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Inhomogeneous cosmologies withQ matter and varying L
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Starting from the inhomogeneous shear-free Nariai metric we show, by solving the Einstein-Klein-Gordon
field equations, how a self-interacting scalar field plus a material fluid, a variable cosmological term, and a heat
flux can drive the universe to its currently observed state of homogeneous accelerated expansion. A quintes-
sence scenario where power-law inflation takes place for a string-motivated potential in the late-time domi-
nated field regime is proposed.@S0556-2821~99!09018-9#
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I. INTRODUCTION

The theory of general relativity implies that the larg
scale geometry and evolution of the Universe is dictated
its content of matter and fields, including energy flux
shear stresses, particle production, and so on. Recently,
have been claims in the literature that the Universe, bes
its content in normal matter and radiation, must possess a
yet identified component~usually called quintessence matte
Q matter for short! @1–4#, characterized by a negative pre
sure, and possibly a cosmological term which may be c
stant or not@5,6#. These claims were prompted at the re
ization that the clustered matter component can accoun
most for one third of the critical density. Therefore, an ad
tional ‘‘soft’’ ~i.e., nonclustered! component is needed if th
critical density predicted by many inflationary models is
be achieved.

Very often the geometry of the proposed models is v
simple, just Friedmann-Lemaıˆtre-Robertson-Walker
~FLRW!, partly because of mathematical simplicity, a
partly because they deal with not very early stages of cos
evolution. However, up to now no convincing argument h
been avanced to the effect that the geometry of the very e
Universe~say, some time before nucleosynthesis! could not
have been either anisotropic or inhomogeneous, or b
Note that it is very natural to assume the geometry at
primeval epoch more general than just FLRW. Moreov
recently it has been demonstrated that given any spheric
symmetric geometry and any set of observations, evolu
functions for the sources can be found that will make
model compatible in general with observation@7#. Further
motivations to study the evolution of inhomogeneous cosm
logical models can be found in Refs.@8# and@9#. In constrast
to FLRW models, inhomogeneous spaces are in gen
compatible with heat fluxes, and these might imply import
consequences such as inflation@10# or the avoidance of the
initial singularity @11#. Here we focus on an isotropic bu
inhomogeneous spherically symmetric universe which
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sides a material fluid contains a self-interacting scalar fi
~which can be interpreted asQ matter!, and a cosmologica
term, L which, in general, may vary with time. As it turn
out the homogenization of the Universe at large times
pends very much on the value the effective adiabatic in
g, defined below@Eq. ~5!#, takes. When more generally th
quantity varies with time, homogenization can also
achieved under rather ample conditions.

Obviously, density inhomogeneities triggered by gravi
tional instability must be present at any stage of evoluti
even when the universe has reached a near homogen
state describable in the mean by the FLRW metric, i.e.,
average homogeneous universe housing growing as we
decaying density perturbation modes, the former lead
eventually to the formation of the cosmic structures we o
serve today. About the evolution of scalar~i.e., density! in-
homogeneities there is a rather large and still growing bo
of literature~see, e.g., Ref.@12#, and references therein! but
we shall not deal with them as they lie outside the m
focus of this paper. We only mention that the negative pr
sure associated toQ matter andL will tend to slow down the
growing modes~see, e.g., Refs.@1,12,13#!, and shift the ep-
och of matter-radiation equality toward more recent tim
@14#. A detailed study of all this will be the subject of
future work.

Section II presents the basic equations. Section III sol
the Einstein-Klein-Gordon~EKG! field equations assuming
g ~but notL) a constant. Section IV studies the asympto
evolution toward aQ-matter dominated era. Section V solve
the EKG equations wheng is a function of time. Finally,
Sec. VI summarizes the findings of this paper. Units ha
been chosen so thatc5G51.

II. EINSTEIN-KLEIN-GORDON FIELD EQUATIONS

Let us consider a shear-free spherically symmetric spa
time with metric@15#

ds252A~ t,r !2dt21B~ t,r !2@dr21r 2 dV2#,

where as usualdV2[du21sin2 u df2. For later purposes we
introduce the functionsF(t,r )[1/B(t,r ) and v(t,r )[AF.
Thus, the line element assumes the more convenient for
©1999 The American Physical Society01-1
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CHIMENTO, JAKUBI, AND PAVÓN PHYSICAL REVIEW D 60 103501
ds25
1

F~ t,r !2
@2v~ t,r !2dt21d r21r 2dV2#. ~1!

