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The time evolution of soft modes in a quantum gauge field theory is to first approximation classical, but the
equations of motion are non-local. We show how they can be written in a local and Hamiltonian way in an
Abelian theory, and that this formulation is particularly suitable for numerical simulations. This makes it
possible to simulate numerically non-equilibrium processes such as the phase transition in the Abelian Higgs
model and to study, for instance, bubble nucleation and defect formation. Such simulations would also help to
understand phase transitions in more complicated gauge theories. Moreover, we show that the existing ana-
lytical results for the time evolution in a pure-gauge theory correspond to a special class of initial conditions
and that different initial conditions can lead to qualitatively different behavior. We compare the results of the
simulations to analytical calculations and find an excellent agreen&d$56-282(199)07619-5

PACS numbgs): 11.10.Wx, 11.15.Ha, 52.25.Dg

[. INTRODUCTION also be used to describe small deviations from equilibrium,
The recent finding that the electroweak phase transitiosuch as phase transitions. After all, the phase of the system is
might be only a smooth cross-ovgt] has changed the pic- only a property of the long-wavelength modes, and the dis-
ture of cosmological phase transitions in a fundamental wayribution of the high-momentum modes is to a large extent
and shown that theories with gauge fields can behave veryndependent of it. Therefore also the transition between the
differently from those with only global symmetries. How- phases is described by the classical long-wavelength modes.
ever, the statement about the smoothness of the transition This straightforward approach has the serious problem
refers only to the equilibrium properties, and from the pointthat the results depend on the ultraviolet cufdf®,11]. Be-
of view of cosmology, it is very important to understand alsocause of the Rayleigh-Jeans ultraviolet divergences, a classi-
the time evolution of the transition, in particular, whether thecal continuum field theory cannot actually even be in thermal
fields fall out of equilibrium and what its consequencesequilibrium—this was one of the reasons why quantum me-
would be. For this, a calculation scheme is needed for dyehanics was invented in the first place. The divergences de-
namical quantities that treats the gauge fields correctly angend on the temperature and are absent at zero temperature,
gives the same results in the special case of thermal equilitso they cannot be cancelled by introducing counterterms as
rium as the dimensional reduction methf2i3] that was in quantum theories. Therefore it is not sufficient to use the
used to show the smoothness of the electroweak transitiomlassical theory with the Lagrangian of the original quantum
In this paper, we propose such a scheme. theory, but one has to construct an effective Lagrangian for
Instead of the electroweak theory, we will concentratethe low-momentunisoft) modes by integrating out the high-
here on scalar electrodynamics, i.e. the Abelian Higgsmomentum(hard modes. The effective Lagrangian then
model. Not only does the simpler gauge group allow morecontains precisely the necessafiemperature-dependent
efficient simulations, but the theory also contains topologicatounterterms to remove the divergences.
defects, namely Nielsen-Olesen vorti¢d$ and therefore it In calculating static properties, i.e. expectation values of
can be used to simulate defect formation in a phase transitioproducts of operators measured at the same time, this proce-
[5] and to test the validity of the present predictions for thedure is known as dimensional reductifi?], and leads to a
produced defect densif] in gauge theories. three-dimensional effective theory, in which the temporal
In Ref.[7], the dynamics of the transition and, in particu- component of the gauge field has a Debye mass tagn
lar, formation of vortices was simulated classically on a lat-~gT. To calculate non-static quantities, the full four-
tice with field equations derived from the original Lagrang- dimensional effective Lagrangian needs to be constructed by
ian. A similar approach had been suggested edidikin the  calculating the so-called hard thermal loo@$TL), and in
context of electroweak baryogenesis. This was based on thlgauge theories it turns out to be non-lo¢aR,13. This
observation that the quantum distribution of the long-makes computer simulations practically impossible, since
wavelength modes is essentially classical. Since the timene would have to keep in the memory all the configurations
evolution of a classical field theory is given by the equationsencountered during the time evolution.
of motion, this approach allows non-perturbative numerical Fortunately, the equations of motion can be written in a
simulations. For baryogenesis, the interesting quantity is théocal form by introducing auxiliary fieldgl4,15. The Abe-
hot sphaleron ratdsee Ref.[9] and references thergin lian version of the resulting system of differential equations
which is an equilibrium quantity, but similar methods canis known in plasma physics as the Vlasov equation and de-
scribes collisionless electron plasma. Numerical solution of
the equations of motion is still difficult, since the fiel
*Email address: a.k.rajantie@sussex.ac.uk depends not only on the coordinate but also on the momenta
"Email address: m.b.hindmarsh@sussex.ac.uk of the hard particles it describes, and therefore the theory
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becomes essentially 451 dimensional. The traditional plicated because the lattice has much less symmetry than the

method is to approximat®V by a large number of point continuum. In sphaleron rate calculations, the effective La-

particles. This approach has been used to determine the hgtangian was taken from the continuum theory and the pa-

sphaleron rate in the electroweak theory in R&g]. rameters were fixed by matching only the static quantities
In this paper, we show how the theory can be formulated16]. For the simulations presented in this paper, this prob-

in such a way that simulations in terms of fields rather tharlem does not arise, as will be discussed later.

