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Time-frequency detection of gravitational waves

Warren G. Anderson and R. Balasubramanian
Department of Physics, University of Wisconsin-Milwaukee, 1900 E. Kenwood, Milwaukee, Wisconsin 53201

~Received 24 May 1999; published 25 October 1999!

We present a time-frequency method to detect gravitational wave signals in interferometric data. This robust
method can detect signals from poorly modeled and unmodeled sources. We evaluate the method on simulated
data containing noise and signal components. The noise component approximates initial Laser Interferometric
Gravitational Wave Observatory~LIGO! interferometer noise. The signal components have the time and
frequency characteristics postulated by Flanagan and Hughes for binary black hole coalescence. The signals
correspond to binaries with total masses between 45M ( to 70M ( and with ~optimal filter! signal-to-noise
ratios of 7 to 12. The method is implementable in real time, and achieves a coincident false alarm rate for two
detectors'1 per 475 years. At this false alarm rate, the single detector false dismissal rate for our signal model
is as low as 5.3% at a signal-to-noise ratio of 10. We expect to obtain similar or better detection rates with this
method for any signal of similar power that satisfies certain adiabaticity criteria. Because optimal filtering
requires knowledge of the signal waveform to high precision, we argue that this method is likely to detect
signals that are undetectable by optimal filtering, which is at present the best developed detection method for
transient sources of gravitational waves.@S0556-2821~99!00622-0#

PACS number~s!: 04.80.Nn, 07.05.Kf, 07.05.Pj
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I. INTRODUCTION

According to Thorne@1#, gravitational wave~GW! as-
tronomy ‘‘will create a revolution in our view of the univers
comparable to or greater than that which resulted from
discovery of radio waves.’’ He further asserts that ‘‘wh
gravitational waves are finally seen, they will come predom
nantly from sources we have not thought of or we have
derestimated.’’ It follows that GW data analysis tools shou
include detection methods for poorly modeled and unm
eled signal waveforms.

However, at present the only well-characterized meth
being widely implemented for the detection of GWs fro
burst or transient sources is Wiener’s optimal filter@2#. This
is a natural choice for sources whose signal waveforms
theoretically well modeled, because it is the optimal line
detection algorithm for such waveforms@3#. Unfortunately,
the effectiveness of optimal filtering is greatly reduced
errors in the predicted signal waveform. Furthermore, e
small errors in GW source modeling can lead to large cum
lative errors in the predicted waveform@4#. Optimal filtering
is therefore a poor technique for inadequately modeled~or
unmodeled! sources. In fact, only two potential GW source
binary inspiral and black hole quasi-normal ringdown, a
thought to be adequately modeled for this method to wo
Clearly, a method whose effectiveness is only weakly dep
dent on~or perhaps independent of! prior knowledge of the
signal is needed. We call such methods ‘‘robust.’’

One class of robust techniques widely used for sig
analysis is time-frequency~TF! methods~cf. @5#!. The central
idea is straightforward: one simultaneously decomposes
data in two bases, time and frequency. The resulting dis
bution,r(t, f ), represents the energy of the data waveform
time t and frequencyf.

Time-frequency methods are well suited to analyzing
terferometric gravitational wave data. Since interferomet
are broadband instruments, the noise energy will be dist
uted throughout the TF plane. GWs, on the other hand,
0556-2821/99/60~10!/102001~12!/$15.00 60 1020
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caused by bulk motions of matter and energy, and their sp
tra tend to be peaked about characteristic frequencies d
mined by the source dynamics. GW signals may therefore
identified as ridges in the surfacer(t, f ). While preliminary
investigation of time-frequency methods for GW data@6–10#
show promise, to date we know of no complete TF detect
method that has been implemented and evaluated.

This article describes and evaluates a time-freque
method for interferometric GW data analysis. The meth
has three steps:

~1! Transform the interferometer data into a Wigner-Vil
TF distributionr(t, f ) ~described in Sec. II!.

~2! Search for ridges inr(t, f ) using Steger’s algorithm
~described in Sec. III!.

~3! Threshold on length of ridge to eliminate false alarm
We find this algorithm can reliably detect weak signals

simulated data with minimal assumptions about the signa
Our evaluation of the TF method~Sec. V! consists of

estimating false alarm and false dismissal probabilities fo
variety of signals. False alarm probabilities are estimated
applying the method to a large number of data segme
containing only simulated initial Laser Interferometr
Gravitational Wave Observatory~LIGO! detector noise and
simply counting detections. For false dismissal probabi
estimates, the same procedure is performed on data con
ing both simulated initial LIGO noise and simulate
intermediate-mass (22.5M (222.5M ( to 35M (235M ()
binary black hole coalescence~BBHC! waveforms. These
waveforms are an appropriate testing ground for rob
methods, since they are probably dominated by the po
understood merger signal. Furthermore, the recently disc
ered possible evidence of ‘‘middleweight’’ black hole
@11,12# implies that these may be important sources of GW
Flanagan and Hughes@13# have estimated the duration an
frequency band of the merger signal, and our test wavefo
are constructed to conform to these estimates~see the Ap-
pendix for details!. Thus, while our model waveform isnot
©1999 The American Physical Society01-1
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WARREN G. ANDERSON AND R. BALASUBRAMANIAN PHYSICAL REVIEW D60 102001
the correct signal for a BBHC, we believe it has the corr
general characteristics for our evaluation.

The results of our evaluation are promising. We obtai
false alarm rate of one per 3.4 hours in a single detector
approximately one per 475 years for coincident detection
the two LIGO 4 km detectors. Here, coincident means t
signals are detected in both detectors within a certain t
interval, orcoincidence window. The coincidence window is
taken to be 0.01 seconds~the light travel time between th
LIGO 4 km detectors!, since that is the maximum time in
terval between the arrival of a single gravitational wa
~which travels at the speed of light! at these two detectors
False dismissal rates vary with the signal-to-noise ra
~SNR! ~as measured by an optimal filter, cf.@2#! and binary
mass, but as an example we find that approximately 3%
signals are lost at an SNR of 11 for a 30M (230M ( BBHC.
Graphs showing false dismissal rates as a function of bin
mass for a range of SNRs and as a function of SNR fo
range of binary masses are presented in Sec. V. This
method is also computationally efficient; we are able to a
lyze data in these simulations at about twice the acquisi
rate of the simulated data.

