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We present a time-frequency method to detect gravitational wave signals in interferometric data. This robust
method can detect signals from poorly modeled and unmodeled sources. We evaluate the method on simulated
data containing noise and signal components. The noise component approximates initial Laser Interferometric
Gravitational Wave Observatorfl.IGO) interferometer noise. The signal components have the time and
frequency characteristics postulated by Flanagan and Hughes for binary black hole coalescence. The signals
correspond to binaries with total masses betweel 450 70M ¢, and with (optimal filten signal-to-noise
ratios of 7 to 12. The method is implementable in real time, and achieves a coincident false alarm rate for two
detectors=1 per 475 years. At this false alarm rate, the single detector false dismissal rate for our signal model
is as low as 5.3% at a signal-to-noise ratio of 10. We expect to obtain similar or better detection rates with this
method for any signal of similar power that satisfies certain adiabaticity criteria. Because optimal filtering
requires knowledge of the signal waveform to high precision, we argue that this method is likely to detect
signals that are undetectable by optimal filtering, which is at present the best developed detection method for
transient sources of gravitational wavgS0556-282(199)00622-(

PACS numbgs): 04.80.Nn, 07.05.Kf, 07.05.Pj

[. INTRODUCTION caused by bulk motions of matter and energy, and their spec-

According to Thorne[1], gravitational wave(GW) as-  tra tend to be peaked about characteristic frequencies deter-
tronomy “will create a revolution in our view of the universe mined by the source dynamics. GW signals may therefore be
comparable to or greater than that which resulted from thédentified as ridges in the surfagét,f). While preliminary
discovery of radio waves.” He further asserts that “wheninvestigation of time-frequency methods for GW dgia10|
gravitational waves are finally seen, they will come predomi-show promise, to date we know of no complete TF detection
nantly from sources we have not thought of or we have unmethod that has been implemented and evaluated.
derestimated.” It follows that GW data analysis tools should This article describes and evaluates a time-frequency
include detection methods for poorly modeled and unmodmethod for interferometric GW data analysis. The method
eled signal waveforms. has three steps:

However, at present the only well-characterized method (1) Transform the interferometer data into a Wigner-Ville
being widely implemented for the detection of GWs from TF distributionp(t,f) (described in Sec. )l
burst or transient sources is Wiener’s optimal filt2. This (2) Search for ridges ip(t,f) using Steger's algorithm
is a natural choice for sources whose signal waveforms ar@lescribed in Sec. 1)
theoretically well modeled, because it is the optimal linear (3) Threshold on length of ridge to eliminate false alarms.
detection algorithm for such waveforni8]. Unfortunately, We find this algorithm can reliably detect weak signals in
the effectiveness of optimal filtering is greatly reduced bysimulated data with minimal assumptions about the signal.
errors in the predicted signal waveform. Furthermore, even Our evaluation of the TF methotBec. \) consists of
small errors in GW source modeling can lead to large cumuestimating false alarm and false dismissal probabilities for a
lative errors in the predicted waveform]. Optimal filtering  variety of signals. False alarm probabilities are estimated by
is therefore a poor technique for inadequately modéted applying the method to a large number of data segments
unmodeleg sources. In fact, only two potential GW sources, containing only simulated initial Laser Interferometric
binary inspiral and black hole quasi-normal ringdown, areGravitational Wave Observatory.IGO) detector noise and
thought to be adequately modeled for this method to worksimply counting detections. For false dismissal probability
Clearly, a method whose effectiveness is only weakly depenestimates, the same procedure is performed on data contain-
dent on(or perhaps independent)gfrior knowledge of the ing both simulated initial LIGO noise and simulated
signal is needed. We call such methods “robust.” intermediate-mass (22Vb,—22.5M to 35V 5—35M)

One class of robust techniques widely used for signabinary black hole coalescend®8BHC) waveforms. These
analysis is time-frequendyTF) methodgcf. [5]). The central waveforms are an appropriate testing ground for robust
idea is straightforward: one simultaneously decomposes theethods, since they are probably dominated by the poorly
data in two bases, time and frequency. The resulting distriunderstood merger signal. Furthermore, the recently discov-
bution, p(t,f), represents the energy of the data waveform aered possible evidence of “middleweight” black holes
time t and frequency. [11,12 implies that these may be important sources of GWs.

Time-frequency methods are well suited to analyzing in-Flanagan and Hughd43] have estimated the duration and
terferometric gravitational wave data. Since interferometerdrequency band of the merger signal, and our test waveforms
are broadband instruments, the noise energy will be distribare constructed to conform to these estimdtese the Ap-
uted throughout the TF plane. GWSs, on the other hand, arpendix for details Thus, while our model waveform isot
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the correct signal for a BBHC, we believe it has the correct

general characteristics for our evaluation. f f W(u,v;t, f)dtdf=o(u—v). (2.2
The results of our evaluation are promising. We obtain a

false alarm rate of one per 3.4 hours in a single detector, oBoth types of TFD might in principle be used to detect gravi-

approximately one per 475 years for coincident detection irtational waves.

the two LIGO 4 km detectors. Here, coincident means that The choice of a suitable TFD is governed by two require-

signals are detected in both detectors within a certain timenents. The first is that the TFD must have good time-

interval, orcoincidence windowThe coincidence window is frequency localization properties. By this we mean the fol-

taken to be 0.01 secondthe light travel time between the lowing: if a signal written in the formh(t)=A(t)cose(t)

LIGO 4 km detectorg since that is the maximum time in- [with ¢(t) a continuously differentiable monotonic function

terval between the arrival of a single gravitational wavesatisfies the adiabaticity conditions

(which travels at the speed of lighat these two detectors.

