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The interaction potential(Q?) between static test charges can be used to define an effective eh4(g®
and a physically based renormalization scheme for quantum chromodynamics and other gauge theories. In this
paper we use recent results for finite-mass fermionic corrections to the heavy-quark potential at two loops to
derive the next-to-leading order term for the Gell-Mann—Low function oMiseheme. The resulting effective
number of flavordNg(Q?/m?) in the an, scheme is determined as a gauge-independent and analytic function of
the ratio of the momentum transfer to the quark pole mass. The results give an automatic decoupling of heavy
qguarks and are independent of the renormalization procedure. Commensurate scale relations then provide the
next-to-leading order connection between all perturbatively calculable observables to the analytic and gauge-
invarianta,, scheme without any scale ambiguity and a well-defined number of active flavors. The inclusion of
finite quark mass effects in the running of the coupling is compared with the standard treatment of finite quark
mass effects in the minimal subtractioM$) scheme[S0556-282(199)00321-5

PACS numbes): 11.10.Hi, 11.15.Bt, 12.38.Bx

I. INTRODUCTION

in momentum space. The fact@; is the value of the Ca-
simir operatorT®T?2 of the external sourcegsvhich are in the

Is there a preferred effective charge which should be useflindamental representatipand factors out to all orders in
to characterize the coupling strength in QCD? In principle perturbation theory, an@?= —q? is the spacelike momen-
any perturbatively calculable observable can be used to deym transfer.

fine an effective Chal’ge. In quantum eleCtrOdynamiCS, the The effective Chargelv(Q) provides a physica”yﬁsed

Dyson running couplinngED(QZ), defined from the linear-
ized potential between two infinitely heavy test charges, ha

alternative to the usual modified minimal subtractidnS)
Scheme. As in the corresponding case of Abelian QED, the

been used as the traditional coupling. The corresponding
definition of the non-Abelian QCD coupling is customarily
given by identifying the ground state energy of the vacuum
expectation value of the Wilson loop as the potentidbe-

caleQ of the couplingay(Q) is given by the exchanged
momentum. There is thus no ambiguity in the interpretation
of the scale. All virtual corrections due to massive fermion

tween a static quark-antiquark pair in a color singlet gtafe ~ Pairs are incorporated imy through loop diagrams which

1
V(r,m)=— Iimﬁlog(0|Tr{ PeXp( jE dXMAgTa>]|O>

t—ow

)

depend on the physical mass thresholds. When continued to
time-like momenta, the coupling has the correct analytic de-
pendence dictated by the production thresholds in the
crossed channel. Sinag, incorporates quark mass effects
exactly, it avoids the problem of explicitly computing and
resumming quark mass corrections which are related to the

where r denotes the relative distance between the heavyunning of the coupling. Thus the effective number of fla-
guarksmis the mass of “light” quarks contributing through vors,Ng(Q/m), is an analytic function of the scalg@ and the

loop effects, and® are the generators of the gauge group. Itquark masses. The effects of finite quark mass corrections
is then convenient to define the effective changgQ?,m?)

as

2 M2
V(QZ,mZ)E — 4WCF%2’”])
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on the running of the strong coupling were first considered
by De Ryula and Georg[2] within the momentum subtrac-
tion schemgMOM) (see alsd3-6]). The two-loop calcula-
tion was first done by Yoshino and Hagiwafd] in the
MOM scheme using the Landau gauge and also recently by
Jegerlehner and Tarasd®] using the background field
gauge.

One important advantage of the physical charge approach
is its inherent gauge invariance to all orders in perturbation
theory. This feature is not manifest in massjgeunctions
defined in non-physical schemes such as the MOM scheme.
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A second, more practical, advantage is the automatic decodermed by comparing the Abelian limit to the well-known
pling of heavy quarks according to the Appelquist-Carazzon®ED results in the on-shell scheme. In addition, the massless
theorem[9]. and the decoupling limits are reproduced exactly, and the

By employing commensurate scale relatiqd®] other  two-loop Gell-Mann—Low function is shown to be renormal-
physical observables can be expressed in terms of the angation scale f) independent.
lytic coupling a without scale or scheme ambiguity. The  As an application we show how the analyti§, scheme
quark mass threshold effects in the running of the couplingan be used to calculate the non-singlet hadronic width of the
are taken into account by utilizing the mass dependence of phoson, including finite quark mass corrections from the
the physicalay scheme. In effegt, (un_ark thresholds areynning of the coupling, and compare with the standard treat-
treated anal_ytlcally to al! ord_ers m ./Q 1€ the evqlutlon ment in theMS scheme where the corresponding effects are
e B e o0 et a igher st coresions

Y Recently(see Ref[13]) we proposed an alternative way

charge and the analytic properties of particle production. , . . . )
Furthermore, the definiteness of the dependence in the quaﬂz incorporating mass effects connected with the running of

masses automatically constrains the selie the argument e coupling by making an analytic extension of thits
of the coupling. There is thus no scale ambiguity in pertur_scheme where the coupling is an analytic function of both
bative expansions i, . the scale and the quark masses. This analytic extension of the

In the conventionaMS scheme, the coupling is indepen- MS scheme is defined by connecting & coupling to the
dent of the quark masses since the quarks are treated as ¥iScheme using a commensurate scale relation based on the
ther massless or infinitely heavy with respect to the runnindBrodsky-Lepage-MackenzigBLM)] scale-setting proce-

of the coupling. Thus one formulates different effective theo-qure[14]. The new modified couplings(Q) inherits most

ries depending on the effective number of quarks which i the good properties of the, scheme, including its correct
governed by the scalQ; the masslesg function is used 0 4naivtic properties as a function of the quark masses and its
describe the running in between the flavor thresholds. Thes@nambiguous scale fixingL3].

different theories are then matched to each other by imposing However, the conformal coefficients in the commensurate

matching conditions at the scdleormally the quark masses scale relation between the, andMS schemes do not pre-

where the effective number of flavors is changed. The depen: fthe defini iteria of th al di
dence on the matching scale can be made arbitrarily small by Ve one o the defining criteria of the potential expressed in
the bare charge, namely the non-occurrence of color factors

calculating the matching conditions to high enough order. rresponding to an iteration of the potential. This is prob-