While we are encouraged by these results, there is m
more research to be done. We have restricted our attentio
this paper to a single TF distribution~Wigner-Ville!, a single
ridge detection scheme~Steger’s algorithm!, and a single
thresholding scheme~ridge length!. For each of these ther
are a variety of choices available, and these choices nee
be explored and evaluated. We have also restricted our a
tion to only BBHC signal models, and only for a limite
binary mass range. While we feel that these are priority
gets for such a robust search method, there are other so
which should be investigated. A more complete descript
of these and other issues for future research are present
Sec. VI.

II. THE WIGNER-VILLE DISTRIBUTION

A. Time-frequency distributions

The central idea of TF methods is to convert time dom
data,h(t), into a time-frequency distribution~TFD! r(t, f ).
Here, the variablef labels the basis vectors in an alternati
basis which spans the Hilbert space to whichh(t) belongs
~i.e., alternative to a basis labeled byt). This alternative
basis is usually the frequency basis associated with the F
rier representation ofh(t), although it need not be~e.g.,
when wavelet bases are used!. Likewise, the meaning o
r(t, f ) varies, although it is usually associated in some w
with the squared magnitude ofh at time t and frequencyf.

Methods for constructingr(t, f ) can be divided into two
broad categories@14#: atomic decompositionssuch as win-
dowed Fourier transforms and wavelet transforms andbilin-
ear distributionsof the form

r~ t, f !5E E h~u!h* ~v !W~u,v;t, f !dudv ~2.1!

where the asterisk denotes complex conjugation and the
nel W satisfies
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E E W~u,v;t, f !dtd f5d~u2v !. ~2.2!

Both types of TFD might in principle be used to detect gra
tational waves.

The choice of a suitable TFD is governed by two requi
ments. The first is that the TFD must have good tim
frequency localization properties. By this we mean the f
lowing: if a signal written in the formh(t)5A(t)cosw(t)
@with w(t) a continuously differentiable monotonic function#
satisfies the adiabaticity conditions

A@ t1d~ t !#'A~ t !, ~2.3!

ẇ@ t1d~ t !#'ẇ~ t !, ~2.4!

where d(t) is defined byw@ t1d(t)#5w(t)12p for all t,
then it should give rise to a distributionr(t, f ) which has
support only in a small neighborhood of the curvef 5ẇ(t).
In other words, if the signal has a well defined frequency
each time, then the TFD should reflect that. This is requi
for a ridge detection algorithm to work well with the TFD
The second requirement is that the TFD be relatively in
pensive to compute. This makes real-time analysis of in
ferometer data feasible.

Gonçalves, Flandrin, and Chassande-Mottin@6# have in-
vestigated the localization properties of various TFDs wh
applied to binary inspiral chirp waveforms. They conclu
that bilinear distributions have superior localization prop
ties, and we therefore focus our attention on those. On
other hand, bilinear distributions can be computationally
pensive, depending on the choice of kernelW in Eq. ~2.1!.
The question, then, is whether there is a kernel for whichr
can be calculated efficiently.

B. The Wigner-Ville distribution

There is at least one choice of kernel which leads to
computationally efficient bilinear distribution with good lo
calization properties: theWigner-Ville distribution~WVD!
@15,16#

r~ t, f !5E
2`

`

h* S t2
t

2DhS t1
t

2Dei2p f tdt. ~2.5!

We will use the WVD , but note that it exhibits two feature
that might at first glance seem undesirable.

Both features are illustrated by considering a purely si
soidal signal,h(t)5sin(2pf0t). The WVD for thish(t) is

r~ t, f !5
1

4
@d~ f 2 f 0!1d~ f 1 f 0!22 cos~4p f 0t !d~ f !#.

~2.6!

First, note thatr(t, f ) does not have support only at the s
nusoid’s frequencyf 56 f 0, but also has an ‘‘echo’’ atf
50. The sum of two sinusoids h(t)5sin(2pf1t)
1sin(2pf2t) has further echoes atf 56( f 16 f 2). These
echos are due to the bilinearity of the distribution. Seco
observe that thisr(t, f ) attains negative values atf 50
1-2
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FIG. 1. The WVDs of~a! simulated initial LIGO noise and~b! a simulated signal and noise~optimal filter SNR58). In both cases, the
data is over-whitened~see Sec. V!. In this figure, the darkness of a pixel corresponds to the magnitude ofr(t, f ) in that pixel, with darker
pixels having higher values. Thus, a dark curve corresponds to a ridge in the distribution. In~b!, the signal, which is a model binary blac
hole coalescence waveform, is the dark structure in the bottom center~at about 0.2 sec! of the figure. The additional structure in the figure
is self interference due to the bilinearity of the Wigner-Ville distribution.
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whenever cos(4pf0t) is positive. Thus, it is not entirely cor
rect to think of ther(t, f ) as the squared magnitude of th
signal at a give time and frequency.

Despite this behavior, the WVD is well suited to o
method. We wish to look for ridges in the TF plane. Neg
tive values away from these ridges are of no consequenc
fact, throughout this paper we will adopt the convention
setting negative values ofr(t, f ) to 0. Also, since we are
interested only in detection here, and not in extracting inf
mation about the signal, it does not matter how many rid
there are in the TFD, it matters only that their existence
highly correlated with the presence of a signal and that t
be sharp. The WVD satisfies both these criteria.

C. Discrete implementation

While the discussion above has been couched in the
guage of functions of continuous variables, in practice i
necessary to calculate WVDs from discretely sampled d
hj5h( j Dt). This appears to present a minor dilemma, sin
Eq. ~2.5! contains expressions of the formh(t2t/2), which
when discretized becomehj 2k/2 . For interferometer data
this issue is easily dealt with, since the data will be sign
cantly (;10 times! oversampled. It is thus a simple matter
decimate these data to twice the time resolution required.
resample our simulated data so thathj[h(2 j Dt) accord-
ingly.