False dismissal rates vary with the signal-to-noise ratio Alt+o(t) ]=A(t), 2.3
(SNR) (as measured by an optimal filter, €¢2]) and binary ] ]
mass, but as an example we find that approximately 3% of o[t+6(1) ]~ (1), (2.4

signals are lost at an SNR of 11 for aN3@ —30M ., BBHC. ) ]
Graphs showing false dismissal rates as a function of binar{here () is defined bye[t+ 6(t)]= ¢(t) + 2 for all t,
mass for a range of SNRs and as a function of SNR for 4hen it should give rise to a distributiop(t,f) which has
range of binary masses are presented in Sec. V. This Tsupport only in a small neighborhood of the curfve ¢(t).
method is also computationally efficient; we are able to anatn other words, if the signal has a well defined frequency at
lyze data in these simulations at about twice the acquisitioach time, then the TFD should reflect that. This is required
rate of the simulated data. for a ridge detection algorithm to work well with the TFD.
While we are encouraged by these results, there is muchhe second requirement is that the TFD be relatively inex-
more research to be done. We have restricted our attention pensive to compute. This makes real-time analysis of inter-
this paper to a single TF distributidiVigner-Ville), a single  ferometer data feasible.
ridge detection scheméSteger’'s algorithry and a single Gongalves, Flandrin, and Chassande-Mofté] have in-
thresholding scheméidge length. For each of these there vestigated the localization properties of various TFDs when
are a variety of choices available, and these choices need @pplied to binary inspiral chirp waveforms. They conclude
be explored and evaluated. We have also restricted our attethat bilinear distributions have superior localization proper-
tion to only BBHC signal models, and only for a limited ties, and we therefore focus our attention on those. On the
binary mass range. While we feel that these are priority tarother hand, bilinear distributions can be computationally ex-
gets for such a robust search method, there are other sourgegnsive, depending on the choice of kerié¢in Eq. (2.1).
which should be investigated. A more complete descriptioniThe question, then, is whether there is a kernel for which
of these and other issues for future research are presenteddan be calculated efficiently.

Sec. VI.
B. The Wigner-Ville distribution
Il. THE WIGNER-VILLE DISTRIBUTION There is at least one choice of kernel which leads to a
A. Time-frequency distributions computationally efficient bilinear distribution with good lo-

. ) . _calization properties: th&Vigner-Ville distribution(WVD)
The central idea of TF methods is to convert time domain 15 1¢

data,h(t), into a time-frequency distributiotTFD) p(t,f).

Here, the variablé labels the basis vectors in an alternative e,
basis which spans the Hilbert space to whiuft) belongs p(t,f)= fﬁwh (
(i.e., alternative to a basis labeled by. This alternative

basis is usually the frequency basis associated with the Foyye will use the WVD , but note that it exhibits two features
rier representation of(t), although it need not bee.g.,  that might at first glance seem undesirable.
when wavelet bases are ugedikewise, the meaning of Both features are illustrated by considering a purely sinu-

p(t,f) varies, although it is usually associated in some waysoidal signalh(t) =sin(2rfqt). The WVD for thish(t) is
with the squared magnitude bfat timet and frequency.

T
t— =

2h

e?™dr. (2.5

'H—T
2

Methods for constructing(t,f) can be divided into two 1
broad categorief14]: atomic decompositionsuch as win- p(t,f)= 1[5(f_f0)+ 8(f+1o)—2 cogamfot) 5(1)].
dowed Fourier transforms and wavelet transforms litid- (2.6)

ear distributionsof the form
First, note thafp(t,f) does not have support only at the si-
_ * ) nusoid’'s frequencyf==*f,, but also has an “echo” af
p(t’f)_f f h(wh* (VW(u,vit, fidudv — (2.) =0. The sum of two sinusoidsh(t)=sin(2mf;t)
+sin(2#f,t) has further echoes at=*(f;*=f,). These
where the asterisk denotes complex conjugation and the keechos are due to the bilinearity of the distribution. Second,
nel W satisfies observe that thisp(t,f) attains negative values d&t=0
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FIG. 1. The WVDs of(a) simulated initial LIGO noise an¢b) a simulated signal and noigeptimal filter SNR=8). In both cases, the
data is over-whitene@see Sec. Y. In this figure, the darkness of a pixel corresponds to the magnitudétdf) in that pixel, with darker
pixels having higher values. Thus, a dark curve corresponds to a ridge in the distributibj.the signal, which is a model binary black
hole coalescence waveform, is the dark structure in the bottom demtbout 0.2 semf the figure. The additional structure in the figures
is self interference due to the bilinearity of the Wigner-Ville distribution.

whenever cos(#fqt) is positive. Thus, it is not entirely cor- ~ Having resolved these issues, it is straightforward to cal-
rect to think of thep(t,f) as the squared magnitude of the culate the discrete analog of E@.5
signal at a give time and frequency.

Despite this behavior, the WVD is well suited to our N/2
method. We wish to look for ridges in the TF plane. Nega- pik= 2 Ni—imh( s N, 2.7
tive values away from these ridges are of no consequence. In I=—Ni2
fact, throughout this paper we will adopt the convention of
setting negative values gf(t,f) to 0. Also, since we are
interested only in detection here, and not in extracting inforwhereN=T/At. This discrete distribution can be treated as
mation about the signal, it does not matter how many ridge& digital image, withj andk respectively denoting the hori-
there are in the TFD, it matters only that their existence beontal and vertical pixel number. The value g@f denotes
highly correlated with the presence of a signal and that theyhe gray scale value, or equivalently heigh¢., z value), of

be sharp. The WVD satisfies both these criteria. the image in that pixel.
It is easy to estimate the computational efficiency of the
C. Discrete implementation discrete WVD from Eq(2.7). For each value of, one does

a single multiplication(of negligible cost and a Fourier

While the discussion above has been couched in the Iar{?ansform The fast Fourier transform codtdog,(N) float-
guage of functions of continuous variables, in practice it is, int ' . d t be d ¢ % Y
necessary to calculate WVDs from discretely sampled daty'9 PoInt operations, and must be done for eac pos-

hj=h(jAt). This appears to present a minor dilemma, sincesible values of. Thus, the cost of calculating the WVD is