For physical observables one can then include the effects 5P . ) .
e . . . -~ ~. ably an effect of the breaking of conformal invariance by the
finite quark masses by making a higher-twist expansion i

2102 2/m2 for liah h K ivel rWS scheme. The breaking of conformal symmetry has also
m/Q” and Q*/m’ for light and heavy quarks, respectively peen observed when dimensional regularization is used as a

each observable separately, so that in principle one require(L ctorization scheme n both exclusil&5,1§ and |nclu3|_ve
an all-orders resummation of the mass corrections to the et/ réactions. Thus, it does not turn out to be possible to
fective Lagrangian to give correct results. extend the modified schemsg;s beyond leading order with-
The specification of the coupling and renormalizationOut running into an intrinsic contradiction with conformal
scheme also depends on the definition of the quark mass. fymmetry. Note, however, that this difficulty does not affect
contrast with QED where the on-shell mass provides a natudsing theMS scheme as an intermediate renormalization
ral definition of lepton masses, an on-shell definition forscheme when connecting physical observables. For com-
quark masses is complicated by the confinement property gileteness we give the results of such an extension in an ap-
QCD. In this paper we will use the pole masswhich has  pendix.
the advantage of being scheme and renormalization-scale in- The paper is organized as follows: In Sec. Il we derive the
variant. second term of the Gell-Mann—Low function in the physical
A technical complication of massive schemes is that oné&/ scheme as a renormalization-scale-independent function of
cannot easily obtain analytic solutions of renormalizationthe ratio of the physical momentum transfgrand the pole
group equations to the massiy& function, and the Gell- massm. In Sec. Il we present numerical results of the ef-
Mann—Low function is scheme-dependent even at lowest orffective number of flavors and compare it with results ob-
der. tained in the gauge-dependent momentum subtraction
In this paper we present a two-loop analytic extension oschemes. In addition, various consistency checks are per-
the ay, scheme based on the recent results of Ref]. The  formed, and numerical fits are presented. In Sec. IV we il-
mass effects are in principle treated exactly to two-loop ordetustrate some of the properties of the analyticscheme and
and are only limited in practice by the uncertainties fromdemonstrate the effect of the quark mass thresholds on the
numerical integration. The desired features of gauge invarimass-dependent evolution and compare with the massless
ance and decoupling are manifest in the form of the two-looggvolution. In Sec. V we compare the calculation of the had-
Gell-Mann—Low function, and we give a simple fitting func- ronic width of theZ boson in the analytier, scheme to the
tion which interpolates smoothly the exact two-loop resultsconventionaMS scheme with a mass-independent coupling
obtained by using the adoptive Monte Carlo integrater ~ and explicit higher-twist corrections for mass effects. In Sec.
GAS [12]. Strong consistency checks of the results are perVI we summarize our results and indicate future applica-
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gses:

tions. The definition of the analytically extended scheme £

~ 123 1=
awis beyond leading order is discussed in the Appendix. 4 £ g
k i\)? 2, k+q G@M@ (;66“
S 2 e
%
| I+q 2,
Il. GELL-MANN —LOW FUNCTION THROUGH TWO g %g” § 2995
LOOPS g’ g g
The physical charge,(Q,m) can be expressed as a per- _
turbative series in any other renormalization scheme. For ex== = =
ample, in the minimal subtraction scheme, the perturbative § 2
series has the form %
2
ays(u) = ;%
ay(Q,m)=ayg(u)| 1+v(Q,m(u),u) p
cl: VC3: olve:
2
ays(m) % 3
+V2(QuM( ), ) —— +) (3) 3
T % £
. . £2 £
where the massless limits of the coefficiemtsandv, are ﬁ 2, g
known in the literatur¢1,18—23. Since the physical charge 2 =
ay(Q,m) cannot depend on the renormalization sqajehe
u dependence on the right-hand side of E3).must cancel = %2 gses: 2vp:
to the order we are working. Notice that the coefficients also E

depend on the renormalization scaleused for the mass
renormalization, i.e. through the dependence of the running  fesrsss
massm(u). Figure 1 shows the Feynman diagrams for the

fermionic contributions to the two-loop coefficient S
vo(Q,m(u), ;). These contributions depend on the mass %

renormalization used for the one-loop coefficient
v1(Q,m(w),u). Since we are predominantly interested in vg:

vpgh:

the flavor-threshold dependence of heavy quarks, we shal
relate the running mass to the pole mass which is
renormalization-scale independent and gives explicit decou:
pling. This also provides a physical picture as well as a

straightforward Abelian limit.

= { 1}
The next-to-leading order relation between the MS mass E ,%

m(u«) and the pole mass is given by[24]

ays(u)

m(#):m{l_CF

FIG. 1. The two-loop massive fermionic corrections to the
heavy quark potentialfrom [11]). Double lines denote the heavy
quarks, single lines the “light” quarks with mass. The first two

(1+ glog% _i[y_|og(4ﬂ_)]) } rows contain diagrams with a typical non-Abelian topology. The

middle line includes the infrared divergent “Abelian” Feynman
(4) diagrams. They contribute to the potential only in the non-Abelian

theory due to color factorscC:C,. In addition, although each

diagram is infrared divergent, their sum is infrared finite. The infra-

wherey is the Euler constant. Inserting E@) into Eq. (3) red finite Feynman diagrams with an Abelian topology plus the

gives, at next-to-next-to-leading order,

ay(Q,m)=aps(u)| 1+v1(Q,m,u)

+v2(Q,m,u) +An(Q,m,u)]

ays(p)
T

af/ls(//v)

77,2

diagrams consisting of one-loop insertions with non-Abelian terms
are shown in the last two rows.

whereA ,(Q,m,x) denotes the contribution arising from
when changing from the MS mass to the pole mass:
v1(Q,m(u), w)=v1(Q,m,u) +An(Q,m, u) ams(p)/ .
The Gell-Mann—-Low functior{25] for the V scheme is
defined as the total logarithmic derivative of the effective
(5)  charge with respect to the physical momentum transfer scale
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cally using the adoptive Monte Carlo integration program

q "o @ 2Om
q;v<9) = M => - ,/,Q)L?l), (6)  VEGAs[12]. Thus the derivative of the two-loop term was
m dlogQ o ' calculated numerically, whereas the other terms in Eb.