A second issue~also present in the continuous case! is
that in practiceh(t) is known only in a time interval 0<t
<T. This means thath(t2t/2) is undefined fort/2.t, and
likewise h(t1t/2) for t/2.T2t. In order to calculate Eq
~2.5! one must assign values toh(t) in the entire time inter-
val 2`<t<`. We therefore takeh(t)50 in the intervals
t,0 andt.T.
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Having resolved these issues, it is straightforward to c
culate the discrete analog of Eq.~2.5!

r jk5 (
l 52N/2

N/2

h( j 2 l /2)h( j 1 l /2)e
2p ikl /N, ~2.7!

whereN5T/Dt. This discrete distribution can be treated
a digital image, withj andk respectively denoting the hori
zontal and vertical pixel number. The value ofr jk denotes
the gray scale value, or equivalently height~i.e., z value!, of
the image in that pixel.

It is easy to estimate the computational efficiency of t
discrete WVD from Eq.~2.7!. For each value ofj, one does
a single multiplication~of negligible cost! and a Fourier
transform. The fast Fourier transform costsN log2(N) float-
ing point operations, and must be done for each ofN/2 pos-
sible values ofj. Thus, the cost of calculating the WVD i
approximately (N2log2N)/2.

Finally, note that for a data set withN samples the result
ing WVD hasN2/8 pixels (N/2 time intervals byN/4 posi-
tive frequency bins!. Images from large data sets therefo
quickly become unwieldy; for example the data sets we u
contained 4096 floats, leading to an image of 204831024
pixels. We therefore averaged over 4 pixel intervals in tim
and 2 pixel intervals in frequency to obtain a more wiel
image size of 5123512.

We end this section with an example of a discre
Wigner-Ville TFD. Figure 1 shows two WVDs: one of simu
lated initial LIGO noise and the other of a simulated BBH
waveform embedded in that same noise~see Sec. V A and
the Appendix for details!.
1-3
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III. STEGER’S RIDGE DETECTION ALGORITHM

A gravitational wave signal in interferometer datah(t)
should produce a ridge in the TFDr(t, f ). Therefore, to
detect GWs, a ridge detection algorithm@or equivalently line
detection algorithm ifr(t, f ) is represented as a gray-sca
map as in Fig. 1# is required. Fortunately, there are a numb
of ridge detection algorithms in the digital image process
and computer vision literature from which to choose@17#.

We use Steger’s second-derivative hysteresis-thres
algorithm@18#. The essential idea of this scheme is simple
ridge in a surface will have high curvature@second derivative
of r(t, f )# in the direction perpendicular to the ridge. Fu
thermore, the first derivative will vanish at the top of th
ridge, since it is a local maximum. Thus, ridges are identifi
as contiguous sets of point at whichr(t, f ) has a high-
curvature local maximum.

Steger’s algorithm, which identifies ridges in this wa
has a number of steps. First the TFDr(t, f ) is convolved
with a two-dimensional Gaussian smoothing kernel,

K~ t, f !5
1

2ps2
expH 2

1

2 F S t

stp
D 2

1S f

s f p
D 2G J , ~3.1!

where the dimensionless scale parameters allows the pref-
erential detection of ridges of width&stp or s f p , and the
parameterstp and f p are characteristic time and frequen
scales of the TFD@we usedtp54Dt and f p52/T, the time
and frequency resolution of the digitizedr(t, f )#. One then
takes the first and second derivatives of the convolution

H~ t, f !5E
2`

` E
2`

`

r~ t8, f 8!K~ t2t8, f 2 f 8!dt8d f8,

~3.2!

with respect to botht and f. The second derivatives are use
to find the eigenvectors (nt ,nf) of the Hessian matrix,

S ]2

]t2

]2

]t] f

]2

] f ]t

]2

] f 2

D H~ t, f !S nt

nf
D 5aS nt

nf
D . ~3.3!

At each point in thet- f plane, the eigenvector correspondin
to the largest eigenvalue magnitude,uau, defines the line in
the t- f plane along which the second derivative ofH(t, f )
obtains its extremal value. For points on a ridge, these v
tors will be normal to the curve described by the ridge in
t- f plane. If the first derivative ofH(t, f ) vanishes in this
direction,

S nt

]

]t
1nf

]

] f DH~ t, f !50, ~3.4!

then the point may be on a ridge. We call such points ‘‘p
tential ridge points.’’

If all potential ridge points were included in ridges, on
would find ridges everywhere in the TFD due to noise flu
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tuations, whether a signal was present or not. To avoid t
one thresholds on the value of the second derivative. H
ever, thresholding presents conflicting requirements. On
hand, if the threshold is too low, it will allow too many nois
ridges to be detected. On the other hand, if it is too hi
portions of a genuine signal ridge may be missed due
deviations below the threshold caused by noise. To impr
the detection of signal ridges while suppressing noise ridg
hysteresis thresholding is used. This means that there are
thresholds on the second derivative ofr, an upper threshold
which must be exceeded by any point at which a ridge
start, and a lower threshold, which must be exceeded
every point on the ridge.

Finally, ridges are identified as contiguous sets of pot
tial ridge points which meet the hysteresis thresholding
teria. Isolated potential ridge points are not defined to
ridges. Note that small gaps in a ridge will be ‘‘smeared ou
when the TFD is convolved with the Gaussian kernel. Th
gaps of less than a fews f p or stp are overlooked by this
algorithm, which decreases the probability of noise fluctu
tions breaking a signal ridge into many smaller ridges. C
versely, the minimum ridge length detected is also a fewstp
or s f p , eliminating many shorter noise ridges.

There are some further issues involved with implement
this algorithm on a digital image. Whent and f are replaced
by their discrete counterparts,t j and f k , the distribution
r jk5r(t j , f k) can be viewed as a piecewise constant fu
tion, having value r jk in the rectangle @ t j2(Dt/2),t j
1(Dt/2)#3@ f k2(D f /2),f k1(D f /2)#, where Dt5t j2t j 21
and D f 5 f k2 f k21, and vanishing outside the image~i.e.,
when j ,0 or k,0 and whenj .N or k.N). This piece-
wise constant function is then convolved with thecontinuous
Gaussian kernel. The convolution is equivalent to the su
mation

Hmn5(
j

(
k

r jkK ( j 2m)(k2n) , ~3.5!

where the convolution maskK ( j 2m)(k2n) is given by

K ( j 2m)(k2n)5E
t j 2tm2Dt

t j 2tm1DtE
f k2 f n2D f

f k2 f n1D f

K~ t, f !dtd f. ~3.6!

