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Resonance in strongVW rescattering in massive SW2) gauge theory
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We investigate the effects #f/Wrescattering through strong anomalous four-vector boson couplings. In the
I=1,J=1 channel, we find a resonance with a mass of approximately 200 GeV and a width of less than 12
GeV. In an application to pion physics we find a small correction to the Kawarabayashi-Suzmnh@&ia
Fayyazuddin relation.S0556-282(199)09019-0

PACS numbds): 12.60—i, 12.15.Lk, 12.39.Fe, 14.70¢

. INTRODUCTION ily the case. The couplings that violate @) even in the
absence of hypercharge give quartically divergent correc-

Within the standard model of electroweak interactions thetions to 8 [6,7] and should therefore be negligibly small.
gauge principle fully determines the self-couplings of thePhysically, this means that the underlying strong interac-
vector bosons. Therefore the measurement of these couplingsns, generating the anomalous couplings, should respect the
is of prime importance, as deviations would be an indicatiorSUg(2) invariance. This leaves only two operators that pre-
of new physics. The gauge principle predicts well-definedserve SW(2) invariance in the absence of hypercharge. If
three- and four-vector boson self-couplings. Deviations ofone could use simple cutoff perturbation theory, these opera-
these values can be described in a gauge-invariant way in thers still give quadratically divergent correctionsdp [6,7]
Stuckelberg formalism1]. Within the Stekelberg formal-  and are sufficiently suppressed to give only small effects in
ism the standard model is described as a gauged nonlinefuture colliders. In[8] the quadratic divergences were ig-
sigma model. This implicitly assumes that the Higgs particlenored and therefore the limits are weak.
does not play a fundamental role. Alternatively, one can see This leaves only the possibility that the anomalous cou-
it as themy—oo limit of the standard model. If indeed plings are so large that perturbation theory cannot be trusted,
anomalous vector boson couplings are present, this should lzend therefore the low energy limits are invalidated. It is pre-
a reasonable assumption, since in that case strong interacisely this case that we study in this paper. We assume that
tions should be present. The triple vector boson couplinganomalous couplings are present which preserve thg ZU
are severely constrained by the measurements at the CERymmetry of the theory and assume the coefficients for the
e*e” collider LEP-200 and the Fermilab Tevatrff2]. Also,  corresponding operators to be large. To simplify the calcula-
indirect limits from LEP-100 andg—2),, exist. Altogether, tion we actually ignore hypercharge altogether and work in
experiments indicate they should be small. This is not todhe S (2)X SUg(2) model. This leads to a simplification
surprising, as it is very hard to construct a model that woulthecause we can study different isospin channels separately.
give rise to large effects. The reason is that within the threeBecause the interactions are assumed to be strong, vector
vector boson couplings there is always an interplay betweeboson scattering cannot be described by the tree-level vertex.
longitudinal and transversal vector bosons. We therefore perform a resummation of loop graphs. In most

For the four-vector boson couplings the situation is someehannels we find no particularly interesting effect. The only
what different. Here one can write down vertices that contairexception is the =1, J=1 channel, where a resonance is
longitudinal vector bosons only. These vertices corresponébund. In the case of very strong anomalous couplings,
to the Goldstone boson sector of the theory, and it is muckvhich we assume, the resonance can be quite close to the
easier to generate strong interactions in this sector. Such réwo-vector boson threshold. The coupling of the resonance to
sults come typically through intermediate heavy Higgs bosonhe vector bosons is found to be suppressed by the cutoff and
exchange. An example of such a model is givefBilhwhere  could be small. Dependent on the parameters, the resonance
the strong interactions are generated via singlet effects in theould be visible even at LEP-200.
Higgs sector. Also, in the standard model the two-loop heavy The paper is organized as follows. In Sec. Il we present
Higgs correction in the four-vector bosd4] couplings is an  the model. In Sec. Il we perform the calculation of the
order of magnitude larger than in the three-vector boson cousubble sum. In Sec. IV we discuss the results. The Appendix
plings[5]. About the four-vector boson couplings much lesscontains technical details.
is known than about the three-vector boson couplings. Direct
experiments probing these interactions do not exist at
present. They can at the moment only be tested through ra- Il. MODEL
diative corrections in the parameter. These corrections can
be calculated within perturbation theory with a cutoff
Within the four-vector boson couplings one should distin- We work in a pure massive $2) gauge theory and in-
guish between two types. In the standard model there is amoduce the anomalous couplings in a gauge-invariant way
extra global SW(2) symmetry when the hypercharge is using the Stokelberg formalism{1]. That is, we write the
turned off. For the anomalous couplings this is not necessatheory as a gauged nonlinear sigma model:

A. Lagrangian
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1 ) We work in unitary gauge, where we haldle=1, v,=0,
Lgauge= — 5 THWy, WH) +miyo Tr(V,VE), (1) and therefore
with
V,=W,. (10
w _1 wa=w' 2
w= o TaVu w! The signature of our metric is
1 i —di 11—
W= ETaWiv_a#Wv_&vW#+lg[Wu 'Wv]:WLw g"“’_dlaql’ 1-1-1. (1D
(3) B. Feynman rules
The W propagator in unitary gauge with higher covariant
i derivatives is
V,=——(D,U)UT=V], (4)
g k, k k, k
| 300 =800 0, 2|+ Al S5, 12
D,U=4,U+igW, U, (5)
U=explivary), 6  With
with real fieldsv,; i.e., the SW2)-valued fieldU describes
the Goldstone degrees of freedomy, is the mass of the W2 iA\ZN
three gauge bosons in absence of the higher covariant deriva- A (k)= (K—m?)(K2—m?)’ (13
tive terms to be added below. The anomalous couplings are
then introduced as
2 2 W, ,2 iA\Z/ 1
Lang=9a(TIV,V, 1)+ gs5(TH VAV, ]) Ajg(k) == —— 15—, (14
=ga(TIV,V D)2 +gs(THVAV | ])?
=g,9 4Tr(D,U)(D,U)™}?
949 { [( 1 )( ) ]} , A\zN msvo \/ m\g;vo 2 4m\2N0
+gs9~ T (D*U)(D,U)"]}2. (7 M= |1 Az )= VIt 3z ) a2
Their form is determined by the requirement that they con- A\2N+ O(A9),
serveCP, are not accompanied by three-vector boson cou- :{mz +O(A"2) (15
‘WO '

plings (on which the limits are much more stringent, as was
mentioned in the Introductionand that they are invariant
under the custodial S{2) symmetryU—UUg with U
e SU(2).