and(12) were obtained analytically. The results are given in

; i ~i (1) . ) .
where in the massless case the coefficig{f$ and y{? are terms of the contribution to the effective number of flavors,

given by NE,(Q/m), andNER,(Q/m), in theV scheme, from a given
11 1 11 1 quark with masam, defined according to Eq$9) and (10)
P(Mm=0)=-Nc— =Ng==— =N, (7)  respectively. The Appelquist-Carazzdi®é theorem requires
6 3 2 3 the decoupling of heavy masses at small momentum transfer
17 c L for physical observables. Thus we expﬁt%if{,(Q/m) to go
W) m=0)=—-N2_ — _Z to zero forQ/m—0. The massless rest*),— 1 must also
vm=0) 12NC 12NCNF 4CFNF be recovered for large scales. UN[(F'V
51 19 _The calculatipn prgsente_d in R¢L1] required the evalu-
:Z_l_ZNF' (8) ation of four-dimensional integrals over Feynman param-

eters. Our results are based on 50 iterations of the integration

: . rid each comprising T0evaluations of the function which
For the massive case all the mass effects will be collecte -
) . . were needed to achieve adequate convergence. Even so, the
into a mass-dependent functiddy . In other words we will X

) Monte Carlo results still are not completely stable for small
write TR ) .
values ofQ/m, especially in light of the numerical differen-

Q) 11 1 Q tiation required in Eq.(12). Nevertheless, accurate results
w{,o)(—) =5 §N(F°,{,(—> (9)  can be obtained by fitting the numerical calculation to a suit-

m m able analytic function as shown below.

Q| 51 19 Q The one-loop contribution to the effective number of fla-
lps/l)(_):___N(Flz/(_), (100  vors, Ng, follows from the standard formula for QED

m/ 4 12 7'm vacuum polarization. In our earlier papgt3] we used a

S imple representation in terms of a rational polynorhzdi
where the subscrip¥ indicates the scheme dependence ofs P P polynorfizd

NEY andNE, .

2
Taking the derivative of Eq5) with respect to lo@ and 0.2Q—
re-expanding the result i, (Q,m) gives the following o[ Q 1 m?
: ' L . NO =)~ = (13
equations for the first two coefficients ©fy; : FVim m2 Q2

1+5— 1+0.2—
Q2 m2

Q dV]_(Q,m,/.L)
O =)= —
i (m) diogQ (9
which displays decoupling for small scales and the correct
1 Q dlva(Q,m, ;) +An(Q,m,u)] massless limit at large scales. Similarly, the numerical results
l/fs/ )<a) == dlogQ for the two-loop contribution can be fit to the form
dv,(Q,m,u) Q? ot
+2v(QMp) ———— (12 a;—+ta,—
flog NE (Q> ‘me o (14)
The argument Q/m indicates that there is no FVim 2 4’
renormalization-scale dependence in E¢kl) and (12). 1+a3ﬁ+a2ﬁ

Rather,y{?) and 4} are functions of the ratio of the physi-

cal momentum transfe@ = —q“ and the pole masmonly.  ne parameter values and the errors obtained from the fit

The expression.fog{;_ﬁ,o) agrees with our resultin Reff13]. In {4 the numerical calculation in thé scheme for QCD and
Eq. (12) the derivative of thel ,(Q,m, u) term comes from  QED are given in Table I. Similar decoupling forms have
using the pole mass instead of the MS mass, whereas thfeen used for interpolating the flavor dependence of the ef-
remaining mass dependence in E#2) is arbitrary in the  fective coupling in the momentum subtraction scheié].
sense that a different mass scheme is formally of higher or- | the case of QCD we obtain the following approximate

der. In addition we note that the contributioniv,/dlogQ  form for the effective number of flavors for a given quark
cancels the reducible contributiglabeled2vp in Fig. D to  \with massm:

V,; it is thus sufficient to consider one quark flavor at a time.

Q*\Q°
[ll. NUMERICAL RESULTS FOR THE ANALYTIC  Ng ( —0.571+ 0.221—2

m?2 | m?

Because of the complexity of the integrals encountered in (19
the evaluation11] of the massive two-loop corrections to

the heavy quark potential, the results were obtained numeri-

N(l)(_ ~
FVv m Q2 Q4
l+l.326—2+0.221—4

m m
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TABLE I. Values for the parametees,, a, andas in theV scheme for QCD and QED obtained by fitting
our numerical results to the form given by EG4). The y? values were obtained by subscribing a constant
0.01 error to each data point in the filereNy denotes the effective number of degrees of freedom for the
fit, i.e. the number of fitted points minus the number of paramgters

a, a, as ¥
Npr
QCD —0.571+0.034 0.2210.015 1.326:0.116 ﬁ—g
QED 1.069-0.0088 0.01330.0002 0.402-0.005 1%61
and, for QED, solid curves displayed in Fig. 2 show that the parametriza-
tions of Eq. (15 which we used for fitting the numerical
Q2| Q2 results are quite accurate. This is also indicated by the
1.069+ 0.0133—2 - values obtained for the fits as given in Table I.
N [ =)~ m=/m (16) A strong check of our results, as well as the results pre-
FVim Q2 Q4 sented in Ref[11], is the agreement with the two-loop Gell-
1+0.402— +0.0133—, Mann—Low function for QED[26—-28. Figure 3 contains
m m

detailed comparisons of the analytic QED result with our
numerical computation. For comparison the figure also dis-
The results of our numerical calculation Nf:lz, intheV  plays the purely non-Abelian part of the QCD result as well

scheme for QCD and QED are shown in Fig. 2. The decouas the total QCD result. The scalar functions occurring in the
pling of heavy quarks becomes manifest at sr@dlin, and  Abelian corrections are also used in the evaluation of the
the massless limit is attained for lar@¢m. The QCD form  non-Abelian contributionsC,), and it is therefore impor-
actually becomes negative at moderate valuesQah, a  tant to know that they were calculated correctly.
novel feature of the anti-screening non-Abelian contribu- Another important test of our results is renormalization-
tions. This property is also present in tigauge dependent scale () independence, which follows from the fact that the
MOM results. In contrast, in Abelian QED the two-loop con- effective number of flavors in th¥ scheme is a physical
tribution to the effective number of flavors becomes largerquantity. This is illustrated in Fig. 4 which shows the results
than 1 at intermediate values @/m. We also display the obtained for two different renormalization scalesu (

one-loop contributiorN{®,(Q/m) which monotonically in-  =0.03Im and u=m). The figure also shows the fits ob-
terpolates between the decoupling and massless limits. THained for the two different cases. In fact, the differences are
M 2
Nev“ [

