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Starting from the inhomogeneous shear-free Nariai metric we show, by solving the Einstein-Klein-Gordon
field equations, how a self-interacting scalar field plus a material fluid, a variable cosmological term, and a heat
flux can drive the universe to its currently observed state of homogeneous accelerated expansion. A quintes-
sence scenario where power-law inflation takes place for a string-motivated potential in the late-time domi-
nated field regime is proposeld50556-282(199)09018-9
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[. INTRODUCTION sides a material fluid contains a self-interacting scalar field
(which can be interpreted 43 matte), and a cosmological
The theory of general relativity implies that the large term, A which, in general, may vary with time. As it turns
scale geometry and evolution of the Universe is dictated byput the homogenization of the Universe at large times de-
its content of matter and fields, including energy fluxes,pends very much on the value the effective adiabatic index
shear stresses, particle production, and so on. Recently, theve defined below Eq. (5)], takes. When more generally this
have been claims in the literature that the Universe, besideguantity varies with time, homogenization can also be
its content in normal matter and radiation, must possess a n@chieved under rather ample conditions.
yet identified componeriusually called quintessence matter, ~ Obviously, density inhomogeneities triggered by gravita-
Q matter for shoit[1—4], characterized by a negative pres- tional instability must be present at any stage of evolution,
sure, and possibly a cosmological term which may be con€ven when the universe has reached a near homogeneous
stant or not[5,6]_ These claims were prompted at the real-State describable in the mean by the FLRW metric, i.e., an
ization that the clustered matter component can account &verage homogeneous universe housing growing as well as
most for one third of the critical density. Therefore, an addi-decaying density perturbation modes, the former leading
tional “soft” (i_e_’ nonc|ustere)tomponent is needed if the eventually to the formation of the cosmic structures we ob-
critical density predicted by many inflationary models is toServe today. About the evolution of scalae., density in-

be achieved. homogeneities there is a rather large and still growing body
Very often the geometry of the proposed models is veryof literature(see, e.g., Ref.12], and references thergibut
simple, just Friedmann-Lentae-Robertson-Walker We shall not deal with them as they lie outside the main

(FLRW), partly because of mathematical simplicity, and focus of this paper. We only mention that the negative pres-
partly because they deal with not very early stages of cosmigure associated @ matter andA will tend to slow down the
evolution. However, up to now no convincing argument hasgrowing modessee, e.g., Ref§1,12,13), and shift the ep-
been avanced to the effect that the geometry of the very earl§ch of matter-radiation equality toward more recent times
Universe(say, some time before nucleosynthgsisuld not ~ [14]. A detailed study of all this will be the subject of a
have been either anisotropic or inhomogeneous, or bottfuture work.
Note that it is very natural to assume the geometry at that Section Il presents the basic equations. Section IlI solves
primeval epoch more general than just FLRW. Moreoverthe Einstein-Klein-GordofEKG) field equations assuming
recently it has been demonstrated that given any spherically (but notA) a constant. Section IV studies the asymptotic
symmetric geometry and any set of observations, evolutiogVvolution toward &Q-matter dominated era. Section V solves
functions for the sources can be found that will make thethe EKG equations whery is a function of time. Finally,
model compatible in general with observatipfi. Further ~ Sec. VI summarizes the findings of this paper. Units have
motivations to study the evolution of inhomogeneous cosmobeen chosen so that=-G=1.
logical models can be found in Ref&] and[9]. In constrast
to FLRW quels, inhomogeneous spaces are !n general || EINSTEIN-KLEIN-GORDON FIELD EQUATIONS
compatible with heat fluxes, and these might imply important
consequences such as inflatid®] or the avoidance of the Let us consider a shear-free spherically symmetric space-
initial singularity [11]. Here we focus on an isotropic but time with metric[15]
inhomogeneous spherically symmetric universe which be-

