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Two-loop scale dependence of the static QCD potential including quark masses
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The interaction potentialV(Q2) between static test charges can be used to define an effective chargeaV(Q2)
and a physically based renormalization scheme for quantum chromodynamics and other gauge theories. In this
paper we use recent results for finite-mass fermionic corrections to the heavy-quark potential at two loops to
derive the next-to-leading order term for the Gell-Mann–Low function of theV scheme. The resulting effective
number of flavorsNF(Q2/m2) in theaV scheme is determined as a gauge-independent and analytic function of
the ratio of the momentum transfer to the quark pole mass. The results give an automatic decoupling of heavy
quarks and are independent of the renormalization procedure. Commensurate scale relations then provide the
next-to-leading order connection between all perturbatively calculable observables to the analytic and gauge-
invariantaV scheme without any scale ambiguity and a well-defined number of active flavors. The inclusion of
finite quark mass effects in the running of the coupling is compared with the standard treatment of finite quark
mass effects in the minimal subtraction (MS) scheme.@S0556-2821~99!00321-5#

PACS number~s!: 11.10.Hi, 11.15.Bt, 12.38.Bx
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I. INTRODUCTION

Is there a preferred effective charge which should be u
to characterize the coupling strength in QCD? In princip
any perturbatively calculable observable can be used to
fine an effective charge. In quantum electrodynamics,
Dyson running couplingaQED(Q2), defined from the linear-
ized potential between two infinitely heavy test charges,
been used as the traditional coupling. The correspond
definition of the non-Abelian QCD coupling is customari
given by identifying the ground state energy of the vacu
expectation value of the Wilson loop as the potentialV be-
tween a static quark-antiquark pair in a color singlet state@1#:

V~r ,m2!52 lim
t→`

1

i t
log^0uTrH PexpS R dxmAa

mTaD J u0&

~1!

where r denotes the relative distance between the he
quarks,m is the mass of ‘‘light’’ quarks contributing throug
loop effects, andTa are the generators of the gauge group
is then convenient to define the effective chargeaV(Q2,m2)
as

V~Q2,m2![24pCF

aV~Q2,m2!

Q2
~2!

*Email address: sjbth@slac.stanford.edu
†Email address: Michael.Melles@durham.ac.uk
‡Email address: rathsman@slac.stanford.edu
0556-2821/99/60~9!/096006~14!/$15.00 60 0960
d
,
e-
e

s
g

y

t

in momentum space. The factorCF is the value of the Ca-
simir operatorTaTa of the external sources~which are in the
fundamental representation! and factors out to all orders in
perturbation theory, andQ252q2 is the spacelike momen
tum transfer.

The effective chargeaV(Q) provides a physically base
alternative to the usual modified minimal subtraction (MS)
scheme. As in the corresponding case of Abelian QED,
scaleQ of the couplingaV(Q) is given by the exchanged
momentum. There is thus no ambiguity in the interpretat
of the scale. All virtual corrections due to massive fermi
pairs are incorporated inaV through loop diagrams which
depend on the physical mass thresholds. When continue
time-like momenta, the coupling has the correct analytic
pendence dictated by the production thresholds in
crossed channel. SinceaV incorporates quark mass effec
exactly, it avoids the problem of explicitly computing an
resumming quark mass corrections which are related to
running of the coupling. Thus the effective number of fl
vors,NF(Q/m), is an analytic function of the scaleQ and the
quark massesm. The effects of finite quark mass correction
on the running of the strong coupling were first conside
by De Rújula and Georgi@2# within the momentum subtrac
tion scheme~MOM! ~see also@3–6#!. The two-loop calcula-
tion was first done by Yoshino and Hagiwara@7# in the
MOM scheme using the Landau gauge and also recently
Jegerlehner and Tarasov@8# using the background field
gauge.

One important advantage of the physical charge appro
is its inherent gauge invariance to all orders in perturbat
theory. This feature is not manifest in massiveb functions
defined in non-physical schemes such as the MOM sche
©1999 The American Physical Society06-1
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A second, more practical, advantage is the automatic de
pling of heavy quarks according to the Appelquist-Carazz
theorem@9#.

By employing commensurate scale relations@10# other
physical observables can be expressed in terms of the
lytic coupling aV without scale or scheme ambiguity. Th
quark mass threshold effects in the running of the coup
are taken into account by utilizing the mass dependenc
the physicalaV scheme. In effect, quark thresholds a
treated analytically to all orders inm2/Q2; i.e., the evolution
of the physicalaV coupling in the intermediate regions re
flects the actual mass dependence of a physical effec
charge and the analytic properties of particle producti
Furthermore, the definiteness of the dependence in the q
masses automatically constrains the scaleQ in the argument
of the coupling. There is thus no scale ambiguity in pert
bative expansions inaV .

In the conventionalMS scheme, the coupling is indepe
dent of the quark masses since the quarks are treated a
ther massless or infinitely heavy with respect to the runn
of the coupling. Thus one formulates different effective the
ries depending on the effective number of quarks which
governed by the scaleQ; the masslessb function is used to
describe the running in between the flavor thresholds. Th
different theories are then matched to each other by impo
matching conditions at the scale~normally the quark masses!
where the effective number of flavors is changed. The dep
dence on the matching scale can be made arbitrarily sma
calculating the matching conditions to high enough ord
For physical observables one can then include the effect
finite quark masses by making a higher-twist expansion
m2/Q2 andQ2/m2 for light and heavy quarks, respectivel
These higher-twist contributions have to be calculated
each observable separately, so that in principle one requ
an all-orders resummation of the mass corrections to the
fective Lagrangian to give correct results.

The specification of the coupling and renormalizati
scheme also depends on the definition of the quark mas
contrast with QED where the on-shell mass provides a n
ral definition of lepton masses, an on-shell definition
quark masses is complicated by the confinement propert
QCD. In this paper we will use the pole massm which has
the advantage of being scheme and renormalization-scal
variant.

A technical complication of massive schemes is that o
cannot easily obtain analytic solutions of renormalizat
group equations to the massiveb function, and the Gell-
Mann–Low function is scheme-dependent even at lowest
der.