To regulate higher-than-logarithmic divergences, we in-

troduce higher covariant derivative terms through

a, o

1
L= 37 TH(D W) (D“WH)]

2

Mwo .
TAZ Tr(D .V, )(D*VH)], (8
Vv
with
DCYW[LVZ[?CYW/LV+ig[WQYWMV]Y (9)

Aw and Ay, effectively being momentum cutoffs. These are

i 7

The Feynman rule for the anomalous four-vector boson cou-
plings is

G

{ Savded[2959apgvs + 94(gavgns + Gasgpy)]
45

+0ac0bd[295 9985 + 94(GapGys + GasGpy))

+60a0bc[2959as 98y + 94(9av9ps + Gasvs)I}

abed
V;xﬁ“rﬁ :

(16)

Ill. BUBBLE SUM

A. Definitions

the unique dimension-6 higher-derivative propagator terms Assuming the anomalous couplings to dominate the gauge

and are further discussed [i].
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a,o ¢,y a, o
b,,@>@<d,6 ><d5 bﬂ>©<d5 bﬁm

7

a, o &7 G C,’Y
.08 bﬂ>@<d5 .09

(0)abecd (1)abed (2)abcd
B afvé + B afvyé + B afyé

e, (17)

where all lines represent gauge bosons and where the verti- (c,y)=(d,d), (19
ces contain only the anomalous part. Note that @q) is

invariant under each of
(a,a,b,B)«(c,y,d,d). (20

To express Eq(17) in a purely algebraic form, we split
(18) each additional bubble into a vertex pét6) and a propaga-
tor part

(a,a)(b,B),

a, o

¢ a0 el
+ >< ) (22)
b8 ——d,§ bj dé

S AN

a,o c, Y
b, :]El: d,é
where we have imposed the relevant symmetfi&s—(20). Equation(17) can now be written as
a,o c,y a,a >< c,’y (22)
bﬂ: : :d,é b, d, 8 bﬁ 5 b, .H"H'

Since the vertex is independent of any momenta, the integration over the loop momenta can be done in the propagator part.
Abbreviate

fpzu“‘df(zd—:;';’d, (23

with the renormalization scalg, and use dimensional regularization together with the modified minimal subtradsﬁ)u (
scheme throughout. Define
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a,o c, Y
Pk = 3 H
2 b3 d,§

= 3 Bectia [AXGP) (00— 2222) + AY (%) 2527

x [A¥ ((p+ k)?) (gos — BlalEths) 4 AW ((p + k)?) Eetetis]

+8aadhe [AY (1) (gos — 2B + ALY (p?) 28]

k k
x [AF ((p+ k)?) (9o, — BEREEH) 1 AW ((p + k)?) el ) |

i

{ 84:0bd [AI(I‘?z)govygﬁts + A2(k2)(gaﬂg'y5 + gaSQﬁ'y) + A3(k2)(gavkﬁk5 + gﬁskakw)/kz
+A4(k2)(gaﬁkwk5 + gyskaks + gaskaky + gﬁvkaks)/kz + AS(kz)kakﬂk’ykJ/k4]

+6aa8sc [ A1 (k) 9ty + A2(k?)(9apgys + ardes) + Da(k*)(Gasksky + gavkaks) /K

+84(k?)(Gagkyks + gyskaks + gaykaks + gaskaky)[K? + As(k?)kakak ks/k|}, (24)
|
where an additional factor of 1/2 has been introduced to ac- Ay 1 5 A2
count for the implicit symmetry factors in the bubble sum Ay(k?) =~ W ;+ 5"”?
(17), which can now be written as wo H
iAZAZ | A%
a8 (AN, NG

abcd _yjabcd abmnpmnm’'n’y ,m'n’cd
Eaﬁ75_VaB75+V“5MVP,LLVM’V’ w'v'yé

TiAg k2 oMY, (29
b mnrnln/ m/n/m//nl/ m//nllm///n//l ml//n///cd —_ _|,_ s
+ Viﬁ?DPMVM, V’ VM!V!MHVH MHVHM/HV!H M,”V,” ,},5 1151 47T)2m\2/v0 m\zlvo
e 25
(25 Re() - /1—4m\2/vo/k2[( k2 ) . 2 oA~
e = =1 + ),
2 60(4)? 4mayo
The strategy for computing; —As is given in the Appendix. (29
Keeping only at least quadratically divergent, i.©(A?), o, )
terms for the totalA;—Ag, and O(A°) terms for their real o LLAY k 0
parts, the results are As(k9)= 576(4)2mz, \ M2, +O(A), (30
A4 2 1= 4md,/ K2 K2 \2
A kz)_ _ IAV 1 n 5_| AV ReAg(kz): 6(X47T)2 _6 4m2
K=~ Sgammmig e 76 "2 o
k2
5iAZAL A% —13(—2— +4|+0O(A7?), (31
- 2 A2 >IN 4Miyo
A2 2
TiAZ k2 AL(K2) = 7iAy K 0
_ + 0 a(k5)=— 5% —| +O(A"), (32
1151477)2m\2,v0(m6\,0 O(AD, (29 STE4) Mo | Mo
ReA L (K2) m/1—4msvo/kT k2 ) 1}
e - _
m1—dme /KE[ | K2 |2 2 ‘ 60(4m)? [ 1 4miy,
ReAl(kz): 2 7 +8 7 +6
60(4) 4miyo 4mgy, k2
X| 4| ——|+1[+O(A?), (33
+O(A7?), (27 4myo
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Ag(k?)=0O(A"), (34)

ReA (2 my1—4m,/k? o k? \2 A k? 3
eAs(k) = —50am? amy) TN\ amz, )"