ds?=—A(t,r)2dt?+ B(t,r)?[dr?+r?dQ?],

*Electronic address: chimento@df.uba.ar where as usualQ?=d#?+ sir? §d¢? For later purposes we
"Electronic address: jakubi@df.uba.ar introduce the function$-(t,r)=1/B(t,r) and v(t,r)=AF.
*Electronic address: diego@ulises.uab.es Thus, the line element assumes the more convenient form
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pn . a . pes ) F2 FFv _FF F2v’
= [—v(t,r)edt*+d re+r=dQ-]. (1) 12xF'“-8FF' —3—-2 +2—+4
F(t,r)2 v? v3 v? v
As sources of the gravitational field we take: a fluid of SR lo @
material energy density;= p(r,t), hydrostatic pressurp; P '
=ps(r,t), with a radial heat flow(g,=q,(r,t) andq;=q,
=q4=0), plus a cosmological term, related to the energy E2 EFv FE
density of vacuum by =8p, .., that depends only on time 12x F'>~8F F'—8xF F'-35—-2—+2—
A=A(t), and a self-interacting scalar fieltl driven by the v v v
potentialV(gﬁ). Taking the scalar field to erend only gn xEFE'v'  F2y'  xF2y”
its energy-momentum tensor may be written in the perfect - +4 +4 —-p+A=0, (8
fluid form v v
Tik=(PgT Py Uikt PyTik 2 XF2Fv’  xF2F’
. . - 2 +8 +Qr:Ov (9)
whereu'= ¢/ /= ¢ ¢ together with v v
1 .
. F. 1 dv
po=— 51" +V(), L
¢ 2 o) 2Fd)+ F2do 0, (10
p¢=—%¢|¢"—V(¢). (3 where x=r?, an overdot means/dt, and a prime means

The fluid interpretation of the scalar field, while not compul- (F, v, p, )
yare needed to render the system determinate. These are the

fbove equation of state relatipgand p and the condition

sory, has proven very useful in the study of the inflationar

phase and reheating of the universe—see, for instance, Re
[16] and[17]. In particular it leads us to consider its equation

of statep,=(y,—1)ps. Hence the scalar field can be in-
terpreted a®-matter since, depending &f(¢), v, may be
lower than 1, see, e.g., RdB]. The stress energy-tensor of
the normal matter, with a heat flow, pld3 matter (scalar
field) and the cosmological term is

Ti=(p1 TPyt Ps+Pp)UUt (A—pi—py) S+ U+ qkl(J‘,)
4

where the comoving four-velocity is normalized so that

u'u;=—1, with u'=8i(gy) ~ Y2 and henceus'=F/v. Obvi-
ously the heat flow is orthogonal o, (i.e. q'u;=0). As
equation of state for the fluid we choogg=(y;—1)p;
where y; is a function oft andr. Taking into account the

dlox. We thus have five equations and seven unknowns
p, ¢, q,, andA). Hence two more equations

dN19x=0.
From Egs.(7) and(8) we get

(11)

then using the ansatf=[a(t)+b(t)x]* and v=[c(t)
+d(t)x]" in Eq. (11) we find that the constraints(n—1)
=2k(k—1) anda(t)d(t)=b(t)c(t) must be satisfied. Next
we study the simplest case, namely=k=1. This is the
most interesting instance because the functions
a(t), b(t), c(t), andd(t) can be chosen freely. Another set
of solutions can be obtained if the relationshig,/v
=2[v(t)]? is assumed in Eq11). These solutions are pres-
ently under study and we shall report on them in a future

additivity of the stress-energy tensor it makes sense to Corb'aper.

sider an effective perfect fluid description with equation of

statep=(y—1)p wherep=p;+p,, p=p;+py and

_ YiPtt YeP o

5
pPttpy ®

is the overall(i.e., effective adiabatic index.
The requirement that the cosmological ternis just a
function oft leads to the restriction that also depends only

Einstein equations with time-dependetntand y. When
n=k=1 we obtain a set of solutions that contains those of
Modak (b=0) [18], Bergmann ¢=a,d=b) [19] and Maiti
(b=d=ka/4, with k=0,=1) [20]. Another possibility
arises wherd=0. This solution can be also obtained from
the metric (1) by imposing this metric be conformal to
Minkowski's. Namely, the integrability of the transformation
—vdt+dr=d» andv dt+dr=do leads tov=v(t) andn

on t to render the system of Einstein equations integrable=k=1. This allows us to redefine the time bydt—dt.
The nice result we are seeking is a solution that has adhen the metri¢l) becomes

asymptotic FLRW stage, with\ evolving towards a con-
stant, and the heat flow vanishing in that limit.
For the metric (1) the Einstein-Klein-Gordon(EKG)
equations are
F2
12x F'?—12F F'—8xF F'=3—+p+A=0, (6
%

