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Simulating hot Abelian gauge dynamics

A. Rajantie* and M. Hindmarsh†

Centre for Theoretical Physics, University of Sussex, Brighton BN1 9QJ, United Kingdom
~Received 8 April 1999; published 1 October 1999!

The time evolution of soft modes in a quantum gauge field theory is to first approximation classical, but the
equations of motion are non-local. We show how they can be written in a local and Hamiltonian way in an
Abelian theory, and that this formulation is particularly suitable for numerical simulations. This makes it
possible to simulate numerically non-equilibrium processes such as the phase transition in the Abelian Higgs
model and to study, for instance, bubble nucleation and defect formation. Such simulations would also help to
understand phase transitions in more complicated gauge theories. Moreover, we show that the existing ana-
lytical results for the time evolution in a pure-gauge theory correspond to a special class of initial conditions
and that different initial conditions can lead to qualitatively different behavior. We compare the results of the
simulations to analytical calculations and find an excellent agreement.@S0556-2821~99!07619-5#

PACS number~s!: 11.10.Wx, 11.15.Ha, 52.25.Dg
tio
-
a

ve
-
iti
in
so
he
es
dy
an
ili

tio

t
g

or
ca

iti
he

u-
at
g-

t
g
im
n
ca
th

an

m,
m is
is-

ent
the
des.
lem

ssi-
al
e-
de-
ture,
as

the
m
for
-
n

t

of
oce-

ral

r-
by

ce
ns

a

ns
de-
of

enta
ory
I. INTRODUCTION

The recent finding that the electroweak phase transi
might be only a smooth cross-over@1# has changed the pic
ture of cosmological phase transitions in a fundamental w
and shown that theories with gauge fields can behave
differently from those with only global symmetries. How
ever, the statement about the smoothness of the trans
refers only to the equilibrium properties, and from the po
of view of cosmology, it is very important to understand al
the time evolution of the transition, in particular, whether t
fields fall out of equilibrium and what its consequenc
would be. For this, a calculation scheme is needed for
namical quantities that treats the gauge fields correctly
gives the same results in the special case of thermal equ
rium as the dimensional reduction method@2,3# that was
used to show the smoothness of the electroweak transi
In this paper, we propose such a scheme.

Instead of the electroweak theory, we will concentra
here on scalar electrodynamics, i.e. the Abelian Hig
model. Not only does the simpler gauge group allow m
efficient simulations, but the theory also contains topologi
defects, namely Nielsen-Olesen vortices@4#, and therefore it
can be used to simulate defect formation in a phase trans
@5# and to test the validity of the present predictions for t
produced defect density@6# in gauge theories.

In Ref. @7#, the dynamics of the transition and, in partic
lar, formation of vortices was simulated classically on a l
tice with field equations derived from the original Lagran
ian. A similar approach had been suggested earlier@8# in the
context of electroweak baryogenesis. This was based on
observation that the quantum distribution of the lon
wavelength modes is essentially classical. Since the t
evolution of a classical field theory is given by the equatio
of motion, this approach allows non-perturbative numeri
simulations. For baryogenesis, the interesting quantity is
hot sphaleron rate~see Ref.@9# and references therein!,
which is an equilibrium quantity, but similar methods c
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also be used to describe small deviations from equilibriu
such as phase transitions. After all, the phase of the syste
only a property of the long-wavelength modes, and the d
tribution of the high-momentum modes is to a large ext
independent of it. Therefore also the transition between
phases is described by the classical long-wavelength mo

This straightforward approach has the serious prob
that the results depend on the ultraviolet cutoff@10,11#. Be-
cause of the Rayleigh-Jeans ultraviolet divergences, a cla
cal continuum field theory cannot actually even be in therm
equilibrium—this was one of the reasons why quantum m
chanics was invented in the first place. The divergences
pend on the temperature and are absent at zero tempera
so they cannot be cancelled by introducing counterterms
in quantum theories. Therefore it is not sufficient to use
classical theory with the Lagrangian of the original quantu
theory, but one has to construct an effective Lagrangian
the low-momentum~soft! modes by integrating out the high
momentum ~hard! modes. The effective Lagrangian the
contains precisely the necessary~temperature-dependen!
counterterms to remove the divergences.

In calculating static properties, i.e. expectation values
products of operators measured at the same time, this pr
dure is known as dimensional reduction@2#, and leads to a
three-dimensional effective theory, in which the tempo
component of the gauge field has a Debye mass termmD
;gT. To calculate non-static quantities, the full fou
dimensional effective Lagrangian needs to be constructed
calculating the so-called hard thermal loops~HTL!, and in
gauge theories it turns out to be non-local@12,13#. This
makes computer simulations practically impossible, sin
one would have to keep in the memory all the configuratio
encountered during the time evolution.