As sources of the gravitational field we take: a fluid
material energy densityr f5r f(r ,t), hydrostatic pressurepf
5pf(r ,t), with a radial heat flow„qr5qr(r ,t) and qt5qu
5qf50…, plus a cosmological term, related to the ener
density of vacuum byL58prvac, that depends only on time
L5L(t), and a self-interacting scalar fieldf driven by the
potentialV(f). Taking the scalar field to depend only ont,
its energy-momentum tensor may be written in the perf
fluid form

Tik5~pf1rf!uiuk1pfgik , ~2!

whereui5f ,i /A2f ,lf
,l together with

rf52
1

2
f ,lf

,l1V~f!,

pf52
1

2
f ,lf

,l2V~f!. ~3!

The fluid interpretation of the scalar field, while not compu
sory, has proven very useful in the study of the inflationa
phase and reheating of the universe—see, for instance, R
@16# and@17#. In particular it leads us to consider its equati
of statepf5(gf21)rf . Hence the scalar field can be in
terpreted asQ-matter since, depending onV(f), gf may be
lower than 1, see, e.g., Ref.@3#. The stress energy-tensor o
the normal matter, with a heat flow, plusQ matter ~scalar
field! and the cosmological term is

Tk
i 5~r f1rf1pf1pf!uiuk1~L2pf2pf!dk

i 1qiuk1qku
i ,

~4!

where the comoving four-velocity is normalized so th
uiui521, with ui5d t

i(gtt)
21/2, and henceut5F/v. Obvi-

ously the heat flow is orthogonal toui ~i.e. qiui50). As
equation of state for the fluid we choosepf5(g f21)r f
whereg f is a function oft and r. Taking into account the
additivity of the stress-energy tensor it makes sense to c
sider an effective perfect fluid description with equation
statep5(g21)r wherep5pf1pf , r5r f1rf and

g5
g fr f1gfrf

r f1rf
, ~5!

is the overall~i.e., effective! adiabatic index.
The requirement that the cosmological termL is just a

function of t leads to the restriction thatg also depends only
on t to render the system of Einstein equations integra
The nice result we are seeking is a solution that has
asymptotic FLRW stage, withL evolving towards a con-
stant, and the heat flow vanishing in that limit.

For the metric ~1! the Einstein-Klein-Gordon~EKG!
equations are

12x F82212F F828 xF F923
Ḟ2

v2
1r1L50, ~6!
10350
y
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12x F8228 F F823
Ḟ2

v2
22

F Ḟ v̇

v3
12

F F̈

v2
14

F2 v8

v

28
xF F8 v8

v
2p1L50, ~7!

12x F8228 F F828 xF F923
Ḟ2

v2
22

F Ḟ v̇

v3
12

F F̈

v2

28
xF F8 v8

v
14

F2 v8

v
14

xF2v9

v
2p1L50, ~8!

28
xF2Ḟ v8

v2
18

xF2Ḟ8

v
1qr50, ~9!

f̈22
Ḟ

F
ḟ1

1

F2

dV

df
50, ~10!

where x5r 2, an overdot means]/]t, and a prime means
]/]x. We thus have five equations and seven unknow
(F, v, r, p, f, qr , andL). Hence two more equation
are needed to render the system determinate. These ar
above equation of state relatingr and p and the condition
]L/]x50.

From Eqs.~7! and ~8! we get

v9

v
52

F9

F
, ~11!

then using the ansatzF5@a(t)1b(t)x#k and v5@c(t)
1d(t)x#n in Eq. ~11! we find that the constraintsn(n21)
52k(k21) anda(t)d(t)5b(t)c(t) must be satisfied. Nex
we study the simplest case, namelyn5k51. This is the
most interesting instance because the functio
a(t), b(t), c(t), andd(t) can be chosen freely. Another s
of solutions can be obtained if the relationshipvxx /v
52@n(t)#2 is assumed in Eq.~11!. These solutions are pres
ently under study and we shall report on them in a futu
paper.

