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Resonance in strongWW rescattering in massive SU„2… gauge theory

J. J. van der Bij and Boris Kastening
Albert-Ludwigs-Universita¨t Freiburg, Fakultät für Physik, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany

~Received 30 November 1998; published 5 October 1999!

We investigate the effects ofWWrescattering through strong anomalous four-vector boson couplings. In the
I 51, J51 channel, we find a resonance with a mass of approximately 200 GeV and a width of less than 12
GeV. In an application to pion physics we find a small correction to the Kawarabayashi-Suzuki-Ria`zuddin-
Fayyazuddin relation.@S0556-2821~99!09019-0#

PACS number~s!: 12.60.2i, 12.15.Lk, 12.39.Fe, 14.70.2e
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I. INTRODUCTION

Within the standard model of electroweak interactions
gauge principle fully determines the self-couplings of t
vector bosons. Therefore the measurement of these coup
is of prime importance, as deviations would be an indicat
of new physics. The gauge principle predicts well-defin
three- and four-vector boson self-couplings. Deviations
these values can be described in a gauge-invariant way in
Stückelberg formalism@1#. Within the Stückelberg formal-
ism the standard model is described as a gauged nonli
sigma model. This implicitly assumes that the Higgs parti
does not play a fundamental role. Alternatively, one can
it as the mH→` limit of the standard model. If indeed
anomalous vector boson couplings are present, this shou
a reasonable assumption, since in that case strong inte
tions should be present. The triple vector boson coupli
are severely constrained by the measurements at the C
e1e2 collider LEP-200 and the Fermilab Tevatron@2#. Also,
indirect limits from LEP-100 and (g22)m exist. Altogether,
experiments indicate they should be small. This is not
surprising, as it is very hard to construct a model that wo
give rise to large effects. The reason is that within the thr
vector boson couplings there is always an interplay betw
longitudinal and transversal vector bosons.

For the four-vector boson couplings the situation is som
what different. Here one can write down vertices that cont
longitudinal vector bosons only. These vertices corresp
to the Goldstone boson sector of the theory, and it is m
easier to generate strong interactions in this sector. Such
sults come typically through intermediate heavy Higgs bo
exchange. An example of such a model is given in@3#, where
the strong interactions are generated via singlet effects in
Higgs sector. Also, in the standard model the two-loop he
Higgs correction in the four-vector boson@4# couplings is an
order of magnitude larger than in the three-vector boson c
plings @5#. About the four-vector boson couplings much le
is known than about the three-vector boson couplings. Di
experiments probing these interactions do not exist
present. They can at the moment only be tested through
diative corrections in ther parameter. These corrections c
be calculated within perturbation theory with a cutoffL.
Within the four-vector boson couplings one should dist
guish between two types. In the standard model there is
extra global SUR(2) symmetry when the hypercharge
turned off. For the anomalous couplings this is not neces
0556-2821/99/60~9!/095003~16!/$15.00 60 0950
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ily the case. The couplings that violate SUR(2) even in the
absence of hypercharge give quartically divergent corr
tions to dr @6,7# and should therefore be negligibly sma
Physically, this means that the underlying strong inter
tions, generating the anomalous couplings, should respec
SUR(2) invariance. This leaves only two operators that p
serve SUR(2) invariance in the absence of hypercharge.
one could use simple cutoff perturbation theory, these op
tors still give quadratically divergent corrections todr @6,7#
and are sufficiently suppressed to give only small effects
future colliders. In@8# the quadratic divergences were ig
nored and therefore the limits are weak.

This leaves only the possibility that the anomalous co
plings are so large that perturbation theory cannot be trus
and therefore the low energy limits are invalidated. It is p
cisely this case that we study in this paper. We assume
anomalous couplings are present which preserve the SUR(2)
symmetry of the theory and assume the coefficients for
corresponding operators to be large. To simplify the calcu
tion we actually ignore hypercharge altogether and work
the SUL(2)3SUR(2) model. This leads to a simplificatio
because we can study different isospin channels separa
Because the interactions are assumed to be strong, ve
boson scattering cannot be described by the tree-level ve
We therefore perform a resummation of loop graphs. In m
channels we find no particularly interesting effect. The on
exception is theI 51, J51 channel, where a resonance
found. In the case of very strong anomalous couplin
which we assume, the resonance can be quite close to
two-vector boson threshold. The coupling of the resonanc
the vector bosons is found to be suppressed by the cutoff
could be small. Dependent on the parameters, the reson
could be visible even at LEP-200.

The paper is organized as follows. In Sec. II we pres
the model. In Sec. III we perform the calculation of th
bubble sum. In Sec. IV we discuss the results. The Appen
contains technical details.

II. MODEL

A. Lagrangian

We work in a pure massive SU~2! gauge theory and in-
troduce the anomalous couplings in a gauge-invariant w
using the Stu¨ckelberg formalism@1#. That is, we write the
theory as a gauged nonlinear sigma model:
©1999 The American Physical Society03-1
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Lgauge52
1

2
Tr~WunWmn!1mW0

2 Tr~VmVm!, ~1!

with

Wm[
1

2
taWm

a 5Wm
† , ~2!

Wmn[
1

2
taWmn

a 5]mWn2]nWm1 ig@Wm ,Wn#5Wmn
† ,

~3!

Vm[2
i

g
~DmU !U†5Vm

† , ~4!

DmU[]mU1 igWmU, ~5!