Rather than taking discrete derivatives ofH, the process can
be made more efficient by using masks built from the deri
tives ofK. By integrating Eq.~3.2! by parts, one may see tha
the same result can be derived by either process. Howe
while the derivatives ofH need to be calculated at each ste
the derivatives ofK can be calculated just once. Thus, alo
with Eq. ~3.6!, convolution masks are also made withK re-
placed by its first and second derivatives with respect tot and
f.

Another issue addressed by Steger’s algorithm is the
sitioning of potential ridge points. For a digital image, th
ridge will be composed of pixels within which the direction
derivative~3.4! vanishes. A one-dimensional example illu
trates the method used to determine whether Eq.~3.4! is
satisfied within a given pixel. Denote the one-dimensio
1-4
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image function byf (x). Approximatef (x) at a pointxj by
its second order Taylor series,

f ~x!' f j1
1

Dx
~ f j 112 f j 21!~x2xj !1

1

2~Dx!2
~ f j 211 f j 11

22 f j !~x2xj !
2, ~3.7!

where the coefficients are finite difference approximations
the derivatives off at xj andDx5xj 112xj . The derivative
of Eq. ~3.7! vanishes atx5xj1dx where

dx[2DxS f j 112 f j 21

f j 211 f j 1122 f j
D . ~3.8!

This is within the j th pixel if and only if xj2Dx/2,xj
1dx,xj1Dx/2. In that case,xj1dx is considered to be a
potential ridge point and thej th pixel is a ‘‘potential ridge
pixel.’’ One then joins ridge pixels~as before! to find the
ridge. The generalization to two dimensions is discusse
@18#.

IV. THE DETECTION METHOD

We have thus far described two of the three steps in
GW detection method: generation of WVDs from interfer
metric data and the search for ridges~signals! in them. If all
ridges corresponded to GW signals, the existence of a r
would be an adequate detection statistic and these two s
would be sufficient. However, even after hysteresis thre
olding ~see Sec. III!, stochastic detector noise will lead t
spurious ridges in the WVD. This may be exacerbated if
noise is non-stationary and/or non-Gaussian, in which c
signal ridges and noise ridges might have very similar ch
acteristics. A more powerful statistic can be devised
thresholding on ridge characteristics which are more stron
correlated with signal ridges than with noise ridges.
course, the more specific the threshold is to the signal,
less robust the detection technique will be.

Ridge length~i.e., the number of pixels in a ridge! is one
characteristic which distinguishes signal ridges from no
ridges in stationary Gaussian noise. Since the noise is
chastic, it will produce a distribution of ridge lengths, wi
short ridges being more frequent than longer ones~e.g., see
Fig. 3!. The ridge length of a signal is~approximately! de-
termined by the signal’s duration and frequency band. T
ridge length is more strongly correlated with signal ridg
than noise ridges, and setting a minimum ridge length thre
old can further improve the detection statistic. Also, note t
this thresholding is not so specific as to undermine the
bustness of the TF method. For these reasons, we use
length as a threshold.

Our complete TF detection method consists of the follo
ing steps:

~1! Construct the Wigner-Ville distributionr(t, f ) of the
detector outputh(t) as per Sec. II.

~2! Search for ridges in the TF mapr(t, f ) using the Ste-
ger’s algorithm as per Sec. III.
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~3! Use a threshold on the length of the ridge as a de
tion criterion.

The remainder of this article evaluates the performance
this method.

V. SIGNAL DETECTION AND FALSE ALARM
STATISTICS

The statistical performance of our TF method is measu
by two probabilities: the probability of finding a signal whe
there is none, orfalse alarm probabilityand the probability
of failing to find a signal when there is one, orfalse dismissal
probability. These probabilities depend on the details of t
noise and the signal.

A. Noise and signal models

Our simulations were carried out with discretely samp
colored Gaussian noise. This noise was produced using
Numerical Recipes@19# routine gasdev() . We altered
gasdev() to use theran2() random number generato
since it produces much longer sequences of pseudo-ran
numbers than the defaultran1() routine. We divided the
unit-variance white Gaussian deviates produced bygas-
dev() into two equal sets, which were used as the real a
imaginary components of the complex valued frequency
main noise data,ñ j . Finally, we colored the noise data b
multiplying them by the square root of the initial LIGO nois
curve,ñ jASh(u f u)→ñ j . The specificSh(u f u) we use is that of
Abramovici et al. @20# as generated by theGRASP routine
noise_power() with input parameter noise_file
=‘‘noise_ligo_init.dat’’ @2#.

The signal data was obtained by sampling a continu
waveform developed specifically to test this algorithm. Th
waveform simulates the signal from an intermediate-m
coalescing black hole binary. These are expected to be
portant sources whose gravitational waveforms cannot
calculated analytically in the initial LIGO sensitivity band
They are thus ideal candidates for a robust detection met
Our model is based on the predictions of Flanagan
Hughes@13#. We wish to emphasize that it isnot intended to
be ‘‘accurate’’ in the sense required for optimal filterin
rather, it is constructed to have time, frequency and ene
characteristics consistent with the assumptions of@13#. Thus,
the performance of our TF method for these simulated s
nals should be indicative of its performance for actual c
lescence signals. A detailed description of the model wa
form and its derivation is presented in the Appendix.
typical waveform ~for a 30M (-30M ( binary system! is
shown in Fig. 2.

B. The simulation procedure

We analyzed simulated data in segments ofN54096
samples each. The assumed sampling frequency waf s
59868.420898 Hz~we chose the sampling frequency of th
LIGO 40-meter prototype detector so that data from that
tector could be easily analyzed!. Each segment therefor
lasts for T5N/ f s'0.415 s, and the time interval betwee
1-5
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successive samples isDt51/f s'1.01331024 s. Samples in
each segment are denoted byhj5h( j Dt) where j takes the
values between 0 and 4095. We denote the Fourier trans
of h(t) by h̃( f ) and its discrete representation byh̃ j

5h̃( j D f ), whereD f 51/T and j takes the value between
~DC! andN/2 ~the Nyquist frequency!.