Einstein equations with time-dependentL and g. When
n5k51 we obtain a set of solutions that contains those
Modak (b50) @18#, Bergmann (c5a,d5b) @19# and Maiti
(b5d5ka/4, with k50,61) @20#. Another possibility
arises whend50. This solution can be also obtained fro
the metric ~1! by imposing this metric be conformal t
Minkowski’s. Namely, the integrability of the transformatio
2v dt1dr5dh andv dt1dr5ds leads tov5v(t) andn
5k51. This allows us to redefine the time byv dt→dt.
Then the metric~1! becomes

ds25
1

@a~ t !1b~ t !r 2#2
~2d t21d r21r 2 dV2!, ~12!

and Eqs.~6!, ~7!, and~9! turn into

r1L512ab13ȧ216ȧḃx13ḃ2x2, ~13!
1-2
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p2L5~2bb̈23ḃ2!x212~2b223ȧḃ1ab̈1äb!x28ab

23ȧ212aä, ~14!

and

qr524Axḃ~a1bx!2, ~15!

respectively. We next impose thatL depends solely on time
so it must have the form

L~ t !512ab13ȧ21 f ~ t !, ~16!

where f (t) is a function to be determined. Then, Eqs.~13!
and ~14! imply

r~x,t !56ȧḃx13ḃ2x22 f ~ t !, ~17!

p~x,t !5~2bb̈23ḃ2!x212~2b223ȧḃ1ab̈1äb!x14ab

12aä1 f ~ t !. ~18!

We further impose the equation of statep5(g21)r. Taking
into account thata andb depend only on time, and equatin
the coefficients of same power ofx we obtain a set of equa
tions to determinea, b, andf

bb̈2
3

2
gḃ250, ~19!

ä23g
ḃ

b
ȧ1

3g

2

ḃ2

b2
a522b, ~20!

f 52
2a

g
~2b1ä!. ~21!

To show the conditions that lead asymptotically to
FLRW metric it is expedient to introduce the time coordina
dt5dt/a. Thus Eq.~1! becomes

ds25
1

~11Mr 2!2
@2dt21R2~dr21r 2 dV2!#, ~22!

where M5b/a and R51/uau. This metric is conformal to
FLRW, and the conformal factor approaches unity whenM
→0.

III. CONSTANT ADIABATIC INDEX

Wheng is a constant different from 2/3, the general s
lution of Eqs.~19! and ~20! becomes

b~ t !5KDt2/(223g), ~23!

a~ t !5C1Dt22/(3g22)1C2Dt23g/(3g22)

2
1

3
KDt6(g21)/(3g22), ~24!

thereby
10350
-

M ~ t !5KS C11C2Dt212
1

3
KDt2D 21

. ~25!

Whereas forg52/3, we get

b~ t !5KeCDt, ~26!

a~ t !5~C11C2Dt2KDt2!eCDt, ~27!

and

M ~ t !5K~C11C2Dt2KDt2!21, ~28!

whereK, C, C1, andC2 are arbitrary integration constant
andDt5t2t0 with t0 some initial time. Inserting Eqs.~24!,
~23!, ~26!, and~27! in Eqs.~21!, ~15!, and~16! we get

L~ t !52
8

3
K2Dt2(3g24)/(3g22)112C1KDt24/(3g22)

116C2KDt2(3g12)/(3g22)13C2
2Dt24(3g21)/(3g22),

~29!

and

qr~r ,t !5
8KrDt23g/(3g22)

9~3g22!
@3C2Dt23g/(3g22)

13~C11Kr 2!Dt22/(3g22)2KDt6(g21)/(3g22)#2,

~30!

for gÞ2/3, and

L~ t !5~3C2
2112KC1!e2CDt, ~31!

qr~r ,t !524Kr @C11C2Dt1K~r 22Dt2!#2e3CDt,
~32!

for g52/3. In the following we analyze the asymptotic b
havior of these solutions in the limits fort such thatM→0.
We note by passing that in theM→0 limit the time coordi-
natet becomes the cosmological time, as can be seen f
Eq. ~22!. Two alternatives of asymptotically expanding un
verses appear depending on the map betweent andt equa-
tions ~34!, ~35! and ~43!, ~48! below.

CaseDt→0. In this limit we obtain

a.C2Dt3g/(223g), ~33!