U5exp~ ivata!, ~6!

with real fieldsva ; i.e., the SU~2!-valued fieldU describes
the Goldstone degrees of freedom.mW0 is the mass of the
three gauge bosons in absence of the higher covariant de
tive terms to be added below. The anomalous couplings
then introduced as

Lano5g4~Tr@VmVn#!21g5~Tr@VmVm#!2

5g4~Tr@VmVn
†# !21g5~Tr@VmVm

† # !2

5g4g24$Tr@~DmU !~DnU !†#%2

1g5g24$Tr@~DmU !~DmU !†#%2. ~7!

Their form is determined by the requirement that they c
serveCP, are not accompanied by three-vector boson c
plings ~on which the limits are much more stringent, as w
mentioned in the Introduction!, and that they are invarian
under the custodial SUR(2) symmetry U→UUR with U
PSU~2!.

To regulate higher-than-logarithmic divergences, we
troduce higher covariant derivative terms through

Lhcd5
1

2LW
2 Tr@~DaWmn!~DaWmn!#

2
mW0

2

LV
2 Tr@~DaVm!~DaVm!#, ~8!

with

DaWmn5]aWmn1 ig@Wa ,Wmn#, ~9!

LW andLV effectively being momentum cutoffs. These a
the unique dimension-6 higher-derivative propagator te
and are further discussed in@7#.
09500
va-
re

-
-
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-

s

We work in unitary gauge, where we haveU51, va50,
and therefore

Vm5Wm . ~10!

The signature of our metric is

gmn5diag~1,21,21,21!. ~11!

B. Feynman rules

The W propagator in unitary gauge with higher covaria
derivatives is

Dmn
W ~k!5D tr

W~k2!S gmn2
kmkn

k2 D1D lg
W~k2!

kmkn

k2 , ~12!

with

D tr
W~k2!5

iLW
2

~k22m2
2 !~k22m1

2 !
, ~13!

D lg
W~k2!52

iLV
2

mW0
2

1

k22LV
2 , ~14!

m6
2 5

LW
2

2 F S 11
mW0

2

LV
2 D 6AS 11

mW0
2

LV
2 D 2

2
4mW0

2

LW
2 G

5H LW
2 1O~L0!,

mW0
2 1O~L22!.

~15!

The Feynman rule for the anomalous four-vector boson c
plings is

~16!

III. BUBBLE SUM

A. Definitions

Assuming the anomalous couplings to dominate the ga
coupling, we compute the ‘‘bubble sum’’
3-2
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~17!
e

t

where all lines represent gauge bosons and where the v
ces contain only the anomalous part. Note that Eq.~17! is
invariant under each of

~a,a!↔~b,b!, ~18!
09500
rti- ~c,g!↔~d,d!, ~19!

~a,a,b,b!↔~c,g,d,d!. ~20!

To express Eq.~17! in a purely algebraic form, we spli
each additional bubble into a vertex part~16! and a propaga-
tor part
ator part.
~21!

where we have imposed the relevant symmetries~18!–~20!. Equation~17! can now be written as

~22!

Since the vertex is independent of any momenta, the integration over the loop momenta can be done in the propag
Abbreviate

E
p
[m42dE ddp

~2p!d , ~23!

with the renormalization scalem, and use dimensional regularization together with the modified minimal subtraction (MS)
scheme throughout. Define
3-3
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~24!
a
m

where an additional factor of 1/2 has been introduced to
count for the implicit symmetry factors in the bubble su
~17!, which can now be written as

Sabgd
abcd 5Vabgd

abcd 1Vabmn
abmnPmnm8n8

mnm8n8Vm8n8gd
m8n8cd

1Vabmn
abmnPmnm8n8

mnm8n8Vm8v8m9n9
m8n8m9n9Pm9n9m-n-

m9n9m-n-Vm-n-gd
m-n-cd

1¯ . ~25!

The strategy for computingD1–D5 is given in the Appendix.
Keeping only at least quadratically divergent, i.e.,O(L2),
terms for the totalD1–D5 , andO(L0) terms for their real
parts, the results are

D1~k2!52
iLV

4

96~4p!2mW0
4 F1

e
1

5

6
2 ln

LV
2

m̄2 G
2

5iLW
2 LV

2

48~4p!2~LW
2 2LV

2 !mW0
2 ln

LW
2

LV
2

2
7iLV

2

1152~4p!2mW0
2 S k2

mW0
2 D 1O~L0!, ~26!

ReD1~k2!5
pA124mW0

2 /k2

60~4p!2 F S k2

4mW0
2 D 2

18S k2

4mW0
2 D 16G

1O~L22!, ~27!
09500
c-
D2~k2!52

iLV
4

96~4p!2mW0
4 F1

e
1

5

6
2 ln

LV
2

m̄2 G
1

iLW
2 LV

2

48~4p!2~LW
2 2LV

2 !mW0
2 ln

LW
2

LV
2

2
7iLV

2

1152~4p!2mW0
2 S k2

mW0
2 D 1O~L0!, ~28!

ReD2~k2!5
pA124mW0

2 /k2

60~4p!2 F S k2

4mW0
2 D 21G2

1O~L22!,

~29!

D3~k2!5
11iLV

2

576~4p!2mW0
2 S k2

mW0
2 D 1O~L0!, ~30!

ReD3~k2!5
pA124mW0

2 /k2

60~4p!2 F26S k2

4mW0
2 D 2

213S k2

4mW0
2 D 14G1O~L22!, ~31!

D4~k2!52
7iLV

2

576~4p!2mW0
2 S k2

mW0
2 D 1O~L0!, ~32!

ReD4~k2!5
pA124mW0

2 /k2

60~4p!2 F S k2

4mW0
2 D 21G

3F4S k2

4mW0
2 D 11G1O~L22!, ~33!
3-4
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D5~k2!5O~L0!, ~34!