Fortunately, the equations of motion can be written in
local form by introducing auxiliary fields@14,15#. The Abe-
lian version of the resulting system of differential equatio
is known in plasma physics as the Vlasov equation and
scribes collisionless electron plasma. Numerical solution
the equations of motion is still difficult, since the fieldW
depends not only on the coordinate but also on the mom
of the hard particles it describes, and therefore the the
©1999 The American Physical Society01-1
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A. RAJANTIE AND M. HINDMARSH PHYSICAL REVIEW D 60 096001
becomes essentially 511 dimensional. The traditiona
method is to approximateW by a large number of poin
particles. This approach has been used to determine the
sphaleron rate in the electroweak theory in Ref.@16#.

In this paper, we show how the theory can be formula
in such a way that simulations in terms of fields rather th
particles becomes feasible. One of the problems we hav
face is the multiplication of the number of degrees of fre
dom when the hard modes are included. We show that
number of extra degrees of freedom per lattice site mus
chosen carefully if the simulation of a particular soft mode
to be trusted: if one wants to reproduce Landau damping
mode of momentumk, naive methods require of order (kt)2

degrees of freedom per lattice site for the hard modes. H
ever, we are able to rewrite the effective hard thermal lo
improved classical equations of motion in such a way t
we only need of orderkt extra degrees of freedom per lattic
site. Our numerical methods reproduce known analytic
sults in pure Abelian gauge theory extremely well, whi
gives us confidence that we will be able to tackle the Abel
Higgs model accurately.

The structure of the paper is the following. In Sec. II w
review the hard thermal loop Lagrangian and derive
Hamiltonian formulation for the hard modes. In Sec. III w
explain how to approximate the system with a finite num
of degrees of freedom in numerical simulations. In Sec.
we derive some analytical results, which we compare to
numerical results in Sec. V. Extending our technique to
clude the soft Higgs field is discussed in Sec. VI, and S
VII contains the conclusions. The paper also has one ap
dix, in which the continuum and lattice equations of moti
for the Legendre modes are given explicitly.

II. KINETIC FORMULATION

Let us consider scalar electrodynamics at a temperatuT.
The Lagrangian of the theory is

L52
1

4
FmnFmn1uDmfu22m2ufu22lufu4, ~1!

whereDm5]m1 ieAm . We assume thate!1 andl;e2 and
that m!T so that a high-temperature approximation can
used.

The phase structure of the theory was determined in R
@17,18#. When the Higgs self-coupling is small, there is
first-order phase transition, but if the self-coupling is lar
enough, the transition becomes continuous. Unlike in
electroweak theory, it does not become a smooth crosso
In Ref. @19#, it was pointed out that this can be interpreted
a consequence of the existence of Nielsen-Olesen vortic

To one-loop order, the only non-vanishing contributio
to the effective Lagrangian arise from the two-point d
grams. The correct procedure would be to calculate the
grams in the original quantum theory and to write down
classical Lagrangian that gives the same result when the
grams are calculated on a lattice@10#. However, this is not
possible in practice, since the form of the necessary effec
lattice Lagrangian is not known and is presumably very co
09600
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plicated because the lattice has much less symmetry than
continuum. In sphaleron rate calculations, the effective
grangian was taken from the continuum theory and the
rameters were fixed by matching only the static quantit
@16#. For the simulations presented in this paper, this pr
lem does not arise, as will be discussed later.

In the high-temperature approximation, the one-loop s
lar self-energy is simply

S52S e2

4
1

l

3DT2. ~2!

The photon self-energy@20# is more complicated, and if the

external momentum isK5(v,kW ), it can be written in the
form

Pmn5PTPT
mn1PLPL

mn , ~3!

wherePT
mn andPL

mn are the spatially transverse and longit
dinal projection operators:

PT
i j 5

kikj

k2
2d i j , PT

m050, PL
mn5gmn2

KmKn

K2
2PT

mn ,

~4!

and

PL5mD
2 S 12

v2

k2 D S 12
v

2k
ln

v1k

v2kD , PT5
1

2
~mD

2 2PL!.

~5!

The Debye mass has the valuemD
2 5 1

3 e2T21dmD
2 , where

dmD
2 is a cutoff-dependent counterterm.
The self-energies can be resummed to a simple effec

Lagrangian for the soft modes:

LHTL52
1

4
FmnFmn2

1

4
mD

2 E dV

4p
Fma

vavb

~v•]!2
Fmb1uDmfu2

2mT
2ufu22lufu4, ~6!

where mT
25m21(e2/41l/3)T21dmT

2 , and the integration

is taken over the unit sphere of velocitiesv5(1,vW ), vW 251.
Note that the form ofmT

2 justifies using the high-temperatur
approximation even slightly below the transition. At the tr
level, the transition takes place whenmT

250, which shows
thatm2;2e2Tc

2 . The minimum of the potential is therefor
at v;Tc , and the mass given by the Higgs mechanism
mH

2 ;e2Tc
2!T2.