particles becomes feasible. One of the problems we have to In the high-temperature approximation, the one-loop sca-

face is the multiplication of the number of degrees of free-lar self-energy is simply

dom when the hard modes are included. We show that the

number of extra degrees of freedom per lattice site must be

chosen carefully if the simulation of a particular soft mode is

to be trusted: if one wants to reproduce Landau damping in a

mode of momenturk, naive methods require of ordekt)?  The photon self-energj20] is more complicated, and if the

degrees of freedom per Ia_ttlce site for 'ghe hard modes. HOWéxternaI momentum i$<=(w,|2), it can be written in the

ever, we are able to rewrite the effective hard thermal IoopOrrn

improved classical equations of motion in such a way that

we only need of ordekt extra degrees of freedom per lattice T4 =T1-PLV+ [T, PA @)

site. Our numerical methods reproduce known analytic re- mr Ll

sults in pure Abelian gauge theory extremely well, Wh'ChwherePfr“’ and P{*” are the spatially transverse and longitu-

gives us confidence that we will be able to tackle the Abelian,, — i
Higgs model accurately. dinal projection operators:

The structure of the paper is the following. In Sec. Il we

T2 2

review the hard thermal loop Lagrangian and derive the ij:ﬁ_éij prO_( Py = grr— KMKV_PW
Hamiltonian formulation for the hard modes. In Sec. Il we T k2 LR K2 T
explain how to approximate the system with a finite number (4)

of degrees of freedom in numerical simulations. In Sec. IV
we derive some analytical results, which we compare to ouand
numerical results in Sec. V. Extending our technique to in-

clude the soft Higgs field is discussed in Sec. VI, and Sec. w2 o otk 1

VII contains the conclusions. The paper also has one appen-II, = m%( 1- —2) ( 1- ﬂln k)’ HT_Z(mD Imy)
dix, in which the continuum and lattice equations of motion k

for the Legendre modes are given explicitly. ®

The Debye mass has the valo®=3e?T2+ 6m3, where
sm3 is a cutoff-dependent counterterm.

Let us consider scalar electrodynamics at a temperdture  1he self-energies can be resummed to a simple effective

II. KINETIC FORMULATION

The Lagrangian of the theory is Lagrangian for the soft modes:
1 v 2 2 2 4 — 1 My 1 2 dQ ma VaVB 2
L==ZFuF" +[D o[ —m? |2 =N[4, 1 L= ZFF*=7ms [ —F (v-a)ZF”B+|D”¢|
2 2
whereD ,=J,+ieA,. We assume tha<1 and\~e? and —mz>—N¢]%, (6)
that m<T so that a high-temperature approximation can be ) ) ] )
used. where ms=m?+ (e?/4+\/3)T?+ dm%, and the integration

The phase structure of the theory was determined in Refss taken over the unit sphere of velocities (1v), v2=1.
[17,18. When the Higgs self-coupling is small, there is aNote that the form ofn? justifies using the high-temperature
first-order phase transition, but if the self-coupling is largeapproximation even slightly below the transition. At the tree
enough, the transition becomes continuous. Unlike in theevel, the transition takes place Whm@:o, which shows
electroweak theory, it does not become a smooth crossov 2 272 . .

In Ref.[19], it was pointed out that this can be interpreted a?arla::T T :n;— Cthg hn(?,arg;mé?yer?] %];/trt]ﬁepc:%gt;alnllseéuzrni?;eis
a consequence of the existence of Nielsen-Olesen vortices ;2 ~e2'(i"2<T2.