ReD5~k2!5
pA124mW0

2 /k2

60~4p!2 F8S k2

4mW0
2 D 2

14S k2

4mW0
2 D 13G

1O~L22!, ~35!

wheree is defined byd5422e with spacetime dimensiond.
Note thatD1(k2) and D2(k2) have the same quartically d
vergent part

D~4![2
iLV

4

96~4p!2mW0
4 F1

e
1

5

6
2 ln

LV
2

m̄2 G . ~36!

Note further thatD3(k2), D4(k2) are only quadratically di-
vergent and thatD5(k2) is at most logarithmically divergent
In Sec. III C we will need the following linear combination
which are only quadratically divergent:

24i @D1~k2!2D2~k2!#52
LV

2

2~4p!2mW0
2

ln~LW
2 /LV

2 !

12LV
2/LW

2

1O~L0! ~37!

and

24i @D1~k2!2D2~k2!1D3~k2!2D4~k2!#

5
LV

2

8~4p!2mW0
4 S k224mW0

2
ln~LW

2 /LV
2 !

12LV
2/LW

2

1
ip~k214mW0

2 !~k224mW0
2 !3/2

3Ak2LV
2 D 1O~0,22!,

~38!

where the shorthand notation

O~m,n![ReO~Lm!1Im O~Ln! ~39!

has been used.

B. Tensor structure of Vabgd
abcd and Pabgd

abcd

Now let us analyze the tensor structures that can appe
the bubble sum. The SU~2! tensors in Eqs.~16! and~24! are

dabdcd , dacdbd , daddbc , ~40!

which can be rewritten into the following linear combin
tions corresponding to isospin-0, -1, and -2 contributionss0 ,
s1 , ands2 , respectively, in the (a,b)↔(c,d) channel, where
we also indicate the parity under the symmetry transform
tions ~18!–~20!:
09500
in

-

a↔b c↔d (a,b)↔(c,d)

s05
1
3 dabdcd 1 1 1

s15
1
2 ~dacdbd2daddbc! 2 2 1

s252 1
3 dabdcd

1 1
2 ~dacdbd1daddbc!

1 1 1

~41!

These relations can be inverted to give

dabdcd53s0 , ~42!

dacdbd5s01s11s2 , ~43!

daddbc5s02s11s2 . ~44!

Define the productsksl by (sk)abmn(sl)mncd. This can be
analyzed in terms of thesk again such that we have an alg
bra

sksl5sklmsm . ~45!

It is easy to see that thesklm are given by

sklm5 H1, k5 l 5m,
0, otherwise, ~46!

which merely means that the different isospin channels
not mix. This can be illustrated by defining the matrixSwith
elementsSkl5sksl ,

S5S s0

s1

s2

D , ~47!

where empty entries are vanishing, and observing the
sence of nonzero off-diagonal elements.

Going to an isospin basis

u6&=Wm
65

1

&
~Wm

1 7 iWm
2 !, ~48!

u0&=Zm5 iWm
3 , ~49!

we can use Clebsch-Gordan coefficients to write

s0=u0,0&^0,0u, ~50!

s1= (
k521

1

u1,k&^1,ku, ~51!

s2= (
k522

2

u2,k&^2,ku, ~52!

where the first entry means the total isospin and the sec
its three-component.

The Lorentz tensors in Eqs.~16! and ~24! are

gabggd , gaggbd , gadgbg , ~53!

gabkgkd , gagkbkd , gadkbkg ,

ggdkakb , gbdkakg , gbgkakd , ~54!
3-5
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kakbkgkd . ~55!

Define

gmn
tr 5gmn2kmkn /k2. ~56!

Then the tensors in Eqs.~53!–~55! can be expressed in term
of the linear combinations

t15
1

d21
gab

tr ggd
tr , ~57!

t25
1

Ad21k2
gab

tr kgkd , ~58!

t35
1

Ad21k2
ggd

tr kakb , ~59!

t45
1

k4 kakbkgkd , ~60!

t552
1

d21
gab

tr ggd
tr 1

1

2
~gag

tr gbd
tr 1gad

tr gbg
tr !, ~61!

t65
1

2
~gag

tr gbd
tr 2gad

tr gbg
tr !, ~62!

t75
1

2k2 ~gag
tr kbkd1gbd

tr kakg1gad
tr kbkg1gbg

tr kakd!,

~63!

t85
1

2k2 ~gag
tr kbkd2gbd

tr kakg2gad
tr kbkg2gbg

tr kakd!,

~64!

t95
1

2k2 ~gag
tr kbkd2gbd

tr kakg1gad
tr kbkg2gbg

tr kakd!,

~65!

t105
1

2k2 ~gag
tr kbkd1gbd

tr kakg2gad
tr kbkg2gbg

tr kakd!.

~66!

Define the producttkt l by (tk)ab
mn(t l)mngd and get the alge-

bra

tkt l5tklmtm . ~67!

The only nonzerotklm are

t1,1,15t1,2,25t2,3,15t2,4,25t3,1,35t3,2,45t4,3,35t4,4,4

5t5,5,55t6,6,65t7,7,75t7,8,85t6,9,75t8,10,85t9,7,9

5t9,8,105t10,9,95t10,10,1051. ~68!

To make the structure of this algebra more transparent,
fine the matrixT with elementsTkl5tkt l ,
09500
e-

~69!

where all empty entries are vanishing and where the li
have been drawn to guide the eye.

Since the different isospin channels decouple from e
other, let us decompose each relevant tensorXabgd

abcd by writ-
ing

Xabgd
abcd [X5X0s01X1s11X2s2 , ~70!

e.g.,

V5V0s01V1s11V2s2 , ~71!

P5P0s01P1s11P2s2 , ~72!

B~L !5B0
~L !s01B1

~L !s11B2
~L !s2 . ~73!