+O(A2), (35

wheree is defined byd=4— 2 with spacetime dimensioth

Note thatA(k?) and A,(k?) have the same quartically di-

vergent part

iAy
96(4 1) %myy,

1 5 Al

A= +=—In=y
6w

. (36)

€

Note further thatA(k?), A,(k?) are only quadratically di-

vergent and thah 5(k?) is at most logarithmically divergent.
In Sec. Il C we will need the following linear combinations

which are only quadratically divergent:

A2 IN(A2/A2)
40 = Aok =~ 5
+O(A°) (37)

and

—Ai[A1 (k%) = Ag(k?) +Ag(k?) — Ay(k?)]
_ A [, o INAWAY)
8(4)°myy, WO1—AZ/A2,

| (k24 4mgo) (k2 —4mg,,) ¥2

3VKk?A2

+0(0,—2),

(38)
where the shorthand notation
O(m,n)=ReO(A™ +Im O(A") (39

has been used.

abcd abcd
B. Tensor structure of V5,5 and Pop5

Now let us analyze the tensor structures that can appear in

the bubble sum. The SB) tensors in Eqs(16) and(24) are

5ab5cd: 5ac5bd’ 5ad5b(:v (40)

which can be rewritten into the following linear combina-

tions corresponding to isospin-0, -1, and -2 contributisgns
s;, ands,, respectively, in thedq,b)« (c,d) channel, where

we also indicate the parity under the symmetry transforma-

tions (18)—(20):

PHYSICAL REVIEW D60 095003

a—b c—d (a,b)—(c,d)
S0=3 Gandeq + + +
$1=2 (Gactha— Saadbo) - - +
$=" 3 SapOed * - *
+ 3 (BacOodt Bagdod) (41)
These relations can be inverted to give
OabOcd= 350, (42)
8acObg=SptS1t Sy, (43
0adOhc=Sp—S1t+S,. (44

Define the productk,s; by (Si)abmr(S!)mncg- ThiS can be
analyzed in terms of thg, again such that we have an alge-
bra

SkSI = OkimSm - (45
It is easy to see that they,,, are given by
1, k=l=m,
J«m=10, otherwise, (46

which merely means that the different isospin channels do
not mix. This can be illustrated by defining the mat@iwith
elementsS, =s;s;,

(47)

where empty entries are vanishing, and observing the ab-
sence of nonzero off-diagonal elements.
Going to an isospin basis

.1 .
|i)éW;=%(W}LIIWi), (48)
_ 13
0)AZ,=iWS, (49)
we can use Clebsch-Gordan coefficients to write

So£10,0(0,0, (50)

1
slékzl |1k)(1K], (51)

2
S, > |2k)(2K, (52

K==2

where the first entry means the total isospin and the second
its three-component.
The Lorentz tensors in Eq§16) and (24) are

gaﬁg'yb‘! gaygﬁﬁr gaﬁgﬁyi (53)
gaﬁkyk5! gaykﬂkﬁv gaﬁkﬁk)H
gyékakﬁ ’ gﬁékak'y ’ gﬁykakﬁl (54)
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KoK gk K. (55) /
tl t2
Define
9 =0, KK, 1K (56) t 1y
Then the tensors in Eq&3)—(55) can be expressed in terms et
of the linear combinations 3 4
1 t3 1
t;= mggﬁg%, (57) 2
t
t,= ;g” K.Ks (58) T= i
Jd—1K2 7P "
1
t3= Wg%kakﬁ, (59 tr s
1 tr s
t4: Fkaklgkyk(g, (60)
L L tg tio
ts=— ——=0ug95s5t 5 (90,9857 Fasdp,): (61)
d-1 2 \ to tio )
1 69
to= 5 (9,005~ 01,01, (62 (69

have been drawn to guide the eye.

1
tr= = (g Kyt gk kot g7 kgk+ gt K.Ky),
7= 12 (GayKpKsT 9pskaky+ Gacksky +0p,Kaks) other, let us decompose each relevant ten§if5 by writ-

63 ing
1 X304 =X =Xosp+ X181+ XS5, (70
t8:W(ggykﬁkﬁ_ggﬁkaky_ggakﬁky_gtﬁrykakﬁ)1 Bvo 0°0 7 AR T e
(64) e.g.,
1 V:V050+V151+V232, (71)
I AT tr At
to= K2 (9ayKpks—9pskak, T 05Kk, =05, KiKs), P = Pysot Pusy-+ Pys, 72
(65) ’
1 BU=B{"sy+B{"s; + By 's,. (73)
t10= 55 (9" Kk s+ g% koK, — g% sk sk, — g% K.Ks).
10 512 (9a KeKoT Gpokaky = Gaskpk, ~ g Kako) The X, can be decomposed into theby writing
(66)
X=Xty (74)
Define the product,t; by (ty).z""(t)) ..,s @nd get the alge-
bra wherek runs from 1 to 10. For example, we have, for the

anomalous couplings,

Vo=2i{[(d+3)g4+(3d—1)gs]t; + vd—1(gs+ 3gs)

X (ta+1t3) +5(gs+gs)ts+2(294+9s) (s +17) 1},
T1117 712,27 72,317 72,427 731,37 7324~ 7433~ T44,4 (75

Lt = Timtm - (67)

The only nonzerory,,, are

= T555 76,66 77,77 77,88~ 76,97~ 78,108~ 79,7,9 Vy=—2i(gs—29s)(te+t10) (76)
1= 4 5){lgT L10)s

= T9,8,1G~ T10,9,9~ T10,10,1G~ L- (68)

) V,o=i[2(dgs+29s5)t; +2Vd—1g4(to+13) +4(gs+ 05ty
To make the structure of this algebra more transparent, de-

fine the matrixT with elementsT,,=t,t,, +2(g4+29s5)(ts+t7)] (77

095003-6
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and, for the integrated propagator part, 1
BI""V=5(B{"P\V,+V,PB"). (80)
Poz P2:2(Al+ dAz)tl+2\ d_ 1(A2+ A4)(t2+t3)

Note that the symmetr§20) preventstg andtq from appear-
+2(A1+ 20,4 205+ 4A 4+ Ag)ty+2(A 1+ Ap)ts ing in theV, and P, and that therefore Eq69) tells us that