In this paper we present a two-loop analytic extension
the aV scheme based on the recent results of Ref.@11#. The
mass effects are in principle treated exactly to two-loop or
and are only limited in practice by the uncertainties fro
numerical integration. The desired features of gauge inv
ance and decoupling are manifest in the form of the two-lo
Gell-Mann–Low function, and we give a simple fitting fun
tion which interpolates smoothly the exact two-loop resu
obtained by using the adoptive Monte Carlo integratorVE-

GAS @12#. Strong consistency checks of the results are p
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formed by comparing the Abelian limit to the well-know
QED results in the on-shell scheme. In addition, the mass
and the decoupling limits are reproduced exactly, and
two-loop Gell-Mann–Low function is shown to be renorma
ization scale (m) independent.

As an application we show how the analyticaV scheme
can be used to calculate the non-singlet hadronic width of
Z boson, including finite quark mass corrections from t
running of the coupling, and compare with the standard tre
ment in theMS scheme where the corresponding effects
calculated as higher twist corrections.

Recently~see Ref.@13#! we proposed an alternative wa
of incorporating mass effects connected with the running
the coupling by making an analytic extension of theMS
scheme where the coupling is an analytic function of b
the scale and the quark masses. This analytic extension o
MS scheme is defined by connecting theMS coupling to the
V scheme using a commensurate scale relation based o
@Brodsky-Lepage-Mackenzie~BLM !# scale-setting proce

dure@14#. The new modified couplingãMS(Q) inherits most
of the good properties of theaV scheme, including its correc
analytic properties as a function of the quark masses an
unambiguous scale fixing@13#.

However, the conformal coefficients in the commensur
scale relation between theaV and MS schemes do not pre
serve one of the defining criteria of the potential expresse
the bare charge, namely the non-occurrence of color fac
corresponding to an iteration of the potential. This is pro
ably an effect of the breaking of conformal invariance by t
MS scheme. The breaking of conformal symmetry has a
been observed when dimensional regularization is used
factorization scheme in both exclusive@15,16# and inclusive
@17# reactions. Thus, it does not turn out to be possible
extend the modified schemeãMS beyond leading order with-
out running into an intrinsic contradiction with conform
symmetry. Note, however, that this difficulty does not affe
using theMS scheme as an intermediate renormalizat
scheme when connecting physical observables. For c
pleteness we give the results of such an extension in an
pendix.

The paper is organized as follows: In Sec. II we derive
second term of the Gell-Mann–Low function in the physic
V scheme as a renormalization-scale-independent functio
the ratio of the physical momentum transferQ and the pole
massm. In Sec. III we present numerical results of the e
fective number of flavors and compare it with results o
tained in the gauge-dependent momentum subtrac
schemes. In addition, various consistency checks are
formed, and numerical fits are presented. In Sec. IV we
lustrate some of the properties of the analyticaV scheme and
demonstrate the effect of the quark mass thresholds on
mass-dependent evolution and compare with the mass
evolution. In Sec. V we compare the calculation of the ha
ronic width of theZ boson in the analyticaV scheme to the
conventionalMS scheme with a mass-independent coupl
and explicit higher-twist corrections for mass effects. In S
VI we summarize our results and indicate future applic
6-2
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TWO-LOOP SCALE DEPENDENCE OF THE STATIC QCD . . . PHYSICAL REVIEW D60 096006
tions. The definition of the analytically extended sche
ãMS beyond leading order is discussed in the Appendix.

II. GELL-MANN –LOW FUNCTION THROUGH TWO
LOOPS

The physical chargeaV(Q,m) can be expressed as a pe
turbative series in any other renormalization scheme. For
ample, in the minimal subtraction scheme, the perturba
series has the form

aV~Q,m!5aMS~m!S 11v1„Q,m~m!,m…

aMS~m!

p

1v2„Q,m~m!,m…

aMS
2 ~m!

p2
1••• D ~3!

where the massless limits of the coefficientsv1 and v2 are
known in the literature@1,18–23#. Since the physical charg
aV(Q,m) cannot depend on the renormalization scalem, the
m dependence on the right-hand side of Eq.~3! must cancel
to the order we are working. Notice that the coefficients a
depend on the renormalization scalem used for the mass
renormalization, i.e. through the dependence of the runn
massm(m). Figure 1 shows the Feynman diagrams for t
fermionic contributions to the two-loop coefficien
v2„Q,m(m),m…. These contributions depend on the ma
renormalization used for the one-loop coefficie
v1„Q,m(m),m…. Since we are predominantly interested
the flavor-threshold dependence of heavy quarks, we s
relate the running mass to the pole mass which
renormalization-scale independent and gives explicit dec
pling. This also provides a physical picture as well as
straightforward Abelian limit.

The next-to-leading order relation between the MS m
m(m) and the pole massm is given by@24#

m~m!5mF12CF

aMS~m!

p S 11
3

2
log

m

m
2

3

4
@g2 log~4p!# D G ,

~4!

whereg is the Euler constant. Inserting Eq.~4! into Eq. ~3!
gives, at next-to-next-to-leading order,

aV~Q,m!5aMS~m!F11v1~Q,m,m!
aMS~m!

p

1@v2~Q,m,m!1Dm~Q,m,m!#
aMS

2 ~m!

p2 G ~5!
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whereDm(Q,m,m) denotes the contribution arising fromv1
when changing from the MS mass to the pole ma
v1„Q,m(m),m…5v1(Q,m,m)1Dm(Q,m,m)aMS(m)/p.

The Gell-Mann–Low function@25# for the V scheme is
defined as the total logarithmic derivative of the effecti
charge with respect to the physical momentum transfer s
Q:

FIG. 1. The two-loop massive fermionic corrections to t
heavy quark potential~from @11#!. Double lines denote the heav
quarks, single lines the ‘‘light’’ quarks with massm. The first two
rows contain diagrams with a typical non-Abelian topology. T
middle line includes the infrared divergent ‘‘Abelian’’ Feynma
diagrams. They contribute to the potential only in the non-Abel
theory due to color factors}CFCA . In addition, although each
diagram is infrared divergent, their sum is infrared finite. The inf
red finite Feynman diagrams with an Abelian topology plus
diagrams consisting of one-loop insertions with non-Abelian ter
are shown in the last two rows.
6-3
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CVS Q

mD[
daV~Q,m!

dlogQ
[(

i 50

`

2cV
( i )

aV
i 12~Q,m!

p i 11
, ~6!

where in the massless case the coefficientscV
(0) andcV

(1) are
given by

cV
(0)~m50!5

11

6
NC2

1

3
NF5

11

2
2

1

3
NF , ~7!

cV
(1)~m50!5

17

12
NC

2 2
5

12
NCNF2

1

4
CFNF

5
51

4
2

19

12
NF . ~8!

For the massive case all the mass effects will be collec
into a mass-dependent functionNF . In other words we will
write

cV
(0)S Q

mD5
11

2
2

1

3
NF,V

(0) S Q

mD ~9!

cV
(1)S Q

mD5
51

4
2

19

12
NF,V

(1) S Q

mD , ~10!

where the subscriptV indicates the scheme dependence
NF,V

(0) andNF,V
(1) .