The XI can be decomposed into thetk by writing

XI5XIk
~ t !tk , ~74!

wherek runs from 1 to 10. For example, we have, for th
anomalous couplings,

V052i $@~d13!g41~3d21!g5#t11Ad21~g413g5!

3~ t21t3!15~g41g5!t412~2g41g5!~ t51t7!#%,

~75!

V1522i ~g422g5!~ t61t10!, ~76!

V25 i @2~dg412g5!t112Ad21g4~ t21t3!14~g41g5!t4

12~g412g5!~ t51t7!# ~77!
3-6



n.

es

RESONANCE IN STRONGWW RESCATTERING IN . . . PHYSICAL REVIEW D60 095003
and, for the integrated propagator part,

P05P252~D11dD2!t112Ad21~D21D4!~ t21t3!

12~D112D212D314D41D5!t412~D11D2!t5

12~D11D21D31D4!t7 , ~78!

P152~D12D2!t612~D12D21D32D4!t10.
~79!

Now we can write
s

th
o

a-

09500
BI
~L11!5

1

2
~BI

~L !PIVI1VI PIBI
~L !!. ~80!

Note that the symmetry~20! preventst8 andt9 from appear-
ing in theVI andPI and that therefore Eq.~69! tells us that
they will not be generated at any point in our calculatio
Equation~20! also restrictst2 and t3 to appear only in the
combinationt21t3 in VI , PI , and BI

(L) , which is not the
case for the single terms on the right-hand side of Eq.~80!.

Let us introduce a basis of Lorentz tensors which includ
only those necessary to describe theVI , PI , andBI

(L) :
a↔b g↔d S a
b D↔S g

d D
u1[t15

1

d21
gab

tr ggd
tr 1 1 1

u2[t21t35
1

Ad21k2
~gab

tr kgkd1ggd
tr kakb! 1 1 1

u3[t45
1

k4 kakbkgkd 1 1 1

u4[t552
1

d21
gab

tr ggd
tr 1

1

2
~gag

tr gbd
tr 1gad

tr gbg
tr ! 1 1 1

u5[t65
1

2
~gag

tr gbd
tr 2gad

tr gbg
tr ! 2 2 1

u6[t75
1

2k2 ~gag
tr kbkd1gbd

tr kakg1gad
tr kbkg1gbg

tr kakd! 1 1 1

u7[t105
1

2k2 ~gag
tr kbkd1gbd

tr kakg2gad
tr kbkg2gbg

tr kakd! 2 2 1

~81!
p

As in Eq. ~41!, we have indicated the parity under the sym
metry transformations~18!–~20!.

To give the tensorsu1–u7 a physical interpretation, let u
consider them in the rest system ofkm , i.e., where

k̄m[
km

Ak2
5~1,0,0,0! ~82!

and

2gmn
tr 5S 0

0
0
0

0
1
0
0

0
0
1
0

0
0
0
1
D . ~83!

Then the Lorentz index 0 refers to a spin-0 particle and
other three components to a spin-1 particle. In a general L
entz frame,Wm contains a spin-1 field withkmWm50 and a
spin-0 fieldkmWm . Write the tensors in a bra and ket not
tion such that
-

e
r-

k̄a=us&1 , ~84!

k̄b=us&2 , ~85!

k̄g=1^su, ~86!

k̄d=2^su ~87!

~the indices enumerate the particles!, where s refers to a
‘‘scalar,’’ and u1!, u2!, u3! are states with definite spin-u
components in thex, y, andz directions, respectively. Going
to a spin basis withus& and

u61&5
1

&
@ u1!7 i u2)], ~88!

u0&5 i u3), ~89!

we can use Clebsch-Gordan coefficients to write
3-7
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u1=u0,0&^0,0u, ~90!

u2=2~ u0,0&1^su2^su1us&1us&2^0,0u!, ~91!

u3=us&1us&2 1^su2^su, ~92!

u4= (
k522

2

u2,k&^2,ku, ~93!

u5= (
k521

1

u1,k&^1,ku, ~94!

u6=2
1

2 (
k521

1

~ uk&1us&21us&1uk&2)~1^ku2^su11^su2^ku!,

~95!

u7=2
1

2 (
k521

1

~ uk&1us&22us&1uk&2)~1^ku2^su21^su2^ku!,

~96!

where the first entry means the total isospin and the sec
its three-component, when two entries are present. This
lows for the interpretation ofu1 , u5 , andu4 as channels for
spin-0, -1, and -2 combinations, respectively, from tw
spin-1 particles. Thenu3 is interpreted as a spin-0 combin
tion of two scalar particles andu2 as a mixing channel be
tween the spin-0 combination of two spin-1 particles and
spin-0 combination of two scalar particles.u6 and u7 are
different spin-1 combinations of a scalar and a spin-1 p
ticle.

Now we can write, for the vertex,

V052i @~d13!g41~3d21!g5#u11Ad21~g413g5!u2

15~g41g5!u312~2g41g5!~u41u6!], ~97!

V1522i ~g422g5!~u51u7!, ~98!

V25 i @2~dg412g5!u112Ad21g4u214~g41g5!u3

12~g412g5!~u41u6!# ~99!

and, for the integrated propagator part,

P05P252~D11dD2!u112Ad21~D21D4!u2

12~D112D212D314D41D5!u3

12~D11D2!u412~D11D21D31D4!u6 ,

~100!

P152~D12D2!u512~D12D21D31D4!u7 .
~101!

C. Transfer matrices and their eigenvalues

Writing

BI
~L !5BIk

~L !uk , ~102!
09500
nd
l-

e

r-

we can define transfer matricesMI , such that

BIk
~L11!5MIklBIl

~L ! . ~103!