Dt.
223g

2C2~123g!
Dt2(123g)/(223g) ~gÞ1/3!, ~34!

Dt.
1

C2
ln Dt ~g51/3!, ~35!

R~t!.
1

uC2u F2C2~123g!

223g
DtG3g/2(3g21)

~gÞ1/3!,

~36!

R~t!.
1

uC2u
e2C2Dt ~g51/3!, ~37!
1-3
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L~t!.
3~223g!2

4~123g!2Dt2
~gÞ1/3!, ~38!

L.3C2
2 ~g51/3!, ~39!

qr~r ,t!.
8KC2

3g22
r F2C2~123g!

223g
DtG9g/2(123g)

~gÞ1/3!,

~40!

qr~r ,t!.28KC2
2re3C2Dt ~g51/3!. ~41!

When 1/3,g,2/3 we have, for large cosmological timet,
an accelerating universe that homogenizes with vanish
cosmological term and heat flow. In this stage we may de
an asymptotic adiabatic index by equating the exponen
Eq. ~36! to 2/(3gasy), i.e., g54/3 (423gasy). In this range
one has 1,gasy,` leading to a final power-law expansio
era. Forg51/3 the map betweent and t changes and we
have an asymptotically de Sitter universe with finite lim
cosmological term. For the remaining values ofg the uni-
verse begins at a homogeneous singularity with a diverg
cosmological term. Wheng,1/3, the heat flux asymptoti
cally vanishes near the singularity, while forg.2/3 it di-
verges.

CaseDt→`. In this limit we obtain

a.2
1

3
KDt6(g21)/(3g22), ~42!

Dt.
3

K

223g

423g
Dt (2413g)/(223g), ~43!

R~t!.2
3

K FK~423g!

3~223g!
DtG6(12g)/(423g)

, ~44!

L~t!.2
24~223g!2

~423g!2Dt2
, ~45!

qr~r ,t!.224
~223g!2

~423g!3

r

Dt3
, ~46!

for gÞ2/3, and

a.2KDt2eCDt, ~47!

Dt.e2CDt, ~48!

R~t!.2CDt, ~49!

L~t!.
~3C2

2112KC1!

Dt2
, ~50!

qr~r ,t!.2
4K3r

C3Dt3
~ ln Dt!4, ~51!

for g52/3.
In this case the asymptotic adiabatic index is given byg

5(9gasy24)/(9gasy23) and we have two alternatives fo
asymptotically expanding universes. When 2/3<g<1 the
10350
g
e
in

nt

universe homogenizes for large cosmological time with v
ishing cosmological term and heat flow. We note that ev
though an asymptotic negative cosmological term occurs,
universe ends in a power-law evolutionR}Dta with 0,a
,1. Wheng51, the late time evolution changes to an a
ymptotically Minkowski stage. For 1,g,4/3 the universe
starts homogeneously in the remote past with a vanish
scale factor, cosmological term and heat flow. For the
maining values ofg the universe begins at a homogeneo
singularity with a divergent cosmological term.

An exact solution with explicit dependence on th
asymptotic cosmological timet can be found when the inte
gration constantsC1 and C2 vanish. In such a case eac
approximate expression~42!–~46! becomes an equality an
the metric reduces to

ds25
1

~11mDt2(223g)/(423g)r 2!2

3@2dt21Dt12(12g)/(423g)~d r21r 2 dV2!#,

~52!

wherem is a redefinition of the old integration constantK,
the adiabatic indexg and r 0. The last constant was intro
duced by scaling the radial coordinater→r 0r .

Proposed varieties of soft matter withg,1 include cos-
mic string networks@21#, ‘‘ K matter’’ @22#, and quantum
zero-point field@23#, all with g52/3, as well as ‘‘QCDM’’
~for ‘‘unknown cold dark matter’’! with .0.4 @1#, and the
quintessence~or Q component! with 0,g,1 @2#. Fluids
with values ofg less than 2/3 may be termed ‘‘inflationar
matter.’’ Equation~36! shows an evolution that correspond
to this kind of matter.