The equations of motion derived from the Lagrangian~6!
are

]mFmn5mD
2 E dV

4p

vnv i

v•]
Ei22e Im f* Dnf, ~7a!

DmDmf52mT
2f22l~f* f!f. ~7b!
1-2
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SIMULATING HOT ABELIAN GAUGE DYNAMICS PHYSICAL REVIEW D 60 096001
The derivative in the denominator in Eq.~7a! means that in
order to simulate it numerically, one needs to keep the wh
time evolution of the system in the memory at the same tim
which is impossible. The form of the equation of motion~7b!
of the scalar field is much simpler, and actually the on
effect of the hard modes is the modified mass term. T
scalar field can therefore be simulated with standard meth
and we will neglect it from now on, concentrating only o
the gauge field. We will refer to this theory as the pure gau
theory although it contains the contribution from the ha
scalar modes.

The non-locality problem of Eq.~7a! can be solved by
introducing new fields@14,15#. We follow Ref.@15# and add
the fieldW(x,vW ), which satisfies the equation of motion

~v•]!W~x,vW !5vW •EW ~x!, ~8!

and replace Eq.~7a! with

]mFmn5 j W
n ~x!1 j n~x!, ~9!

where

j W
n ~x!5mD

2 E dV

4p
vnW~x,vW !, ~10!

and j n(x) denotes the current due to the scalar field and
external currents.

The system of equations~8!, ~9! is a special case of wha
is known as the Vlasov equation in plasma physics, wher
describes collisionless electron plasma. The fieldW(x,vW )
gives the deviation of the density of hard particles of veloc

vW from their equilibrium distribution.
In addition to the equations of motion, we also have

specify the initial conditions, and since we would like
have the system initially in a thermal equilibrium, the
should be given by the equilibrium distribution; i.e., w
09600
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should have a large number of initial configurations with
Boltzmann distribution}exp(2bH), whereH is the Hamil-
tonian. However, the equation of motion~8! for theW field is
not of canonical form, which makes it difficult to find th
correct Hamiltonian. The suggestion of@21# was to use the
conserved quantity

H5
1

2E d3xH EW 21BW 21mD
2 E dV

4p
W~x,vW !2J . ~11!

In the simulations, one has to approximate the syst
with a finite number of degrees of freedom. Normally, this
done by discretizing the space to a finite lattice, but in o
case, the fieldW also depends on a two-dimensional contin
ous parametervW . There are various ways to handle it in sim
lations. In Refs.@16,22#, W was approximated with a larg
number of particles. The other straightforward options
approximating the velocity integral with a discrete set
velocities on the unit sphere, or expandingW in terms of
spherical harmonics. However, as we will show next, at le
in the Abelian case it pays to simplify the problem a bit fir

If we consider Eq.~7a! in Fourier space, we notice tha
the integral over the polar angle is trivial: the integrand on

depends onvW • k̂, wherek̂ is the direction of the momentum
However, the same does not apply to the integral in Eq.~10!.
This suggests that the fieldW contains more degrees of free
dom than are actually needed to solve the time evolution
the soft fields. It should be possible to replaceW with some

other field which depends only on a single variablez5vW • k̂.
We can construct such a field by formally performing
integration over the polar angle, but in order to avoid t
appearance of odd powers ofk, we have to introduce one

additional power ofkW in the relation. In fact, it will turn out

to be useful to define two separate fields,fW(z) and u(z) as
follows:
fW~v,kW ,z!5 imDA 2z2

12z2E dV

4p

vW 3kW

~vW •kW !2
W~v,kW ,vW !@d~vW • k̂2z!1d~vW • k̂1z!#2

imD

k2
A12z2

2z2
kW3AW ,

u~v,kW ,z!5 imDE dV

4p

1

vW •kW
W~v,kW ,vW !@d~vW • k̂2z!1d~vW • k̂1z!#1

imD

k2
kW•AW . ~12!
of
If we now calculate the second time derivatives offW andu

using Eq.~8!, we can express them in terms ofAW , fW and u
only ~in the temporal gaugeA050):

]0
2fW~z!5z2¹W 2fW1mDzA12z2

2
¹W 3AW , ~13a!

]0
2u~z!5z2¹W •~¹W u2mDAW !, ~13b!
]0
2AW 52¹W 3¹W 3AW 1mDE

0

1

dzz2S ¹W u2mDAW

1A12z2

2z2 ¹W 3 fW D 1 jW. ~13c!