Taking the derivative of Eq.~5! with respect to logQ and
re-expanding the result inaV(Q,m) gives the following
equations for the first two coefficients ofCV :

cV
(0)S Q

mD52
dv1~Q,m,m!

dlogQ
~11!

cV
(1)S Q

mD52
d@v2~Q,m,m!1Dm~Q,m,m!#

dlogQ

12v1~Q,m,m!
dv1~Q,m,m!

dlogQ
. ~12!

The argument Q/m indicates that there is no
renormalization-scale dependence in Eqs.~11! and ~12!.
Rather,cV

(0) andcV
(1) are functions of the ratio of the phys

cal momentum transferQ5A2q2 and the pole massm only.
The expression forcV

(0) agrees with our result in Ref.@13#. In
Eq. ~12! the derivative of theDm(Q,m,m) term comes from
using the pole mass instead of the MS mass, whereas
remaining mass dependence in Eq.~12! is arbitrary in the
sense that a different mass scheme is formally of higher
der. In addition we note that the contribution 2v1dv1 /dlogQ
cancels the reducible contribution~labeled2vp in Fig. 1! to
v2; it is thus sufficient to consider one quark flavor at a tim

III. NUMERICAL RESULTS FOR THE ANALYTIC NF

Because of the complexity of the integrals encountere
the evaluation@11# of the massive two-loop corrections t
the heavy quark potential, the results were obtained num
09600
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cally using the adoptive Monte Carlo integration progra
VEGAS @12#. Thus the derivative of the two-loop termv2 was
calculated numerically, whereas the other terms in Eqs.~11!
and~12! were obtained analytically. The results are given
terms of the contribution to the effective number of flavo
NF,V

(0) (Q/m), andNF,V
(1) (Q/m), in theV scheme, from a given

quark with massm, defined according to Eqs.~9! and ~10!
respectively. The Appelquist-Carazzone@9# theorem requires
the decoupling of heavy masses at small momentum tran
for physical observables. Thus we expectNF,V

(1) (Q/m) to go
to zero forQ/m→0. The massless resultNF,V

(1) →1 must also
be recovered for large scales.

The calculation presented in Ref.@11# required the evalu-
ation of four-dimensional integrals over Feynman para
eters. Our results are based on 50 iterations of the integra
grid each comprising 107 evaluations of the function which
were needed to achieve adequate convergence. Even so
Monte Carlo results still are not completely stable for sm
values ofQ/m, especially in light of the numerical differen
tiation required in Eq.~12!. Nevertheless, accurate resu
can be obtained by fitting the numerical calculation to a s
able analytic function as shown below.

The one-loop contribution to the effective number of fl
vors, NF , follows from the standard formula for QED
vacuum polarization. In our earlier paper@13# we used a
simple representation in terms of a rational polynomial@2#:

NF,V
(0) S Q

mD'
1

115
m2

Q2

5

0.2
Q2

m2

110.2
Q2

m2

~13!

which displays decoupling for small scales and the corr
massless limit at large scales. Similarly, the numerical res
for the two-loop contribution can be fit to the form

NF,V
(1) S Q

mD'

a1

Q2

m2
1a2

Q4

m4

11a3

Q2

m2
1a2

Q4

m4

. ~14!

The parameter valuesai and the errors obtained from the fi
to the numerical calculation in theV scheme for QCD and
QED are given in Table I. Similar decoupling forms ha
been used for interpolating the flavor dependence of the
fective coupling in the momentum subtraction scheme@7,8#.

In the case of QCD we obtain the following approxima
form for the effective number of flavors for a given qua
with massm:

NF,V
(1) S Q

mD'

S 20.57110.221
Q2

m2D Q2

m2

111.326
Q2

m2
10.221

Q4

m4

~15!
6-4
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TABLE I. Values for the parametersa1 , a2 anda3 in theV scheme for QCD and QED obtained by fittin
our numerical results to the form given by Eq.~14!. Thex2 values were obtained by subscribing a const
0.01 error to each data point in the fit.~HereNDF denotes the effective number of degrees of freedom for
fit, i.e. the number of fitted points minus the number of parameters!.

a1 a2 a3 x2

NDF

QCD 20.57160.034 0.22160.015 1.32660.116 86
43

QED 1.06960.0088 0.013360.0002 0.40260.005 121
46
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NF,V
(1) S Q

mD'

S 1.06910.0133
Q2

m2D Q2

m2

110.402
Q2

m2
10.0133

Q4

m4

. ~16!

The results of our numerical calculation ofNF,V
(1) in the V

scheme for QCD and QED are shown in Fig. 2. The dec
pling of heavy quarks becomes manifest at smallQ/m, and
the massless limit is attained for largeQ/m. The QCD form
actually becomes negative at moderate values ofQ/m, a
novel feature of the anti-screening non-Abelian contrib
tions. This property is also present in the~gauge dependent!
MOM results. In contrast, in Abelian QED the two-loop co
tribution to the effective number of flavors becomes larg
than 1 at intermediate values ofQ/m. We also display the
one-loop contributionNF,V

(0) (Q/m) which monotonically in-
terpolates between the decoupling and massless limits.