Writing

VI5VIkuk ~104!

and using that

BI
~0!5VI , ~105!

we can write

BIk
~L !5~MI

L!klVIl . ~106!

This can be simplified further. From Eqs.~69! and ~81! and
the absence oft8 and t9 follows that u4 , u5 , u6 , and u7
propagate independently. The symmetries~18! and ~19! to-
gether with the parity properties noted in Eqs.~41! and ~81!
necessitate thatu5 andu7 appear only in the isospin-1 chan
nel, while the otheruk appear only in the isospin-0 an
isospin-2 channels, which we summarize in the followi
table:

isospin

0 1 2

0 s0u1 ,s0u2 ,s0u3 s2u1 ,s2u2 ,s2u3

spin 1 s0u6 s1u5 ,s1u7 s2u6

2 s0u4 s2u4

(107)

Even thoughs1u5 ands1u7 carry the same spin and isosp
assignments, they do not mix. We can write

V05 (
k51

3

V0k
~123!uk1V0

~4!u41V0
~6!u6 , ~108!

V15V1
~5!u51V1

~7!u7 , ~109!

V25 (
k51

3

V2k
~123!uk1V2

~4!u41V2
~6!u6 ,

~110!

and then

B0k
~L !5(

l 51

3

~M0
~123!L!klV0l

~123! , k51,2,3, ~111!

B04
~L !5l0

~4!LV0
~4! , ~112!

B06
~L !5l0

~6!LV0
~6! , ~113!

B15
~L !5l1

~5!LV1
~5! , ~114!

B17
~L !5l1

~7!LV1
~7! , ~115!

B2k
~L !5(

l 51

3

~M2
~123!L!klV2l

~123! , k51,2,3, ~116!
3-8
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B24
~L !5l2

~4!LV2
~4! , ~117!

B26
~L !5l2

~6!LV2
~6! , ~118!

with

l0
~4!58i ~2g41g5!~D11D2!, ~119!

l0
~6!58i ~2g41g5!~D11D21D31D4!, ~120!

l1
~5!524i ~g422g5!~D12D2!, ~121!

l1
~7!524i ~g422g5!~D12D21D32D4!, ~122!

l2
~4!54i ~g412g5!~D11D2!, ~123!

l2
~6!54i ~g412g5!~D11D21D31D4!, ~124!

M0
~123!52i S 2a0

b0

0

2c0

a01d0

2b0

0
c0

2d0

D , ~125!

a05@~d13!g41~3d21!g5#D11@~d214d21!g4

1~3d212d23!g5#D21~d21!~g413g5!D4 ,

~126!

b05Ad21$~g413g5!D11@~d15!g41~3d15!g5#D2

15~g41g5!D4%, ~127!

c05Ad21$~g413g5!D11@~d15!g41~3d15!g5#D2

12~g413g5!D31@~d17!g41~3d111!g5#D4

1~g413g5!D5%, ~128!

d055~g41g5!D11@~d19!g41~3d17!g5#D2

110~g41g5!D31@~d119!g41~3d117!g5#D4

15~g41g5!D5 , ~129!

M2
~123!52i S 2a2

b2

0

2c2

a21d2

2b2

0
c2

2d2

D , ~130!

a25~dg412g5!D11@~d21d21!g412dg5#D2

1~d21!g4D4 , ~131!

b25Ad21$g4D11@~d12!g412g5#D2

12~g41g5!D4%, ~132!

c25Ad21$g4D11@~d12!g412g5#D2

12g4D31@~d14!g412g5#D41g4D5%, ~133!

d252~g41g5!~D112D31D5!1@~d13!g4

14g5#D21@~d17!g418g5#D4 . ~134!
09500
All other BIk
(L) are zero.

We still have to diagonalizeM0
(123) and M2

(123) . Before
explicitly doing so, let us finish the formal developmen
AssumeM0

(123) to have eigenvectorsv00, v01 , v02 with
corresponding eigenvaluesl00, l01 , l02 . In the same
way, assumeM2

(123) to have eigenvectorsv20, v21 , v22

with corresponding eigenvaluesl20, l21 , l22 . The v0k
andv2k are then linear combinations of theu1 , u2 , u3 .

If we write theVI as

V05 (
k50,6

c0kv0k1c0
~4!u41c0

~6!u6 , ~135!

V15c1
~5!u51c1

~7!u7 , ~136!

V25 (
k50,6

c2kv2k1c2
~4!u41c2

~6!u6 ,

~137!

we can write

B0
~L !5 (

k50,6
c0kl0k

L v0k1c0
~4!l0

~4!Lu41c0
~6!l0

~6!Lu6 ,

~138!

B1
~L !5c1

~5!l1
~5!Lu51c1

~7!l1
~7!Lu7 , ~139!

B2
~L !5 (

k50,6
c2kl2k

L v2k1c2
~4!l2

~4!Lu41c2
~6!l2

~6!Lu6 .

~140!

The final result is then

S5S0s01S1s11S2s2 , ~141!

with

S05 (
L50

`

B0
~L !5 (

k50,6

c0k

12l0k
v0k1

c0
~4!

12l0
~4! u41

c0
~6!

12l0
~6! u6 ,

~142!

S15 (
L50

`

B1
~L !5

c1
~5!

12l1
~5! u51

c1
~7!

12l1
~7! u7 , ~143!

S25 (
L50

`

B2
~L !5 (

k50,6

c2k

12l2k
v2k1

c2
~4!

12l2
~4! u41

c2
~6!

12l2
~6! u6 .

~144!

A resonance arises if for somek2 an eigenvalue become
unity.