To one-loop order, the only non-vanishing contributions ¢
to the effective Lagrangian arise from the two-point dia-
grams. The correct procedure would be to calculate the dia-
grams in the original quantum theory and to write down a d0
classical Lagrangian that gives the same result when the dia- aMFﬂvzszf v

The equations of motion derived from the Lagrangién

\

_Va E'-2elm¢*D’¢, (7a)

grams are calculated on a lattifg0]. However, this is not v
possible in practice, since the form of the necessary effective ) .
lattice Lagrangian is not known and is presumably very com- D,D¥¢=—mid—2N(¢* &) . (7b)
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The derivative in the denominator in E(fa@ means that in should have a large number of initial configurations with a
order to simulate it numerically, one needs to keep the whol®oltzmann distributiorecexp(—gH), whereH is the Hamil-
time evolution of the system in the memory at the same timetonian. However, the equation of moti¢8) for the W field is
which is impossible. The form of the equation of moti@iin) not of canonical form, which makes it difficult to find the
of the scalar field is much simpler, and actually the onlycorrect Hamiltonian. The suggestion [#1] was to use the
effect of the hard modes is the modified mass term. Theonserved quantity

scalar field can therefore be simulated with standard methods

and we will neglect it from now on, concentrating only on 1(
the gauge field. We will refer to this theory as the pure gauge H= EJ d>x
theory although it contains the contribution from the hard
scalar modes.

I dQ
2 2 2 7\ 2
E2+B +me—4 W(X,V) ] (11)

. In the simulations, one has to approximate the system
'ntr-g(]je cnr?n_rl]?alf'-té dpﬁzlig \7\];eEfg(ll708) ?gf t[)f5]sglr:/§c; d?jy with a finite number of degrees of freedom. Normally, this is
! .u Ing new i X = w o . done by discretizing the space to a finite lattice, but in our
the fieldW(x,v), which satisfies the equation of motion  ¢5se, the fiel#V also depends on a two-dimensional continu-

= ous parameter. There are various ways to handle it in simu-
(V- )W(x,v)=v-E(X), ®) lations. In Refs[16,22, W was approximated with a large
and replace Eq(78) with numbe_r of .particles. Thg ot_her straightforward options are
approximating the velocity integral with a discrete set of
9, FH= (X)) +"(x), (9)  velocities on the unit sphere, or expandigin terms of
spherical harmonics. However, as we will show next, at least
where in the Abelian case it pays to simplify the problem a bit first.
40 If we consider Eq.(7a) in Fourier space, we notice that
j\'A,(X)=m%f 4_VVW(X’\7)’ (10) the integral f)\{er the pcglar angle is trivial: the integrand only
77 depends ow -k, wherek is the direction of the momentum.
andj”(x) denotes the current due to the scalar field and anﬁo_vvever, the same doe_s not appl_y to the integral in(EQ.
his suggests that the fiel contains more degrees of free-
external currents. - .
dom than are actually needed to solve the time evolution of

The system of equation(®), (9) is a special case of what . X i
is known as the Vlasov equation in plasma physics, where i}he soft fields. It should be possible to replatewith sE)rge
other field which depends only on a single variabtev - k.

describes collisionless electron plasma. The fielix,v) W h a field by f I formi
gives the deviation of the density of hard particles of velocity. e can construct such a field by formally performing an
integration over the polar angle, but in order to avoid the

v from th_e_|r equilibrium d|s_tr|but|on. _ appearance of odd powers kf we have to introduce one
In addition to the equations of motion, we also have to

specify the initial conditions, and since we would like to @dditional power ok in the relation. In fact, it will turn out
have the system initially in a thermal equilibrium, they to be useful to define two separate fieldiéz) and 6(z) as
should be given by the equilibrium distribution; i.e., we follows:

f(w,k,z)=imp\/ 22 [0 vxk W(w,k,V)[8(V-k—2)+ 8(v-k+2)] imD\/l_zz kXA
w,k,z)=im — — ——= w,K,v v-k—z v-k+2)]—— ,
PN 1-22) 47 (y.)2 k2 27?

. do
B(w,k,Z)ZImeE

1 - A A imp - -
. IzW(w,k,v)w(v.k—z)+5(v-|<+z)]+k—sz-A. (12)
V.