FIG. 2. The numerical results for the gauge-invariantNF,V
(1) in

QED ~open circles! and QCD~triangles! with the bestx2 fits of
Eqs. ~16! and ~15! superimposed respectively. The dashed l
shows the one-loopNF,V

(0) function of Eq.~17!. For comparison we
also show the gauge dependent two-loop result obtained in M
schemes~dash-dotted curve! @7,8#. At large Q/m the theory be-
comes effectively massless, and both schemes agree as exp
The figure also illustrates the decoupling of heavy quarks at sm
Q/m.
09600
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solid curves displayed in Fig. 2 show that the parametri
tions of Eq. ~15! which we used for fitting the numerica
results are quite accurate. This is also indicated by thex2

values obtained for the fits as given in Table I.
A strong check of our results, as well as the results p

sented in Ref.@11#, is the agreement with the two-loop Gel
Mann–Low function for QED@26–28#. Figure 3 contains
detailed comparisons of the analytic QED result with o
numerical computation. For comparison the figure also d
plays the purely non-Abelian part of the QCD result as w
as the total QCD result. The scalar functions occurring in
Abelian corrections are also used in the evaluation of
non-Abelian contributions (}CA), and it is therefore impor-
tant to know that they were calculated correctly.

Another important test of our results is renormalizatio
scale (m) independence, which follows from the fact that th
effective number of flavors in theV scheme is a physica
quantity. This is illustrated in Fig. 4 which shows the resu
obtained for two different renormalization scales (m
50.031m and m5m). The figure also shows the fits ob
tained for the two different cases. In fact, the differences

M

ted.
ll

FIG. 3. Comparison of the Abelian limit of our results~open
circles! for NF,V

(1) based on the calculation in Ref.@11# which was
done in the MS scheme with the well known result in the literatu
@26–28# done in the on-shell renormalization scheme~solid line!.
Also shown are the gauge invariant non-Abelian contribution o
(}CA) ~open triangles! as well as the sum of all terms in QCD
~solid triangles!. The correct Abelian behavior is a very stron
check on the results given in Ref.@11#. All Monte Carlo results are
based on 107 evaluations per iteration and 50 iterations of the in
gration grid.
6-5
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BRODSKY, MELLES, AND RATHSMAN PHYSICAL REVIEW D60 096006
so small that the two lines cannot easily be distinguished
We can also apply the same fitting procedure to the

pendence of the one-loop effectiveNF :

NF,V
(0) 5

1

11~5.1960.03!
m2

Q2

;
x2

NDF
5

19

27
. ~17!

This gives a higher precision global fit compared to the fo
in Eq. ~13!.

IV. SOME PROPERTIES OF THE ANALYTIC COUPLING
IN THE V SCHEME

Using the numerical results forNF,V
(0) andNF,V

(1) the evolu-
tion equation~6! can be solved numerically using the clas
cal Runge-Kutta algorithm. As starting value we u
aV(MZ ,m)50.126 in next-to-leading order an
aV(MZ ,m)50.134 in leading order which have been o
tained from the valueaMS(MZ)50.118. It should be noted
that it is straightforward to solve this equation numerica
since we are using the pole masses which do not depen
Q. This should be compared with the MOM scheme wh
one gets two coupled differential equations to solve, both
the coupling and the mass.

The resulting leading and next-to-leading orderC func-
tion in the V scheme is shown in Fig. 5 scaled with th
leading dependence onaV , i.e.2CV /(aV

2/p). For compari-
son the figure also shows theC function obtained with dis-
crete theta-function thresholds with continuous matchi
aV(Q,NF5Q)5aV(Q,NF5Q11), at the naive matching
scaleQ5m. As can be seen from the figure there are sign

FIG. 4. Illustration of the renormalization scale independence
the two-loop effective number of flavorsNF,V

(1) as a function of the
ratio of the physical momentum transferQ over the pole massm.
Numerical instabilities are visible for small values ofQ/m and oc-
cur because of limited Monte Carlo statistics (107 evaluations for
each of the 50 iterations!. The two fits obtained, which agree withi
statistical errors, are shown as a solid and dashed line form5m and
m50.031m respectively.
09600
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cant differences between the two approaches both in lea
and next-to-leading order. In fact the difference becom
larger when going to next-to-leading order. We also note t
the scale dependence of the coupling is larger in next
leading order and that the convergence of theC function is
not very good for scales below a few GeV. From the figure
is also clear that there are no plateaus in the analytic tr
ment of quark masses. Thus there is no region of the scaQ
below ;1 TeV where all quark masses can be neglected
the same time.

The solution of the evolution equation also gives the co
pling as a function of the scaleQ. The relative difference
between the analyticaV(Q,mi) and the discrete theta
function treatment of flavor thresholds, with continuo
matching atQ5m, aV(Q,Q), is shown in Fig. 6 both in
leading and next-to-leading order.

As can be seen from the figure, the difference between
analytic and step-function treatment of quark masses in
running persists when going to higher order. In fact we e
pect this difference to remain to all orders. The reason is
the C function is not continuous in the step-function a
proach and the step size at the thresholds is governed by
lowest order termc (0). Thus there will always be a finite
difference between the continuousC function and the one
with theta-function thresholds. The difference can be ma
smaller by modifying the matching scale to beQ53m ~but
still using continuous matching! which is also illustrated in
the figure. However, the difference cannot be made sma
than ;1%. The only way to include the finite quark ma
effects in the fixed flavor treatment is by making a high
twist analysis to all orders inm2/Q2 andQ2/m2 for light and
heavy quarks respectively.

Noting that the differential equation for the scale depe
dence of the coupling is homogeneous inQ/m we can also
get the logarithmic derivative ofaV(Q,mi) with respect to
the heavy quark masses,

f

FIG. 5. The scaledC function,2CV /(aV
2/p), in the analyticV

schemeaV(Q,mi) ~solid curve! compared to theaV(Q,Q) scheme
with discrete theta-function treatment of flavor thresholds with c
tinuous matching atQ5m ~dashed curve!.
6-6
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daV~Q,mi !

dlogm
52

daV~Q,mi !

dlogQ U
q

, ~18!

where the subscriptq refers to the quark part of theC func-
tion. The resulting mass dependence is shown in Fig. 7
each of the heavy quarks.

The figure illustrates how the quarks decouple
small scalesQ and how they become effectively massle
for large scalesQ. In the intermediate region the mas
dependence depends on the ratio of the mass to the
Q. For large scalesQ the derivative approaches th
asymptotic value

FIG. 6. The relative difference between the solutions to the e
lution equation using the analyticC function, aV(Q,mi), versus
discrete theta-function thresholds,aV(Q,Q). The solid ~dashed!
curve shows the next-to-leading~leading! order result.

