t0

4a0
D 2

~Pab1Rab!G S t

t0
D 22/3

2@ 9
2 t0

2Sab#S t

t0
D 24/3

, ~43!

whereĊab
(6)50. Again we see the occurrence of new deca

ing modes arising from stress effects. One of the new te
decays more slowly than the standard decaying term wh
arises in the dust case.

These new terms have the following important implic
tion. We consider an initially isotropic infinitesimal fluctua
tion at a pointxW0, and follow its evolution alongua. The
initial velocity is described via the PSTF and constant ten
Vab , i.e.

jab~ t0 ,xW0!50, j̇ab~ t0 ,xW0!5H0Vab . ~44!

Let t[t/t0, and define the constant PSTF tensors
10350
-
s
h

-

r

Jab[
3

80 t0
2S t0

a0
D 2

@Pab~xW0!1Rab~xW0!#,

Kab[
1

10 t0
2Sab~xW0!.

Then Eq.~43! gives

jab5@ 2
5 t2/3~12t25/3!#Vab

1@t2/3~4245t24/3141t25/3!#Jab

1@t2/3~24149t25/3245t22!#Kab . ~45!

Thus for a dust model, in whichJab505Kab , the evo-
lution of shape distortion is purely inertial, i.e., it is fixed b
the initial velocity ellipsoidVab , and no further distortion
can develop as the fluctuation evolves~compare@18#!. All
the covariant time derivatives ofjab are proportional toVab :

jab}j̇ab}j̈ab}•••}Vab . ~46!

By contrast, when velocity dispersion is incorporated v
stress effects, the same initial conditions in Eq.~44! lead to a
non-trivial evolution of distortion, away from that initially
determined by the velocity ellipsoidVab . The simple rela-
tion in Eq. ~46! is broken, and the evolution of distortion i
no longer fixed by the initial velocity ellipsoid. Although th
stress terms that cause the additional ‘‘non-inertial’’ dist
tion are small and decaying, once the extra distortion is
troduced, there is no mechanism for removing it, at le
during the linear regime. Thus the distortion persists dur
the subsequent linear evolution.

The impact of stress on shape distortion is reminiscen
the impact of stress on shear decay: for radiative anisotro
stress, Barrow and Maartens@19# have shown that the deca
of shear due to expansion is slowed down. We expect
the same qualitative result holds in the case of non-radia
anisotropic stress, such as considered here.

IV. CONCLUSION

Density perturbation theory for the growth of structures
a CDM framework has been generalized in a covariant fo
which self-consistently incorporates small velocity disp
sion. The analysis generalizes the Newtonian approach
Buchert and Domı´nguez @3# to general relativity; further-
more, it dispenses with their isotropic dispersion assumpt
and considers the rotational and shape distortion prope
of density inhomogeneity, in addition to the density pertu
bations. The evolution equations are integrated exactly fo
these parts of density inhomogeneity in the linear regime

As a special case (pab50), our results contain the gen
eralization of the adhesion model, as shown in@3#. More
generally, our solutions show explicitly how the decayi
modes are modified by stress effects induced via velo
dispersion. These modifications are small, but they h
some important implications.

~1! First, as argued in@3#, the presence of velocity disper
sion avoids some of the problems that arise in the d
3-7
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model, which is pathological in enforcing strictly zero di
persion.

~2! Second, the new decaying modes of density pertur
tions reflect non-adiabatic features introduced by the stres
One of these modes decays less rapidly than the stan
decaying mode.

~3! Third, the new decaying mode in the rotational part
density inhomogeneity has the effect of breaking the c
stancy of the direction of rotation axis.

~4! Fourth, the new decaying modes in the shape dis
tion mean that additional ‘‘non-inertial’’ distortion is gene
ated, which is not present in the dust~purely inertial! model.
The additional distortion remains during the linear regim
despite the decaying nature of the source terms, since the
no ~linear! mechanism to reverse it. Although the domina
. R

.

ys

10350
a-
es.
rd

f
-
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,
is

t

distortion effects will take place in the nonlinear regime, th
linear effect has some interest, and it may be worth inve
gating the statistics of the phenomenon in order to be abl
make more general assertions about the distortion condit
at the onset of nonlinear structure formation.

The stress effects on rotational and shape-distortion p
erties of the density distribution are qualitatively similar
the effects of a magnetic field@20#.
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