We performed two types of simulations: one to determ
false alarm probabilities~the probability that a signal is de
tected when none is present! and one to determine false dis
missal probabilities~the probability that no signal is detecte
when one is present!. In every simulation, the data strea
contained Gaussian noise, as described in subsection
To determine false alarm probabilities, no simulated sign
were added, so thath̃ j5ñ j . To determine false dismissa
probabilities, simulated GW signals were added to the no

As indicated in the Appendix, the angle averaged sign
were generated in the time domain. We therefore took
Fourier transform of the average signal,̂h̃BBH&k

[( j 50
N21e2p i jk /N^hBBH& j . The signal was normalized so tha

(
k50

N/2 u^h̃BBH&ku2

~Sh!k
51, ~5.1!

where (Sh)k5Sh(kD f ) is the one-sided power spectrum
the noise. The frequency domain data stream is then take
be

h̃k5ñk1SNR̂ h̃BBH&k , ~5.2!

where SNR is the signal-to-noise ratio obtainable
matched filtering.

Since the Wigner-Ville distribution is computed from th
time series representation of the detector output, it was n
essary to transformh̃k into the time domain. However, th
power spectrum spans such a large dynamic range that
nificant numerical errors arise if one simply takes the inve

FIG. 2. A simulated binary black hole coalescence wavefo
for a 30M (-30M ( system, showing the three phases of the coa
cence described by Flanagan and Hughes@13#. The frequency of the
wave increases monotonically. Only the portion of the wavefo
with frequency>40 Hz is shown.
10200
rm

e

A.
ls

e.
ls
e

to

y

c-

ig-
e

Fourier transform ofh̃k . We therefore ‘‘over-whitened’’ the
data,h̃k ,→h̃k /(Sh)k , to reduce the~time-domain! dynamic
range. This procedure has the added benefit that it em
sizes the frequencies in which the detector is most sens
while suppressing the frequencies where the noise is la
We then took the inverse Fourier transform of the ov
whitened h̃k , and subsequently computed its WVD,r jk
[r( j Dt,kD f ), as per Eq.~2.5!.

This procedure produces discrete TFDs, whose dim
sions may be expressed in units of pixels. Because of
undersampling involved in computing the discrete WVD~see
Sec. II! we computedr jk at 4096/252048 distinct offsets,
giving the WVD a ‘‘width’’ of 2048 time pixels. Also, the
transform is constructed only at positive frequencies up
the Nyquist frequencyafter undersampling. Thus, the WVD
has a ‘‘height’’ of 1024 frequency pixels. The resultin
TFDs had 204831024'23106 pixels. This was too large
for efficient computation, so we reduced the map size
averaging over every 4 time pixels and every 2 frequen
pixels. The final discrete WVDs had dimension 5123512
pixels, each pixel having area 0.0008s39.6Hz57.8
31023.

Next, r jk was passed through Steger’s line recogniti
algorithm. We used Steger’s implementation of this alg
rithm @21#, which assumes that the pixels of the image~dis-
tribution in our case! are unsigned characters, taking integ
values between 0 and 255. To convert the floating point
ager jk to its unsigned character analog (rb) jk it was neces-
sary to rescale the data to fit in this range without satura
it. The scaling factor was calculated as follows: the ma
mum floating point value ofr jk was found for each segmen
of noise data. The scaling factor was then chosen so th
scaled the average value of these maxima to the value
Once rescaled, the image was passed to Steger’s algor
The algorithm parameters we used weres52 and second
derivative ~hysteresis! thresholds of 10/pixel2 and
3.33/pixel2. Ideally, these values would be chosen by so
optimization procedure, however, for this preliminary stu
they were selected ‘‘by hand’’ after extensive numerical e
perimentation.

For each map, the line recognition algorithm returns a
of ridges detected and their lengths. Our detection stati
was the length of the longest ridge in the map. Thus
threshold value was chosen, and if this value was equale
exceeded by the longest curve in a given map, a signal
said to have been detected in that map. For instance, if
chooses a threshold ridge length 30 pixels, a signal is sai
have been detected in any map which contains a ridge wh
length is 30 pixels or longer.

C. False alarm probability

Our goal is an algorithm which has an acceptable fa
alarm rateRf . In our case, this means determining a rid
length which is not equaled or exceeded in maps contain
only noise more than once in every 1/Rf seconds. To com-
pute this threshold, we simulated noise from an ensembl
statistically independent identical detectors. In our simu
tion, the ensemble consisted of approximately 1.73106 de-

-
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tectors, which corresponds to analyzing 1.7310630.415
seconds or about 196 hours of simulated data.

For each member of the ensemble, we computed a W
We then searched for ridges in the WVD using Steger’s
gorithm and determined the length of the longest rid
Ridges were found in 106 of the 1.73106 WVDs, or about 1
out of every 16 000 maps. In those maps in which ridg
were found, the length of the longest ridge ranged from 7
68 pixels. The relative frequency with which the longe
ridge had a length> l pixels is shown as a function ofl in
Fig. 3.

Based on this simulation we chose a ridge length thre
old of 30 pixels. This threshold produces a false alarm pr
ability of about 3.431025, or a false alarm rate of about on
every 3.4 hours in a single detector. More interesting is
rate at which false alarms occur simultaneously in two
correlated detectors. This coincidence rate is proportiona
the coincidence windowt, i.e., the time interval within
which the same signal can be seen by both detectors. A n
ral lower limit for t is the light crossing time between dete
tors, tc , since the time interval between the arrival of
single signal at the first detector and the last detector ca
up to tc . However, other considerations may set a larget
for a given algorithm, leading to a higher coincident fal
alarm rate.

For the LIGO 4 km detectors,tc is approximately 10 ms
As implemented, the TF method did not resolve time-
arrival to this accuracy, because we did not distinguish w
in the 400 ms data segment the signal arrived. The coi
dence window is therefore 400 ms, which corresponds
coincident false alarm rate of approximately o
400 ms/(3.4 hr)2, or about one per 12 years. However, rec

FIG. 3. The relative frequency with which Steger’s algorith
detected ridges with length> l pixels in WVDs of simulated initial
LIGO noise. Only the 106 maps in which ridges were detected
included in this graph. The unevenness of the graph is cause
statistical fluctuations due to small number statistics.
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that the time resolution of the WVD is less than 0.0008
Furthermore, recall that Steger’s algorithm identifies the
sition of ridges in the image~in fact, this feature was imple
mented in our code although we did not use it!. Thus, at no
extra computational cost, one could sett5tc510 ms. The
TF method can therefore easily achieve a coincident fa
alarm rate of 10 ms/(3.4 hr)2, or about one every 475 year

D. False dismissal probabilities

The false dismissal probability depends on the nature
strength of the signal in the data. We have estimated th
probabilities for simulated BBHC waveforms~Sec. V A!.
We used signals with SNRs~as measured by optimal filters!
in the range 7 to 14. To demonstrate the robustness of
TF method we selected various coalescence waveforms
responding to different binary system masses. We confi
ourselves to the~total system! mass range 45M ( to 70M ( .
In this range the merger phase, for which the waveform c
not be calculated analytically, sweeps through the freque
band of maximum sensitivity for initial LIGO detectors, an
dominates the detectable signal@13#. These are therefore
masses for which robust methods will be most useful.