These results illustrate how homogenization of a unive
dominated by matter that has negative pressure in the pre
era may have occurred. A smooth unclustered dark ma
component with negative presure could reconcile a flat,
nearly flat, universe with a density in clustered matter w
below the critical value, and moreover explain the rec
high redshift supernovae data suggesting that the univers
currently under an accelerated expansion@24,25#. For a per-
fect fluid negative presure leads to instabilities that are m
severe on the shortest scales. However, if instead the
matter is a solid, with an elastic resistance to pure sh
deformations, an equation of state with negative presure
avoid these short wavelength instabilities. Such a solid m
arise as the result of different kinds of microphysics. Tw
possible candidates for a solid dark matter component a
frustrated network of non-Abelian cosmic strings or a fru
trated network of domain walls. If these networks set
down to an equilibrium configuration that gets carried alo
and stretched by the Hubble flow, equations of state re
with g51/3 andg52/3, respectively. One expects the sou
speeds for the solid dark matter component to comprise
appreciable fraction of the light speed. Therefore, the so
dark matter does not cluster, except on the very larg
scales, accessible only through observing the cosmic b
ground radiation~CBR! anisotropy at large angles@4#.
1-4
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IV. ASYMPTOTIC EVOLUTION
TO A QUINTESSENCE-DOMINATED ERA

As a first stage of towards more general scenarios wi
slowly time varyingg, we will explore a model that evolve
towards an asymptotic FLRW regime dominated byQ matter
~i.e., the scalar field!. We will show that this system ap
proaches to the constantg solutions for large times found
above. In this regime Eqs.~6! and ~10! become

3H2.r f1
1

2
ḟ21V~f!1L, ~53!

f̈13Hḟ1
dV~f!

df
.0, ~54!

whereH5Ṙ/R and a dot meansd/dt in this section. From
these equations and Eq.~3! it follows that

Ḣ52
1

2
ḟ22

1

2
g fr f1

L̇

6H
~55!

and

gf5
ḟ2

~1/2!ḟ21V~f!
. ~56!

In the last section we found that the general asympt
solution for the scale factorR(t)}Dta has the power-law
behaviors~36!, ~44! for any value of the effective adiabati
index g. Then, using these expressions and Eqs.~38! and
~45! together with Eqs.~53! and ~55! in Eq. ~56!, the latter
becomes

gf5
2

3a

123ag fr fDt2/2~3a22b!

12r fDt2/~3a22b!
, ~57!

where

a5
3g

2~3g21!
, b5

3~223g!2

4~123g!2
, S 1

3
,g,

2

3D ,

~58!

a5
6~12g!

423g
, b52

24~223g!2

~423g!2
, ~ 2

3 ,g,1!.

~59!

To investigate the asymptotic limit in which the energy
the scalar field dominates over the contribution of the per
fluid we assume that 3ag f.2. In this regime the two terms
in Eq. ~57! proportional to the energy densityr f are positive
and neglegible. The adiabatic scalar field index can be
proximated by

gf.
2

3a F11S 12
3g f

2
s D G , ~60!

wheres5r f /rf!1. Inserting these equations in Eq.~5! we
obtain the first correction to the effective adiabatic index
the solutions~58!
10350
a

ic

ct

p-

r

g.
2

3
@16A~3g f22!s# ~61!

and g.2/31g fs/2 for the solution ~59!. The negative
branch of Eq.~61! yields a consistent asymptotic solution fo
the range1

3 ,g, 2
3 . We note that this solution describes

deflationary stage with a limiting exponenta51.
Often, the power-law evolution of the scale factor is a

sociated with logarithmic dependence of the scalar field
proper time@26#. Thus, assuming thatf(t).C ln t with the
constantC to be determined by the system of Eqs.~53! and
~54!, and using these expressions together with Eqs.~38! and
~45! in Eqs.~53! and ~54! it follows that

3a2

t2
.

C2

2t2
1V1

b

t2
, ~62!

~3a21!C

t2
1

dV

df
.0. ~63!

From Eqs.~62!, ~63! we obtain the leading term ofV(f)
for largef

V~f!.V0e2Af ~64!

and

A253g, V05
3g12

3g~3g21!
, ~65!

for 1
3 ,g, 2

3 , while

A253
~2413g!~211g!

17242g127g2
,

V05
2~214115g!~17242g127g2!

3~211g!~2413g!2
, ~66!

for 2
3 ,g,1. Inserting the dominant value of the effectiv

adiabatic index in Eqs.~65!, ~66! we find A252, V052 and
C51/A2.