If we now calculate the second time derivative§<afnd0

using Eq.(8), we can express them in terms ,éf fandg
only (in the temporal gaugé,=0):

N . s s 1 - N
agA:—VxVxA+me dz£<va—mDA
0

2

i o 7. . + o7 VX f
93f(2)=22V?f + mpz VXA, (133 _
2 In other words, these equations form a closed system of

, .. . equations of motion. Therefofeand ¢ contain all necessary
— 52 e
950(2)=2°V-(VO—mpA), (13D degrees of freedom to determine the dynamicé of

+. (130
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It is easy to solve the equations of motion in Fourier space Im w
and show that they lead to the correct self-enei@jy The
particular form chosen in Eq12) has the advantage that the 4
equations of motion are canonical and the corresponding YL S)
Hamiltonian is @ e L Re w
—wp —k r k Wy
D —inr
1 1. I - - o
H= Ef d3xf dz E?+(VXA)2+F2+ 112+ 2%(V X f)?
0
2o A2 -7 - - i i
+2z9(Vo—mpA)-—2mpz 5 f-VXA]|, (14 FIG. 1. Analytic structure of the propagat¢i8). The solid

circles are oscillatory poles, the thick line is the branch cut, and the
- - - arrows show how imaginary poles at=*ivy, , depicted by open
whereF = d,f andIl=d,6 are the canonical momenta 6f  circles, can be found by analytically continuing the propagator
and 6, respectively. We also need two extra conditions,through the branch cut.
namely the transversenessfond Gauss’s law: ) ) ) )
the continuum theory is preserved. The lattice equations of
V.i=V.F=0 motion are given in Eq(A4) in the Appendix.
' To study the dynamics of the original theof{), we
) 1 would have to include the Higgs field to our equations of
V-E= _me dzI1(z). (15)  motion(13). However, our aim in this paper is simply to test
0 the suitability of our formulation for numerical simulations,
) ~and we will only consider the pure gauge theory. Since it is
By reformulating the degrees of freedom, we have gaineginear, we can calculate exact analytical results to which to
two important advantages. Firdt,depends only on one in- compare our simulation. Linearity also means that the modes
ternal coordinate wherea& depends on two, and second, with different momenta do not interact with each other, and
since we know the Hamiltoniafil4), we know the correct to simulate a mode with momentum along, say, thexis,

distribution of the initial configurations. we can use a lattice with X 1X N, sites. This makes the
simulations very simple. Moreover, the pure gauge theory is
IIl. SIMULATIONS ultraviolet finite, so no mass counterterms are needed. In

_ _ particular,6m3 and 6m? introduced in Sec. Il vanish.
We still have to approximate tiedependence of the hard ~ The pure gauge theory can be also viewed as a tree-level

modes with a finite number of degrees of freedom, and Weypproximation of the effective hard thermal loGgTL) re-

will use Legendre polynomials for that. We define summed theory6), but as such it is not reliable, since the
> theory becomes non-perturbative at small momenta. This
fim— fldzz [1-2 = (z)F(z) breakdown of perturbation theory does not place any restric-

0 2 ' tions to the validity of numerical simulations with the Higgs

field included. Instead, that is precisely why the simulations
1 are needed to study the dynamics of small momentum scales.
oM = f dzZP,,(2)6(2), (16)
0
IV. ANALYTICAL RESULTS

whereP(2) is thenth Legendre polynomial. The equations  gefore specializing to particular solutions, we first discuss

of motion for different Legendre modes are given in EQ.ihe finite temperature propagator for the pure Abelian theory.
(A1) in the Appendix. It is also shown in the Appendix that gecause of linearity, it is sufficient to consider a single Fou-

the approximation can be trusted if the simulation time is . . - .
less tﬁgn rier mode at a time. Let the momentum keand, for sim-

plicity, let us consider just the transverse part of the propa-

to~ 2N pax/ K. (17 gatorG(t,X). Its Fourier transform has a non-analytic form
On the lattice, the field is defined on lattice sites, while 1 5 1o m3| w? ok’-0? otk
=—w+k+ T 2—+

- - = - ——In——|.

f and the gauge field are defined on links between the sites  G(w, k) k2 kg2 w—k

in such a way that the invariance under time-independent (18)
gauge transformations is preserved. Note that the &#i€ltis

not gauge invariant by itself, but the combinatiahg(© The analytic structure of the_propagator is shown in Flg_. 1.
L e : ) The propagator has two oscillatory poles on the real axis at

—3MpA is. The canonical momenta are deflnfd at[ halfwaywlzﬁ k2+1m2, but also a branch cut from=—k to w=k.

between the time steps so that the value of, $agt timet The original equation of motiofi7a) implies that the branch