H 2
Eq. (2.5 contains expressions of the forinft— 7/2), which ~ @Pproximately N°logN)/2. _
when discretized becomi;_,. For interferometer data, Finally, note that for a data set with samples the result-

this issue is easily dealt with, since the data will be signifi-iNg WVD hasN?/8 pixels (N/2 time intervals byN/4 posi-
cantly (~ 10 timeg oversampled. It is thus a simple matter to tive frequency bins Images from large data sets therefore
decimate these data to twice the time resolution required. Wweuickly become unwieldy; for example the data sets we used
resample our simulated data so thgt=h(2jAt) accord- contained 4096 floats, leading to an image of 204824
ingly. pixels. We therefore averaged over 4 pixel intervals in time
A second issudalso present in the continuous case  and 2 pixel intervals in frequency to obtain a more wieldy
that in practiceh(t) is known only in a time interval &t image size of 51 512.
<T. This means tha(t— 7/2) is undefined forr/2>t, and We end this section with an example of a discrete
likewise h(t+ 7/2) for 7/2>T—t. In order to calculate Eq. Wigner-Ville TFD. Figure 1 shows two WVDs: one of simu-
(2.5 one must assign values kxft) in the entire time inter- lated initial LIGO noise and the other of a simulated BBHC
val —wo<t=<w. We therefore takd(t)=0 in the intervals waveform embedded in that same noisee Sec. V A and
t<0 andt>T. the Appendix for details
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[ll. STEGER'S RIDGE DETECTION ALGORITHM tuations, whether a signal was present or not. To avoid this,
one thresholds on the value of the second derivative. How-
ever, thresholding presents conflicting requirements. On one
hand, if the threshold is too low, it will allow too many noise
ridges to be detected. On the other hand, if it is too high,
portions of a genuine signal ridge may be missed due to
deviations below the threshold caused by noise. To improve
%he detection of signal ridges while suppressing noise ridges,
hysteresis thresholding is used. This means that there are two
resholds on the second derivativepgfan upper threshold,

which must be exceeded by any point at which a ridge can
start, and a lower threshold, which must be exceeded by
every point on the ridge.
Finally, ridges are identified as contiguous sets of poten-
ridge points which meet the hysteresis thresholding cri-
teria. Isolated potential ridge points are not defined to be
ridges. Note that small gaps in a ridge will be “smeared out”
when the TFD is convolved with the Gaussian kernel. Thus,
; . ; . / gaps of less than a fewf, or ot, are overlooked by this
with & two-dimensional Gaussian smoothing kernel, algorithm, which decreases the probability of noise fluctua-

2 2 tions breaking a signal ridge into many smaller ridges. Con-

1 1 f o : :
exp[ -z + (_) ] (3.1  Versely, the minimum ridge length detected is also a detyy
2mo? 2 afy or of,, eliminating many shorter noise ridges.

There are some further issues involved with implementing
where the dimensionless scale parametellows the pref-  this algorithm on a digital image. Wherandf are replaced
erential detection of ridges of widtk ot, or ofy, and the  py their discrete counterparts, and f,, the distribution
parameterd, and f, are characteristic time and frequency pik=p(t;,fi) can be viewed as a piecewise constant func-
scales of the TF)we usedt,=4At andf,=2/T, the time  tion, having value pjx in the rectangle[t;—(At/2).t;
and frequency resolution of the digitizedt,f)]. One then  + (At/2)]x[f,— (Af/2),f .+ (Af/2)], where At=t;—t;_,
takes the first and second derivatives of the convolution  and Af=f,—f,_,, and vanishing outside the imaggee.,

when j<0 or k<0 and whenj>N or k>N). This piece-
H(t,f)= J“’ fm p(t EK (=t f—f1)dt'd ", wise constant function is then convolved with trentinuous
—w ) o Gaussian kernel. The convolution is equivalent to the sum-
(3.2 mation

A gravitational wave signal in interferometer datét)
should produce a ridge in the TFp(t,f). Therefore, to
detect GWSs, a ridge detection algorithor equivalently line
detection algorithm ifp(t,f) is represented as a gray-scale
map as in Fig. lis required. Fortunately, there are a number
of ridge detection algorithms in the digital image processin
and computer vision literature from which to chod4€&].

We use Steger’s second-derivative hysteresis-thresho
algorithm[18]. The essential idea of this scheme is simple. A
ridge in a surface will have high curvatymeecond derivative
of p(t,f)] in the direction perpendicular to the ridge. Fur-
thermore, the first derivative will vanish at the top of the
ridge, since it is a local maximum. Thus, ridges are identifieqial
as contiguous sets of point at whigi(t,f) has a high-
curvature local maximum.

Steger’s algorithm, which identifies ridges in this way,
has a number of steps. First the THDt,f) is convolved

t

oty

K(t,f)=

with respect to both andf. The second derivatives are used

to find the eigenvectorsn(,n;) of the Hessian matrix, Hmn:; Ek: PikK (- my(kny 3.5
? P
E atof n, n, where the convolution mask ;) «-n) iS given by
H(tH)| |= a( : (3.3
PP Ny Ny tj—tm+ At [f—f+Af
r g2 K(j—myk—n)= K(t,f)dtdf. (3.6
gtat gt tj—tm—At Jf—f—A

At each point in theé-f plane, the eigenvector corresponding Rather than taking discrete derivativesttfthe process can

to the largest eigenvalue magnitude/, defines the line in  be made more efficient by using masks built from the deriva-
the t-f plane along which the second derivative t(t, ) tives ofK. By integrating Eq(3.2) by parts, one may see that
obtains its extremal value. For points on a ridge, these vedhe same result can be derived by either process. However,
tors will be normal to the curve described by the ridge in thewhile the derivatives oH need to be calculated at each step,
t-f plane. If the first derivative of(t,f) vanishes in this the derivatives oK can be calculated just once. Thus, along
direction, with Eq. (3.6), convolution masks are also made wihre-
placed by its first and second derivatives with respetaiud

f.