FV

_ o : QED(a,)
15 - 4 :QCD(0y)
A : QCD (CA)

0.5 |

i R e ‘ 10 1 10
-05 = Q/m

10 1 10
Q/m
FIG. 3. Comparison of the Abelian limit of our resulspen

FIG. 2. The numerical results for the gauge-invamény, in  circles for N&%, based on the calculation in Refl1] which was
QED (open circley and QCD (triangles with the besty? fits of done in the MS scheme with the well known result in the literature
Egs. (16) and (15 superimposed respectively. The dashed line[26—2§ done in the on-shell renormalization schefselid ling).
shows the one-looplfff{, function of Eq.(17). For comparison we Also shown are the gauge invariant non-Abelian contribution only
also show the gauge dependent two-loop result obtained in MOM>=C,) (open triangles as well as the sum of all terms in QCD
schemeg(dash-dotted curye[7,8]. At large Q/m the theory be- (solid triangle$. The correct Abelian behavior is a very strong
comes effectively massless, and both schemes agree as expecteldeck on the results given in R¢lL1]. All Monte Carlo results are
The figure also illustrates the decoupling of heavy quarks at smalased on 10evaluations per iteration and 50 iterations of the inte-
Q/m. gration grid.
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N R (T )
F,V1 [ 2 8 r
. 75 F — oy(Qmy
0.8 r E
TE o, -e--- 0.,(Q,0) (matching at Q =m)
0.6 |- 6.5 [
0 5
- 55 F
0.2 |- 5 F
o :u=0.031m g
0 45 F
A :pu=m 4 f_
-02 2
L L . 35 F
=1 F
10 1 10 Q/m 3 Eo
FIG. 4. lllustration of the renormalization scale independence of
the two-loop effective number of flavors{, as a function of the FIG. 5. The scaled function—W,/(a’/m), in the analyticy
ratio of the physical momentum transf@ over the pole masg. schemen,(Q,m;) (solid curve compared to thex,(Q,®) scheme

Numerical instabilities are visible for small values@fm and oc-  jith discrete theta-function treatment of flavor thresholds with con-
cur because of limited Monte Carlo statistics {#valuations for  tinuous matching a@=m (dashed curve

each of the 50 iterationsThe two fits obtained, which agree within

statistical errors, are shown as a solid and dashed linefam and ¢4t differences between the two approaches both in leading
#=0.031m respectively. and next-to-leading order. In fact the difference becomes

) ) o . larger when going to next-to-leading order. We also note that
so small that the two lines cannot easily be distinguished. he scale dependence of the coupling is larger in next-to-

We can also apply the same fitting procedure to the depgading order and that the convergence of théunction is

pendence of the one-loop effectig: : not very good for scales below a few GeV. From the figure it
is also clear that there are no plateaus in the analytic treat-
NGO — 1 _ X’ _ 19 (17 ment of quark masses. Thus there is no region of the €gale
FVT m2’  NpE T o7 below~1 TeV where all quark masses can be neglected at
14—(5.194:0.03.’)—2 the same time.
Q The solution of the evolution equation also gives the cou-

o _ o _ pling as a function of the scal®. The relative difference
This gives a higher precision global fit compared to the formpetween the analyticx,(Q,m;) and the discrete theta-

in Eqg. (13). function treatment of flavor thresholds, with continuous
matching atQ=m, «ay(Q,®), is shown in Fig. 6 both in
IV. SOME PROPERTIES OF THE ANALYTIC COUPLING leading and next-to-leading order. _
IN THE V SCHEME As can be seen from the figure, the difference between the

analytic and step-function treatment of quark masses in the

Using the numerical results fi%, andNE, the evolu-  running persists when going to higher order. In fact we ex-
tion equation(6) can be solved numerically using the classi- pect this difference to remain to all orders. The reason is that
cal Runge-Kutta algorithm. As starting value we usethe ¥ function is not continuous in the step-function ap-
ay(Mz,m)=0.126 in next-to-leading order and proach and the step size at the thresholds is governed by the
ay(Mz,m)=0.134 in leading order which have been ob-lowest order termy(?). Thus there will always be a finite
tained from the valuevys(Mz)=0.118. It should be noted difference between the continuots function and the one
that it is straightforward to solve this equation numericallywith theta-function thresholds. The difference can be made
since we are using the pole masses which do not depend @maller by modifying the matching scale to @e=3m (but
Q. This should be compared with the MOM scheme wherestill using continuous matchingvhich is also illustrated in
one gets two coupled differential equations to solve, both fothe figure. However, the difference cannot be made smaller
the coupling and the mass. than ~1%. The only way to include the finite quark mass

The resulting leading and next-to-leading orderfunc-  effects in the fixed flavor treatment is by making a higher
tion in the V scheme is shown in Fig. 5 scaled with the twist analysis to all orders im?/Q? andQ?/m? for light and
leading dependence an,, i.e. — W /(aZ/ 7). For compari- heavy quarks respectively.
son the figure also shows thie function obtained with dis- Noting that the differential equation for the scale depen-
crete theta-function thresholds with continuous matchingdence of the coupling is homogeneousQfm we can also
ay(Q,Nr=0)=ay(Q,Ng=0 +1), at the naive matching get the logarithmic derivative of(Q,m;) with respect to
scaleQ=m. As can be seen from the figure there are signifi-the heavy quark masses,
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[0y (Qumy) — 0,/ (Q,0)]/0(Q,my)

0.1
0.08 _ ———  NLO evolution (matching at Q =m)
L \=- NLO evolution (matching at Q = 3m)
Rl A W LO evolution (matching at Q = m)
0.04 Normalization: o, (M,,m,) = 0, (M,,,©) FIG. 8. The “double bubble” diagrams. The crosses represent
C the external electro weak current, the thin line is a massless quark
0.02 | and the thick line is a massive quark.
0 - v 4 2
N day(Q,m) _ 1a{(Qm)
-0.02 | dogm [, . 3 77
- L 3 .
004 (ool Ll el el L el _5NC+3CF aV(Q,mI) (19)
1 10 10° 10° o* 12 w?