+ ot is determined from the fields at timeand the momenta cut must be taken along the real axis. There are no other

at timet+ 6t/2. In this way, the time reversal invariance of singularities on this physical Riemann sheet, but if one con-
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tinues the propagator analytically from the upper half-planeHence, expanding the propagator arouneie and w=

through the branch cut, one finds a pole at —ie on the upper and lower half-planes, respectively, we
may write
i A< (19 d 1 1
w=—I YL | 5" - N > fk w X
m ~ —|etot——— .
p A(tak)|cut Jo K 20 € yo+lw Yy —iw
Likewise, continuing analytically from the lower half-plane 1 1
through the cut reveals a pole at=iy, . +elot : : )ﬂ (23)
The solution to the inhomogeneous equation with an ex- Yo~ lo yL—lw] K2

ternal sourcq?(w) is, assuming that the current is transverse e . L
and that the fields vanish & — The limits of the integral may be taken to infinity, and the

contour closed in either the upper or the lower half-plane
wtie do R depending on the sign of the exponent. The second term has
A(t,k)=J —e "'G(w)j(w). (200  no poles in the upper half-plane and hence vanishes, while
—otie 2T the first term gets a contribution from the pole at

—i7y.. Thus we find an exponentially damping solution
If t>0, the integral can be transformed into a contour inte-
gral by closing it on the lower half-plane. This integral has -
three pieces: two contributions from the poles and one from ALK cu — J_Oe* nt, (24)
the integral around the branch cut. The result of the integra- k?

tion around the cut is sensitive to the functional form of

j (w), a reflection of the non-locality of Eq47a): the behav-
ior of the system depends on its whole history.

For example, Boyanovskgt al.[23] discussed a situation
in which an inhomogeneous initial configuration is set up for

This exponential decay is known as Landau dampiagg it

is important to notice that it did not really come from inte-
grating around a pole of the propagat@B). If it had, then

the equations of motion would either have to break time
_ - Z ) ] reversal invariance, which they do not do, or there would
equilibrium at asymptotically long times. Still keeping the thys making the system unstable.

assumption of transverseness, the solution was given as a For completeness, we also calculate the contribution com-

function of A andE at timet=0, ing from the poles atv=* w,. The full result is then
- . . 4 coskt| - - S - - cosw,t 1
A(t,K)=A(0K)| Z[T]coswpt— —5 ——— |~ E(0K) AtK)=~—jo| ZITI—>+—e M| (25
mg t wp k
sinopt 4 sinkt Strictly speaking, there will also be a contribution from the
x| Z[Tl— T2 | (21)  end points of the branch cut, which we neglected when we
P b took the limits to infinity in Eq.(23). Presumably, it will
h result in a power law as in Eq21). At time scales much
where longer than 1y, , only this power law and the constant-
st ! amplitude part will remairj23].
Z[T]= —( 5 ) . (22
Jw V. NUMERICAL RESULTS

w=wp

R In order to numerically reproduce the resull), (25),

Equation (21) can be seen to correspond f{w)=  we have to specify the correct initial conditions in termg of
—iwA(0)—E(0). As they emphasize, the dominant contri- gnd g. The result(21) is given simply byf(o)zg(o)zol
bution does not come from the smallest frequencies but thoslx_eor the soft modes. we choeﬁe(O)zO I§(O)=10§/ sink-x
near .the en_d points of _the bEanch ?Utj _ To see the power-law damping most cleanty; must be

With a different choice ofj, qualitatively different solu- relatively small, and we chosep =27 K=2.% in our
. = . . ’ D— 1] -
tions can be found. Suppose thpft) is increased very ypjts. The lattice size was 2011, lattice spacinga
slowly from zero to a finite value and then suddenly —q o5 and the time stept=0.01. We usedN ;=200 So
switched off, i.ej(t)=j,e”'®(—t), wherey, is eventually  that according to Eq17) the results should be reliable when
taken to zero an®(t) is the step function. In this way the t=<60. Eq.(21) becomes
system will be in equilibrium at=0, before the current is

switched off. The Fourier transforrf(w)=f0/(yo+iw) is
peaked around the origin, and therefore the integral aroundThe importance of this damping for electroweak baryogenesis
the branch cut is dominated by the integrand near0.  has been discussed in RE24].

096001-5



A. RAJANTIE AND M. HINDMARSH PHYSICAL REVIEW D 60 096001

0.002

.- . sin 2mrt | .
A(t,k)~| —1.236sin 7.45%2+0.1613 2 y.
(26) 0.001 ﬁ
We added to the numerical result a constant-amplitude part
a sinBt and determined the parametersand 8 from the 0000

condition that the remaining part agree with the decaying
part of Eq. (26). The result with «=1.24008 andpg
=7.43024 is shown in Fig. 2. The discrepancy between the 0001 |
numerical and analytical results is less than 1%. u
The initial conditions that correspond to Eg5) are those