1
F=———(—dt?+dr?+r2dQ?, (12
[a(t)+b(t)r?]?
and Eqgs(6), (7), and(9) turn into
p+A=12ab+3a%+6abx+3b%x?, (13
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A - i ap2)y2 2 ali . B 1
p—A=(2bb—3b“)x“+2(2b“—-3ab+ab+ab)x—8ab M (t)=K C1+C2At‘1—§KAt2 _ (25)
—3a2+2aa, (14)
Whereas fory=2/3, we get
and
b(t)=Ke®At, (26)
= —4.xb(a+bx)?, (15)
r a(t)=(C,+C,At—KAt?)e®A, (27
respectively. We next impose thatdepends solely on time,
so it must have the form and
. — _ 2y—1
A(t)=12ab+ 382+ (1), (16) MU=K(C+CoAt=KAH ™, 28

whereK, C, C,, andC, are arbitrary integration constants,
andAt=t—ty with ty some initial time. Inserting Eq$24),
(23), (26), and(27) in Egs.(21), (15), and(16) we get

where f(t) is a function to be determined. Then, E¢$3)
and (14) imply

p(x,t)=6abx+3b22—f(t), 17 8
A(t)=— ZK2At2Cy=4/Gr=2) L 120, KAt~ ¥(37=2)
D(x,t) = (2bb— 3b2)x2+ 2(2b%— 3ab+ab-+ ab)x+ 4ab 3
+16C, KAt~ Cr+2)By=2) 4 3C2IAL 4Gy~ D/Gy=2),

+2aa+f(t). (18)
(29)
We further impose the equation of stgte (y—1)p. Taking
into account that andb depend only on time, and equating and
the coefficients of same power »iwe obtain a set of equa- 8KrAt-37(37-2)
tions to determine, b, andf q(rt)= ————=——=——[3C,At 3772
9(3y—-2)
. 3.
bb— > yb?=0, (19 +3(Cy+Krd) At~ 2Br=2) KA~ 1IGy=2)72
(30)
. b. 3yb?
a-3ypa+ 77 A= 2b, (20 for y#2/3, and
A(t)=(3C3+12KC,)e*A, (32)
2a .
f=— = (2b+a). (21) qr(r,t)=—4Kr[Cy+ CoAt+K(r?—At?)]%e34,
(32)

To show the conditions that lead asymptotically to afor y=2/3. In the following we analyze the asymptotic be-
FLRW metric it is expedient to introduce the time coordinatehavior of these solutions in the limits forsuch thatM — 0.

dr=dt/a. Thus Eq.(1) becomes We note by passing that in thd — 0 limit the time coordi-
nate 7 becomes the cosmological time, as can be seen from
1 Eg. (22). Two alternatives of asymptotically expanding uni-

[—d72+R2(dr2+r2dQ?)], (22

:(1+ Mr2)2 verses appear depending on the map betwesrd  equa-
tions (34), (35) and(43), (48) below.
where M =b/a and R=1/|a|. This metric is conformal to CaseAt—0. In this limit we obtain
FLRW, and the conformal factor approaches unity wivkn 3/(2-39)
0. a=C,At37/(2=37) (33
ll. CONSTANT ADIABATIC INDEX Ar= imz(l‘w’(z‘w (y#1/3), (34)
' 2C5(1-3y) ’
When y is a constant different from 2/3, the general so-
lution of Egs.(19) and(20) becomes 1
gs.(19) and (20 Ar==nAt (y=1/3), (35)
b(t) =KAt¥C=37, (23 2
_ _ _ _ 1 [2C (1_37) 3y/2(3y—1)
alt)=C.At-2Gr-2) 4 c At-37(3r-2) ~ |2z 77
(H=Cy 2 R(7) c, 2-3, T (y#113),
_ %KAtG'(Y* 1)/(3y— 2)' (24 30
1
~ _ A CrAT —
thereby R(7) |C2|e (y=113), (37
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A(T)ZL?W)2 (y#1/3), (38)
4(1—-3y)2A 7