FIG. 7. The logarithmic derivative ofaV(Q,mi) with respect to
the quark mass for each of the heavy quarks.
09600
r

r

ale

daV~Q,mi !

dlogm U
Q2@m2

52
1

3

aV
2~Q,mi !

p

2
5NC13CF

12

aV
3~Q,mi !

p2
~19!

which is the same as theNF dependent part of theC func-
tion apart from the differing sign. This can also be deriv
from the decoupling relations for matching fixedNF cou-
plings as for example is done in theMS scheme.

V. APPLICATION

The purpose of this section is to compare the treatmen
finite quark mass effects in theV scheme with the standar
treatment in theMS scheme. To do this comparison we w
follow our earlier paper@13# and use the non-singlet had
ronic width of aZ boson with arbitrary massAs starting from
the physical massAs5MZ for normalization.

The finite quark mass effects that we are interested in
in leading order given by the ‘‘double bubble’’ diagram
which are shown in Fig. 8, where the outer quark loop wh
couples to the weak current is considered massless and
inner quark loop is massive. These corrections have b
calculated in theMS scheme as expansions inmq

2/s @29# and
s/mQ

2 @30# for light and heavy quarks, respectively, where
they have been calculated numerically in@31#. In addition
theas

3 correction due to heavy quarks has been calculate
an expansion ins/mQ

2 in @32#. Other types of mass correc
tions, such as the double-triangle graphs where the exte
current is electroweak, are not taken into account.

The non-singlet hadronic width of aZ boson with arbi-
trary massAs is given by

Ghad
NS ~s!5

GFs3/2

2pA2
(

q
$~gV

q !21~gA
q !2%F11

3

4
CF

aG
NS~s!

p G
~20!

whereaG
NS(s) is the effective charge@33# which contains all

QCD corrections. In the following, the next-to-leading ord
expressions for the effective chargeaG

NS(s) in theMS and V
schemes will be compared for arbitrarys using next-to-
leading order evolution starting from the physical massAs
5MZ which is used as normalization condition.

-

FIG. 8. The ‘‘double bubble’’ diagrams. The crosses repres
the external electro weak current, the thin line is a massless q
and the thick line is a massive quark.
6-7
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A. MS scheme treatment

In theMS scheme the effective chargeaG
NS(s) is given by

aG
NS~s!5a

MS

(NL)
~m!1F r 1,MS~m!1 (

q51

NL

F1S mq
2

s D
1 (

Q5NL11

6

G1S s

mQ
2 D G @a

MS

(NL)
~m!#

2

p
1F r 2,MS~m!

1 (
q51

NL

F2S mq
2

s D 1 (
Q5NL11

6

G2S s

mQ
2 D G @a

MS

(NL)
~m!#3

p2

~21!

where the coefficientsr 1 and r 2 are given by@34–38#

r 1,MS~m5As!52
1

8
CF1

1

12
NC1S 11

4
22z3Db0

51.98620.115NF

r 2,MS~m5As!52
23

32
CF

21S 2
53

144
2

11

4
z3DNC

2

1S 2
101

192
1

11

4
z3DCFNC1S 11

4
22z3Db1

1S 151

18
2

19

3
z32

p2

12Db0
21F S 2

37

32
28z3

110z5DCF1S 83

48
1

5

6
z32

5

3
z5DNCGb0

526.63721.200NF20.00518NF
2

@with b05cV
(0)(m50) andb15cV

(1)(m50)# and the func-
tions F and G are the effects of non-zero quark masses
light and heavy quarks, respectively. The expansions of
a MS

2 finite quark mass corrections are given by1 @29,30#

F1S m2

s D5S m2

s D 2F13

3
24z32 lnS m2

s D G
1S m2

s D 3F136

243
1

16

27
z21

56

81
lnS m2

s D
2

8

27
ln2S m2

s D G ~22!

1In our earlier paper@13# there was a typographical error givin
the wrong signs for the two ln terms inG1.
09600
r
e

G1S s

m2D 5
s

m2 F 44

675
2

2

135
lnS s

m2D G
1S s

m2D 2F2
1303

1058400
1

1

2520
lnS s

m2D G
~23!

which are accurate to within a few percent formq
2/s,0.25

ands/mQ
2 ,4 respectively. We will also use the relation@31#

FS m2

s D5GS m2

s D1
1

6
lnS m2

s D2S 2
11

12
1

2

3
z3D ~24!

to obtainF1 in the interval 0.25,m2/s,1 where the expan-
sion of F1 given above breaks down.

The a MS
3 finite quark mass corrections are only know

for heavy quarks (G2), whereas the corresponding corre
tions due to light quarks (F2) have not yet been calculated
The known corrections inG2 are small; formQ

2 5s they are
of orderG2;0.1 for the top quark.

The number of light flavors,NL , in the MS scheme is a
function of the renormalization scalem. In the following we
will assume that the matching of the different effective the
ries with a different number of massless quarks is done at
quark masses. In other words a quark with massm,m is
considered as light whereas a quark with massm.m is con-
sidered as heavy. In addition theMS quark masses are use
The general matching condition in theMS scheme is to next-
to-leading order given by@39#

a
MS

(NL)
~m!5a

MS

(NL11)
~m!2

1

3
logS m

m~m! D @a
MS

(NL11)
~m!#2

p
~25!

wherem(m) is the mass of quark numberNL11. The de-
pendence on the matching scale can be made arbitr
small by calculating the matching condition to high enou
order. However, this does not mean that the finite quark m
effects are taken into account. The only way to include th
mass effects in the ordinaryMS treatment is by making a
higher twist expansion to all orders inm2/Q2 andQ2/m2 for
light and heavy quarks respectively, i.e. the functionsF and
G given above.