in which the first and second time derivatives of the fields 0002 S =5
vanish. If we choosg, such thatA(0x)=y sink-x, then Timet
Egs.(12) and(16) imply that FIG. 2. The comparison of Eq21) (gray line to the numerical
result(black ling with k=mp=27. The constant-amplitude oscil-
]?(0)(0 )Z)z @ 7 coslz- X lation has been subtracted.
¥ 3 1
shown in Fig. 4 for various values &f,,, and confirms our
F(l)(o )z):_ Mp 5 cosk- X estimate. The number of extra scalar degrees of freedom
' 15k ’ needed for simulating with any particular value MNf,,, is
R A ) 8N jax- N
f(>D0x)=0, 6M(0x)=0. (27 In order to compare the efficiency of the Legendre poly-

nomial formulation with other approaches, we carried out the

The exponential damping is seen most clearlnig>k, and  same simulations with a more straightforward method. We
we chose two different valuesnp=107 and mp=207  chose a large number of points on the unit sphere to repre-
while we took againgzzwg(_ Again, the lattice size was sent different velocities and used them to simulate the pair of
20X 1x 1, the lattice spacinga=0.05, the time stepdt equations(8), (9). More precisely, the different velocities
=0.01, andN,,,,=200. The results of the simulations are Were
shown in Fig. 3. The predicted decay rates gre-0.32 and
v, =0.08 and the amplitudes of the oscillatiés~0.103 -
and A,~0.029. As can be seen from Fig. 3, these agree V=
very well with the numerical results. \/(Nv+ )%+ ni+n’

We also carried out simulations with different values of
Nmax to find out at what time the approximation breaks down
and to test the estimatel7). We usedmp=207 and the and those obtained from that with reflections or rotations of
values for the other parameters were as before. Since all the/2. The parameters were the same as in Fig. 4. The values
Legendre modes with>1 are initially zero, we expect the of N, used ranged from 2 to 8, and the corresponding num-
first errors to occur at timé~2t,~4N./k. The result is  ber of extra degrees of freedom is @2+ 1)2. The results

(Ny+ 2.ny,n;)

10 7 1.0 ;

Un\ | 038
oe|

N“ i
MWWM '
Y1 04 '
oot iR
0.2 S 1
%00 100 . 200 300 %% 100 20.0 36.0\ — 200 50.0
ime t Time t

FIG. 3. Results of the Landau damping simulations With2 = andmp = 107 (left) andmp =20 (right). The white line is the predicted
Landau damping ratg, and the dashed lines show the envelope of the analytical r&lt
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1.0

TABLE I. The approximate number of degrees of freedom
needed in various approaches to simulate a mode with momédatum

| I
| |
20 : 30 : 40 reliably for timet> 1/k.
| |
: : Approach Degrees of freedom
[
: | Legendre polynomials I
: : Spherical harmonics k)2
05 | ! | Discrete velocities 24
| = (kt)?
: | a2
| |
| |
|
|

%

|
| -
m : but of the same order of magnitude. Generally {kin}
%050 10.0 T 00 30.0 ~kIN,, leading to the previous estimate. _
Time t Since the expansion & in Eq. (8) in terms of spherical

FIG. 4. Landau damping simulations witN,=10,...,40 harmonicsY| is essentially equivalent to the expansionf of
(k=2m, mp=20m). The vertical dashed lines show the analytical gnd ¢ in terms of Legendre polynomials, we can also esti-
predictiont~4N,/k for the time when the approximation should mate the effectiveness of that approach. In order to reach the
break down. The black curve is the result with,,,=200 and the  ggme simulation time, the highestused should be 12,,,.
gray curves correspond ¥y, 10,20,30,40 from left to right. The number of extra degrees of freedom would then be

(2Npaxt 1)%, which again increases much faster than in the
o . _ Legendre polynomial approach. Our estimates of the reliable
in Fig. 5 show clearly that the number of different velocities gjmulation times in the different approaches have been sum-

becomes quickly prohibitive when the simulation time is in- marized in Table I. They show that the Legendre polynomial
creased. If we assume that, as with the Legendre polynomigrmulation is the most economical ofie.

als, the particularly smooth initial conditions result in a fac-
tor of 2 in the reliable simulation time, we can estimate that
generally a simulation will be reliable t< 7N, /k.