+2(A1+ A+ A+ Ayts, (79 they will not be generated at any point in our calculation.
Equation(20) also restricts, andt; to appear only in the
Py=2(A;— A tg+2(A;— Ayt Ag—Ag)tyo. combinationt,+t5 in V,, P,, andB{"), which is not the

(79 case for the single terms on the right-hand side of (86).
Let us introduce a basis of Lorentz tensors which includes

Now we can write only those necessary to describe the P,, and B,("):
a—fB y—=0o Z — g)
— 1 tr Atr + + +
ul=tl:d_ 1 gaﬁgyé
u25t2+t3=;(gzﬁkyk5+ 0 sKaKp) + - +
Vd—1k?
1
U35t4:FkakBk7k5 + + +
1 tr o tr 1 tr o tr tr o tr (81
U4Et5:_mgaﬁg'yﬁ—i_z(ga'ygﬁﬁ—i_gaﬁgﬂ'y) + + +
Us=t :E( tr tr _ qtr Atr ) _ _ +
5— ' 2 ga'ygﬁﬁ gaﬁgﬁy
1 tr tr tr tr
Ue=17=212 (9a)KpKsT 9poKaky T aoksky T 9p,KaKs) + + +
1 tr tr tr tr
u7Etlo=W(ngBk5+ IpsKaky = Gaskpk, = 9p,KaKs) - - +
|
As in Eq. (41), we have indicated the parity under the sym- D3 Als), (84)
metry transformation$18)—(20). “ '
To give the tensors;—u- a physical interpretation, let us oA B (85)
consider them in the rest systemkof, i.e., where =152
— ok, Ky2(s], (86)
KoL o(s| (87
and - .
(the indices enumerate the partiglesvhere s refers to a
0 00 O “scalar,” and |1), |2), [3) are states with definite spin-up
010 0 components in the, y, andz directions, respectively. Going
—-gy,= 00 1 0 (83  to a spin basis witts) and
0 0 0 1 1
i - : |=1)=—[|1)=Fi|2)], (88)
Then the Lorentz index O refers to a spin-0 particle and the V2
other three components to a spin-1 particle. In a general Lor-
entz frameW,, contains a spin-1 field with“W,=0 and a |0y=i|3), (89)
spin-0 fieldk“W,, . Write the tensors in a bra and ket nota-
tion such that we can use Clebsch-Gordan coefficients to write

095003-7
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u;210,0¢0,0, (900  we can define transfer matricés, , such that
2 —(0,01(slafs| +|)1ls)2(0,0), (1) Bl = MuBif”. (103
Uz2[s)a[s) 1(s[a(s], (92 ~ Writing
2 V=V Uk (104
U4ék:2_ |2))(2K, (93 and using that
1 B{¥=v,, (105
u5ék;1 |1k (LK], 9 e can write
1 Bl =MDV (106

Ue2 — E (1) als)z-+ Is)alk)2) (oKl (sl +a{sl (KD, This can be simplified further. From Eq®9) and(81) and
(95  the absence ofg andtq follows thatu,, us, ug, andu;
propagate independently. The symmetri@8) and (19 to-
! gether with the parity properties noted in E¢$1) and(81)

74— 2 ([K)1ls)2—[s)alK)2) (1(Klo(s| — 1(s|2(K]), necessitate thats andu; appear only in the isospin-1 chan-

(96) nel, while the otheru, appear only in the isospin-0 and

isospin-2 channels, which we summarize in the following

where the first entry means the total isospin and the secori@ble:
its three-component, when two entries are present. This al-