In other words, these equations form a closed system

equations of motion. ThereforefW andu contain all necessary

degrees of freedom to determine the dynamics ofAW .
1-3
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A. RAJANTIE AND M. HINDMARSH PHYSICAL REVIEW D 60 096001
It is easy to solve the equations of motion in Fourier sp
and show that they lead to the correct self-energy~3!. The
particular form chosen in Eq.~12! has the advantage that th
equations of motion are canonical and the correspond
Hamiltonian is

H5
1

2E d3xE
0

1

dzFEW 21~¹W 3AW !21FW 21P21z2~¹W 3 fW !2

1z2~¹W u2mDAW !222mDzA12z2

2
fW•¹W 3AW G , ~14!

whereFW 5]0fW andP5]0u are the canonical momenta offW

and u, respectively. We also need two extra condition

namely the transverseness offW and Gauss’s law:

¹W • fW5¹W •FW 50,

¹W •EW 52mDE
0

1

dzP~z!. ~15!

By reformulating the degrees of freedom, we have gain

two important advantages. First,fW depends only on one in
ternal coordinate whereasW depends on two, and secon
since we know the Hamiltonian~14!, we know the correct
distribution of the initial configurations.

III. SIMULATIONS

We still have to approximate thez dependence of the har
modes with a finite number of degrees of freedom, and
will use Legendre polynomials for that. We define

fW (n)5E
0

1

dzzA12z2

2
P2n~z! fW~z!,

u (n)5E
0

1

dzz2P2n~z!u~z!, ~16!

wherePn(z) is thenth Legendre polynomial. The equation
of motion for different Legendre modes are given in E
~A1! in the Appendix. It is also shown in the Appendix th
the approximation can be trusted if the simulation time
less than

t0'2Nmax/k. ~17!

On the lattice, the fieldu is defined on lattice sites, while

fW and the gauge fieldAW are defined on links between the sit
in such a way that the invariance under time-independ
gauge transformations is preserved. Note that the fieldu (0) is

not gauge invariant by itself, but the combination¹W u (0)

2 1
3 mDAW is. The canonical momenta are defined at halfw

between the time steps so that the value of, say,fW at time t
1dt is determined from the fields at timet and the momenta
at time t1dt/2. In this way, the time reversal invariance
09600
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the continuum theory is preserved. The lattice equations
motion are given in Eq.~A4! in the Appendix.

To study the dynamics of the original theory~1!, we
would have to include the Higgs field to our equations
motion ~13!. However, our aim in this paper is simply to te
the suitability of our formulation for numerical simulation
and we will only consider the pure gauge theory. Since i
linear, we can calculate exact analytical results to which
compare our simulation. Linearity also means that the mo
with different momenta do not interact with each other, a
to simulate a mode with momentum along, say, thez axis,
we can use a lattice with 1313Nz sites. This makes the
simulations very simple. Moreover, the pure gauge theor
ultraviolet finite, so no mass counterterms are needed
particular,dmD

2 anddmT
2 introduced in Sec. II vanish.

The pure gauge theory can be also viewed as a tree-l
approximation of the effective hard thermal loop~HTL! re-
summed theory~6!, but as such it is not reliable, since th
theory becomes non-perturbative at small momenta. T
breakdown of perturbation theory does not place any res
tions to the validity of numerical simulations with the Higg
field included. Instead, that is precisely why the simulatio
are needed to study the dynamics of small momentum sca

IV. ANALYTICAL RESULTS

Before specializing to particular solutions, we first discu
the finite temperature propagator for the pure Abelian theo
Because of linearity, it is sufficient to consider a single Fo

rier mode at a time. Let the momentum bekW , and, for sim-
plicity, let us consider just the transverse part of the pro
gatorG(t,xW ). Its Fourier transform has a non-analytic form

1

G~v,kW !
52v21k21

mD
2

4 F2
v2

k2
1

v

k

k22v2

k2
ln

v1k

v2kG .

~18!

The analytic structure of the propagator is shown in Fig.
The propagator has two oscillatory poles on the real axi
vp

2'k21 1
3 mD

2 , but also a branch cut fromv52k to v5k.
The original equation of motion~7a! implies that the branch
cut must be taken along the real axis. There are no o
singularities on this physical Riemann sheet, but if one c

FIG. 1. Analytic structure of the propagator~18!. The solid
circles are oscillatory poles, the thick line is the branch cut, and
arrows show how imaginary poles atv56 igL , depicted by open
circles, can be found by analytically continuing the propaga
through the branch cut.
1-4
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SIMULATING HOT ABELIAN GAUGE DYNAMICS PHYSICAL REVIEW D 60 096001
tinues the propagator analytically from the upper half-pla
through the branch cut, one finds a pole at

v52 igL'2 i
4k3

pmD
2

. ~19!