Another issue addressed by Steger’s algorithm is the po-
sitioning of potential ridge points. For a digital image, the
then the point may be on a ridge. We call such points “po-ridge will be composed of pixels within which the directional
tential ridge points.” derivative (3.4) vanishes. A one-dimensional example illus-

If all potential ridge points were included in ridges, one trates the method used to determine whether B¢) is
would find ridges everywhere in the TFD due to noise fluc-satisfied within a given pixel. Denote the one-dimensional

J 1%
(ntE‘anﬁ)H(t,f):O, (34)
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image function byf(x). Approximatef(x) at a pointx; by (3) Use a threshold on the length of the ridge as a detec-
its second order Taylor series, tion criterion.
The remainder of this article evaluates the performance of
1 this method.
fO)~f;+ R(fjJrl_fjfl)(x_xj)—i'm(fjfl"_fj+l
V. SIGNAL DETECTION AND FALSE ALARM
—2f)(x=x))?, 3.7) STATISTICS

where the coefficients are finite difference approximations of 1he statistical performance of our TF method is measured
the derivatives of atx; andAx=x;,,—x;. The derivative by two probabilities: the probability of finding a signal when

of Eq. (3.7) vanishes ak=x;+ dx where there is none, ofalse alarm probabilityand the probability
) of failing to find a signal when there is one, fatse dismissal
fooof probability. These probabilities depend on the details of the
dx=— Ax #) 3.8 noise and the signal.
(fj_1+fj+1—2fj 38
This is within the jth pixel if and only if x;— Ax/2<x; A. Noise and signal models

+dx<x;+Ax/2. In that casex;+dx is considered to be a  Our simulations were carried out with discretely sampled
potential ridge point and thgth pixel is a “potential ridge  colored Gaussian noise. This noise was produced using the
pixel.” One then joins ridge pixelgas beforg to find the  Numerical Reciped19] routine gasdev() . We altered
ridge. The generalization to two dimensions is discussed igasdev() to use theran2() random number generator,
[18]. since it produces much longer sequences of pseudo-random
numbers than the defaulan1() routine. We divided the
I\V. THE DETECTION METHOD unit-var_iance white Gaussian _deviates producedgbg-
dev() into two equal sets, which were used as the real and
We have thus far described two of the three steps in ouimaginary components of the complex valued frequency do-
GW detection method: generation of WVDs from interfero- main noise dataN,n,-. Finally, we colored the noise data by

metric data and the search for ridgsggnals in them. If all  muyltiplying them by the square root of the initial LIGO noise

ridges corresponded to GW signals, the existence of a ridgg,, e 7. /S (1f)— . . The specifi f1) we use is that of
would be an adequate detection statistic and these two Steﬁ%ranao]vi?ihgt L)I_[)Z(])]. as ge%eratfg(u/) theRASP routine
would be sufficient. However, even after hysteresis threShhoise power() ' with input parameter noise_file
olding (see Sec. I, stochastic detector noise will lead to =“noise ligo_init.dat” [2]. -

spurious ridges in the WVD. This may be exacerbated if the The signal data was obtained by sampling a continuous

noise is non-stationary and/or non-Gaussian, in which casg\eform developed specifically to test this algorithm. This

signal ridges and noise ridges might have very similar charg - etorm simulates the signal from an intermediate-mass

acteristic;. A more powerful ;te}tistic can be devised bycoalescing black hole binary. These are expected to be im-
thresholding on ndge cha_lractenstlcs Wh'Ch are more Strongl¥>ortant sources whose gravitational waveforms cannot be
correlate?] with signal _fr'ldg;:s thhanhvvll(tjh' nmsi rldges.l Or]:calculated analytically in the initial LIGO sensitivity band.
lcoursebt € ?Oze speciiic t ﬁ thres 0.” bls to the signal, thepay 416 thus ideal candidates for a robust detection method.
es;_:jo UIS“ e _etecrt:on tecbmqufe wi | €. i Our model is based on the predictions of Flanagan and
1age .ength("?" ¢ € number of pixels in a yés one . Hughed13]. We wish to emphasize that it it intended to
c.haract.ensuc.whmh d|st|ngwshe§ S|gngl ridges frc_)m NOIS&ye “accurate” in the sense required for optimal filtering:
ridges in stationary Gaussian noise. Since the noise is StQather, it is constructed to have time, frequency and energy

chastic, it will produce a distribution of ridge lengths, with 1,55 cteristics consistent with the assumptiong8f. Thus,
short ridges being more frequent than longer of®es., See o harformance of our TF method for these simulated sig-

Fig. 3. The ridge length of a signal i@pproximately de-  \5"should be indicative of its performance for actual coa-

tgrmined by t_he signal’s duration and frequ.ency band._ Thu?escence signals. A detailed description of the model wave-
ridge length is more strongly correlated with signal ndgesform and its derivation is presented in the Appendix. A

than noise ridges, and setting a minimum ridge length thresr}- ical waveform (for a 30M ~-30M ~ binary svstem is
old can further improve the detection statistic. Also, note thagyhpOWn in Fig. 2. ( © © y system

this thresholding is not so specific as to undermine the ro-
bustness of the TF method. For these reasons, we use ridge
length as a threshold.

Our complete TF detection method consists of the follow- We analyzed simulated data in segmentsNof 4096

B. The simulation procedure

ing steps: samples each. The assumed sampling frequency fyas
(1) Construct the Wigner-Ville distributiop(t,f) of the = =9868.420898 HZwe chose the sampling frequency of the

detector outpuh(t) as per Sec. Il LIGO 40-meter prototype detector so that data from that de-
(2) Search for ridges in the TF may{t,f) using the Ste- tector could be easily analyzedEach segment therefore

ger’s algorithm as per Sec. lll. lasts forT=N/fs~0.415 s, and the time interval between
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- - Ih‘/}SPiral Fourier transform of, . We therefore “over-whitened” the
----------- erger

— Quasi—normal Ringdown data,h,,—h,/(S)k, to reduce thetime-domain dynamic
range. This procedure has the added benefit that it empha-
sizes the frequencies in which the detector is most sensitive
while suppressing the frequencies where the noise is large.
We then took the inverse Fourier transform of the over-

whitened h,, and subsequently computed its WV,
=p(jAt,kAT), as per Eq(2.5).