lows for the interpretation afi,, us, andu, as channels for 1S0SpIn
spin-0, -1, and -2 combinations, respectively, from two 0 1 2
spin-1 particles. Thens is interpreted as a spin-0 combina- 0 SoUj,SoUs,SoUs S,U;p,SoUy,Solls
tion of two scalar particles and, as a mixing channel be- ,
tween the spin-0 combination of two spin-1 particles and theSPIN 1 Sols S1Us,S1U7 - Spls
spin-0 combination of two scalar particlesug and u; are 2 SpuUy SolUy
different spin-1 combinations of a scalar and a spin-1 par- (107)
ticle.
Now we can write, for the vertex, Even thoughs,us ands;u; carry the same spin and isospin
assignments, they do not mix. We can write
Vo=2i[(d+3)g,+(3d—1)gs]us + vd—1(gs+3gs5) U 3
+5(g,+0s)Us+2(294+gs)(Us+Ug)], (97) Vozgl Vou+ VT ug+ Vi us, (108
V1= —2i(gs—29s)(Us+U7), (98) V1=V<15)u5+V(17)u7, (109
Vo=i[2(dgs+20s5)u; +2yd— 104U+ 4(gs+gs)Us s 123 @ ©)
= + +
+2(94+29s)(Us+Ug) ] (99 Ve k§=:1 VaiT i Vo U £V s,
, (110
and, for the integrated propagator part,
and then
PO:P2:2(A1+dA2)U1+2\ d_l(A2+A4)UZ 3
+2(Ay+2A,+ 2A 5+ 4A 4+ Ag)Us 2 (MG, VG#, k=1,2,3, (111
+2(A1+A)us+2(A 1+ A+ A+ Ay ug, B ALV (112
(100
BL) =)\ (6)Ly/(6) ' 113
P1=2(A1—Ay)Us+2(A— Ayt Ag+AL)Us. 0670 70 (13
(101 B<L> )\(5>LV(5) (114
C. Transfer matrices and their eigenvalues BY=A{"v(", (1195
Writing 3
B(Y=B{Lu, o Ba=2 (MZ¥Have®, k=123 (119
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BIL = APV (117 Al other B{ are zero.
We still have to diagonalizé/§*® and M%), Before
BY =AMV, (118  explicitly doing so, let us finish the formal development.
. AssumeM{?) to have eigenvectorsyg, Vo, , Vo With
with corresponding gi%;anvalu@soo, No+, No-. In the same
AD = 8i(20,+ ge) (A1 +As), 119  Way, assumeM5= to have eigenvectorsyo, Vo, Va-
0 (2041 9s)(A1+ 82) (119 with corresponding eigenvalues,;, Ny, , No_ . The v
(6)_gi(2q,+ Ait Aot Aat A 12 andv,y are then linear combinations of the, u,, us.
Ao =8i(294+9s) (A1 +Ax+Az+Ay), (120 If we write theV, as
M= —4i(04—295)(A1=A2), (12 P
. _ VO:k=ZO+ CorVok+Cy us+cPug, (135
N=—4i(953-205) (A1~ A+ Ag—Ay), (122 -
_ o5 (7)
NSY=4i(gs+205)(A1+Ay), (123 Vazerust e Uy, (139
NS =4i(ga+205)(A1+ A+ Ag+Ay), (124 Vo= 3 cavact cfugtcfu,
2a, 2c 0 (137
123 _ ~;
Mg*=2i| bo @g*do Co |, 129 we can write
0 2b, 2d,
80=[(0+3)g,+ (34— 1)gs]A, +[(07+ 40 1)g, B1= . Codiovot ob N e NG v,
+(3d?+2d—3)gs5]A,+(d—1)(gs+39s)Ay, (138
(126 B{- =c PN P ug+ el A tug, (139
bo=vd—1{(g4+39s5)A1+[(d+5)gs+(3d+5)gs]A; " . s (oL ) (6L
B, = CoN o Vot 57N Us+C5 N5 " Ug .
+5(g4+95)A4}1 (127) 2 P 8 2k 2kV 2k 2 2 4 2 2 6
(140
Co=Vd—1{(g4+395)A;+[(d+5)g,+(3d+5)gs]A, , .
The final result is then
+2(94+395) A3+ [(d+7)gs+ (3d+11)gs]Ay
222030+2151+2252, (141)
+(94+3095)As}, (128
with
do=5(9s+9s5)A1+[(d+9)gs+(3d+7)gs]A, . @ ©
c c c
+10(gs+0s)Ag+[(d+19)g,+(3d+17)gs]A = (L) = o 0 0
et ge)Aat[(d+19ge+ (3d+17Gs]As  To=3 By'= X 71— Voct 7 Ut T Ve
+5(9s+9s)As, (129 (142
2a, 2c, 0 ” cl® ct”
_ (L _
M(2123)=2i< b, a,+d, ¢ ) (130 21_;0 B1 1P Ust 1-A" i (143
0 2b, 2d,
) S Cak c;’ cy’
a=(dgs+295)A 1 +[(d°+d—1)gs+2dgs]A, 22:20 B> e 1_)\2kV2k+ 1@ Ug+ 1\ © Ug.
= =0* 2 2
+(d—=1)g44,, (131 (144
by=vd—1{g,A; +[(d+2)g,+205]A; ﬁ\nirg/sonance arises if for somé an eigenvalue becomes
+2(941095)A4), (132 From the decomposition df,, V,, V, in terms of the
Uy, Egs.(97)—(99), we can read off
Co=Vd—1{gsA1 +[(d+2)gs+205]A; @6
Co =Cy =4i(294+7s), (145
+294A3+[(d+4)g4+2095]A4+0445}, (133
(5)— (N _2i(q.—
Cy =¢i"=—2i(gs—29s), (146
02=2(ga+gs) (A1 + 285+ Ag) +[(d+3)g, P e
+4gs]A,+[(d+7)ga+87s]A,. (134 ¢tV =c®=2i(gs+20s). (147)

095003-9



J. J. van der BIJ AND BORIS KASTENING

The eigenvectors of a matrix of the form

2a 2c 0
M= b a+d c (148
0 2b 2d
are
—2c
vo=|a—-d/, (149
2b
c[a—d=\(a—d)*+4bc]
V.= 2bc : (150
b[d—a=* \(a—d)?+4bc]
with respective eigenvalues
)\0:a+d, (151)
A.=a+d=(a—d)’+4bc. (152
Therefore, the eigenvalues bf§*® are
)\OO: 2|(a0+ do), (153)
)\Ot:2i[ao+ do
+(ag—dg)?+4boco]. (154

Keeping only quartically divergent terms, they become

Noo=2i[(d?+6d+16)g,+ (3d*>+8d+8)gs]A Y+ O(A?),

(155
Aoy =4i(d+2)[(d+4)g,s+(3d+2)gs]A Y+ O(A?),
(156)
No—=161(2g,+7gs5)AY+O(A?). (157
In the same way, the eigenvaluesit'*® are
Nag=2i(ap+d,), (158
Npe =2i[ay+d,
+\(a;—d,)?+4byc,]. (159

PHYSICAL REVIEW B0 095003

Noo=2i[(d?+3d+4)g,+2(d+4)gs]AD + O(A?),

(160
Aoy =4i(d+2)[(d+1)gs+2095]AD+O(A?),

(162)
No_=8i(gs+295) A+ O(A?). (162

Now let us consider the rest of the eigenvalud® .
Keeping only quartically divergent contributions, we get

NV =16i(gst+gs) AW +O(A?), (163
N =16i(gs+gs) AW+ O(A?), (164)
NSV =8i(gs+295) AW +O(A?), (165
AP =8i(gs+2g5) AW+ O(A?). (166)

In \{? and\{") the quartically divergent contributions can-
cel. Combining Eq(121) with Eq. (37) and Eq.(122) with
Eq. (38) and keeping also quadratically divergent contribu-
tions and the leading imaginary part ®f" gives

A2 IN(A2/A2)
o ——rr +O(AO),
2(4m)°mé, 1—AZ/A3,

(167

2 a2 In(AZ/A2)
WO — AZIAG,

AP =—(g4—20s)

2

(D — v
N'=(94 295)8(477)2mﬁ,0

(K2 + 4myo) (k2 — 4mg,0) 3

3Vk?A2

+0(0,—2),

(168)

where we have used again the shorthand notd®h No-

tice that the only eigenvalues that are not quartically diver-
gent arex{® and\{"). In fact, with finite A, and A,y the
corresponding integrals are convergent and dimensional
regularization is used merely for convenience.