A=3C3 (y=1/3), (39

qr(r,r):E:_C;rrcg(_l;fw L (y#1/3),

(40)

q:(r,7)=—8KCare3C2A"  (y=1/3). (41

When 1/3< y<2/3 we have, for large cosmological tinre

PHYSICAL REVIEW D 60 103501

universe homogenizes for large cosmological time with van-
ishing cosmological term and heat flow. We note that even
though an asymptotic negative cosmological term occurs, the
universe ends in a power-law evolutiétx A r* with 0<a
<1. Wheny=1, the late time evolution changes to an as-
ymptotically Minkowski stage. For & y<<4/3 the universe
starts homogeneously in the remote past with a vanishing
scale factor, cosmological term and heat flow. For the re-
maining values ofy the universe begins at a homogeneous
singularity with a divergent cosmological term.

An exact solution with explicit dependence on the
asymptotic cosmological time can be found when the inte-

an accelerating universe that homogenizes with vanishingration constant<,; and C, vanish. In such a case each
cosmological term and heat flow. In this stage we may defin@pproximate expressioi@#2)—(46) becomes an equality and
an asymptotic adiabatic index by equating the exponent ithe metric reduces to

Eq. (36) to 2/(3yasy), i-€., y=4/3 (4—3y,s). In this range
one has ¥ y,, < leading to a final power-law expansion
era. Fory=1/3 the map betweethand r changes and we
have an asymptotically de Sitter universe with finite limit

cosmological term. For the remaining valuesothe uni-

verse begins at a homogeneous singularity with a divergent
cosmological term. Whery<1/3, the heat flux asymptoti-

cally vanishes near the singularity, while for>2/3 it di-
verges.
CaseAt—. In this limit we obtain

a~=— %KAtﬁ(yf DIGy-2), (42)
32-3y
~_— (=4+3y)/(2-3y)
T K4—3'yAt , (43
3[K(4—3y) 6(1—y)/(4—3y)
R(T):_R[W T ) (44)
24(2—37y)?
A(r)=— 2HEZ3V (45)
(4—3y)2A7?
(2—-3y)? r
r,7)=-—2 —, 46
ar(r,7) (4-37° A7 (46)
for y#2/3, and
a=—KAt?%e®At, (47
Ar=g CA (48)
R(7)=—CAr, (49
(3C5+12KC;)
A7r)=———F, 50
(7) e (50
K3r .
q,(r,r):—C3A73(lnAr) , (51

for y=2/3.

In this case the asymptotic adiabatic index is givemby
=(9%asy—4)/(97asy—3) and we have two alternatives for

asymptotically expanding universes. When /<1 the

1

- (1+ mATZ(Z—Sy)/(4—3y)r2)2

X[ —d7?+ A7 NE730(d 12+ 12 dO?)],

ds?

(52

wherem is a redefinition of the old integration constdft
the adiabatic indexy andr,. The last constant was intro-
duced by scaling the radial coordinateryr.

Proposed varieties of soft matter with<1 include cos-
mic string networkg[21], “K matter” [22], and quantum
zero-point field[23], all with y=2/3, as well as “QCDM”

(for “unknown cold dark matter) with =0.4 [1], and the
quintessencdor Q component with 0<y<1 [2]. Fluids
with values ofy less than 2/3 may be termed “inflationary
matter.” Equation(36) shows an evolution that corresponds
to this kind of matter.