The models considered in this section are based on
notion of ‘‘late time dominating field’’~LTDF!, a form of
quintessence in which the fieldf rolls down a potential
V(f) according to an attractor solution to the equations
motion. This solution is an attractor since for a very wi

range of initial values forM, f and ḟ it rapidly approaches
a common evolutionary path, i.e., the late behavior is ins
sitive to the initial conditions. This model has an advanta
similar to inflation in that for a wide range of initial cond
tions the universe is driven to the same final evolution. T
ratio s of the background fluid to the field energy chang
steadily asf proceeds down its path. This is desirable b
cause in that way theQ matter ultimately dominates the en
ergy density and drives the universe toward an acceler
expansion.

Recently Ferreira and Joyce@27# proposed a model base
on an exponential potential. Their self-adjusting solutions
attractors andVf remains constant for a constant bac
1-5
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CHIMENTO, JAKUBI, AND PAVÓN PHYSICAL REVIEW D 60 103501
ground equation of state asgf5g f . (Vf changes slightly
when the universe shifts from radiation-dominated to mat
dominated expansion!. This means, for example, thatVf is
constant throughout the matter-dominated epoch. For a
stant Vf to satisfy the structure formation constraints r
quiresVf,0.2 andV f.0.8. This, however, runs into con
flict with the current best estimates ofV f and produces a
decelerating universe at variance with recent supernovae
servations@24,25#.

By contrast, our LTDF model only requires that the p
tential has an asymptotic exponential shape for largef. So,
the interesting and significant features of our model are~a!
like the self-adjusting case, a wide range of initial conditio
are drawn towards a common evolution; however,~b! the
LTDF solutions do not ‘‘self-adjust’’ to the backgroun
equation of state but rather, maintain some finite differe
in the equation of state such that the field energy eventu
dominates and the universe enters a period of accelera
Compared to the self-adjusting model, ours does not req
any additional parameter and allows a much wider range
potentials, provided they have an exponential tail. LTDF
lutions exist for a very wide class of potentials. The ene
density of the field decreases asR22, and this power law
remains unchanged in every epoch of the universe when
background expansion turns from radiation- to matter-
quintessence-dominated. The value ofgf differs from the
background equation of state such that the value ofVf in-
creases as the universe ages. Hence,Vf grows to order unity
late with time.

V. GENERAL SOLUTION FOR A TIME-DEPENDENT
ADIABATIC INDEX

A time-varyingg is very natural because different matt
components redshift at various rates. Then the ques
arises whether the conditions leading to homogenization
have found with constantg also hold wheng varies with
time. The rationale behind this approach is the followin
When different components enter the stress-energy tens
the cosmic medium, it is natural to expect that each epoc
dominated by the energy density of just a single compon
with a constant, or nearly constant, adiabatic index, sayg01.
The other components can be regarded as small pertu
tions. As the universe expands, sooner or later, the com
nent with the adiabatic index inmediately lower thang01 ~say
g02) takes over, and a new epoch begins.

We start by giving the general solution to Eqs.~19! and
~20! wheng is a function of time

b5expS E dt wD , ~67!

a522 expS E dt wD E dt w2E dt

w2
, ~68!

where

w5
2

E dt~223g!

, ~69!
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providedgÞ2/3. Inserting Eqs.~68! and ~67! in Eqs. ~21!,
~15!, and~16! it follows that

L54K2 expS 2E dt wD F3w4S E dt

w2D 2

1
4w3

g S E dt w2E dt

w2D E dt

w2
1

2w2

g S E dt w2E dt

w2D 2

26E dt w2E dt

w2G , ~70!

qr~r ,t !524K3rw expS 3E dt wD
3S 22E dt w2E dt

w2
1r 2D 2

. ~71!

Though we have reduced the general coupled system
equations to quadratures, it is very involved to obtain
solution in closed form except for constantg. This is why
the next subsection focus on approximated solutions ass
ing thatg(t) admits an analytic expansion.