D. Resonance
Combining these results with Eqd.41)—(144) as well as

Keeping again only quartically divergent terms, they becomeEq. (146) gives

—2i(g4—205)S1Us

a AL In(AGIAD) o
—2i(g4—205)S.U
N . (24 295).1 7 . — +OA ).
Z IN(AZ/AZ)  im(k3+4m3,) (k2—4md,)%?
1—(gs—29s) =————2— | kK?—4m3 + +0(0,—2)
8(4)%myy, WO1—AZIAG, 3Vk2A2 ’
(169
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Under the assumption that the anomalous couplings dominate the gauge coupling and the additional assumjgion that
—295|>8(4m)°mi,/(A2m?) [m, is the resonance mass: see Ei’3 below], the terms in Eq(169) are in leading order
independent of, andgs. Modeling the second term in E(L69) with a Breit-Wigner shapénd consequently neglecting the

k? dependence of the width tejrgives

a, c, r o tr r L tr
>®< K — _iC <5ac5bd - 5ad5bc) (9279235 - géagfaq)
- 1
b8 4.0 ? ?

+ 1Chy 8acObd — Gaddbc ggykﬁkS + gz?%kak"/ — ggékﬁk"/ - gg;ykak(? n O(A_4)
k2 —m? + im, T, 2 2k?
(170
|
with and two derivative couplings
Amio [ IN(AZ/AY) | N €avdKaGpy~KeGay)- (178
TTAZ\1oAZ/AS) (179 : , ,
v viaAw This coupling can be used to compute the decay rate into two
4 W bosons. The result of this standard calculation coincides
_16(4) “miyg (172 with Eq. (174).
2= AZ 1l
\%
IV. DISCUSSION

m, = 2Muo In(A\z,\,/A\2,)+O(A_2) 173 The first thing one notices about the contributions to the

' 1—/\\,2//\\,\,2 ’ bubble sum is that in most channels quartic divergences are
present. In these cases we did not calculate the subleading
and terms. In case quartic divergences are present the subleading

5 ) ) 2 3 terms could be of the form ?k?. If such terms are absent,
(M4 4mig) (M —4my,,) +LOAY). (174 the whole interaction is suppressed by 4/and the channel
r 3mZAL ' is of no phenomenological interest. If such terms are present,

Note that we can trivially drop the superscript “tr” in th&,
term in Eq.(170.

resonances are present at a s¢(d ?). These are out of the
reach of present colliders and possibly also of the LHC.
Much more interesting is the=1, J=1 channel where we

The direct calculation of the resonant part of the bubblefind a low-lying resonance in the term,, which corre-

sum (17) gives the mas$173 and the width(174) for the

sponds to longitudinal vector boson scattering. Depending on

resonance. As a consistency check for the width, we havthe ratioA,/A,, one finds the resonance below or above
computed the decay rate of the resonance independently. Ftite vector boson threshold. On physical grounds we expect

k2~mr2, the resonant part of the bubble sy@v0 can be
written as

)\eabﬁ{kagﬁ,u,_ k,Bga,u]( - i)amn

%

B — Ty
k2—m?+im,T, cdn

X[(=K),5 (—K) 58,1, (179
with
2(4mmGy,
A= “Aum (176

and arbitraryX. That is, the bubble sum can be decomposec{

into a spin-1 propagator part

. g,uv
-~ +
Homnl I 2 rimi T Xkﬂ'”)

77

Ay to be the smaller, as it is directly related to the Goldstone
boson sector of the theory, where the strong interactions are
supposed to take place. In that case the resonance always lies
above the twdA/ threshold. Because the interactions of the
transversal vector bosons are suppressed by the gauge cou-
pling, a reasonable assumption would hg~gA,y. This
corresponds ton,~200 GeV. A recent comparison with the
LEP-100 data gives a limitA,>490GeV [7]. For m,
=200GeV, this gived', <12 GeV. The fact that the reso-
nance can be at such low energy is somewhat surprising,
given our experience with chiral perturbation theory in pion
physics.

To study the connection with pion physics we make the
substitutionsg,=g%e,, gs=0g%es, andmy,,=gf./2. In the
esulting Lagrangian one takes—0, with €,, €5, andf .
ixed. This way one finds the standard nonlinear sigma
model with two higher-derivative terms. We defi
=4(e,— 2€5). For didactical purposes we keep in the chiral
perturbation theory here the tree-level terms, the imaginary
part of the ordinary chiral loop, and the contribution of the

095003-11
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first loop we calculated. One finds, for the 1, J=1 ampli-
tude,

PHYSICAL REVIEW B0 095003

LEP-200 the situation is somewhat subtle, as the resonance
does not couple to the incoming electrons directly. Strong

form factor effects could play a role. The precise phenom-

s 9,5 GAG s is enology will be left to future work.
a14(s) = 96mf2 2 + 3222 4 + 96 f2 Given the fact that the couplings are strong, one can ques-
- tion how generic the results are. In principle, higher-order
g,S terms in the chiral perturbation theory could be important.
x| 1+ f4 ) ' (179 For the formation of the resonance via a bubble sum, only

four-point vertices contribute. The presence of higher-order
terms will therefore not effect the structure of the calculation
very much. Basically, we expect a form factor fgy— 295

which, when inserted into the graphs, makes the explicit de-

After unitarizing the amplitude with thgl,1] Padeapproxi-
mant one finds the resonance with a width given by

r— mﬁ 1— A 180 pendence o\, more complicated. However, the terrg(
P 96mf2 327212 (180 —2gs)AZ in formula (169 is essentially determined by