Likewise, continuing analytically from the lower half-plan
through the cut reveals a pole atv5 igL .

The solution to the inhomogeneous equation with an

ternal sourcejW(v) is, assuming that the current is transver
and that the fields vanish att52`,

AW ~ t,kW !5E
2`1 i e

`1 i e dv

2p
e2 ivtG~v! jW~v!. ~20!

If t.0, the integral can be transformed into a contour in
gral by closing it on the lower half-plane. This integral h
three pieces: two contributions from the poles and one fr
the integral around the branch cut. The result of the integ
tion around the cut is sensitive to the functional form

jW(v), a reflection of the non-locality of Eq.~7a!: the behav-
ior of the system depends on its whole history.

For example, Boyanovskyet al. @23# discussed a situation
in which an inhomogeneous initial configuration is set up

the soft fieldsAW and EW , and calculated its relaxation to th
equilibrium at asymptotically long times. Still keeping th
assumption of transverseness, the solution was given

function of AW andEW at time t50,

AW ~ t,kW !'AW ~0,kW !FZ@T#cosvpt2
4

mD
2

coskt

t2 G2EW ~0,kW !

3FZ@T#
sinvpt

vp
2

4

mD
2

sinkt

kt2
G , ~21!

where

Z@T#52S ]G21

]v2 D
v5vp

21

. ~22!

Equation ~21! can be seen to correspond tojW(v)5

2 ivAW (0)2EW (0). As they emphasize, the dominant cont
bution does not come from the smallest frequencies but th
near the end points of the branch cut.

With a different choice ofjW, qualitatively different solu-

tions can be found. Suppose thatjW(t) is increased very
slowly from zero to a finite value and then sudden

switched off, i.e.jW(t)5 jW0eg0tQ(2t), whereg0 is eventually
taken to zero andQ(t) is the step function. In this way th
system will be in equilibrium att50, before the current is

switched off. The Fourier transformjW(v)5 jW0 /(g01 iv) is
peaked around the origin, and therefore the integral aro
the branch cut is dominated by the integrand nearv50.
09600
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Hence, expanding the propagator aroundv5 i e and v5
2 i e on the upper and lower half-planes, respectively,
may write

AW ~ t,kW !ucut' jW0E
2k

k dv

2p S e2 ivt
1

g01 iv

1

gL2 iv

1eivt
1

g02 iv

1

gL2 iv DgL

k2
. ~23!

The limits of the integral may be taken to infinity, and th
contour closed in either the upper or the lower half-pla
depending on the sign of the exponent. The second term
no poles in the upper half-plane and hence vanishes, w
the first term gets a contribution from the pole atv5
2 igL . Thus we find an exponentially damping solution

AW ~ t,kW !ucut'2
jW0

k2
e2gLt. ~24!

This exponential decay is known as Landau damping,1 and it
is important to notice that it did not really come from int
grating around a pole of the propagator~18!. If it had, then
the equations of motion would either have to break tim
reversal invariance, which they do not do, or there wo
have to be a corresponding exponentially growing soluti
thus making the system unstable.

For completeness, we also calculate the contribution co
ing from the poles atv56vp . The full result is then

AW ~ t,kW !'2 jW0S Z@T#
cosvpt

vp
2

1
1

k2
e2gLtD . ~25!

Strictly speaking, there will also be a contribution from th
end points of the branch cut, which we neglected when
took the limits to infinity in Eq.~23!. Presumably, it will
result in a power law as in Eq.~21!. At time scales much
longer than 1/gL , only this power law and the constan
amplitude part will remain@23#.

V. NUMERICAL RESULTS

In order to numerically reproduce the results~21!, ~25!,

we have to specify the correct initial conditions in terms ofW

and u. The result~21! is given simply by fW(0)5u(0)50.

For the soft modes, we choseAW (0)50, EW (0)510ŷ sinkW•xW.
To see the power-law damping most clearly,mD must be

relatively small, and we chosemD52p, kW52p x̂ in our
units. The lattice size was 203131, lattice spacinga
50.05 and the time stepdt50.01. We usedNmax5200 so
that according to Eq.~17! the results should be reliable whe
t&60. Eq.~21! becomes

1The importance of this damping for electroweak baryogene
has been discussed in Ref.@24#.
1-5
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A. RAJANTIE AND M. HINDMARSH PHYSICAL REVIEW D 60 096001
AW ~ t,kW !'S 21.236 sin 7.451x10.1613
sin 2pt

t2 D ŷ.

~26!