Figure 4 shows false dismissal probabilities as a funct
of binary mass at SNRs of 10, 12 and 14.

At an SNR of 14 the false dismissal rates are accepta
throughout the tested mass range. At an SNR of 10, howe
more than 20% of signals are missed by our detection a
rithm for system masses&55M ( . This is because as th
mass of a system decreases, the proportion of the SNR w
is attributable to the inspiral phase increases, as does
duration of the observable portion of the inspiral. Thus,
SNR of the signal is spread through a larger region of the

re
by

FIG. 4. False dismissal probability as a function of mass. T
three curves correspond to three different values the optimal fi
signal-to-noise ratio. With the parameters we have chosen,
method tends to work better for higher mass binaries, where
energy is more localized in the TF map.
1-7
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map, leading to lower ridges and hence a loss of detecta
ity.

In Fig. 5 we plot the false dismissal probabilities vers
the SNR for signals from 45M ( ,60M ( and 70M ( binary
systems. Again, one sees in this figure that high mass
tems are more readily detected. False dismissal probabil
for every system mass decrease with signal-to-noise rati
expected.

E. Computational efficiency

All our simulations were carried out on a 48 node B
owulf ~parallel! computer comprised 300 MHz Alpha 2116
machines@22#. This computer can analyze 47 segments
data simultaneously~the 48th machine is used to coordina
the calculation!. We found that we could apply our TF
method to approximately 23104 data points per secon
~about twice the sampling rate of the simulated data!.

For initial LIGO, the frequency band of maximum sens
tivity is projected to be below a few hundred Hz@20#. Sam-
pling rates of&1024 Hz should therefore be sufficient
contain all signals detectable with this TF method. Th
even modest parallel computing facilities could impleme
this method in real time for initial LIGO data.

VI. CONCLUSION

A. Summary

Optimal filtering has dominated the interferometric G
data analysis literature. This is because when one seeks
nals of nearly exactly known form in stationary noise w
known spectral density, optimal filters are the most sensi
linear filters. However, it is clear that there are sources
gravitational radiation that are not understood well enough

FIG. 5. False dismissal probability as a function of SNR
three values of the total massM of the binary system for the mode
signal. Even at a modest SNR of 11, the false dismissal rat
below 50% for systems with masses between 70M ( and 45M ( .
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predict their signal waveforms. For such sources, matc
filtering will not be a suitable detection method. It is ther
fore necessary to develop methods which can detect sig
from poorly modeled or even unmodeled sources in int
ferometric GW data.

We have demonstrated that time-frequency methods m
provide a tool for detecting such sources. Our method, w
the parameters discussed above, produced an initial LI
false alarm rate of'(3.4 hr)21, which corresponds to coin
cident false alarm rate in two detectors of'(475 yr)21. Our
simulations also show that we reliably detect the postula
BBHC waveforms for binaries of various masses injec
into the data at a variety of optimal filter signal-to-noi
ratios. For instance, we detect 80% of signals with SN
ranging from '8.8 for higher mass binaries (70M () to
'12.2 for lower mass binaries (45M (). These numbers are
within a factor of two of those for optimal filtering of stella
mass binary inspirals, where for two detectors the detec
threshold is usually taken to be an SNR of'6 @23#. Further-
more, this method is implementable in real time with a re
istic computing budget.

B. Future directions

While this method shows considerable promise, there
still a number of issues which must be addressed in orde
determine how useful TF methods will be in general:

Utilization. One might use TF methods as a filter to ide
tify data which should be analyzed for the presence of s
nals using other techniques~i.e., in an hierarchical search!,
for detecting the signals themselves, or as a method for c
acterizing detector noise. This paper only addresses si
detection.

Choice of Algorithm. We have presented only one o
many TF methods that could be implemented. We have u
the Wigner-Ville distribution and Steger’s ridge detectio
algorithm, however there are a number of other TFDs~cf.
@6#! and ridge detection algorithms~e.g., Hough transforms
@24,25# or the curve and edge detection algorithms cited
the introduction of@18#! which might prove suitable. As a
detection statistic, energy along ridges, total ridge length
map, or ‘‘bunching’’ of ridges might provide better detectio
statistics than maximum ridge length.

Optimization. We have made heuristic choices for oper
ing values of the smoothing parameters and the second
derivative thresholds in Steger’s algorithm. It would be d
sirable to have a process which, given a specific type of G
signal, optimizes these parameters.

Implementation. It is unlikely that a single TF method is
sufficiently robust to detect all types of unmodeled sourc
which means that a set of TF methods should be used.
also possible that TF methods are optimally implemen
hierarchically. For example, one might have two detect
statistics; one with an unacceptably high false alarm rate
low computational cost and another with prohibitive comp
tational cost but a low false alarm rate. By applying t
second statistic only to those TF maps in which a signa
detected with the first statistic, one could achieve both co
putational efficiency and acceptable false alarm rates.

is
1-8
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Comparison with Other Techniques. We do not know
how TF methods compare to other techniques. Signals
are optimal for TF detection produce regions of high dens
in the TFD. For our simulated signals, this high density
gion spans relatively short time scales ('0.2 s). They might
therefore be equally well detected with much simpler tim
series thresholding techniques such as the one describ
@26#. We have investigated this possibility by compari
each datum used in our TF simulations to a threshold.
chose the threshold to produce the same false alarm ra
obtained with the TF method. This technique produce
false dismissal rate of about twice that of the TF meth
However, it is unknown whether a more sophisticated tim
series threshold or a different statistic such as the ex
power statistic@27# would prove superior to the TF method

There is one further issue which pertains to all rob
methods. In order to detect a signal of unspecified form
noise, the noise must be well characterized. We have
sumed Gaussian noise in this paper. It is uncertain at
time to what extent this assumption is valid, however it
known that noise from the LIGO 40 m prototype contains
significant non-Gaussian component. The extent to wh
this component can be identified and removed~perhaps with
the aid of TF methods themselves! is an issue that will only
be fully resolved once the relevant interferometer data
comes available.