power counting; so one would expect corrections of the form

We had to ignore thes* term in the imaginary part of;; A2 A2+ (’)(4m\2,\,). Also, the precise formula for the reso-
because it is of too high an order in chiral perturbation theorhance mass as a function af,,, A could become more
and other terms of this order have been ignored. The pregomplicated. However, that will not change the qualitative
ence of the extra loops that we calculated results therefore ipicture ofm,~200 GeV, with a coupling of ordemn, /A, .
a correction to the Kawarabayashi-SuzukiRiddin- Finally, one can ask if the model is consistent with the
Fayyazuddin (KSRF) [9] relation A,=m%(96xf2). Of  LEP precision data. The limits derived @, gs in [6,7]
course, this is not the full story for chiral perturbation theory,follow from simple perturbation theory and depend crucially
but it shows that the effects we calculated are only a smalbn the behavior in the hypercharge sector of the theory, as
correction to pion physics. The reason we get a large effedhey come from the limits on the parameter. For the
in our calculation is that we assume that the interactions arstrongly interacting case as described here they are not ex-
dominated by the,, interaction. In the chiral limit this is not pected to be a good estimate and could possibly even be an
possible, because at low enough energy the lowest-orderder of magnitude wrong. The model is similar in appear-
term ins always dominates. Since within the standard modehnce to the standard model in the large Higgs boson mass
there is theW threshold to consider, it makes sense to sayimit, which is disfavored by the LEP1 data. When one sim-
that the anomalous term dominates. It me#ag’l;*,szlv2>s ply removes the Higgs boson from the standard model, the
for s>4mg,,. Within the standard model this translates into model becomes nonrenormalizable, but the radiative effects
4|g,— 2gs|>g?. This condition therefore quantifies what we grow only logarithmically with the cutoff. The question is
mean by strong anomalous couplings. whether this scenario is ruled out by the LEP1 precision data.

The model we discussed fits in naturally in the class ofThe LEP1 data appear to be in agreement with the standard
models that give rise to resonances W physics due to model, with a preferred low Higgs boson mass. One is sen-
strong interactions. This class of models is collectivelysitive to the Higgs boson mass in three parameters, known as
known as the BESS model, from breaking electroweak symS, T, Uor €3, €,, €3. They receive corrections of the form
metry strongly. A recent review of this class of models isg?[In(m,/my)+consi, where the constants are of order 1.
[10]. Nonetheless, as the discussion above points out, thEhe logarithmic enhancement is universal and would also
model is subtly different from the models in the literature, appear in models without a Higgs boson as\nfwhereA is
due to the dominance of the anomalous couplings. Thishe cutoff where new interactions should appear. Only when
would make the model into a mere curiosity were it not for aone can determine the three different constants can one say
very simple class of models giving rise to precisely the re-one has established the standard model. At present, the data
quired structure. This is the class of the strongly interactinglo not suffice to do this to sufficiently high precision. In
singlet Higgs(SISH models[3]. These models, which con- practice, one can compensate a change in the Higgs boson
tain beyond the standard model only extra scalar singlet pamass in the formulas with extra contributions to 8\€T; and
ticles, are actually the simplest possible renormalizable ext) parameters. As such terms are generated by the contribu-
tensions of the standard model. Because the singlets coupli®ns of formula(8), there is enough freedom to fit the data;
only to the Higgs boson, they do not change the phenomsee[7] for a discussion. Whether a model with a low-lying
enology at LEP-100 at the one-loop level. Two-loop effectsresonance would actually improve the fit to the data depends
are too small to be significant. In order to perform a preciseon the couplings to the fermions and to the hypercharge.
phenomenology of the model, |(2) breaking effects
should be taken into account. The model satisfies the LEP-
100 limits on extraZ bosons, because both the coupling to
leptons and the mixing with th& boson are suppressed by = We thank G. Jikia and T. N. Truong for discussions on
an electroweak loop. The statistics at the Tevatron is toehiral perturbation theory. B.K. also would like to thank R.
small to see the resonance. For the planned high-energy codkhoury, T. Binoth, M. Chanowitz, T. Clark, A. Denner, D.
liders the phenomenology should be straightforward, thésraudenz, S. Khlebnikov, S. Love, B. Tausk, and D. Wack-
resonances being produced via vector boson fusion. Faroth for useful discussions. This work was supported by the
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Deutsche ForschungsgemeinscHa8EG). i 1 m2—m2—k2 m?
2.2 2\
I(k ,ma,mb)—(4w)2 ;+2+T|ﬂ:2
APPENDIX: ONE-LOOP RESULTS K
Here we list results for the necessary basic one-loop inte- N m3—mp—k? n m;
grals and for the composite one-loop quantitAels—AS; 2k2 72
Let d be the spacetime dimensiod=4—2e, let u be s o o
given by In 47— ye=In u? with the Euler-Mascheroni con- VD mi+mp—k*+\D o
stantyg, an(_:i use the abbreviatigf, given in Eq.(23). + el m2+m2—k2— D +0(e).
The only integrals we need are
1 im? (1 m? . . A9
|(m2)Ef == (am)? ;Jr1—|n,7 +0O(€) Equation(A5) can also be written as
P
(A1) i (1 m2—m2—k?+\D m?2
I(k%mimd)=——i=+2+ n—
and A (42 | e 2k? e
1 m2—m2—k?+ \/BI m2
I(k?;m2,md)= : —. 2 N2
(Emam)= | o7 meriel(p?- metie) % z
(A2) VD mi+mi—k?+\D
+ n +0O(e) (A6
Define K7 2u” () (A6)
D=k*+mi+mi—2k?mZ—2k2mZ—2mZm2.  (A3)  °f
: 2 2 2 2
. . . mg—mi;—k°—yD m
For k=0 we get the following results in a straightforward I (k% m2,m2)= |_2 - b a 5 n%‘
calculation. P (4m)? | e 2k I
2 2 2 2
m;—m;—k —\/5 m
1.1(k%;m2,m?) for D=0 +-2 bZk2 In?b
D=0 is equivalent to the statement that nonek®&f m2, 2, 22— D
m? is larger than the sum of the other two: \/BI ma+mp—k“— D
- F n 2ﬁ2 +O( 6).
i |1 K2+m2—m2 m?
2-m2.md)= T4 3 b2 (A7)
= +
I (k% m3, mg) am?| e 2 212 nﬁ2

3.1(k?mZ,m?) for D=0 with k?=|mZ-m?|

Here

2 2 2 2
k“+my—m; my

BT In:zlu
i m2—m2—kZ m?