We added to the numerical result a constant-amplitude
a sinbt and determined the parametersa and b from the
condition that the remaining part agree with the decay
part of Eq. ~26!. The result with a51.24008 andb
57.43024 is shown in Fig. 2. The discrepancy between
numerical and analytical results is less than 1%.

The initial conditions that correspond to Eq.~25! are those
in which the first and second time derivatives of the fie

vanish. If we choosejW0 such thatAW (0,xW )5 ŷ sinkW•xW, then
Eqs.~12! and ~16! imply that

fW (0)~0,xW !5
mD

3k
ẑ coskW•xW ,

fW (1)~0,xW !52
mD

15k
ẑ coskW•xW ,

fW (n.1)~0,xW !50, u (n)~0,xW !50. ~27!

The exponential damping is seen most clearly ifmD@k, and
we chose two different valuesmD510p and mD520p

while we took againkW52p x̂. Again, the lattice size was
203131, the lattice spacinga50.05, the time stepdt
50.01, andNmax5200. The results of the simulations a
shown in Fig. 3. The predicted decay rates aregL50.32 and
gL50.08 and the amplitudes of the oscillationAosc'0.103
and Aosc'0.029. As can be seen from Fig. 3, these ag
very well with the numerical results.

We also carried out simulations with different values
Nmax to find out at what time the approximation breaks do
and to test the estimate~17!. We usedmD520p and the
values for the other parameters were as before. Since al
Legendre modes withn.1 are initially zero, we expect the
first errors to occur at timet'2t0'4Nmax/k. The result is
09600
rt

g

e

s

e

f

he

shown in Fig. 4 for various values ofNmax and confirms our
estimate. The number of extra scalar degrees of freed
needed for simulating with any particular value ofNmax is
8Nmax.

In order to compare the efficiency of the Legendre po
nomial formulation with other approaches, we carried out
same simulations with a more straightforward method. W
chose a large number of points on the unit sphere to re
sent different velocities and used them to simulate the pai
equations~8!, ~9!. More precisely, the different velocitie
were

vW 5
~Nv1 1

2 ,ny ,nz!

A~Nv1 1
2 !21ny

21nz
2

, 2Nv<ni<Nv , ~28!

and those obtained from that with reflections or rotations
p/2. The parameters were the same as in Fig. 4. The va
of Nv used ranged from 2 to 8, and the corresponding nu
ber of extra degrees of freedom is 6(2Nv11)2. The results

FIG. 2. The comparison of Eq.~21! ~gray line! to the numerical
result ~black line! with k5mD52p. The constant-amplitude oscil
lation has been subtracted.
FIG. 3. Results of the Landau damping simulations withk52p andmD510p ~left! andmD520p ~right!. The white line is the predicted
Landau damping rategL and the dashed lines show the envelope of the analytical result~25!.
1-6
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in Fig. 5 show clearly that the number of different velociti
becomes quickly prohibitive when the simulation time is
creased. If we assume that, as with the Legendre polyno
als, the particularly smooth initial conditions result in a fa
tor of 2 in the reliable simulation time, we can estimate th
generally a simulation will be reliable ift&pNv /k.

This estimate can also be reached analytically. Since
time evolution is a superposition of oscillations, the reliab
simulation time is t0'p/v0, where v0 is the smallest
frequency, i.e. the pole of the propagator that is neares
the origin. The transverse self-energyPT(v) diverges if

v5kW•vW for any velocityvW . The smallest pole of the propa

FIG. 4. Landau damping simulations withNmax510, . . . ,40
(k52p, mD520p). The vertical dashed lines show the analytic
predictiont'4Nmax/k for the time when the approximation shou
break down. The black curve is the result withNmax5200 and the
gray curves correspond toNmax510,20,30,40 from left to right.

FIG. 5. Landau damping simulations withk52p, mD520p in
a formulation in which a large number of points on the unit sph
of velocities is used to approximate the integral. The values ofNv
were ~from left to right! 2, 4, 6 and 8 and the corresponding num
bers of degrees of freedom are shown in the plot.
09600
i-
-
t

e

to

gator is at a frequencyv0, which is smaller than min$kW•vW%,

but of the same order of magnitude. Generally min$kW•vW%
'k/Nv , leading to the previous estimate.

Since the expansion ofW in Eq. ~8! in terms of spherical

harmonicsYn
m is essentially equivalent to the expansion ofW

and u in terms of Legendre polynomials, we can also es
mate the effectiveness of that approach. In order to reach
same simulation time, the highestn used should be 2Nmax.
The number of extra degrees of freedom would then
(2Nmax11)2, which again increases much faster than in t
Legendre polynomial approach. Our estimates of the relia
simulation times in the different approaches have been s
marized in Table I. They show that the Legendre polynom
formulation is the most economical one.2

VI. HIGGS MODEL

The pure gauge theory that has been discussed so far
ideal way to test the formalism, since it is linear and one c
in principle solve it exactly. In the previous section, we ha
shown that the numerical results agree with the analyt
calculations and we were even able to estimate the num
Nmax of Legendre modes needed to ensure that the simula
is reliable.