In the following comparison we will restrict ourselves
the next-to-leading order expression foraG

NS(s) in the MS
scheme including the finite quark mass corrections, i.e.

aG
NS~s!5a

MS

(NL)
~m!1F r 1,MS~m!1 (

q51

NL

F1S mq
2

s D
1 (

Q5NL11

6

G1S s

mQ
2 D G @a

MS

(NL)
~m!#

2

p
~26!

with m5As and next-to-leading order matching done at t
quark masses.
6-8
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B. V scheme treatment

In order to relate the hadronic width of theZ boson to the
aV scheme we will require the massless coefficients in
relation betweenaMS andaV for Q2@m2,

aMS~m!5aV~Q!1c1,V

aV
2~Q!

p
1c2,V

aV
3~Q!

p2 1•••,

~27!

where the coefficients are given by@18–23#

c1,V5
2

3
NC1S 2

5

6
1 ln

Q

m DcV
(0)

c2,V5S 2
5

144
2

16p22p4

64
1

11

4
z3DNC

2

1S 385

192
2

11

4
z3DCFNC1S 2

5

6
1 ln

Q

m DcV
(1)

1S 25

36
2 ln2

Q

m D ~cV
(0)!21F S 2

35

32
1

3

2
z3DCF

2S 103

144
1

7

4
z3DNC12c1,Vln

Q

m GcV
(0) . ~28!

The logarithmicQ/m dependence of the coefficients follow
from requiring the expansion ofaV(Q) in aMS(m) to bem
independent to the order we are working. Inserting Eq.~27!
into the massless version of Eq.~21! ~i.e. without the finite
quark mass correctionsF andG for light and heavy quarks
respectively! gives the relation between the effective charg
aG

NS and aV for Q2@m2 which is independent of the inter
mediateMS scheme:

aG
NS~s!5aV~Q!1r 1,V

aV
2~Q!

p
1r 2,V

aV
3~Q!

p2 1••• ~29!

where the coefficients are given by

r 1,V52
1

8
CF2

3

4
NC1S 23

12
22z31 ln

Q

As
D cV

(0)

r 2,V52
23

32
CF

21
21

16
CFNC1S 2

16p22p4

64
2

7

24DNC
2

1S 23

12
22z31 ln

Q

As
D cV

(1)1S 9

2
2

p2

12
23z3

2 ln2
Q

As
D ~cV

(0)!21F S 2
49

24
2

13

2
z3110z5DCF

1S 109

24
2

43

12
z32

5

3
z5DNC12r 1,Vln

Q

As
GcV

(0) .
09600
e
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It should be noted that this way of writing the two-loo
coefficient r 2,V in terms ofcV

(0) and cV
(1) follows from the

conformal ansatz.
We now use the commensurate scale relation metho

eliminate the scale ambiguity:Q is set toQ* using the single
scale scale-setting approach@40#, such that all non-conforma
terms proportional tocV

(0) and cV
(1) are absorbed into the

running of the coupling.2 This gives the next-to-leading orde
commensurate scale relation betweenaG

NS andaV . To obtain
the next-to-next-to leading order relation requires knowled
about theNF-dependent part of the three-loop contributio
Thus we arrive at the following commensurate scale relat
betweenaG

NS andaV :

aG
NS~As!5aV~Q* !1S 2

1

8
CF1

3

4
NCD aV

2~Q* !

p
1F2

23

32
CF

2

1
21

16
CFNC1S 2

16p22p4

64
2

7

24DNC
2 G aV

3~Q* !

p2

5aV~Q* !12.083
aV

2~Q* !

p
27.161

aV
3~Q* !

p2 . ~30!

The next-to-leading order commensurate scaleQ* is given
by

Q*

As
5expH 2

23

12
12z3

1

$a1cV
(0)~Q* !1a2@cV

(0)~Q* !#2%
aV~Q* !

p

cV
(0)~Q* !1cV

(1)~Q* !
aV~Q* !

p

J
~31!

where

a15S 25

16
27z3210z5DCF1S 2

5

3
1

7

12
z31

5

3
z5DNC

51.765,

a252
119

144
2

14

3
z314z3

21
p2

12
50.166,

which should be compared with the leading order comm
surate scaleQ* 5Asexp(223

1212z3)51.628As. It should be
noted that this way of writing the scaleQ* differs slightly

2There also exists a multiple scale setting approach@10# where
one has different scales for each order ofaV . However, for clarity
we concentrate on only one of the procedures. In addition, as
ticed in our earlier paper@13#, the multiple scale setting procedur
does not always have the correct Abelian limit.
6-9
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BRODSKY, MELLES, AND RATHSMAN PHYSICAL REVIEW D60 096006
from the one used in@40# in that it is written as the expo
nential of a partial fraction where the denominator is prop
tional to theC function. This ensures that the scaleQ* has
sensible limits asaV→0 or aV→` ~for NF53, Q* 56.7Q
in the limit aV→`). If the coupling freezes or is bounde
for small scales, then the latter limit is of course not imp
tant. In additionQ* has the correct Abelian limit. The re
sulting commensurate scaleQ* is shown in Fig. 9 where it is
also compared with the leading order scale. As can be s
from the figure, the next-to-leading order correction to t
commensurate scale is small. The general convergence p
erties of the scaleQ* as an expansion inaV are not known
@41#.

The relation betweenaG
NS(As) and aV(Q* ) can be gen-

eralized to be valid for all scales, for which perturbati
theory is applicable, by using the mass-dependentaV(Q,mi),

aG
NS~As,mi !5aV~Q* ,mi !1S 2

1

8
CF1

3

4
NCD aV

2~Q* ,mi !

p

1F2
23

32
CF

21
21

16
CFNC

1S 2
16p22p4

64
2

7

24DNC
2 G aV

3~Q* ,mi !

p2 ,

~32!

where the argument ofaG
NS is meant to indicate that th

quark mass effects related to the running of the coupling
taken into account andmi being the pole masses for th
quarks which do not depend onQ. In addition we use the
mass-dependent couplingaV(Q,mi) and the mass-depende
coefficients of theCV function,cV

(0)(Q,mi) andcV
(1)(Q,mi),

in the formula forQ* given by Eq.~31!. It should be noted
that the scaleQ* is only known to next-to-leading order
Similarly the evolution equation foraV(Q,mi) is only

FIG. 9. The ratio of the commensurate scaleQ* to As between
the non-singlet width of theZ boson and the heavy quark potenti
as a function ofAs in next-to-leading~solid! and leading~dashed!
order.
09600
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known to next-to-leading order. Therefore we can only co
sistently use the next-to-leading order result when compa
with the treatment of finite quark mass effects in theMS
scheme, i.e.

aG
NS~As,mi !5aV~Q* ,mi !1S 2

1

8
CF1

3

4
NCD aV

2~Q* ,mi !

p
~33!

where the scaleQ* should be the leading order result fo
consistency.