0 1
QI[GeV]

FIG. 6. The relative difference between the solutions to the evoyhich is the same as the; dependent part of th& func-
lution equation using the analyti¥ function, a(Q.m;), VeIsUs  ion apart from the differing sign. This can also be derived
discrete theta-function thresholday(Q,G)). The solid (dashed from the decoupling relations for matching fixétk cou-
curve shows the next-to-leadiripading order result. plings as for example is done in théS scheme.

daV(Qimi) _ daV(Q!mi)
dogm = diogd | (19 V. APPLICATION

The purpose of this section is to compare the treatment of
finite quark mass effects in thé scheme with the standard

tion. The resulting mass dependence is shown in Fig. 7 fofollow our earlier papef13] and use the non-singlet had-
each of the heavy quarks. ronic width of aZ boson with arbitrary maség starting from
The figure illustrates how the quarks decouple forthe physical masg's=M for normalization. _ _
small scalesQ and how they become effectively massless The finite quark mass effects that we are interested in are
for large scalesQ. In the intermediate region the mass N leading order given by the “double bubble” diagrams,

dependence depends on the ratio of the mass to the scaW@iCh are shown in Fig. 8, where the.outer quark loop which
Q. For large scalesQ the derivative approaches the couples to the weak current is considered massless and the

asymptotic value inner quark loop is massive. These corrections have been
calculated in theViS scheme as expansionsr'nﬁ/s [29] and

s/ mé [30] for light and heavy quarks, respectively, whereas
@ oy, /dlog m)/ (1/3 o2/m + 19/12 ad/n) they have been calculated numerically[Bil]. In addition

the ag correction due to heavy quarks has been calculated as

N
or an expansion irs/mf2 in [32]. Other types of mass correc-
tions, such as the double-triangle graphs where the external
o2 L current is electroweak, are not taken into account.
The non-singlet hadronic width of 2 boson with arbi-
[ trary massy/s is given by
-0.4
I Ggs*? 3 aM¥s)
—06 | Thei(s)= (gh?+(gd)?}| 1+ -C
0.6 | had 277\/52{9\/ gA)} a“F T
(20
-0.8 -
whereaS(s) is the effective chargg83] which contains all
4 ! cl Sl QCD corrections. In the following, the next-to-leading order

3 4

10 10 ' ' S(s) i MS
Q[GeV] expressions for the effective chargg (s) intheMS and V

schemes will be compared for arbitras/using next-to-
FIG. 7. The logarithmic derivative af,(Q,m;) with respect to  leading order evolution starting from the physical mass
the quark mass for each of the heavy quarks. =M which is used as normalization condition.
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A. MS scheme treatment

In the MS scheme the effective chargd'(s) is given by

N m2
rws(i)+ 2 Fl(—“)
q=1 S

(Np)
a(s) = ayg (u)+

Lo ™))"

6
s
+ 2 Gyl — +| roms()
Q=N +1 mQ
Noomzy 8 s | Jlage (w7
MS
+> Fz<—q + 2 G —2) — 5
q=1 S/ Q=N +1 mg T
(21
where the coefficients; andr, are given by[34-3§
1 1 11
rl,M_S(M:\/g):_ch+ Net| 77283/ Bo
=1.986-0.11N¢
23 53 11
rzM_s(M:\/g):_3_2C§+(_m_Z§3)N(2:
101 11 11
| =gt 7 68| CeNet| 7 =203/ B1

(151 19 772>
_|_

2, 37 8
1—8—353—3 Bo “3 {3

5

83 5
+10f5 |Ce+ 4_8+ 553_555 Nc|Bo

= —6.637- 1.20(N— 0.00518\2

[with Bo=y{?)(m=0) andB;=y{"(m=0)] and the func-
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G s| s 44 2I S
U 2] “m2le7s 1357 2
NE I 1303 NEENE
2] |~ 1058400 2520\ 2

(23

which are accurate to within a few percent m§/s<0.25
ands/ mé<4 respectively. We will also use the relatifsi]

(mz_ (mz m2> ( 1 2 )
F?)—G? — |-l -=+24] (29

S 12 3
to obtainF, in the interval 0.25:m?/s<1 where the expan-
sion of F; given above breaks down.

The af,,—s finite quark mass corrections are only known
for heavy quarks G,), whereas the corresponding correc-
tions due to light quarksK,) have not yet been calculated.
The known corrections iG, are small; formézs they are
of orderG,~0.1 for the top quark. L

The number of light flavorsl\, , in the MS scheme is a
function of the renormalization scaje. In the following we
will assume that the matching of the different effective theo-
ries with a different number of massless quarks is done at the
quark masses. In other words a quark with mass w is
considered as light whereas a quark with massu is con-
sidered as heavy. In addition théS quark masses are used.
The general matching condition in théS scheme is to next-
to-leading order given bj39]

+1|
gn

(NL+1)
" )[“M—s
)

1 (w)]?
(M)—§|09< —p

(Np) _ (Nt
@ vs (nW)=a ms

w

(25

wherem(w) is the mass of quark numbé&, +1. The de-
pendence on the matching scale can be made arbitrarily
small by calculating the matching condition to high enough
order. However, this does not mean that the finite quark mass
effects are taken into account. The only way to include these

tions F and G are the effects of non-zero quark masses formass effects in the ordinal/lS treatment is by making a
light and heavy quarks, respectively. The expansions of thBigher twist expansion to all orders in’/Q* andQ* m? for

a ﬁ,,—s finite quark mass corrections are given' 29,30

- m2_m22 4 | m2

157\ 3
. m23136+16 +56| m?
S/ |2t 7 e s
8|zmz 22
—2—7n Y (22

light and heavy quarks respectively, i.e. the functiénand
G given above.

In the following comparison we will restrict ourselves to
the next-to-leading order expression fe}'<(s) in the MS
scheme including the finite quark mass corrections, i.e.