From the point of view of the original theory, the pur
gauge theory is only a tree-level approximation. However
is very easy to add the Higgs field to the numerical simu
tion, after which the system approximates the original the
to leading order ine. In particular, it contains all the non
perturbative physics at small momenta, including the ph
transition and the existence of topological defects.

As was shown in Sec. II, the weak-coupling conditione
!1 andl;e2 implies that the hard thermal loop approx
mation is also valid near the transition in the broken pha
The reason is that the distribution of the hard modes is in
pendent of the phase. Furthermore, when the phase trans
takes place in a finite time, only the soft modes fall out

2The analogous number of degrees of freedom in the part
method used by Mooreet al. @16# is 6^n&. The value of̂ n& they
were using varied between 17 and 120, but they did not carry
this kind of systematic analysis of the corresponding reliable sim
lation time. However, the intrinsic randomness of the method se
to imply that it does not reproduce the correct behavior as ac
rately at short times as the methods discussed here.

l

e

TABLE I. The approximate number of degrees of freedo
needed in various approaches to simulate a mode with momentk
reliably for time t@1/k.

Approach Degrees of freedom

Legendre polynomials 4kt
Spherical harmonics (kt)2

Discrete velocities 24

p2
(kt)2
1-7
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equilibrium, and therefore the classical description rema
valid, even in such non-equilibrium processes.

The above suggests that the classical formalism discu
in this paper can be used to simulate the non-equilibri
dynamics of the phase transition in hot scalar electrodyn
ics. In the cosmological setting the transition takes pla
when the universe cools as it expands, but in a simula
some other way to change the temperature is needed
straightforward way of doing this is to prepare an initial e
semble with a higher temperature for the soft modes than
the hard modes. A large number of initial configuratio
would then be taken from this ensemble and evolved in tim
When the soft and hard modes interact, the temperatur
the soft modes decreases and they undergo a phase t
tion.

While this kind of instantaneous quench in the tempe
ture is not very realistic, it would still be a first approxim
tion to the true cosmological phase transition. These sim
tions would answer many interesting questions about
dynamics of the phase transition, for instance the densit
the topological defects created.

The approximations we have made will give rise to so
errors in the simulation. The one-loop approximation used
deriving Eq.~6! means that collisions between hard partic
were neglected. For modes with momentumk@eT, this is a
good approximation and the higher loop orders are s
pressed by powers ofe. We expect that this error will only
arise at timest*1/e4T, and even then it will be small, sinc
the interaction between hard modes is dominated by the
change of soft photons@25,26#, which are included in the
simulations.

In fact, we did not restrict the momentum integration
the hard thermal loops to hard momentak@eT, and there-
fore they contain also a contribution from modes withk
&eT, for which the one-loop approximation breaks dow
This is not a serious problem, since these same modes
also present in the simulation as soft modes, as which t
are treated fully non-perturbatively. We have still doub
counted these modes and their contribution should be
moved from the HTL part. For static modes, we can can
the extra contribution by adding perturbatively calculab
counterterms tomD

2 andmT
2 . This does not remove the effec

completely from dynamical quantities, but ifT@1/a, the re-
maining error is expected to be small@10#.

Phase transitions and other non-equilibrium processes
be simulated also in non-Abelian theories using the Vla
equation~8! to describe the hard modes. It would be impo
tant to know whether a formulation analogous to Eq.~13!
with only one internal coordinate is also possible in no
Abelian theories, since that would reduce the need of co
09600
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putational power drastically. Since the derivative in Eq.~8! is
replaced with a covariant derivative, operating in moment
space becomes more complicated and the same deriv
cannot be used.

VII. CONCLUSIONS

In this paper, we have studied hot Abelian gauge fi
theory in the hard thermal loop approximation. Starting fro
the local kinetic formulation~8!, ~9!, we were able to refor-
mulate the degrees of freedom in a more economical w
The equations of motion in the new formulation are cano
cal and we found the explicit form of the Hamiltonian~14!.

The pure gauge theory discussed in this paper is lin
and can therefore be solved analytically, at least in princip
We pointed out that because of non-locality it is not su
cient to specify the initial conditions for the soft modes on
In a sense, one will have to specify the whole history of t
system in order to calculate its behavior in the future. Tak
this effect into account modifies the existing results@23# and
leads to exponential damping~25! with the Landau damping
rate.