These results illustrate how homogenization of a universe
dominated by matter that has negative pressure in the present
era may have occurred. A smooth unclustered dark matter
component with negative presure could reconcile a flat, or
nearly flat, universe with a density in clustered matter well
below the critical value, and moreover explain the recent
high redshift supernovae data suggesting that the universe is
currently under an accelerated expandia,25. For a per-
fect fluid negative presure leads to instabilities that are most
severe on the shortest scales. However, if instead the dark
matter is a solid, with an elastic resistance to pure shear
deformations, an equation of state with negative presure can
avoid these short wavelength instabilities. Such a solid may
arise as the result of different kinds of microphysics. Two
possible candidates for a solid dark matter component are a
frustrated network of non-Abelian cosmic strings or a frus-
trated network of domain walls. If these networks settle
down to an equilibrium configuration that gets carried along
and stretched by the Hubble flow, equations of state result
with y=1/3 andy=2/3, respectively. One expects the sound
speeds for the solid dark matter component to comprise an
appreciable fraction of the light speed. Therefore, the solid
dark matter does not cluster, except on the very largest
scales, accessible only through observing the cosmic back-
ground radiatiofCBR) anisotropy at large angléd].
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IV. ASYMPTOTIC EVOLUTION 2
TO A QUINTESSENCE-DOMINATED ERA y=3[1=NV@By-2)d] (62)

As a first stage of towards more general scenarios with a _ . .
slowly time varyingy, we will explore a model that evolves E?;ng’h_ozf/ §+ (7(/;1?/ 2ielfgé atr::%nss(i)sltghotna(sgr)ﬁ ;I;)rt]ii sr(])?l?t?ct)lr\ﬁor
towards an asymptotic FLRW regime dominated(ynatter the ran elg <Zy We note that this goll?tion describes a
(i.e., the scalar field We will show that this system ap- 9€5=7=3.

proaches to the constamnt solutions for large times found deflationary stage with a I|m|t|qg exponeat=1. .
above. In this regime Eq¢6) and (10) become Often, the power-law evolution of the scale factor is as-

sociated with logarithmic dependence of the scalar field on

) 1, proper time[26]. Thus, assuming that(7)=C In 7 with the
BH =pi+ 54"+ V(d)+A, (53)  constantC to be determined by the system of E¢53) and
(54), and using these expressions together with E2f.and
. . dV(¢) (45) in Egs.(53) and(54) it follows that
¢+3H¢+ —-—=0, (54)
¢ 32 C2 B
. —=—+V+—, (62
whereH=R/R and a dot meand/d in this section. From ? 27 "
these equations and E) it follows that
. (3a—1)C dV
: 1., 1 A T+@=0- (63
H==3¢"= 5t g (55
From Eqs.(62), (63) we obtain the leading term &f( ¢)
and for large ¢
2 ~ —Ag¢
Yo + . (56) V(4)=Voe (64)
(12 =+ V(o) and
In the last section we found that the general asymptotic 5 3y+2
solution for the scale factoR(7)<Ar* has the power-law A*=3y, Vo:mv (65)

behaviors(36), (44) for any value of the effective adiabatic

index y. Then, using these expressions and HGS) and for $<y<Z2, while

(45) together with Egs(53) and (55) in Eq. (56), the latter

becomes Azzg(—4+3?’)(—1+ )

17— 42y+ 272

2 1-3ayipiATI2(3a’—B)

=— , 5
YoT3a T - piA 7% (3% B) ®7) | 2(—14+15y) (17— 42y+27y%) 66
where © 3(—1+y)(—4+3y?7
3y 3(2—37y)2 1 2 for_ %<?’<_1- Ins_erting the dominan_t value of the effective
a= ) = > 1 2<7r<3]| adiabatic index in Eqg65), (66) we findA?=2, V,=2 and
2(3y-1) 4(1-3y?2" 13 ° 3 C=1/2.

(58) The models considered in this section are based on the

5 notion of “late time dominating field”(LTDF), a form of

o= 6(1—-v) __242-3y (2<y<1). quintessence in which the fielé rolls down a potential
4-3y (4—37y)? V(¢) according to an attractor solution to the equations of

(59 motion. This solution is an attractor since for a very wide

range of initial values foM, ¢ and£z> it rapidly approaches
f common evolutionary path, i.e., the late behavior is insen-
sitive to the initial conditions. This model has an advantage