This procedure produces discrete TFDs, whose dimen-
sions may be expressed in units of pixels. Because of the
undersampling involved in computing the discrete W{4ee
Sec. I) we computedp;, at 4096/2=2048 distinct offsets,

3 giving the WVD a “width” of 2048 time pixels. Also, the
time (sec) ‘ transform is constructed only at positive frequencies up to
the Nyquist frequencwfter undersampling. Thus, the WVD

FIG. 2. A simulated binary black hole coalescence waveformhas a “height” of 1024 frequency pixels. The resulting
for a 30M -30M ¢, system, showing the three phases of the coalesTFDs had 204& 1024~2x 10° pixels. This was too large
cence described by Flanagan and Hudli&$ The frequency of the  for efficient computation, so we reduced the map size by
wave increases monotonically. Only the portion of the Waveformaveraging over every 4 time pixe|s and every 2 frequency
with frequency=40 Hz is shown. pixels. The final discrete WVDs had dimension %1212

pixels, each pixel having area 0.0@089.6Hz=7.8
successive samples d=1/f;~1.013<10" % s. Samplesin X107 3.
each segment are denoted Ioy=h(jAt) wherej takes the Next, pjx was passed through Steger’s line recognition
values between 0 and 4095. We denote the Fourier transforalgorithm. We used Steger's implementation of this algo-

of h(t) by h(f) and its discrete representation By  rithm [21], which assumes that the pixels of the imades-

=R(jAf), whereAf=1/T and] takes the value between 0 tribution in our casgare unsigned characters, taking integer
(DC) and’N/2 (the Nyquist frequendy values between 0 and 255. To convert the floating point im-
We performed two types of simulations: one to determine?9€pik 0 its unsigned character analog} it was neces-
false alarm probabilitiegthe probability that a signal is de- sary to rescale the data to fit in this range without saturating
tected when none is presgmaind one to determine false dis- it. The scaling factor was calculated as follows: the maxi-

missal probabilitiesthe probability that no signal is detected Mum floating point value op;, was found for each segment
when one is presentin every simulation, the data stream of noise data. The scaling factor was then chosen so that it

contained Gaussian noise, as described in subsection v Acaled the average value of these maxima to the value 128.
To determine false alarm probabilities, no simulated signaloNce rescaled, the image was passed to Steger's algorithm.

-~ . L The algorithm parameters we used were2 and second
were added, so that;=n;. To determine false dismissal derivative (hysteresis thresholds of 10/pix@l and

probabilities, simulated GW signals were added to the nois .
As indicated in the Appendix, the angle averaged Signag’,.33/p|xe?. Ideally, these values would be chosen by some

. X . optimization procedure, however, for this preliminary study
were_ generated in the time domain. We th_erefoie took th ey were selected “by hand” after extensive numerical ex-
Fourier transform of the average signakh®®"),  erimentation.
=L ge?™N(hBBM), . The signal was normalized so that ~ For each map, the line recognition algorithm returns a list

~ 5 of ridges detected and their lengths. Our detection statistic
[(hggrkl _1 (5.1) was the length of the longest ridge in the map. Thus, a
o (Shk ' ' threshold value was chosen, and if this value was equaled or
exceeded by the longest curve in a given map, a signal was
where G,)=S,(kAf) is the one-sided power spectrum of said to have been detected in that map. For instance, if one
the noise. The frequency domain data stream is then taken &hooses a threshold ridge length 30 pixels, a signal is said to
be have been detected in any map which contains a ridge whose
length is 30 pixels or longer.

<

-0.16
-0.12
-0.08
-0.04

0.08

N/2

Ek:?\k+SNR<EBBH>k, (52)
C. False alarm probability

where SNR is the signal-to-noise ratio obtainable by Our goal is an algorithm which has an acceptable false
matched filtering. alarm rateR; . In our case, this means determining a ridge
~ Since the Wigner-Ville distribution is computed from the |ength which is not equaled or exceeded in maps containing
time series I’epl’esentatlon of the detector Output, it was neco'r“y noise more than once in everym/seconds_ To com-
essary to transforrhy into the time domain. However, the pute this threshold, we simulated noise from an ensemble of
power spectrum spans such a large dynamic range that sigtatistically independent identical detectors. In our simula-
nificant numerical errors arise if one simply takes the inverseion, the ensemble consisted of approximatelyxi1?° de-
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FIG. 3. The relative frequency with which Steger's algorithm  F|G, 4. False dismissal probability as a function of mass. The
detected ridges with length | pixels in WVDs of simulated initial  three curves correspond to three different values the optimal filter
LIGO noise. Only the 106 maps in which ridges were detected argjgnal-to-noise ratio. With the parameters we have chosen, our

included in this graph. The unevenness of the graph is caused Qyethod tends to work better for higher mass binaries, where the
statistical fluctuations due to small number statistics. energy is more localized in the TF map.

that the time resolution of the WVD is less than 0.0008 s.
Furthermore, recall that Steger’s algorithm identifies the po-

For each member of the ensemble, we computed a WVDs.ition of ridges in the imagén fact, this feature was imple-
’ mented in our code although we did not use Tthus, at no

We then searched for ridges in the WVD using Steger’s al onal Id i h
gorithm and determined the length of the longest ridge€X!r@ computational cost, one could set 7,=10 ms. The

Ridges were found in 106 of the 2x7.0° WVDs, or about 1 TIF method fcig the/re?:‘clremeasilybachieve a coir;(;igent false
out of every 16000 maps. In those maps in which ridgearm rate of 10 ms/(3.4 hf) or about one every 475 years.

were found, the length of the longest ridge ranged from 7 to

tectors, which corresponds to analyzing 2 0°x0.415
seconds or about 196 hours of simulated data.

68 pixels. The relative frequency with which the longest D. False dismissal probabilities
ridge had a lengtk=| pixels is shown as a function ¢fin The false dismissal probability depends on the nature and
Fig. 3. strength of the signal in the data. We have estimated these

Based on this simulation we chose a ridge length threshprobabilities for simulated BBHC waveformSec. V A.
old of 30 pixels. This threshold produces a false alarm probye used signals with SNR&s measured by optimal filtgrs
ability of about 3.4 10" °, or a false alarm rate of about one in the range 7 to 14. To demonstrate the robustness of this
every 3.4 hours in a single detector. More interesting is the'F method we selected various coalescence waveforms cor-
rate at which false alarms occur simultaneously in two untesponding to different binary system masses. We confined
correlated detectors. This coincidence rate is proportional teurselves to thétotal system mass range 48, to 70M, .
the coincidence windowr, i.e., the time interval within |n this range the merger phase, for which the waveform can-
which the same signal can be seen by both detectors. A natuot be calculated analytically, sweeps through the frequency
ral lower limit for 7 is the light crossing time between detec- band of maximum sensitivity for initial LIGO detectors, and
tors, 7., since the time interval between the arrival of adominates the detectable signdl3]. These are therefore
single signal at the first detector and the last detector can b@asses for which robust methods will be most useful.
up to 7.. However, other considerations may set a larger  Figure 4 shows false dismissal probabilities as a function
for a given algorithm, leading to a higher coincident falseof binary mass at SNRs of 10, 12 and 14.
alarm rate. At an SNR of 14 the false dismissal rates are acceptable