In order to simulate the system, we approximated

functionsfW , u with a finite number of Legendre polynomials
The simulations reproduced the analytical results, and
number of degrees of freedom needed to describe the
modes was much smaller than in other possible approac
This shows that the formulation presented in this pape
very well suited for numerical simulations.

While the pure gauge theory is trivial in the sense tha
can be solved analytically, including the soft Higgs fie
makes analytical calculations essentially impossible. On
other hand, it is very simple to add it to numerical simu
tions. Leaving possible ultraviolet problems aside, th
would give a way to study non-perturbatively the no
equilibrium dynamics of a phase transition in a gauge fi
theory.
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APPENDIX: EQUATIONS OF MOTION
FOR LEGENDRE MODES

The equations of motion for the Legendre modes defin
in Eq. ~16! are
]0
2fW (n)5Cn

1¹W 2fW (n11)1Cn
0¹W 2fW (n)1Cn

2¹W 2fW (n21)1mD¹W 3AW S 1

15
dn,01

1

105
dn,12

4

315
dn,2D ,

]0
2u (n)5Cn

1¹W 2u (n11)1Cn
0¹W 2u (n)1Cn

2¹W 2u (n21)2mD¹W •AW S 1

5
dn,01

4

35
dn,11

8

315
dn,2D ,
1-8
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]0
2AW 52¹W 3¹W 3AW 2

1

3
mD

2 AW 1mD~¹W u (0)1¹W 3 fW (0)!, ~A1!

where

Cn
15

~2n11!~2n12!

~4n11!~4n13!
, Cn

05
1

4n11 S ~2n11!2

4n13
1

4n2

4n21D , Cn
25

2n~2n21!

~4n11!~4n21!
. ~A2!
m
o
If
ith

a
ga

rr

, f
s

pa

s

Approximating an infinitely many degrees of freedo
with a finite number gives necessarily rise to errors. Supp
we only takeNmax lowest Legendre modes into account.
n@1, then the equation of motion for the Fourier mode w
momentumk of u (n) is simply

]0
2u (n)52

1

4
k2~u (n11)12u (n)1u (n21)!. ~A3!

By writing u (n)5(21)nũ (n), we notice that this is precisely
discretized version of a wave equation, with waves propa

ing at speedc5k/2. The same applies tofW as well. Since in
the approximation, errors only occur atn5Nmax, we can
estimate that the approximation works as long as the e
has not had time to propagate ton50, which is the only
mode that is coupled to the observable soft modes. Thus
a mode with momentumk, the approximation is reliable a
long as the simulated time is smaller than

t0'2Nmax/k. ~178!

Therefore, if we want to measure correlators with time se
ration tmax, we need to haveNmax*tmax/2a, wherea is the
lattice spacing.

For completeness, we give here the lattice equation
motion:

Ei S t1
dt

2
,xW D5Ei S t2

dt

2
,xW D1dtH 1

a2
D j

2Ai j ~ t,xW !

1
1

3
mD

2 Ai~ t,xW !

2
mD

a
@D i

1u (0)1e i jkD j
2 f k

(0)~ t,xW !#J ,

Fi
(n)S t1

dt

2
,xW D5Fi

(n)S t2
dt

2
,xW D1dtH Cn

1¹̃2f i
(n11)~ t,xW !

1Cn
0¹̃2f i

(n)~ t,xW !1Cn
2¹̃2f i

(n21)~ t,xW !

1
mD

a S 1

15
dn,01

1

105
dn,1

2
4

315
dn,2D e i jkD j

1Ak~ t,xW !J ,
09600
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P (n)S t1
dt

2
,xW D5P (n)S t2

dt

2
,xW D1dtH Cn

1¹̃2u (n11)~ t,xW !

1Cn
0¹̃2u (n)~ t,xW !1Cn

2¹̃2u (n21)~ t,xW !

2
mD

a S 1

5
dn,01

4

35
dn,1

1
8

315
dn,2DD i

2Ai~ t,xW !J ,

Ai~ t1dt,xW !5Ai~ t,xW !2dtEi S t1
dt

2
,xW D ,

f i
(n)~ t1dt,xW !5 f i

(n)~ t,xW !1dtFi
(n)S t1

dt

2
,xW D ,

u (n)~ t1dt,xW !5u (n)~ t,xW !1dtP (n)S t1
dt

2
,xW D ,

~A4!

where we have used shorthand notation

D i
6f~xW !56@f~xW6 î !2f~xW !#,

Ai j ~xW !5D i
1Aj~xW !2D j

1Ai~xW !,

¹̃2f~xW !5
1

a2 (
i

@f~ t,xW1 î !22f~ t,xW !1f~ t,xW2 î !#.

~A5!
1-9
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