From the decomposition ofV0 , V1 , V2 in terms of the
uk , Eqs.~97!–~99!, we can read off

c0
~4!5c0

~6!54i ~2g41g5!, ~145!

c1
~5!5c1

~7!522i ~g422g5!, ~146!

c2
~4!5c2

~6!52i ~g412g5!. ~147!
3-9
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The eigenvectors of a matrix of the form

M5S 2a
b
0

2c
a1d
2b

0
c

2d
D ~148!

are

v05S 22c
a2d
2b

D , ~149!

v65S c@a2d6A~a2d!214bc#
2bc

b@d2a6A~a2d!214bc#
D , ~150!

with respective eigenvalues

l05a1d, ~151!

l65a1d6A~a2d!214bc. ~152!

Therefore, the eigenvalues ofM0
(123) are

l0052i ~a01d0!, ~153!

l0652i @a01d0

6A~a02d0!214b0c0#. ~154!

Keeping only quartically divergent terms, they become

l0052i @~d216d116!g41~3d218d18!g5#D~4!1O~L2!,
~155!

l0154i ~d12!@~d14!g41~3d12!g5#D~4!1O~L2!,
~156!

l02516i ~2g41g5!D~4!1O~L2!. ~157!

In the same way, the eigenvalues ofM2
(123) are

l2052i ~a21d2!, ~158!

l2652i @a21d2

6A~a22d2!214b2c2#. ~159!

Keeping again only quartically divergent terms, they beco
09500
e

l2052i @~d213d14!g412~d14!g5#D~4!1O~L2!,
~160!

l2154i ~d12!@~d11!g412g5#D~4!1O~L2!,
~161!

l2258i ~g412g5!D~4!1O~L2!. ~162!

Now let us consider the rest of the eigenvaluesl I
(k) .

Keeping only quartically divergent contributions, we get

l0
~4!516i ~g41g5!D~4!1O~L2!, ~163!

l0
~6!516i ~g41g5!D~4!1O~L2!, ~164!

l2
~4!58i ~g412g5!D~4!1O~L2!, ~165!

l2
~6!58i ~g412g5!D~4!1O~L2!. ~166!

In l1
(5) andl1

(7) the quartically divergent contributions can
cel. Combining Eq.~121! with Eq. ~37! and Eq.~122! with
Eq. ~38! and keeping also quadratically divergent contrib
tions and the leading imaginary part ofl1

(7) gives

l1
~5!52~g422g5!

LV
2

2~4p!2mW0
2

ln~LW
2 /LV

2 !

12LV
2/LW

2 1O~L0!,

~167!

l1
~7!5~g422g5!

LV
2

8~4p!2mW0
4 S k224mW0

2
ln~LW

2 /LV
2 !

12LV
2/LW

2

1
ip~k214mW0

2 !~k224mW0
2 !3/2

3Ak2LV
2 D 1O~0,22!,

~168!

where we have used again the shorthand notation~39!. No-
tice that the only eigenvalues that are not quartically div
gent arel1

(5) and l1
(7) . In fact, with finite LV and LW the

corresponding integrals are convergent and dimensio
regularization is used merely for convenience.

D. Resonance

Combining these results with Eqs.~141!–~144! as well as
Eq. ~146! gives
S5
22i ~g422g5!s1u5

11~g422g5!
LV

2

2~4p!2mW0
2

ln~LW
2 /LV

2 !

12LV
2/LW

2 1O~L0!

1
22i ~g422g5!s1u7

12~g422g5!
LV

2

8~4p!2mW0
4 S k224mW0

2
ln~LW

2 /LV
2 !

12LV
2/LW

2 1
ip~k214mW0

2 !~k224mW0
2 !3/2

3Ak2LV
2 D 1O~0,22!

1O~L24!.

~169!
3-10
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Under the assumption that the anomalous couplings dominate the gauge coupling and the additional assumptionug4

22g5u@8(4p)2mW0
4 /(LV

2mr
2) @mr is the resonance mass: see Eq.~173! below#, the terms in Eq.~169! are in leading order

independent ofg4 andg5 . Modeling the second term in Eq.~169! with a Breit-Wigner shape~and consequently neglecting th
k2 dependence of the width term! gives

~170!
bl

av
. F

e

two
des

the
are
ding
ding

t,
l
ent,

C.

on
ve
ect
ne
are

s lies
he
cou-

e

-
ing,
on

he

ma

al
ary
e

with

C15
4mW0

2

LV
2 S ln~LW

2 /LV
2 !

12LV
2/LW

2 D 21

, ~171!

C25
16~4p!2mW0

4

LV
2 , ~172!

mr52mW0Aln~LW
2 /LV

2 !

12LV
2/LW

2 1O~L22!, ~173!

and

G r5
p~mr

214mW0
2 !~mr

224mW0
2 !3/2

3mr
2LV

2 1O~L24!. ~174!

Note that we can trivially drop the superscript ‘‘tr’’ in theC2
term in Eq.~170!.

The direct calculation of the resonant part of the bub
sum ~17! gives the mass~173! and the width~174! for the
resonance. As a consistency check for the width, we h
computed the decay rate of the resonance independently
k2'mr

2, the resonant part of the bubble sum~170! can be
written as

leabm@kagbm2kbgam#~2 i !dmn

3S gmn

k22mr
21 imrG r

1XkmknDlecdn

3@~2k!ggdn2~2k!dggn#, ~175!

with

l5
2~4p!mW0

2

LVmr
~176!

and arbitraryX. That is, the bubble sum can be decompos
into a spin-1 propagator part

2 idmnS gmn

k22mr
21 imrG r

1XkmknD ~177!
09500
e

e
or

d

and two derivative couplings

leabc~kagbg2kbgag!. ~178!