C. Comparison

Figure 10 shows the relative difference between the ne
to-leading order expressions foraG

NS in the MS and V
schemes given by Eqs.~26! and ~33! respectively. The pre-
dictions for the width have been normalized to the sa
value atAs5MZ usinga MS

(5)(MZ)50.118 and then evolved
using next-to-leading order evolution in the respect
schemes.

The comparison shown in Fig. 10 illustrates the relat
difference between the predictions foraG

NS in the MS andV
schemes. In our earlier paper@13# we showed that the differ-
ent ways of including the finite quark mass effects is sma
than;0.1% by comparing theMS scheme with the analytic
extension of the same which properly takes into account
flavor threshold effects analytically. Therefore the differen
between theMS and V scheme predictions foraG

NS can be
attributed to the scheme dependence. This is illustrated
the fact that when using the next-to-leading order appro
mation for the commensurate scale, instead of the lead
order one, the relative difference changes sign and even
comes larger. This sensitivity is a consequence of the s
dependence of the coupling, especially at small scales w

FIG. 10. The relative difference between the next-to-leading
der expressions foraG

NS in the MS and V schemes respectively
using next-to-leading order evolution.
6-10
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TWO-LOOP SCALE DEPENDENCE OF THE STATIC QCD . . . PHYSICAL REVIEW D60 096006
the C function is large. The proper inclusion of the fini
quark mass effects is verified by the smoothness of the cu

VI. SUMMARY AND CONCLUSIONS

We have presented the calculation ofcV
(1) , the two-loop

term in the Gell-Mann–Low function for theaV scheme,
with massive quarks. This gives for the first time a gau
invariant and renormalization scheme independent two-l
result for the effects of quark masses in the running of
coupling. Renormalization scheme independence is achie
by using the pole mass definition for the ‘‘light’’ quark
which contribute to the scale dependence of the static he
quark potential. Thus the pole mass and theV scheme are
closely connected and have to be used in conjunction to
reasonable results. The results of the calculation are
sented in numerical form due to the complexity of the in
grations required. An important cross-check is the succes
reproduction of the well-known QED results.

The effective number of flavors in the two-loop coef
cient of the Gell-Mann–Low function in theaV scheme,
NF,V

(1) , becomes slightly negative for intermediate values
Q/m. This feature can be understood as anti-screening f
the non-Abelian contributions and should be contrasted w
the QED case where the effective number of flavors beco
larger than 1 for intermediateQ/m. For smallQ/m the heavy
quarks decouple explicitly as expected in a physical sche
and for largeQ/m the massless result is retained.

The analyticity of theaV coupling can be utilized to ob
tain predictions for perturbatively calculable observables
cluding the finite quark mass effects associated with the r
ning of the coupling. By employing the commensurate sc
relation method, observables which have been calculate
theMS scheme can be related to the analyticV scheme with-
out any scale ambiguity. The commensurate scale relat
provide the relation between the physical scales of two
fective charges where they pass through a common fla
threshold.

As an example, we have shown how to calculate the fin
quark mass corrections connected with the running of
coupling for the non-singlet hadronic width of theZ boson
compared with the standard treatment in theMS scheme.
The analytic treatment in theV scheme gives a simple an
straightforward way of incorporating these effects for a
observable. This should be contrasted with theMS scheme
where higher twist corrections due to finite quark ma
threshold effects have to be calculated separately for e
observable. TheV scheme is especially suitable for problem
where the quark masses are important such as for thres
production of heavy quarks and the hadronic width of thet
lepton.
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APPENDIX: ANALYTIC aMS AT TWO LOOPS

Finite quark masses are included naturally into the r
ning of aV , thus providing an analytic definition of th
gauge theory coupling. Furthermore, there is no scale am
guity in aV(Q) since the argument of the coupling is b
definition the physical momentum transferQ. These advan-
tages can be carried over to the ordinaryMS scheme by
relating it to the physicalaV scheme via a commensura
scale relation connecting the two schemes. It is in fact p
sible to combine the computational advantages of theMS
scheme and the physical and analytic properties of theaV
scheme into one common scheme, the analytic extensio
the MS scheme@13#. However, as already mentioned in th
Introduction, the conformal coefficients in the commensur
scale relation between theaV and MS schemes do not pre
serve one of the defining criteria of the potential expresse
the bare charge, namely the non-occurrence of color fac
corresponding to an iteration of the potential. This is pro
ably an effect of the breaking of conformal invariance by t
MS scheme. The breaking of conformal symmetry has a
been observed when dimensional regularization is used
factorization scheme in both exclusive@15,16# and inclusive
@17# reactions. Thus, it does not turn out to be possible
extend the modified schemeãMS beyond leading order with-
out running into an intrinsic contradiction with conform
symmetry. For completeness we give the results of such
extension in this appendix.

1. Commensurate scale relation betweenaV and aMS

Our starting point for relating theaV andaMS schemes is
the massless result forQ2@m2 which is given by Eq.~27!.
Just as before we use the commensurate scale rela
method to eliminate the scale ambiguity: the scaleQ is set to
Q* using the single scale scale-setting approach@40#, such
that all nonconformal terms proportional tocV

(0) andcV
(1) are

absorbed into the running of the coupling. This gives t
following commensurate scale relation betweenaMS and
aV :

aMS~Q!5aV~Q* !1
2

3
NC

aV
2~Q* !

p

1F S 2
5

144
2

16p22p4

64
1

11

4
z3DNC

2

1S 385

192
2

11

4
z3DCFNCGaV

3

p2

5aV~Q* !12
aV

2~Q* !

p
115.728

aV
3

p2 . ~A1!

The one-loop coefficient is the same as in our previous pa
@13#, but the two-loop one is changed due to the new res
6-11
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by Schröder @23#. However, the problem brought up in ou
previous paper regarding the anomalous contribution wit
color factor proportional toCFNC is still there. This type of
color factor corresponds to an iteration of the potential a
thus cannot be part of the potential itself. The origin of th
contribution is not clear, but it is probably an effect of th
breaking of conformal invariance by theMS scheme. It
should also be remarked that the conformal two-loop coe
cient between theMS scheme and theaV scheme is large
indicating that there are large corrections between the
schemes. This is of great importance for observables
heavy quark production close to threshold where the next
next-to leading order correction is known to be large in
MS scheme@42#. As another example the conformal coef
cients foraG

NS(s) in terms ofaMS are also large,
no

-
-

de
in
th

y
xt
o

th

09600
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aG
NS~s!5a

MS

(NL)
~m* !10.0833

@a
MS

(NL)
~m* !#2

p

223.2
@a

MS

(NL)
~m* !#3

p2
~A2!

wherem* is the commensurate scale betweenaG
NS and the

MS scheme. This should be compared with the conform
relation betweenaG

NS andaV where the coefficients are no
as large as indicated in Eq.~30!. Thus it is better to relate
observables directly without using the intermediate analy
extension of theMS scheme.