N 2
(ND) m
ot (s =a g (w) +| ramms(w) + 2 Fl(?“)

6

+ > G,
Q=N +1

S

2
Mg

(N 2
e ()
M (26)

Yin our earlier papef13] there was a typographical error giving With x= /s and next-to-leading order matching done at the

the wrong signs for the two In terms @;.

quark masses.
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B. V scheme treatment

In order to relate the hadronic width of t@Zeboson to the

PHYSICAL REVIEW &0 096006

It should be noted that this way of writing the two-loop
coefficientr,y in terms of g’ and ¢} follows from the

ay scheme we will require the massless coefficients in th&onformal ansatz.

relation betweenyys and ay, for Q2>m?,

v(Q)

ays(pm)=ay(Q)+cyy Cov— 2

where the coefficients are given by8-23

Crv= ch —§+In% o
5 16m°—7* 11 | ,

Cov= —m—T —§3)N
+(%—1Z1g3)CFNC+ —g+ln% &
+(§Z Q)(l/f(o))z _:—2+2§3)CF
—(%Jr‘?—lg NC+2c1,VIn% 0.

The logarithmicQ/n dependence of the coefficients follows
from requiring the expansion af,/(Q) in ays(x) to be u

a¥(Q) .

(27)

(28)

We now use the commensurate scale relation method to
eliminate the scale ambiguit® is set toQ* using the single
scale scale-setting approde®|, such that all non-conformal
terms proportional ta/? and 4} are absorbed into the
running of the coupling.This gives the next-to-leading order
commensurate scale relation betweg!? anda, . To obtain
the next-to-next-to leading order relation requires knowledge
about theNg-dependent part of the three-loop contribution.
Thus we arrive at the following commensurate scale relation
betweena}'s and a :

23
_ P2
3ZC

,]a%(Q*)

77_2

1
aMS(Vs)= ay(Q*) +| — 5 Cr+ NG

) av(Q*)

4

1672 — 7
64 24

@) +20850 ) 716U

21
+ 1_6CFNC+

(30

The next-to-leading order commensurate s@@feis given
by

Q* 23
@—exp TS

independent to the order we are working. Inserting &3)
into the massless version of E@1) (i.e. without the finite

quark mass correctiorts and G for light and heavy quarks V(Q*)
respectively gives the relation between the effective charges {a{P(Q%) +ay llf(o)(Q*)]z}
' and ay for Q>m? which is independent of the inter- + (Q )
mediateMS scheme: #OQ*) + pP(Q* ) ———— il
v(Q) ay(Q) (31)
ar(s)=ay(Q)+r1y rov——=2—+ (29
77 where
where the coefficients are given by 5
a1=| 157 14371005 Crt| — 3+ 543F 345|Ne
1 3 Q _
r1‘V:_§CF_ZNC 2§3+|nT ¢(O) _1765’
119 14 A 2_0166
2,2 ( 167274 7 )NZ 2=~z 3 T
Fov=— T7aCeNet | = ——=3——5;]Nc
' 32 16 64 24
which should be compared with the leading order commen-
Q) 2 surate scaleQ* = sexp(—Z+2£5)=1.628/s. It should be
253“”7 lﬁ( )+ 271 ——3§3 noted that this way of writing the scal@* differs slightly

Q) ).
(') +
f by

109 43 5

+(—— o6 3¢

52 5)Nc+ 2ryyin

Vs

49
“%2 32 §3+10§5 Cr

(0)
V .

There also exists a multiple scale setting approgkd] where
one has different scales for each ordergf. However, for clarity
we concentrate on only one of the procedures. In addition, as no-
ticed in our earlier papdrl3], the multiple scale setting procedure
does not always have the correct Abelian limit.
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Q15 [o(o) — apagg)lor(or,)
3 0.1
[ NLO 0.08 _ NLO: o in the V-scheme and the MS-scheme
25 -

0.06 3 —— LOQy, pu=vs, Matching at )L = m

L 0.04 F \  ----- NLO Qj, p=Vs, Matching at p =m
2 [
[ \¥ 0.02 b \

15 F 0t — e
-0.02 [ /,f"
£ e LO : y
-0.04 | ,
r -0.06 | /
05 | : /
i -0.08 | !
0 [l YT BT NN BT —0.1 Doul ul |2 I:, |4
2 3 4
1 10 10 0 10 1 10 10 10 10
Vs [GeV] 5 [GeV]
FIG. 9. The ratio of the commensurate sc@f to /s between FIG. 10. The relative difference between the next-to-leading or-

the non-singlet width of th& boson and the heavy quark potential der expressions forp® in the M_S andV schemes respectively
as a function ofy/s in next-to-leading(solid) and leadingdashedl ~ using next-to-leading order evolution.
order.

from the one used if40] in that it is written as the expo- known to next-to-leading order. Therefore we can only con-
nential of a partial fraction where the denominator is propor-sistently use the next-to-leading order result when comparing
tional to theW function. This ensures that the sc&¢ has  jth the treatment of finite quark mass effects in &
sensible limits asyy,—0 or ay—> (for Ne=3, Q*=6.7Q  scheme, i.e.
in the limit ay,— ). If the coupling freezes or is bounded
for small scales, then the latter limit is of course not impor- 1
tant. In additionQ* has the correct Abelian limit. The re- aNS(\/g m) = ay(Q*,m, )+< - —CF+ Nc)
sulting commensurate scalE is shown in Fig. 9 where it is
also compared with the leading order scale. As can be seen (33
from the figure, the next-to-leading order correction to the
commensurate scale is small. The general convergence proghere the scal®* should be the leading order result for
erties of the scal®* as an expansion iy, are not known consistency.
[41].

The relation betweea}%(\/s) and a,(Q*) can be gen-
eralized to be valid for all scales, for which perturbation

theory is applicable, by using the mass-depende/(Q.m;), Figure 10 shows the relative diffesrence between the next-
to-leading order expressions forN in the MS and V

av(Q* m;)

T

C. Comparison

a\z,(Q*,mi) schemes given by Eq§26) and(33) respectively. The pre-
Jg m;) = a(Q*,m;) + _§CF+Z C) T dictions for the width have been normalized to the same

value atys=M, usinga %(MZ)=O.118 and then evolved
_ 2—3C2 Zlc N using next-to-leading order evolution in the respective

C
32 16 schemes.
_ . The comparison shown in Fig. 10 illustrates the relative
4| = 167"~ = ) ay(Q m) difference between the predictions fo}'s in the MS andV
64 24 m* schemes. In our earlier papd3] we showed that the differ-