This coupling can be used to compute the decay rate into
W bosons. The result of this standard calculation coinci
with Eq. ~174!.

IV. DISCUSSION

The first thing one notices about the contributions to
bubble sum is that in most channels quartic divergences
present. In these cases we did not calculate the sublea
terms. In case quartic divergences are present the sublea
terms could be of the formL2k2. If such terms are absen
the whole interaction is suppressed by 1/L4 and the channe
is of no phenomenological interest. If such terms are pres
resonances are present at a scaleO(L2). These are out of the
reach of present colliders and possibly also of the LH
Much more interesting is theI 51, J51 channel where we
find a low-lying resonance in the termu7 , which corre-
sponds to longitudinal vector boson scattering. Depending
the ratioLW /LV , one finds the resonance below or abo
the vector boson threshold. On physical grounds we exp
LV to be the smaller, as it is directly related to the Goldsto
boson sector of the theory, where the strong interactions
supposed to take place. In that case the resonance alway
above the two-W threshold. Because the interactions of t
transversal vector bosons are suppressed by the gauge
pling, a reasonable assumption would beLV'gLW . This
corresponds tomr'200 GeV. A recent comparison with th
LEP-100 data gives a limitLV.490 GeV @7#. For mr
5200 GeV, this givesG r,12 GeV. The fact that the reso
nance can be at such low energy is somewhat surpris
given our experience with chiral perturbation theory in pi
physics.

To study the connection with pion physics we make t
substitutionsg45g4e4 , g55g4e5 , andmW05g fp/2. In the
resulting Lagrangian one takesg→0, with e4 , e5 , and f p

fixed. This way one finds the standard nonlinear sig
model with two higher-derivative terms. We definegr

54(e422e5). For didactical purposes we keep in the chir
perturbation theory here the tree-level terms, the imagin
part of the ordinary chiral loop, and the contribution of th
3-11
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first loop we calculated. One finds, for theI 51, J51 ampli-
tude,

a11~s!5
s

96p f p
2 F11

grs

f p
2 1

gr
2LV

2

32p2f p
2

s2

f p
4 1

is

96p f p
2

3S 11
gr

2s2

f p
4 D G . ~179!

After unitarizing the amplitude with the@1,1# Padéapproxi-
mant one finds ther resonance with a width given by

Gr5
mr

3

96p f p
2 S 12

LV
2

32p2f p
2 D . ~180!

We had to ignore thes4 term in the imaginary part ofa11
because it is of too high an order in chiral perturbation the
and other terms of this order have been ignored. The p
ence of the extra loops that we calculated results therefor
a correction to the Kawarabayashi-Suzuki-Ria`zuddin-
Fayyazuddin ~KSRF! @9# relation Lr5mr

3/(96p f p
2 ). Of

course, this is not the full story for chiral perturbation theo
but it shows that the effects we calculated are only a sm
correction to pion physics. The reason we get a large ef
in our calculation is that we assume that the interactions
dominated by thegr interaction. In the chiral limit this is no
possible, because at low enough energy the lowest-o
term ins always dominates. Since within the standard mo
there is theW threshold to consider, it makes sense to s
that the anomalous term dominates. It meansugrus2/v2@s
for s.4mW0

2 . Within the standard model this translates in
4ug422g5u@g2. This condition therefore quantifies what w
mean by strong anomalous couplings.

The model we discussed fits in naturally in the class
models that give rise to resonances inW physics due to
strong interactions. This class of models is collective
known as the BESS model, from breaking electroweak sy
metry strongly. A recent review of this class of models
@10#. Nonetheless, as the discussion above points out,
model is subtly different from the models in the literatur
due to the dominance of the anomalous couplings. T
would make the model into a mere curiosity were it not fo
very simple class of models giving rise to precisely the
quired structure. This is the class of the strongly interact
singlet Higgs~SISH! models@3#. These models, which con
tain beyond the standard model only extra scalar singlet
ticles, are actually the simplest possible renormalizable
tensions of the standard model. Because the singlets co
only to the Higgs boson, they do not change the pheno
enology at LEP-100 at the one-loop level. Two-loop effe
are too small to be significant. In order to perform a prec
phenomenology of the model, SUR(2) breaking effects
should be taken into account. The model satisfies the L
100 limits on extraZ bosons, because both the coupling
leptons and the mixing with theZ boson are suppressed b
an electroweak loop. The statistics at the Tevatron is
small to see the resonance. For the planned high-energy
liders the phenomenology should be straightforward,
resonances being produced via vector boson fusion.
09500
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LEP-200 the situation is somewhat subtle, as the resona
does not couple to the incoming electrons directly. Stro
form factor effects could play a role. The precise pheno
enology will be left to future work.

Given the fact that the couplings are strong, one can qu
tion how generic the results are. In principle, higher-ord
terms in the chiral perturbation theory could be importa
For the formation of the resonance via a bubble sum, o
four-point vertices contribute. The presence of higher-or
terms will therefore not effect the structure of the calculati
very much. Basically, we expect a form factor forg422g5
which, when inserted into the graphs, makes the explicit
pendence onLV more complicated. However, the term (g4

22g5)LV
2 in formula ~169! is essentially determined b

power counting; so one would expect corrections of the fo
L2→L21O(4mW

2 ). Also, the precise formula for the reso
nance mass as a function ofLW , LV could become more
complicated. However, that will not change the qualitati
picture ofmr'200 GeV, with a coupling of ordermr /LV .