Homogenization with a varying adiabatic index. The tran-
sition previously described from one epoch to the next,
sumed to be gentle, may be modeled by a homographic fu
tion g(t)5(At1B)/(Ct1D) where A, B, C, and D are
constants@28#. With this in mind, we next investigate two
kind of behaviors for the fluid components that lead to a fi
homogeneous stage characterized byM (t)→0. These can be
associated with two asymptotic evolutions ofg(t).

~1! In the limit t→0 we assume thatg(t) has a Taylor
expansion

g~ t !5g011g11t1O~ t2!, g015
B

D
, g115

A

D
2

B

D2
,

~72!

with g015B/D and g115(AD212BD22). Then, for g01
Þ2/3 we find that

M ~ t !5
Kt

C2
F12

3g11t

223g01
ln t1O~ t2!G , ~73!

and that the first corrections to Eqs.~33! and ~40! vanish as
t ln t, while the first correction to Eq.~38! is of higher order.

~2! In the limit t→` we assume forg(t) the expansion

g~ t !5g021
g12

t
1O~ t22!, g025A/C, g125

B

C
2

A

C2
,

~74!

obtaining forg02Þ2/3

M ~ t !52
3

t2 F11
6g12

223g02

ln t

t
1O~ t21!G . ~75!

In this case the first corrections to Eqs.~42!, ~45!, and ~46!
vanish as lnt/t.
1-6
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These results show that homogenization occurs under
same conditions for bothg0 as it does for constantg for a
wide range of evolutions of the adiabatic index, provided
has a constant limit,g01 andg02 for t→0 andt→`, repec-
tively, and is analytic about these points.

VI. CONCLUDING REMARKS

We have investigated a class of solutions of the Eins
field equations with a variable cosmological term, heat fl
and a fluid with variable adiabatic index that includes tho
of Modak, Bergmann, and Maiti and contains a new ex
conformally flat solution. We have also considered the c
tribution of a homogeneous minimally coupled scalar field
the stress-energy tensor. The solutions of the EKG sys
that lead to an asymptotic FLRW stage were analyzed w
the adiabatic index remains constant. We have found
asymptotically expanding universes occur when 1/3,g,1
that homogenizes for large cosmological time with vanish
cosmological term and heat flow. For 1/3,g,2/3 the evo-
lution is given by Eq.~36! and corresponds to a power-la
accelerated expansion for large cosmological timet, as fol-
lows from Eq. ~34!. On the other hand, when 2/3<g,1
even though an asymptotic negative cosmological term
curs, the universe evolves toward a decelerated expan
The particular caseg51/3 leads asymptotically to a de Sitte
universe with a finite limit forL. We have shown that thes
results also apply to a time dependent adiabatic index.

We have carried out a detailed analysis of a model
which Q matter dominates over cold dark matter. This LTD
solution is an attractor because, even for large initial in
mogeneities and a wide range of initial values forf and ḟ,
the evolution approaches a common path. It was shown
this model can be realized for a wide range of potent
provided they have an exponential tail. This is quite intere
ing because recently, there has been increasing activity
et
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lated to scalar fields with the Liouville form~exponential!
potential. It arises as an effective potential in many theor
such as Jordan-Brans-Dicke theory, Salam-Sezgin theo
and superstring theories. Indeed, most theories underg
dimensional reduction to an effective four-dimension
theory, result in a linear combination of exponential pote
tials, and one of these will eventually dominate.

This work can be generalized in different directions. T
more obvious one is to allowL andg to depend on position
too, but this seems analytically impracticable. A less h
possibility is to consider nonflat spatial sections. This is
teresting since although the location of the first acoustic p
in the angular power spectrum of the CBR suggests a
universe, its exact position is still uncertain@29#. Therefore it
may well happen that the universe is open or even clos
Again the difficulty with the corresponding analysis is ba
cally mathematic since it is doubtful that in this more gene
case the EKG field equations admit analytical solutions
seemingly less involved generalization is to include a b
dissipative pressure in the stress-energy tensor~4!, some-
thing rather natural@30#. Its effect should tend to furthe
accelerate the expansion, as it lowers the total pressure o
cosmic fluid. The problem with this is the lack of fully real
able expressions for the coefficient of bulk viscosity of t
fluids involved in the hydrodynamic description. Howeve
in this regard the situation is no worse than that encounte
in inflationary scenarios in which potentials for the sca
field are frequently proposed with no obvious physic
ground.
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