(32) ent ways of including the finite quark mass effects is smaller
than~0.1% by comparing th&1S scheme with the analytic

where the argument O&NS is meant to indicate that the extension of the same which properly takes into account the
quark mass effects related to the running of the coupling aravor threshold effects analytically. Therefore the difference
taken into account andh, being the pole masses for the between theMS and V scheme predictions far; S can be
quarks which do not depend d@. In addition we use the attributed to the scheme dependence. This is illustrated by
mass-dependent coupling,(Q,m;) and the mass-dependent the fact that when using the next-to-leading order approxi-
coefficients of thel', function, w(o)(Q m;) and z//(l)(Q m,), mation for the commensurate scale, instead of the leading
in the formula forQ* given by Eq.(31). It should be noted order one, the relative difference changes sign and even be-
that the scaleQ* is only known to next-to-leading order. comes larger. This sensitivity is a consequence of the scale
Similarly the evolution equation fora,(Q,m;) is only  dependence of the coupling, especially at small scales where
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the ¥ function is large. The proper inclusion of the finite the Deep Structure of Elementary Particles,” contract
qguark mass effects is verified by the smoothness of the curv&MRX-CT98-0194(DG 12 - MIHT). This work was sup-

ported in part by the Department of Energy, contract DE—

VI. SUMMARY AND CONCLUSIONS ACO03-76SF00515, and the Swedish Natural Science Re-

search Council, contract F—PD 11264—-301.
We have presented the calculationyf, the two-loop

term in the Gell-Mann—Low function for the,, scheme, APPENDIX: ANALYTIC  ags AT TWO LOOPS

with massive quarks. This gives for the first time a gauge  gjnjte quark masses are included naturally into the run-
invariant and renormalization scheme independent two-loorﬁing of ay, thus providing an analytic definition of the

result for the effects of quark masses in the running of th uge theory coupling. Furthermore, there is no scale ambi-
coupling. Renormalization scheme independence is achiev ity in ay(Q) since the argument of the coupling is by
by using the pole mass definition for the “light” quarks d M

. . . efinition the physical momentum transi®r These advan-
which contribute to the scale dependence of the static heav,[)é1 es can be carried over to the ordinaT)S scheme b
quark potential. Thus the pole mass and thecheme are g y

closely connected and have to be used in conjunction to givreelatlng It to the phys_lcahv scheme via a commensurate
reasonable results. The results of the calculation are pres’-f:ale relation _connectmg the tV\.IO schemes. Itis in fact pos-
sented in numerical form due to the complexity of the inte-SiPI€ to combine the computational advantages of Nt&
grations required. An important cross-check is the successfiicheme and the physical and analytic properties ofde
reproduction of the well-known QED results. scheme into one common scheme, the analytl.c extepsmn of

The effective number of flavors in the two-loop coeffi- the MS scheme 13]. However, as already mentioned in the
cient of the Gell-Mann—Low function in thew, scheme, Introduction, the conformal coefficients in the commensurate
NE,, becomes slightly negative for intermediate values ofScale relation between the, andMS schemes do not pre-
Q/fn. This feature can be understood as anti-screening frorfi€rve one of the defining criteria of the potential expressed in
the non-Abelian contributions and should be contrasted witihe bare charge, namely the non-occurrence of color factors
the QED case where the effective number of flavors become&Prresponding to an iteration of the potential. This is prob-
larger than 1 for intermedia®/m. For smallQ/m the heavy ably an effect of the breaking of conformal invariance by the
quarks decouple explicitly as expected in a physical schemd/S scheme. The breaking of conformal symmetry has also
and for largeQ/m the massless result is retained. been observed when dimensional regularization is used as a

The ana|yticity of theav Coup"ng can be utilized to ob- factorization scheme in both EXC|USi[/.E5,1q and inclusive
tain predictions for perturbatively calculable observables in{17] reactions. Thus, it does not turn out to be possible to
cluding the finite quark mass effects associated with the runextend the modified schemgys beyond leading order with-
ning of the coupling. By employing the commensurate scaleut running into an intrinsic contradiction with conformal
relation method, observables which have been calculated isymmetry. For completeness we give the results of such an
the MS scheme can be related to the analytischeme with- ~ extension in this appendix.
out any scale ambiguity. The commensurate scale relations
provide the relation between the physical scales of two ef-
fective charges where they pass through a common flavor Our starting point for relating the, and ays schemes is
threshold. the massless result f@?>m? which is given by Eq(27).

As an example, we have shown how to calculate the finitelust as before we use the commensurate scale relation
qguark mass corrections connected with the running of thenethod to eliminate the scale ambiguity: the s&lis set to
coupling for the non-singlet hadronic width of tieboson  Q* using the single scale scale-setting approtdi, such
compared with the standard treatment in S scheme. that all nonconformal terms proportional ¢c$,°) andws,l) are
The analytic treatment in th€ scheme gives a simple and absorbed into the running of the coupling. This gives the
straightforward way of incorporating these effects for anyfollowing commensurate scale relation betweefys and
observable. This should be contrasted with M8 scheme ay:
where higher twist corrections due to finite quark mass 2 a\Z/(Q*)
threshold effects have to be calculated separately for each  ays(Q)=ay(Q*)+ 3Ne
observable. Th¥ scheme is especially suitable for problems
where the quark masses are important such as for threshold

1. Commensurate scale relation betweem,, and ajs

ko

production of heavy quarks and the hadronic width of the - 144° ~ 64 2 {3Ne
lepton.
385 11 ad
1795~ 7 %3|CeNc|—=
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by Schraler [23]. However, the problem brought up in our o (lL)(M*)]Z
previous paper regarding the anomalous contribution with a adS(s)=a %)(#*)Jro_ogg MS

color factor proportional t@C N is still there. This type of

color factor corresponds to an iteration of the potential and (ND, %113

thus cannot be part of the potential itself. The origin of this 932 @ s (m )] (A2)
contribution is not clear, but it is probably an effect of the ' 72

breaking of conformal invariance by th€IS scheme. It

should also be remarked that the conformal two-loop coeffiwhere u* is the commensurate scale betwee}® and the
cient between thélS scheme and ther, scheme is large, MS scheme. This should be compared with the conformal
indicating that there are large corrections between the tweelation betweerr'° and «, where the coefficients are not
schemes. This is of great importance for observables likas large as indicated in E¢30). Thus it is better to relate
heavy quark production close to threshold where the next-toebservables directly without using the intermediate analytic
next-to leading order correction is known to be large in theextension of theM'S scheme.