For the LIGO 4 km detectors; is approximately 10 ms. throughout the tested mass range. At an SNR of 10, however,
As implemented, the TF method did not resolve time-of-more than 20% of signals are missed by our detection algo-
arrival to this accuracy, because we did not distinguish whemithm for system masses55M,. This is because as the
in the 400 ms data segment the signal arrived. The coincimass of a system decreases, the proportion of the SNR which
dence window is therefore 400 ms, which corresponds to & attributable to the inspiral phase increases, as does the
coincident false alarm rate of approximately oneduration of the observable portion of the inspiral. Thus, the
400 ms/(3.4 hi, or about one per 12 years. However, recallSNR of the signal is spread through a larger region of the TF
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predict their signal waveforms. For such sources, matched
filtering will not be a suitable detection method. It is there-
fore necessary to develop methods which can detect signals
from poorly modeled or even unmodeled sources in inter-
ferometric GW data.

We have demonstrated that time-frequency methods may
provide a tool for detecting such sources. Our method, with
the parameters discussed above, produced an initial LIGO
false alarm rate of=(3.4 hr) !, which corresponds to coin-
cident false alarm rate in two detectors-e{475 yr)~1. Our
simulations also show that we reliably detect the postulated
BBHC waveforms for binaries of various masses injected
into the data at a variety of optimal filter signal-to-noise
ratios. For instance, we detect 80% of signals with SNRs
ranging from ~8.8 for higher mass binaries (VD,) to
~12.2 for lower mass binaries (Wh;). These numbers are
within a factor of two of those for optimal filtering of stellar
mass binary inspirals, where for two detectors the detection
snr threshold is usually taken to be an SNR~e6 [23]. Further-

more, this method is implementable in real time with a real-
FIG. 5. False dismissal probability as a function of SNR for jstic computing budget.

three values of the total mas4 of the binary system for the model
signal. Even at a modest SNR of 11, the false dismissal rate is
below 50% for systems with masses betweeM#0and 4M .

False dismissal probability

B. Future directions

While this method shows considerable promise, there are

map, leading to lower ridges and hence a loss of detectabiftill @ number of issues which must be addressed in order to
ity. determine how useful TF methods will be in general:

In Fig. 5 we plot the false dismissal probabilities versus _ Ulilization. One might use TF methods as a filter to iden-
the SNR for signals from 48 ,60M and 7M. binary tify data which should be analyzed for the presence of sig-
systems. Again, one sees in this figure that high mass Sygl_als using other t_echnlquése., in an hierarchical seargh
tems are more readily detected. False dismissal probabiliti§" detecting the signals themselves, or as a method for char-
for every system mass decrease with signal-to-noise ratio &cterizing detector noise. This paper only addresses signal

expected. detection.
Choice of Algorithm We have presented only one of

many TF methods that could be implemented. We have used
the Wigner-Ville distribution and Steger’s ridge detection

All our simulations were carried out on a 48 node Be-algorithm, however there are a number of other TRES
owulf (paralle) computer comprised 300 MHz Alpha 21164 [6]) and ridge detection algorithmg.g., Hough transforms
machines[22]. This computer can analyze 47 segments 0f24,25 or the curve and edge detection algorithms cited in
data simultaneouslithe 48th machine is used to coordinate the introduction of{18]) which might prove suitable. As a
the calculation We found that we could apply our TF detection statistic, energy along ridges, total ridge length in a
method to approximately 210" data points per second map, or “bunching” of ridges might provide better detection
(about twice the sampling rate of the simulated glata statistics than maximum ridge length.

For initial LIGO, the frequency band of maximum sensi-  Optimization We have made heuristic choices for operat-
tivity is projected to be below a few hundred f20]. Sam-  ing values of the smoothing parameterand the second
pling rates of=<1024 Hz should therefore be sufficient to derivative thresholds in Steger's algorithm. It would be de-
contain all signals detectable with this TF method. Thussirable to have a process which, given a specific type of GW
even modest parallel computing facilities could implementsignal, optimizes these parameters.

E. Computational efficiency

this method in real time for initial LIGO data. Implementationlt is unlikely that a single TF method is
sufficiently robust to detect all types of unmodeled sources,
VI. CONCLUSION which means that a set of TF methods should be used. It is

also possible that TF methods are optimally implemented
hierarchically. For example, one might have two detection
Optimal filtering has dominated the interferometric GW statistics; one with an unacceptably high false alarm rate but
data analysis literature. This is because when one seeks sigw computational cost and another with prohibitive compu-
nals of nearly exactly known form in stationary noise with tational cost but a low false alarm rate. By applying the
known spectral density, optimal filters are the most sensitivasecond statistic only to those TF maps in which a signal is
linear filters. However, it is clear that there are sources otletected with the first statistic, one could achieve both com-
gravitational radiation that are not understood well enough tgutational efficiency and acceptable false alarm rates.

A. Summary
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Comparison with Other Technique®Ve do not know nary system up to the “innermost stable circular orbit”
how TF methods compare to other techniques. Signals thatSCO). This component is well modeled for BBH systems
are optimal for TF detection produce regions of high densityof ~1M [28], but there is some doubt whether it is known
in the TFD. For our simulated signals, this high density re-well enough for optimal filtering for binaries of total mass
gion spans relatively short time scales@.2 s). They might =20M [29].
therefore be equally well detected with much simpler time- The merger component describes the evolution of the sys-
series thresholding techniques such as the one described term from ISCO until such time as the system can be de-
[26]. We have investigated this possibility by comparingscribed as a single perturbed Kerr black hole. No analytical
each datum used in our TF simulations to a threshold. Welescriptions of this component exist.
chose the threshold to produce the same false alarm rate as The quasi-normal ringdown component describes the evo-
obtained with the TF method. This technique produced dution of the system when it is well described as a single
false dismissal rate of about twice that of the TF methodperturbed Kerr black hole. This component well modeled for
However, it is unknown whether a more sophisticated time-all BBHC's [30,31].
series threshold or a different statistic such as the excess In this Appendix, we model each component separately.
power statistid27] would prove superior to the TF method. The full coalescence waveform is then simply a combination