Clearly, there is a much work to be done. Moreover, w
interferometric detectors scheduled to begin taking data
approximately a years time, there is little time in which to
it. In an effort to expedite the resolution of the issues lis
above, we have made our TF computer code available as
of the latest release of GRASP@2#.

However, the results of this preliminary investigation a
encouraging. With the resolution of these issues, TF meth
promise to be useful tools for the detection of GW signals
interferometric data.
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APPENDIX: THE BINARY BLACK HOLE COALESCENCE
WAVEFORM

The signal waveforms we used in our false dismis
simulations are based on the description of binary black h
coalescence~BBHC! signals in Flanagan and Hughes~FH!
@13#. They consist of three consecutive components: an
spiral component, a merger component, and a quasi-no
ringdown component. The division into these component
somewhat arbitrary. Roughly speaking:

The inspiral component describes the evolution of the
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nary system up to the ‘‘innermost stable circular orbi
~ISCO!. This component is well modeled for BBH system
of ;1M ( @28#, but there is some doubt whether it is know
well enough for optimal filtering for binaries of total mas
*20M ( @29#.

The merger component describes the evolution of the s
tem from ISCO until such time as the system can be
scribed as a single perturbed Kerr black hole. No analyt
descriptions of this component exist.

The quasi-normal ringdown component describes the e
lution of the system when it is well described as a sin
perturbed Kerr black hole. This component well modeled
all BBHC’s @30,31#.

In this Appendix, we model each component separat
The full coalescence waveform is then simply a combinat
of the three component waveforms:

^hBBH~ t !&5H ^hinsp~ t !&, t,0,

Amerge~ t ! coswmerge~ t !, 0<t<tmerge,

^hqnr~ t !&, t.tmerge.
~A1!

An example of such a waveform for a 30M (-30M ( system
is shown in Fig. 2. We use units in whichc5G51 through-
out the remainder of this Appendix.

1. Quasi-normal ringdown

The ringdown waveform is given in@13# as

h1
qnr2 ih3

qnr5
AM

r 2S2
2~i,b,a!e22ip f qnrt2t/t1 iw0. ~A2!

Here,M anda are the mass and angular momentum per u
mass of the black hole,r is the distance to the hole

2S2
2(i,b,a) is a spin-weighted spheroidal harmonic,f qnr is

the characteristic frequency of the black hole normal modet
is the time constant for the exponential decay of the mo
w0 is an arbitrary phase factor, andi andb are angles that
describe the orientation of the black hole’s spin axis w
respect to the plane of the detector arms~c.f., Fig. 9.2 of@1#!.
This waveform is quite straightforward except for the pre
ence of the spin-weighted spheroidal harmonic,2S2

2(i,b,a).
This complication of the2S2

2(i,b,a) factor is easily cir-
cumvented by considering only the root-mean-squared~rms!
average of it over the source orientation anglesi and b.
When averaged in this way, spin-weighted spheroidal h
monic obeys the trivial relationship

A 1

4pE dVu2S2
2~i,b,a!u25

1

A4p
. ~A3!

Since we are not interested in modeling the waveform
actly ~indeed, our point is to show that we can find ev
inaccurately modeled signals!, let us for the sake of simplic-
ity substitute the rms value of (4p)21/2 for 2S2

2(i,b,a) in
~A2! to obtain
1-9
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^h1
qnr& (i,b)2 i ^h3

qnr& (i,b)[
AM

A4pr
e22ip f qnrt2t/t1 iw0.

~A4!

Note that^h1
qnr& (i,b) and ^h3

qnr& (i,b) are not the (i,b) angle
averaged rms values ofh1

qnr and h3
qnr respectively, but are

rather the result of averaging2S2
2 over (i,b).

From Eq.~A2!, the detector response to the quasi-norm
ringing of a black hole is obtained by

h~ t !5F1~u,f,c!h1~ t !1F3~u,f,c!h3~ t !, ~A5!

whereF1 andF3 are the beam pattern functions

F1~u,f,c!5
1

2
~11cos2u!cos 2f cos 2c

2cosu sin 2f sin 2c, ~A6!

F3~u,f,c!5
1

2
~11cos2u!cos 2f sin 2c

1cosu sin 2f cos 2c, ~A7!

andu, f andc are angles which describe the detector o
entation@1#. One may average over detector orientations
obtain

uh~ t !u(u,f,c)5A 1

4p2E0

p

du sinuE
0

2p

dfE
0

p

dch2~ t !

5
1

A5
Ah1~ t !21h3~ t !2. ~A8!

Substituting Eq.~A4! into Eq. ~A8! we get to obtain

Aqnr~ t ![u^h~ t !qnr& (i,b)u(u,f,c)5
AM

A20pr
e2t/t. ~A9!

Notice that Aqnr(t) is no longer a waveform. The sourc
angle averaging combinesh1 andh3 to in such a way that
only the ~exponentially decaying! amplitude envelope re
mains. To recover the waveform, we multiplyAqnr(t) by a
cosine at the appropriate frequency,

^h~ t !qnr&[Aqnr~ t2tmerge!cos@2p f qnr~ t2tmerge!1w0
qnr#,

5
AM

A20pr
e2(t2tmerge)/tcos@2p f qnr~ t2tmerge!1w0

qnr#.

~A10!

Here, the angle brackets serves to remind us that there
been two averaging processes used in obtaining this re
and we have offset the time variablet by tmerge~the duration
of the merger component! to facilitate combining it with the
other waveform components as in Eq.~A1!.
10200
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Finally, we wish to express~A10! in terms of the BBH
system mass. Using Eq.~3.17! of @13# and the valuesa
50.98 andA50.4 quoted in Eq.~3.21! of @13#, we have

f qnr51320HzS 20M (

M D , ~A11!

t'
11.63

p f qnr
. ~A12!

Thus, the only free parameters remaining in Eq.~A10! are
the system massM, the time offsettmergeand the initial phase
of the ringdown waveformw0

qnr. The mass will remain a free
parameter in our simulation, howevertmerge and the initial
phase are determined by the merger waveform.