This estimate can also be reached analytically. Since the The pure gauge theory that has been discussed so far is an
time evolution is a Superposition of oscillations, the re"ab'eidea| way to test the formalism, since it is linear and one can
simulation time isty~m/w,, where wq is the smallest in principle solve it exactly. In the previous section, we have
frequency, i.e. the pole of the propagator that is nearest tghown that the numerical results agree with the analytical
the origin. The transverse self-ener@yr(w) diverges if  calculations and we were even able to estimate the number
w=Kk-v for any velocity\7. The smallest pole of the propa- NmaxOf Legendre modes needed to ensure that the simulation
is reliable.

From the point of view of the original theory, the pure
gauge theory is only a tree-level approximation. However, it
is very easy to add the Higgs field to the numerical simula-
tion, after which the system approximates the original theory
to leading order ire. In particular, it contains all the non-
perturbative physics at small momenta, including the phase
transition and the existence of topological defects.

As was shown in Sec. Il, the weak-coupling conditien
<1 and\~e? implies that the hard thermal loop approxi-
mation is also valid near the transition in the broken phase.
The reason is that the distribution of the hard modes is inde-
pendent of the phase. Furthermore, when the phase transition
takes place in a finite time, only the soft modes fall out of

gator is at a frequencyg, which is smaller than m{d;-\7},

VI. HIGGS MODEL

1.0

0.5

0.0 L ' . .
0.0 5.0 10.0 15.0 2The analogous number of degrees of freedom in the particle

Time t method used by Mooret al. [16] is 6(n). The value of(n) they
FIG. 5. Landau damping simulations wiki+ 27, mp= 207 in were using varied between 17 and 120, but they did not carry out
a formulation in which a large number of points on the unit spherethis kind of systematic analysis of the corresponding reliable simu-
of velocities is used to approximate the integral. The valueN of lation time. However, the intrinsic randomness of the method seems
were (from left to righy 2, 4, 6 and 8 and the corresponding num- to imply that it does not reproduce the correct behavior as accu-
bers of degrees of freedom are shown in the plot. rately at short times as the methods discussed here.
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equilibrium, and therefore the classical description remaingutational power drastically. Since the derivative in EB).is

valid, even in such non-equilibrium processes. replaced with a covariant derivative, operating in momentum
The above suggests that the classical formalism discussegpace becomes more complicated and the same derivation

in this paper can be used to simulate the non-equilibriuncannot be used.

dynamics of the phase transition in hot scalar electrodynam-

ics. In the cosmological setting the transition takes place VIl. CONCLUSIONS

when the universe cools as it expands, but in a simulation

some other way to change the temperature is needed. A N this paper, we have studied hot Abelian gauge field
straightforward way of doing this is to prepare an initial en-theory in the hard thermal loop approximation. Starting from

semble with a higher temperature for the soft modes than ol local kinetic formulatior(8), (9), we were able to refor-

the hard modes. A large number of initial configurationsmulate the degrees of freedom in @ more economical way.

would then be taken from this ensemble and evolved in time] N& €duations of motion in the new formulation are canoni-

When the soft and hard modes interact, the temperature G@! @nd we found the explicit form of the Hamiltoni&td).
The pure gauge theory discussed in this paper is linear

the soft modes decreases and they undergo a phase transi- ! X i
tion. and can therefore be solved analytically, at least in principle.

While this kind of instantaneous quench in the temperaYVe Pointed out that because of non-locality it is not suffi-
ture is not very realistic, it would still be a first approxima- Ci€nt to specify the initial conditions for the soft modes only.
tion to the true cosmological phase transition. These simula" & S€nse, one will have to specify the whole history of the
tions would answer many interesting questions about th&ystem in order to calculate its behavior in the future. Taking

dynamics of the phase transition, for instance the density off"iS effect into account modifies the existing res{i#i8] and
the topological defects created. leads to exponential dampir{@5) with the Landau damping

The approximations we have made will give rise to some'ate: _ ,
errors in the simulation. The one-loop approximation used in N order to simulate the system, we approximated the
deriving Eq.(6) means that collisions between hard particlesfunctionsf, 6 with a finite number of Legendre polynomials.
were neglected. For modes with momentkeT, thisisa  The simulations reproduced the analytical results, and the
good approximation and the higher loop orders are supaumber of degrees of freedom needed to describe the hard
pressed by powers @& We expect that this error will only modes was much smaller than in other possible approaches.
arise at times=1/e*T, and even then it will be small, since This shows that the formulation presented in this paper is
the interaction between hard modes is dominated by the extery well suited for numerical simulations.
change of soft photonf25,26, which are included in the While the pure gauge theory is trivial in the sense that it
simulations. can be solved analytically, including the soft Higgs field
In fact, we did not restrict the momentum integration in makes analytical calculations essentially impossible. On the
the hard thermal loops to hard momektzeT, and there- other hand, it is very simple to add it to numerical simula-
fore they contain also a contribution from modes with tions. Leaving possible ultraviolet problems aside, that
<eT, for which the one-loop approximation breaks down.would give a way to study non-perturbatively the non-
This is not a serious problem, since these same modes agguilibrium dynamics of a phase transition in a gauge field
also present in the simulation as soft modes, as which thetpeory.
are treated fully non-perturbatively. We have still double-
counted these modes and their contribution should be re- ACKNOWLEDGMENTS
moved from the HTL part. For static modes, we can cancel A.R. would like to thank D. Bdeker, D. Boyanovsky, E.