The commensurate scaleQ* between theMS and V
schemes is to next-to-leading order given by
Q* 5QexpF 5

6
1

F S 35

32
2

3

2
z3DCF2S 19

48
2

7

4
z3DNCGcV

(0)~Q* !
aV~Q* !

p

cV
(0)~Q* !1cV

(1)~Q* !
aV~Q* !

p

G
5QexpF0.8331

@7.31420.443NF
(0)~Q* !#aV~Q* !

5.50020.333NF
(0)~Q* !1@4.05820.504NF

(1)~Q* !#aV~Q* !
G . ~A3!
In the limit aV→` the scaleQ* becomes large~for NF
53, Q* 524Q in the limit aV→`). If the coupling freezes
or is bounded for small scales, then this limit is of course
important.

2. Definition of the analytic ãMS

The definition of the analyticã MS is based on generaliz
ing Eq. ~A1! to be valid for all Q by using the mass
dependentaV(Q,mi),

ãMS~Q,mi ![aV~Q* ,mi !1
2

3
NC

aV
2~Q* ,mi !

p
, ~A4!

with mi being the pole masses for quarks which do not
pend onQ. In addition we use the mass-dependent coupl
aV(Q,mi) and the mass-dependent coefficients of
CV-function,cV

(0)(Q,mi) andcV
(1)(Q,mi), in the formula for

Q* given by Eq.~A3!. In the above definition we have onl
included terms to the order which we are working, i.e. ne
to-leading order, since the effects from higher order terms
Q* are unknown. When going to even higher orders,
relation between the analyticãMS and theaV scheme will
contain large corrections as indicated in Eq.~A1!, reflecting
the underlying large difference between theMS and aV
schemes.

We can also derive theC function for ãMS by taking the
t

-
g
e

-
n
e

logarithmic derivative of Eq.~A4! with respect toQ. This
gives

C̃ MS~Q,mi ![CV~Q* ,mi !

12
2NC

3

aV~Q* ,mi !

p
CV~Q* ,mi !. ~A5!

FIG. 11. The ratio of the commensurate scaleQ* to Q for the
analytic extension of theMS scheme as a function ofQ to leading
~dashed line! and next-to-leading~solid line! order.
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Re-expanding both sides of Eq.~A5! in aV using Eq.~A4!
and equating order by order gives the first two terms

C̃ MS(Q,mi),

c̃ MS
(0)

~Q,mi !5cV
(0)~Q* ,mi ! ~A6!

c̃ MS
(1)

~Q,mi !5cV
(1)~Q* ,mi ! ~A7!

reflecting the non-trivial mass dependence of theC function.
We note that when finite quark masses are included the
two terms in theC function are no longer universal bu
scheme dependent.

We thus arrive at the following evolution equation for th
analytic couplingãMS(Q,mi):

dãMS~Q,mi !

dlnQ
52c̃ MS

(0)
~Q,mi !

ã MS
2

~Q,mi !

p

2c̃ MS
(1)

~Q,mi !
ã MS

3
~Q,mi !

p2
, ~A8!

wherec̃ MS
(0)(Q,mi) and c̃ MS

(1)(Q,mi) are given by Eqs.~A6!
and ~A7!, respectively, andmi are the pole masses of th
quarks. One complication which arises when solving
evolution equation is that the scaleQ* has to be obtained
recursively since Eq.~A3! containsQ* also on the right
hand side. In addition the approximationaV(Q* ,mi)
5ãMS(Q,mi) was used on the right hand side of Eq.~A3!

when solving the evolution equation forãMS(Q,mi). The
evolution equation was solved for numerically using t

FIG. 12. The normalized C function, 2C̃ MS(Q,mi)/

@ã MS
2 (Q,mi)/p# in the analytic extension of theMS scheme com-

pared to the conventionalb function with discrete theta-function
thresholds. The leading order results are shown as a dashed
dot-dashed curves respectively whereas the next-to-leading o
results are shown as a solid curve and dotted curve respective
09600
n

st

e

classical Runge-Kutta algorithm. The resulting scaleQ* cal-
culated using Eq.~A3! is shown in Fig. 11.

With the solution of the renormalization group equati
for ãMS we also obtain theC functions for the analytic ex-
tension ofMS which is shown in Fig. 12. From the figure w
also see that theC functions in the analytic approach and
the massless step-function approach, with matching at
quark masses, follow each other closely except for sm
scales where they start to deviate.

3. Comparing the analytic ãMS with aMS

We now compare the analyticãMS with the conventional
discrete theta-function treatment of flavor thresholds w
matching at quark masses,aMS. The relative difference be
tween the two is shown in Fig. 13 both in leading and next
leading order.

As can be seen from the figure, the difference between
analytic and conventional treatment of quark masses in
running persists when going from leading to next-to-lead
order. In fact we expect this difference to remain to all o
ders. The reason is that theC function is not continuous in
the massless approach and the step size at the thresho
governed by the lowest order termc (0). Thus there will al-
ways be a finite difference between the continuousC func-
tion and the one with theta-function thresholds. It is impo
tant to recognize that this feature is not eliminated by the f
that when going to higher orders the dependence on
matching scale in the massless approach becomes sm
The only way to include these mass effects in the ordin
MS treatment is by making a higher twist analysis to
orders inm2/Q2 andQ2/m2.

nd
er

.

FIG. 13. The relative difference between the solutions to
2-loop renormalization group equation using the analyticC func-

tion, ã MS(Q), and conventional discrete theta-function threshol
a MS(Q), with matching at quark masses. The solid curve shows
next-to-leading order result. For comparison the 1-loop resul
shown as a dashed curve. The solutions have been obtained nu
cally starting from the world average@43# aMS(MZ)50.118.
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