2. Binary inspiral

For the binary inspiral component,h1 and h3 can be
conveniently written in the form@1#

h1
insp~ t !522S m

r D @pM f insp~ t !#2/3~11cos2i !cosw insp~ t !,

~A13!

h3
insp~ t !524S m

r D @pM f insp~ t !#2/3cosi sinw insp~ t !,

~A14!

whereM5m11m2 is the total mass of the BBH system,m
5(m1m2)/M is the reduced mass of the system, andf insp(t)
and w insp(t) are the binary inspiral orbital phase and fr
quency. These latter are given to first post-Newtonian or
by @2#

f insp~ t !5
1

8pM H Q23/81S 743

2688
1

11

32
h DQ25/8J ,

~A15!

w insp~ t !5wcoal2
1

h H Q5/81S 3715

8064
15596h DQ3/8J ,

~A16!

where

h[
m

M
, ~A17!

Q[
h

5M
~ tcoal2t !. ~A18!

wcoal and tcoal are the phase and time at which coalesce
occurs~i.e., when the frequency becomes infinite!. Note that
inspiral waveforms are available to post-Newtonian order
@2#, but first post-Newtonian order will be sufficient for th
crude model.

As with the ringdown waveform, we perform an RM
averaging over the source angles in the inspiral wavefo
1-10
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The equivalent averaging in this case replaces (11cos2i)/2
in h1(t) and cosi in h3(t) by their (i,b) averaged RMS
values,

A 1

4pE dVF1

4
~11cos2i !21cos2iG5

2

A5
. ~A19!

Thus,

^h1
insp~ t !& (i,b)528S m

A5r
D @pM f insp~ t !#2/3cosw insp~ t !,

~A20!

^h3
insp~ t !& (i,b)528S m

A5r
D @pM f insp~ t !#2/3sinw insp~ t !.

~A21!

We also average over the detector orientations. Inserting
~A20! and Eq. ~A21! into Eq. ~A8! and multiplying by
coswinsp(t) we have

^hinsp~ t !&[Ainsp~ t !cosw insp~ t !

5
8m

5r
@pM f insp~ t !#2/3cosw insp~ t !. ~A22!

Again, we wish to express the waveform in terms of t
system massM. It therefore remains to fix the reduced ma
m, the coalescence timetcoal, and the coalescence pha
wcoal. We restrict our attention to equal mass binaries, so
the reduced mass is thereforem5M /4. We fix tcoal so that
the binary system attains the ISCO frequency,f ISCO, at time
t50, i.e., so thatf insp(0)5 f ISCO. Following @13#, we use the
Kidder-Will-Wiseman @32# value of f ISCO5(20M ( /M )
3205 Hz. We also fixwcoal so that the phase of the binar
system vanishes att50, i.e., so thatw insp(0)50. Note that
this is not the same as choosingtcoal50 andwcoal50, since
coalescence occurs after the ISCO. This completes the s
fication ~apart from the free mass parameter! of the inspiral
component of the BBHC waveform.

3. Merger

The remaining task is to model the merger wavefor
While no analytic model for the merger exists, Flanagan a
Hughes@13# make educated estimates of some of its prop
ties. They assume that the merger signal contains only
quencies between the ISCO frequency,f ISCO, and the quasi-
normal ringing frequency,f qnr. They also estimate that th
energy carried by the merger component of the wave is
proximately 3 times the energy carried by the quasi-norm
ringdown component. Finally, they estimate the duration
the merger to betmerge;50M . We use these criteria, alon
with the requirement thath and] th be continuous, to guide
us in making a mock merger waveform. While the resulti
waveform will not be that of a real BBH merger, it shou
resemble it enough to determine whether our TF method
detect BBH waveforms for intermediate-mass systems.
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The first step in our construction of a merger wavefo
estimate is to assume a form of

^hmerge~ t !&5Amerge~ t !coswmerge~ t !. ~A23!

Continuity of the f merge and ] t f merge with both the inspiral
waveform that proceeds it and the quasi-normal ringdo
waveform that follows constitutes four conditions o
wmerge(t):

]wmerge

]t
~ t50!5 f ISCO, ~A24!

S ]2wmerge

]t2 D ~ t50!5S ]2w insp

]t2 D ~ t50!,

~A25!

]wmerge

]t
~ t5tmerge!5 f qnr, ~A26!

S ]2wmerge

]t2 D ~ t5tmerge!50, ~A27!

where the last equation follows from the fact that thef qnr is
constant. To satisfy these four conditions will require a f
quency model with four free parameter. We use the simp
such model; the merger frequency a cubic function of tim
The phase is therefore a quartic of the form

fmerge~ t !5 f ISCOt1S ]2w insp

]t2
~0!D t21w3

merget31w4
merget4,

~A28!

where w3
merge and w4

merge can be obtained by solving Eq
~A26! and Eq.~A27! and we have setwmerge(0)50. Once
the merger phase polynomial has been determined, it
simple matter to find the phase constant for the quasi-nor
ringdown,

w0
qnr5wmerge~ t5tmerge!, ~A29!

which completes the specification of the quasi-normal rin
down component of the waveform.

To determine the merger amplitude function, we impo
similar continuity conditions

Amerge~ t50!5Ainsp~ t50!, ~A30!

S ]Amerge

]t D ~ t50!5S ]

]t
AinspD ~ t50!,

~A31!

Amerge~ t5tmerge!5Aqnr~ t5tmerge!,
~A32!

S ]Amerge

]t D ~ t5tmerge!5S ]

]t
AqnrD ~ t5tmerge!.

~A33!
1-11
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We again need a fitting function with at least four para
eters. However, there is a further constraint to impose; re
that @13# estimates the energy of the merger to be three tim
the energy of the quasi-normal ringdown, i.e.,

E
0

tmergeS ]

]t
^hmerge~ t !& D 2

dt53E
tmerge

` S ]

]t
^hqnr~ t !& D 2

dt.

~A34!

This fifth condition onAmerge(t) requires a fifth parameter
-

na
n

e,
-

r-

t-
3.

s
i

10200
-
ll
s

and we therefore model the merger amplitude with a quar

Amerge~ t !5Ainsp~0!1S ]

]t
AinspD ~0!t1A2

merget21A3
merget3

1A4
merget4, ~A35!

where the coefficientsA2,3,4
mergeare determined by Eqs.~A32!,

~A33! and ~A34!. This completes the specification of th
merger waveform.
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