There is one further issue which pertains to all robustof the three component waveforms:
methods. In order to detect a signal of unspecified form in
noise, the noise must be well characterized. We have as- (hinsA(t)), <O,
sumed Gaussian noise in this paper. It is uncertain at this mer mer
time to what extent this assumption is valid, however it is (%)) = ATRE) cosp™EqL),  O<t<tmerge
known that noise from the LIGO 40 m prototype contains a (h9(t)),  t>tmerger
significant non-Gaussian component. The extent to which (AL)
this component can be identified and remoyeerhaps with
the aid of TF methods themselyds an issue that will only An example of such a waveform for al8Q,-30M, system
be fully resolved once the relevant interferometer data beis shown in Fig. 2. We use units in whic+G=1 through-

comes available. out the remainder of this Appendix.
Clearly, there is a much work to be done. Moreover, with
interferometric detectors scheduled to begin taking data in 1. Quasi-normal ringdown

approximately a years time, there is little time in which to do ) o )

it. In an effort to expedite the resolution of the issues listed The ringdown waveform is given ifi3] as

above, we have made our TF computer code available as part AM

of the latest release of GRASR]. h‘l”’—ihi”rz—zsg(L,,B,a)e*Zi”fqm‘*“T“‘PO. (A2)
However, the results of this preliminary investigation are r

encouraging. With the resolution of these issues, TF methods

promise to be useful tools for the detection of GW signals inHere,M anda are the mass and angular momentum per unit

interferometric data. mass of the black holer is the distance to the hole,
,S5(1,B,a) is a spin-weighted spheroidal harmonfd!" is
ACKNOWLEDGMENTS the characteristic frequency of the black hole normal mede,

) ~is the time constant for the exponential decay of the mode,
We would like to thank Bruce Allen for many useful dis- ,, is an arbitrary phase factor, ancand 8 are angles that
cussions and suggestions. We also thank Patrick Brady, Erigescribe the orientation of the black hole’s spin axis with
Chassande-Mottin, Jolien Creightonariha Flanagan, Scott respect to the plane of the detector arims, Fig. 9.2 of 1]).
Hughes and Alan Wiseman for their helpful suggestions, anéthis waveform is quite straightforward except for the pres-
Carsten Steger for suggesting his algorithm and supplying e of the spin-weighted spheroidal harmoaB%(L,,B,a).
his C code to us. W.G.A. acknowledges the financial support This complication of thezsg(n 8,a) factor is easily cir-
of the NSERC. This research was supported by NSF grants, .. by considering only ’thé root-mean-squaners)

PHY-9728704 and PHY-9507740. average of it over the source orientation angleand .
When averaged in this way, spin-weighted spheroidal har-

APPENDIX: THE BINARY BLACK HOLE COALESCENCE monic obeys the trivial relationship

WAVEFORM

1 1
The signal waveforms we used in our false dismissal \/EJ dQ|ZS§(L,,8,a)|2=—. (A3)
simulations are based on the description of binary black hole Vam
coalescencéBBHC) signals in Flanagan and Hugh&sH)
[13]. They consist of three consecutive components: an inSince we are not interested in modeling the waveform ex-
spiral component, a merger component, and a quasi-normaktly (indeed, our point is to show that we can find even
ringdown component. The division into these components ighaccurately modeled signaldet us for the sake of simplic-
somewhat arbitrary. Roughly speaking: ity substitute the rms value of ¢4 %2 for ,S5(+,8,a) in
The inspiral component describes the evolution of the bi{A2) to obtain
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AM
oy —i(hdmy = e
(h .= 1T () e

*Ziﬂfant*t/T‘Fi(pO

(Ad)

Note that(h9™), 5 and(h%"), 5 arenotthe (.,8) angle
averaged rms values ¢ff" and h{"" respectively, but are
rather the result of averagin@% over (¢, ).

From Eq.(A2), the detector response to the quasi-normal

ringing of a black hole is obtained by

h(t)=F.(6,¢,p)h (1) +F(0,6,4)hy (1), (A5) Thus, the only free parameters remaining in E410) are
the system maddl, the time offset¢cand the initial phase
whereF . andF are the beam pattern functions of the ringdown wavefornpd™. The mass will remain a free
parameter in our simulation, howevefeqe and the initial
1 phase are determined by the merger waveform.
F+(0,¢,¢)=§(1+co§6)cos2¢cos2¢
2. Binary inspiral
—C0s6 Sin 2¢ sin 2y, (AB) ) o yinsp
For the binary inspiral componenty, and h,, can be
1 conveniently written in the fornpl]
FX(0,¢,¢)=§(1+CO§0)COS2¢Sin 24
_ hTSF’(t)=—2(ﬁ [ M f"(1)]123(1+ coge) cose™(t),
+cosé sin 2¢ cos 2, (A7) r
(A13)
and 0, ¢ and ¢ are angles which describe the detector ori-
gg:g}c:]on[l]. One may average over detector orientations to hiQsp(t): _4<$>[WMfinsp(t)]2/3COSL sing™A(t),
(A14)
Ih()] (.0.0)= \/ifwdesinafzwdqbfwdzphz(t) whereM =m; +m, is the total mass of the BBH system,
e 472Jo 0 0 =(mym,)/M is the reduced mass of the system, &fieR(t)
and ¢'"M(t) are the binary inspiral orbital phase and fre-
1 uency. These latter are given to first post-Newtonian order
= Jh. ()% he (D)2 A8) J
F %) (A8) o]
T~ ; : . 1 743 11
Substituting Eq(A4) into Eq. (A8) we get to obtain inspr+) — ~3/8 . ) ~5/8
PO=gm|® " lzeest 3270 T
()= (O™ 000~ . (AD) o
A (t)E h(t) (u.B) (0’¢’¢): e "7, A9
V20 . 1 .5 (3715 ,
(Plnsp(t):(PC08|__ ®58+ 8064+559677 ®38 1
Notice that A9(t) is no longer a waveform. The source K (A16)
angle averaging combinds. andh, to in such a way that
only the (exponentially decayingamplitude envelope re- \yhere
mains. To recover the waveform, we multiph?™(t) by a
cosine at the appropriate frequency, w
=1 (AL7)
<h(t)qm>EAan(t_tmerggcos{z'ﬂfqm(t_tmergg+(Pgnr]y
AM _"
= ﬁe*(tftmergg/rcoizﬂ_fan(t_tmergg+ od™M. 0= m(tcoal_t)- (A18)