_ 2 2 2 | k2.m2 m2): i b a In a
J-D k?+m;—m; (KSmamp) = 7 —2 — oz In=
— @ | arctan——— - (4m)” | € I

2_ 2 12 2
mz—mg—k=  my

K2+ mz—m? T Nz
+arctanT +0(e). (A4) a
VD ke m-m JB] D
2.1(k%;m3,m?) for D=0 with k?<|m2—m?| kK® " k2—mi-mi+ D] 167k
Here +0O(e€). (A8)
4.1(k%;m?2,m?)
If D=k?(k*—4m?)<0, i.e., fork?=4m?, we get, from Eq(A4),
o i 1 m? 4m? 1
I (k;m*,m°)= —+2-In—=—-2\/——1arctan————| +O(e). A9
( ) am?| < 2 2 = (€) (A9)
——1
k2
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For k?<m?, we can expand in powers &f/m? to get

(kZmz,m2) = |2 |m2+1 k2+1 k2)2+(9 k?/m?)3 A10
( ,m,m)—wz—nlﬁ 52 T 6ol m2 (&,(k“/m?)%). (A10)
If D=k?(k?—4m?)=0, i.e., fork?=4m?, Eq. (A9) becomes
2m? 4m? 4m?
1-——\/1- 1- —
i 1 m? 4m? k2 k? k2
|(k2;m2,m2): 5 +2—In—+ 1— 5 In — +O(€). (All)
(4m)°| € “ k 2m? 4m? 16w
1-—+\/1- —
k

5.1(k?;m?,0) for k?<m?

Now D=|k?—m?|=0. Let us assumk?<m?. Then we get, from Eq(A6) or (A7),

(K20 =1 (KB 2.0 = — 5| = +2+ LWL, W +0(e)
1 Yy - ’ 1Y) (477')2 € k2 ﬁ? k2 ﬁz €
1 m? k? m?—k?
:(47)2 E+2+Fln 1—W —|HT +0(e). (A12)
For k?<m?, we can expand in powers &f/m? to get
I (k?;0m?)=1(k?m?,0)
1 m? 1/k*| 1(k%\? 1/[k%\® 1[k%\*
=— —+1_|nq+— — |+ =zl =] T35 =] t5:l =
(4m)“| € ue o 2\m 6\m 12\m 20\ m
+ O(e,(k?/m?)®). (A13)
6.1 (k% m2,m?) for k?,mi<m?
If k?,m2<mZ, we can expand EqA6) or (A7) in negative powers ofn? to get
1 , M 1,3, L, M
» =k2Amiln— K% =K%+ -m; | +m3(k2+m3)in—
[(KmZmd)=——| = +1 In%+2 m, 16 2 il
AT (4)? | e w? mg my,
1 7 5 m2
k2(1—2k4+§k2m§+§mg +m§(k4+3k2m§+m§)lnm—g
+
mp
1 35 17 7 m2
k2<ﬁk6+ 1—2k4m§+ S kemg+ Emg +m2(k8+ 6k*m2+ 6k?mZ +mS)In—
M -10 2
+ ) +O(e,m, — Inmp).
b
(A14)

7.1(k%;m2,m?) for k?<m?2,m?
Here
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2 2
2 a 2 b
msIn=—m; In
(KEm2.md) 1 ally? Th? m2+mg m2mz  m? o
I(k*;mg,mp) = ——> | —+1-— 7> 7% 7 23N
a (4m)?%| € m;—m; 2(mi—mp)?  (mz—mp)* mg

6 4.2 2.4 6
m,+ 29m;mg + 29mzmp+ my
2_ 2
12(m5—mp)®

mi+10m2m2+mp  m2ma(mZ+m?) ) .
2 4 5 2
6(ma_mb) (ma_mb) b

m m2(mi+3mZmi+mi) m?
I K [+ 00,0, (AL5)
a b My
|
8. Calculation of Ay, A,, Az, Ay, Ag o 1 ) d(p.k)Z .
To compute the quantities;—Ag defined in Eq(24), we B'= d-1 fp a k?
first need some preliminaries. LEin the following be some (A20)
function of p? and (-+k)2.
Contracting Contracting
k
J=AS (A16) , KaQpytKpya K0,  Kakgky
fpp k? fpapﬁpyf:A = Bkzy =L 4B kf
P
with k,, gives (A21)
_ with k,9g, andk,kzk, and solving the resulting equations
B fp(p- f. AL for A anJB”, we gety
Contracting
1
j f=A’ g Kok A18 T d- J( A (p : )f’ (22
ppapﬁ - ga,B+ k2 ( )
with g,aﬂ andk,kz and solving the resulting equations #f _ f ( 3p2(p-K) +(d+2) ——5— (p K) )f_
andB’, we get d—

2 (A23)
A,:LJ ( 2 (P )f (A19)
d—-1Jp P k ' Contracting
fppapﬂpypéf:Am(gaﬁgyﬁ—'_gaygﬁ5+ga§gﬁy)
k. ks+9,.Ksks+0,sksK,+0.sK . Kgt+ g5k K, +9z.k K k kgk k
+B,,,ga[3 yg gay BHo Jas B ykzgyﬁ a™\B gB5 ay gﬁ'y a §+C,,, a 54)/ 6 (A24)
|
with 9,459,s, K.Ks0,s andk Kgk, ks and solving the result- 1 . p?(p-k)?
ing equations foA”, B”, andC"”, we get B'"=mf ( +(d+3)—2—
A= j 2(pk)2+(pk)4 (p )
(d— 1><d+1> K2 k™) —(d+2) e )f' (A26)

(A25)
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o p2(p-K)?
= =D+ Jp(3p4_6(d+2) K2
. 4
+(d+2)(d+4)%)f. (A27)
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. o ie.,
Using the above results, some trivial but lengthy algebra
on the integrand, the properties of dimensional regulariza-

tion, the results for one-loop integrals in the preceding parts

of the Appendix, as well as

f(p‘k)znf(p2)=0n(k2)”f(pz)”f(pz), (A28)
p p

with
2n—1
Co=1, Ch=gion_2Cn-1 (A29)
T(n+1/2)T(d/2) -
T T (nt+di2)T(1/2)° (A30)

we can computé\;—Ag. The results are given in the main
text in Egs.(26)—(35).
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