the extra contribution by adding perturbatively CaICUIablelancu, M. Laine, G.D. Moore, and K. Rummukainen for use-

2 2 B
counterterms tong andms . This does not remove the effect ful discussions. This work was supported by PPARC grant

completely from dynamical quantities, butTit>1/a, the re- ; ;
maining error is expected to be smEll]. ﬁzéﬁ?o& A.R. was partly supported by the University of

Phase transitions and other non-equilibrium processes can
be simulated also in non-Abelian theories using the Vlasov
equation(8) to describe the hard modes. It would be impor-
tant to know whether a formulation analogous to Etp)
with only one internal coordinate is also possible in non- The equations of motion for the Legendre modes defined
Abelian theories, since that would reduce the need of comin Eqg. (16) are

APPENDIX: EQUATIONS OF MOTION
FOR LEGENDRE MODES

1 1 4
_5n,0+ _5 1

RfM=C V24 cOV2f( 4 Co V21 myV X A T ToE0n1~ 37E0m2

> > > - 4 8
agg(n)zcxv20(n+l)+ Cgv20(n)+cgv20(n*l)_ mpV .A(g(‘)‘n’(ﬁ- 3_55n,1+ m—)én,z) ,
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- e | - - - -
agA=—v><v><A—§m2DA+mD(Va<°>+V><f<0>), (A1)

where

. (@n+1(2n+2) 1
N (4n+1)(4n+3)’ " 4n+1

(A2)

(2n+1)?>  4n? __ 2n(2n-1)
ant3 T an—1)" “" 4nt1)(4n—-1)°

Approximating an infinitely many degrees of freedom
with a finite number gives necessarily rise to errors. Supposeﬂ(")
we only takeN ., lowest Legendre modes into account. If
n>1, then the equation of motion for the Fourier mode with 02 - 1) =
momentunmk of " is simply +Cpv20(t,x)+C V20 1(t,x)

ot
2

- St . ~ .
t+ ,x):H(”)(t—E,x + 6ty C V2t 1)(t,x)

P2 = — %kz( oD 264 g1y (A3) a

By writing 6(M=(—1)"8™, we notice that this is precisely a + 8 s, 2) A-Ai(t,i)] ,
discretized version of a wave equation, with waves propagat- 3150

ing at speed=k/2. The same applies tbas well. Since in

the approximation, errors only occur at= N, We can

estimate that the approximation works as long as the error . .

has not had time to propagate me=0, which is the only Ai(t+6t,x)=Ai(t,x) — StE;
mode that is coupled to the observable soft modes. Thus, for

a mode with momenturk, the approximation is reliable as

long as the simulated time is smaller than

to~2N k. (17) 0 (t+ ot,x) = (t,x) + otF ™

t+8t X
2’X1

Therefore, if we want to measure correlators with time sepa-

ration t.., we need to hav®\,,,,=t./2a, wherea is the

lattice spacing. oM (t+ 8t,x) = 6" (t,x) + StITM
For completeness, we give here the lattice equations of (A4)

motion:

t+

E

ot . ot . 1 -
t+—,X>:Ei(t__,X)+5t _ZA;A”(t,X) .
2 2 a where we have used shorthand notation

1, -
+ - MpA(t,X)

3
m = —+ >, - ~ >,
—;D[AM(‘”HHKA,-f‘k°’<t,x)]}, AF ¢(x)= =[x = p(X)],
St . St . - - N ; A
FiVl t+ 7X>=F§”)(t—5,x + 8ty Cy VAT Dt x) A =A] A(R) — AT A,

+COV2E(t,x) +C, V2" D(t,x)

1 1

Mp - . 1 . R ..
1507 705%n1 V2¢(x)=¥ EI [H(t,X+1)—2(t,X)+ P(t,x—1)].

a

4 .
- Es5“'2) eijkA;’Ak(t,X)], (A5)
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