To investigate the asymptotic limit in which the energy of
the scalar field dominates over the contribution of the perfec

fluid we assume thatd@y;> 2. In this regime the two terms similar to inflation in that for a wide range of initial condi-

in Eq. (57) proportional to the energy densipy are positive tions the universe is driven to the same final evolution. The

and neglegible. The adiabatic scalar field index can be ap-_.. ; .
proximated by ratio o of the background fluid to the field energy changes

steadily as¢ proceeds down its path. This is desirable be-

34 cause in that way th® matter ultimately dominates the en-
V6= 3, 1+(1_ TU) , (600  ergy density and drives the universe toward an accelerated
expansion.
whereo=p;/p,<1. Inserting these equations in £§) we Recently Ferreira and Joy¢27] proposed a model based
obtain the first correction to the effective adiabatic index foron an exponential potential. Their self-adjusting solutions are
the solutiong58) attractors and(}, remains constant for a constant back-
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ground equation of state ag,=y;. (Q, changes slightly Provided y+2/3. Inserting Eqs(68) and (67) in Egs. (21),
when the universe shifts from radiation-dominated to matter{15), and(16) it follows that
dominated expansionThis means, for example, thék, is gt 2
constant throug.hout the matter—domlnatgd epoch. Fpr a Ccong — 4k 2 ex;{ZJ dt w) 3w4( J _)
stant(}, to satisfy the structure formation constraints re- w?
quires() 4,<0.2 and(2;>0.8. This, however, runs into con- )
flict with the current best estimates 6f; and produces a 4w? , [ dt) [dt 2w? , [ dt
decelerating universe at variance with recent supernovae ob- +7 fdtW J'@ V?JFT fdtw f\,?
servationg24,25.

By contrast, our LTDF model only requires that the po- dt
tential has an asymptotic exponential shape for labg&o, —GJ' dthf w2

: (70)

the interesting and significant features of our model (aje
like the self-adjusting case, a wide range of initial conditions
are drawn towards a common evolution; howewg), the q,(r,t)=—4K3w exp<3f dtw)
LTDF solutions do not “self-adjust” to the background

equation of state but rather, maintain some finite difference dt

in the equation of state such that the field energy eventually x( — 2] dt sz —+ r?
dominates and the universe enters a period of acceleration. w
Compared to the self-adjusting model, ours does not require

any additional parameter and allows a much wider range of Though we have reduced the general coupled system of
potentials, provided they have an exponential tail. LTDF sofduations to quadratures, it is very involved to obtain the
lutions exist for a very wide class of potentials. The energySolution in closed form except for constapt This is why
density of the field decreases BS2, and this power law the next subsection focus on approximated solutions assum-
remains unchanged in every epoch of the universe when tHB9 thaty(t) admits an analytic expansion.

background expansion turns from radiation- to matter- to Homogenization with a varying adiabatic indebhe tran-
quintessence-dominated. The value yof differs from the sition previously described from one epoch to the ngxt, as-
background equation of state such that the valu€ gfin- sumed to be gentle, may be modeled by a homographic func-
creases as the universe ages. Hefigegrows to order unity 10N y()=(At+B)/(Ct+D) where A B, C, and D are

2
(7D

late with time. constantg28]. With this in mind, we next investigate two
kind of behaviors for the fluid components that lead to a final
V. GENERAL SOLUTION FOR A TIME-DEPENDENT homogeneous stage characterizedvihft) —0. These can be
ADIABATIC INDEX associated with two asymptotic evolutions ).
(1) In the limit t—0 we assume thay(t) has a Taylor

A time-varying vy is very natural because different matter

components redshift at various rates. Then the questioﬁXpanS'on

arises whether the conditions leading to homogenization we B A B
have found with constany also hold wheny varies with Y(t) = yort vt + O(t?), Y=g YuTp T o
time. The rationale behind this approach is the following. D
When different components enter the stress-energy tensor of (72

the cosmic medium, it is natural to expect that each epoch g, vo1=B/D and y;;=(AD '—BD"2). Then, for yo
dominated by the energy density of just a single component, »/3 \ve find that ’