MS schemd42]. As another example the conformal coeffi-  The commensurate scal®* between theMS and V
cients fora?s(s) in terms of oz are also large, schemes is to next-to-leading order given by

i 35 3 19 7 (Q*)
5 [(3—2—§§3)CF—(4—8—Z§3)NC QN
Q*=Qexp =+
6 (Q")
IQ)+ Q) =

7.314-0.44NO)(Q* *
_ Qext 0.833+ [ F(Q*)]ay(Q*) _ A3)
I 5.500- 0.33N©)(Q*) +[4.058- 0.50ND(Q* ) Jay(Q*)

In the limit ay—« the scaleQ* becomes largdfor N logarithmic derivative of Eq(A4) with respect toQ. This
=3, Q*=24Q in the limit a,—=). If the coupling freezes gives

or is bounded for small scales, then this limit is of course not ~

important. ¥ ws(Q,m) =V (Q*,m;)

+22Nc av(Q*,mi)\P (Q*.m). (A5)
2. Definition of the analytic ays 3 m ViNe
The definition of the analytierj;s is based on generaliz- Q'/Q

ing Eq. (A1) to be valid for all Q by using the mass- 10
dependentr,(Q,m;),

2 ay(Q*,m)

~ E —— NLO
s QM) = ay(Q* mp) + ZNe————,  (Ad) ;

with m; being the pole masses for quarks which do not de-
pend onQ. In addition we use the mass-dependent coupling
ay(Q,m;) and the mass-dependent coefficients of the
W-function, y{°(Q,m;) and 4{’(Q,m;), in the formula for

Q* given by Eq.(A3). In the above definition we have only
included terms to the order which we are working, i.e. next- g
to-leading order, since the effects from higher order termson 1 E
Q* are unknown. When going to even higher orders, the L N
relation between the analytieys and thea, scheme will 1 10 10° 10° 10°
contain large corrections as indicated in E41), reflecting QGeV]
the underlying large difference between tMS and ay FIG. 11. The ratio of the commensurate sc@® to Q for the
schemes. analytic extension of th#1S scheme as a function @ to leading

We can also derive th# function for ays by taking the  (dashed lingand next-to-leadingsolid line) order.

N w £ [} 2] ~ 4] ©
T

096006-12



TWO-LOOP SCALE DEPENDENCE OF THE STATIC QCD.. .. PHYSICAL REVIEW @D 096006

Wiz /(@xgs/m) (Oyzs — gzt
7 — 0.05
65 F 0.04 F —— NLO
0.03 |
6 - NLO o
c 0.02F  ----- LO
55 F Lo 001 F A\
5 | NLO step-function Ny, 0 /\ B
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FIG. 13. The relative difference between the solutions to the
~ 5 ) ‘ ) _ 2-loop renormalization group equation using the analfitidunc-
[ ys(Q.m;)/ 7] in the analytic extension of thidS scheme com- tion, a ;=(Q), and conventional discrete theta-function thresholds,

pharei t(l)d the_”(lzonlver;t_lonai (;unctlon |W|th dlsirete theta-f(tjmcrt:og a ws(Q), with matching at quark masses. The solid curve shows the
thresholds. The leading order results are shown as a dashe aﬂg\;t-to-leading order result. For comparison the 1-loop result is

dot-dashed curves respectively whereas the next-to-leading ordgf, v a5 a dashed curve. The solutions have been obtained numeri-
results are shown as a solid curve and dotted curve respectively. cally starting from the world averadd3] ag=(M,)=0.118

FIG. 12. The normalized¥ function, —\I'M—S(Q,mi)/

Re-expanding both sides of E(A5) in ay using Eq.(A4) ) . .
and equating order by order gives the first two terms inclassical Runge-Kutta algorithm. The resulting scfecal-
~ culated using Eq(A3) is shown in Fig. 11.

¥ ws(Q.my), With the solution of the renormalization group equation
~ 0 ) for ays we also obtain thel functions for the analytic ex-
¥ as(Q.my) =y (Q*,my) (AB)  tension ofMS which is shown in Fig. 12. From the figure we
also see that th& functions in the analytic approach and in
¢%(Q,mi)=¢§/1)(Q*:mi) (A7) the massless step-function approach, with matching at the

quark masses, follow each other closely except for small

. . . | h h iate.
reflecting the non-trivial mass dependence ofthéunction. scales where they start to deviate

We note that when finite quark masses are included the first
two terms in the¥ function are no longer universal but 3. Comparing the analytic ays with agys
scheme dependent. _
We thus arrive at the following evolution equation for the ~ We now compare the analytieys with the conventional
analytic couplingas(Q,m;): discrete theta-function treatment of flavor thresholds with
matching at quark massesys. The relative difference be-

(A8)

~ ~ 2 tween the two is shown in Fig. 13 both in leading and next-to
dews(Qm) -~ ©q m,)aM_S(Q’m‘) leading order.
dIinQ MSh T As can be seen from the figure, the difference between the
~ 3 analytic and conventional treatment of quark masses in the
—Tﬂ@(Q m-)a ws(Q,m;) running persists when going from leading to next-to-leading
MS v

S L
2 ' order. In fact we expect this difference to remain to all or-
ders. The reason is that the function is not continuous in

~ ~ . the massless approach and the step size at the thresholds is
(0) (1)
wherey y5(Q.m;) andy y5(Q.m;) are given by Eqs(A6) governed by the lowest order tergd®). Thus there will al-

and (A7), respectively, andn; are the pole masses of the .,y be a finite difference between the continugusunc-
quarks. One complication which arises when solving th&jon and the one with theta-function thresholds. It is impor-
evolution equation is that the sca@* has to be obtained (5t tg recognize that this feature is not eliminated by the fact
recursively since Eq(A3) containsQ* also on the right hat when going to higher orders the dependence on the
hand side. In addition the approximation(Q*,m)  matching scale in the massless approach becomes smaller.
= ays(Q,m;) was used on the right hand side of EA3)  The only way to include these mass effects in the ordinary
when solving the evolution equation farys(Q,m;). The  MS treatment is by making a higher twist analysis to all
evolution equation was solved for numerically using theorders inm?/Q? and Q%/m?.
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