(A10)
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Finally, we wish to expresgAl10) in terms of the BBH
system mass. Using Ed3.17) of [13] and the valuesa
=0.98 andA=0.4 quoted in Eq(3.21) of [13], we have

anr_ 20M ¢,
f9M=1320Hz —— |, (A1)
11.63
T~ . (A12)
o

©coal @Nd t.o, are the phase and time at which coalescence
occurs(i.e., when the frequency becomes infinitslote that

Here, the angle brackets serves to remind us that there haimspiral waveforms are available to post-Newtonian order 2.5
been two averaging processes used in obtaining this resul2], but first post-Newtonian order will be sufficient for this

and we have offset the time varialll®y t¢qc (the duration
of the merger componento facilitate combining it with the
other waveform components as in E4.1).

crude model.
As with the ringdown waveform, we perform an RMS

averaging over the source angles in the inspiral waveform.
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The equivalent averaging in this case replaces ¢as)/2
in h,(t) and cos in hy(t) by their (:,8) averaged RMS
values,

3

(A19)

\/%f dQH(lJrcoszL)er cose

Thus,

[7T|V| finSp(t)]2/3COSgDin5p(t),

ins I
(h0)) (.=~ 8( _\/gr
(A20)

[7T|V| finsp(t)]zlssin (pinsp(t)'
(A21)

ins K
(hZR) ). 5= —8( B

We also average over the detector orientations. Inserting Eq.

(A20) and Eq.(A21) into Eq. (A8) and multiplying by
cos¢™M(t) we have

<hinSp(t)>EAinSp(t)COS(pinSp(t)

i—l;[wMfi”Sp(t)]2/3003¢i”Sp(t). (A22)

Again, we wish to express the waveform in terms of the
system mas#. It therefore remains to fix the reduced mass
u, the coalescence timg,,, and the coalescence phase

¢coal- We restrict our attention to equal mass binaries, so that ) = fised +

the reduced mass is therefoue= M/4. We fix t .y, SO that
the binary system attains the ISCO frequerfgygo, at time
t=0, i.e., so that™P0)=fsco. Following[13], we use the
Kidder-Will-Wiseman [32] value of fisco=(20Mg/M)

X 205 Hz. We also fixp.y, SO that the phase of the binary
system vanishes at=0, i.e., so thaty™R0)=0. Note that
this is not the same as choosirtg,,=0 and¢y,=0, since

PHYSICAL REVIEW D60 102001

The first step in our construction of a merger waveform
estimate is to assume a form of

(h™e99t)) = ATe99t) cose ™9t ). (A23)
Continuity of thef ege and d;f merge With both the inspiral
waveform that proceeds it and the quasi-normal ringdown
waveform that follows constitutes four conditions on

¢m0):

é,(pmerge
o (t=0=fisco, (A24)
(72(Pmerg aZ(Pinsp
( - j(t=0)=( —|(t=0),
at ot
(A25)
acpmerge
s (t=tmergd =", (A26)
aZ(Pmerg
g2 (t:tmerggzoa (A27)

where the last equation follows from the fact that i is

constant. To satisfy these four conditions will require a fre-

quency model with four free parameter. We use the simplest

such model; the merger frequency a cubic function of time.

The phase is therefore a quartic of the form

&ZQDiHSp
at?

t2+¢g1erg%3+¢g1erg%4’

(A28)

(0)

where ¢3°'9 and ¢}'°9° can be obtained by solving Eq.

(A26) and Eg.(A27) and we have sep™"9(0)=0. Once
the merger phase polynomial has been determined, it is a
simple matter to find the phase constant for the quasi-normal

coalescence occurs after the ISCO. This completes the speé¢ingdown,

fication (apart from the free mass parametef the inspiral
component of the BBHC waveform.

<P3m= Mt = tmergQ ) (A29)

which completes the specification of the quasi-normal ring-

3. Merger
The remaining task is to model the merger waveform.

down component of the waveform.
To determine the merger amplitude function, we impose

While no analytic model for the merger exists, Flanagan angimilar continuity conditions
Hughes[13] make educated estimates of some of its proper-

ties. They assume that the merger signal contains only fre-

guencies between the ISCO frequentyco, and the quasi-
normal ringing frequencyf9™. They also estimate that the

energy carried by the merger component of the wave is ap-
proximately 3 times the energy carried by the quasi-normal

ringdown component. Finally, they estimate the duration of

the merger to be¢s~50M. We use these criteria, along
with the requirement thdt and 9;h be continuous, to guide
us in making a mock merger waveform. While the resulting
waveform will not be that of a real BBH merger, it should

resemble it enough to determine whether our TF method can

detect BBH waveforms for intermediate-mass systems.

AMe7t=0)=AMP(t=0), (A30)
( é,Amergé) —0) — ( J insp) —
p (t=0)= EA (t=0),
(A31)
AT t= tmergg =AM(t= tmergQ )
(A32)
S e
ot (t_tmergg_ EA (t_tmerge)-
(A33)
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We again need a fitting function with at least four param-and we therefore model the merger amplitude with a quatrtic,
eters. However, there is a further constraint to impose; recall
that[13] estimates the energy of the merger to be three times
the energy of the quasi-normal ringdown, i.e.,

tmerge 0 2 *° J 2
fo (™) dtzsft —at<hq”r(t))) dt.
merge (A34) where the coefficientd]'5 3¢ are determined by Eq$A32),

(A33) and (A34). This ébmpletes the specification of the
This fifth condition onA™®"9{t) requires a fifth parameter, merger waveform.

Amerg%t) :Ainsp(o) + ( %Ainsp) (0)t+Ag19rgti2+A3merget3

+ AJe94, (A35)
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