with a constant, or nearly constant, adiabatic index, &gy

The other components can be regarded as small perturba- Kt 3yt

tions. As the universe expands, sooner or later, the compo- M(t)= Gl 2_3701”‘”0“2) , (73
nent with the adiabatic index inmediately lower thgp (say
vo2) takes over, and a new epoch begins. and that the first corrections to Eq83) and (40) vanish as
We start by giving the general solution to E¢$9) and  tInt, while the first correction to Eq38) is of higher order.
(20) when vy is a function of time (2) In the limit t—o we assume fory(t) the expansion
- Y12 _ B A
b_eXF<f dtw)’ 67 YO =yort —— +O(t %), v=AIC, YI2TE T
C
dt (74
__ 2 -
a=-2 exp{f dtw)f dtw w2’ (68) obtaining for yg,# 2/3
where 3 6y, Int
M(t)=——=|1+ —+0o@t™h|. 75
, (h=-5 |1t 55, - +Ot™H. (79
W= —+, (69 . , ,
dt(2—3+) In this case the first corrections to Eq42), (45), and(46)
Y vanish as In/t.
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These results show that homogenization occurs under thated to scalar fields with the Liouville fornfexponential
same conditions for both, as it does for constang for a  potential. It arises as an effective potential in many theories
wide range of evolutions of the adiabatic index, provided itsuch as Jordan-Brans-Dicke theory, Salam-Sezgin theories
has a constant limityy; and yg, for t—0 andt—o, repec- and superstring theories. Indeed, most theories undergoing

tively, and is analytic about these points. dimensional reduction to an effective four-dimensional
theory, result in a linear combination of exponential poten-
VI. CONCLUDING REMARKS tials, and one of these will eventually dominate.

This work can be generalized in different directions. The

We have investigated a class of solutions of the Einsteifygre obvious one is to allov andy to depend on position
field equations with a variable cosmological term, heat flowgo, put this seems analytically impracticable. A less hard
and a fluid with variable adiabatic index that includes thosgyossibility is to consider nonflat spatial sections. This is in-
of Modak, Bergmann, and Maiti and contains a new exacteresting since although the location of the first acoustic peak
conformally flat solution. We have also considered the conip the angular power spectrum of the CBR suggests a flat
tribution of a homogeneous minimally coupled scalar field toynjverse, its exact position is still uncertd2g]. Therefore it
the stress-energy tensor. The solutions of the EKG systemyay well happen that the universe is open or even closed.
that lead to an asymptotic FLRW stage were analyzed whepgain the difficulty with the corresponding analysis is basi-
the adiabatic index remains constant. We have found thata|ly mathematic since it is doubtful that in this more general
asymptotically expanding universes occur when<l48<1  case the EKG field equations admit analytical solutions. A
that homogenizes for large cosmological time with vanishingseemingly less involved generalization is to include a bulk
cosmological term and heat flow. For #3<2/3 the evo-  (jssipative pressure in the stress-energy teridpr some-
lution is given by Eq.(36) and corresponds to a power-law thing rather natura[30]. Its effect should tend to further
accelerated expansion for large cosmological times fol-  accelerate the expansion, as it lowers the total pressure of the
lows from Eg.(34). On the other hand, when 28y<1  cosmic fluid. The problem with this is the lack of fully reali-
even though an asymptotic negative cosmological term ocaple expressions for the coefficient of bulk viscosity of the
curs, the universe evolves toward a decelerated expansiofiids involved in the hydrodynamic description. However,
The particular casg= 1/3 leads asymptotically to a de Sitter in this regard the situation is no worse than that encountered
universe with a finite limit forA. We have shown that these in inflationary scenarios in which potentials for the scalar
results also apply to a time dependent adiabatic index.  field are frequently proposed with no obvious physical

We have carried out a detailed analysis of a model inground.
which Q matter dominates over cold dark matter. This LTDF
solution is an attractor because, even for large initial inho-
mogeneities and a wide range of initial values fprand ¢,
the evolution approaches a common path. It was shown that
this model can be realized for a wide range of potentials This work was partially supported by the Spanish Minis-
provided they have an exponential tail. This is quite interestiry of Education under Grant No. PB94-0718, and the Uni-
ing because recently, there has been increasing activity rerersity of Buenos Aires under Grant No. TX-93.
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