Finally, one can ask if the model is consistent with t
LEP precision data. The limits derived ong4 , g5 in @6,7#
follow from simple perturbation theory and depend crucia
on the behavior in the hypercharge sector of the theory
they come from the limits on ther parameter. For the
strongly interacting case as described here they are not
pected to be a good estimate and could possibly even b
order of magnitude wrong. The model is similar in appe
ance to the standard model in the large Higgs boson m
limit, which is disfavored by the LEP1 data. When one si
ply removes the Higgs boson from the standard model,
model becomes nonrenormalizable, but the radiative effe
grow only logarithmically with the cutoff. The question i
whether this scenario is ruled out by the LEP1 precision d
The LEP1 data appear to be in agreement with the stan
model, with a preferred low Higgs boson mass. One is s
sitive to the Higgs boson mass in three parameters, know
S, T, Uor e1 , e2 , e3 . They receive corrections of the form
g2@ ln(mH /mW)1const#, where the constants are of order
The logarithmic enhancement is universal and would a
appear in models without a Higgs boson as ln(L), whereL is
the cutoff where new interactions should appear. Only wh
one can determine the three different constants can one
one has established the standard model. At present, the
do not suffice to do this to sufficiently high precision.
practice, one can compensate a change in the Higgs b
mass in the formulas with extra contributions to theS, T, and
U parameters. As such terms are generated by the cont
tions of formula~8!, there is enough freedom to fit the dat
see@7# for a discussion. Whether a model with a low-lyin
resonance would actually improve the fit to the data depe
on the couplings to the fermions and to the hypercharge
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APPENDIX: ONE-LOOP RESULTS

Here we list results for the necessary basic one-loop i
grals and for the composite one-loop quantitiesD1–D5 .

Let d be the spacetime dimension,d5422e, let m̄ be
given by ln 4pm22gE5ln m̄2 with the Euler-Mascheroni con
stantgE , and use the abbreviation*p given in Eq.~23!.

The only integrals we need are

I ~m2![E
p

1

p22m2 5
im2

~4p!2 S 1

e
112 ln

m2

m̄2D1O~e!

~A1!

and

I ~k2;ma
2,mb

2![E
p

1

@~p1k!22ma
21 i«#~p22mb

21 i«!
.

~A2!

Define

D[k41ma
41mb

422k2ma
222k2mb

222ma
2mb

2. ~A3!

For k2>0 we get the following results in a straightforwa
calculation.

1. I „k2;ma
2,mb

2
… for D<0

D<0 is equivalent to the statement that none ofk2, ma
2,

mb
2 is larger than the sum of the other two:

I ~k2;ma
2,mb

2!5
i

~4p!2 F1

e
122

k21ma
22mb

2

2k2 ln
ma

2

m̄2

2
k21mb

22ma
2

2k2 ln
mb

2

m̄2

2
A2D

k2 S arctan
k21ma

22mb
2

A2D

1arctan
k21mb

22ma
2

A2D
D G1O~e!. ~A4!

2. I „k2;ma
2,mb

2
… for D>0 with k2<zma

22mb
2z

Here
09500
e-

I ~k2;ma
2,mb

2!5
i

~4p!2 H 1

e
121

mb
22ma

22k2

2k2 ln
ma

2

m̄2

1
ma

22mb
22k2

2k2 ln
mb

2

m̄2

1
AD

k2 ln
ma

21mb
22k21AD

ma
21mb

22k22AD
J 1O~e!.

~A5!

Equation~A5! can also be written as

I ~k2;ma
2,mb

2!5
i

~4p!2 H 1

e
121

mb
22ma

22k21AD

2k2 ln
ma

2

m̄2

1
ma

22mb
22k21AD

2k2 ln
mb

2

m̄2

1
AD

k2 ln
ma

21mb
22k21AD

2m̄2 J 1O~e! ~A6!

or

I ~k2;ma
2,mb

2!5
i

~4p!2 H 1

e
121

mb
22ma

22k22AD

2k2 ln
ma

2

m̄2

1
ma

22mb
22k22AD

2k2 ln
mb

2

m̄2

2
AD

k2 ln
ma

21mb
22k22AD

2m̄2 J 1O~e!.

~A7!

3. I „k2;ma
2,mb

2
… for D>0 with k2>zma

22mb
2z

Here

I ~k2;ma
2,mb

2!5
i

~4p!2 H 1

e
121

mb
22ma

22k2

2k2 ln
ma

2

m̄2

1
ma

22mb
22k2

2k2 ln
mb

2

m̄2

1
AD

k2 ln
k22ma

22mb
22AD

k22ma
22mb

21AD
J 2

AD

16pk2

1O~e!. ~A8!
4. I „k2;m2,m2
…

If D5k2(k224m2)<0, i.e., fork2<4m2, we get, from Eq.~A4!,

I ~k2;m2,m2!5
i

~4p!2 S 1

e
122 ln

m2

m̄222A4m2

k2 21 arctan
1

A4m2

k2 21
D 1O~e!. ~A9!
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For k2!m2, we can expand in powers ofk2/m2 to get

I ~k2;m2,m2!5
i

~4p!2 F1

e
2 ln

m2

m̄2 1
1

6 S k2

m2D1
1

60S k2

m2D 2G1O„e,~k2/m2!3
…. ~A10!

If D5k2(k224m2)>0, i.e., fork2>4m2, Eq. ~A9! becomes

I ~k2;m2,m2!5
i

~4p!2 F 1

e
122 ln

m2

m̄2
1A12

4m2

k2 ln

12
2m2

k2 2A12
4m2

k2

12
2m2

k2 1A12
4m2

k2

G2

A12
4m2

k2

16p
1O~e!. ~A11!

5. I „k2;m2,0… for k2<m2

Now D5uk22m2u>0. Let us assumek2<m2. Then we get, from Eq.~A6! or ~A7!,

I ~k2;0,m2!5I ~k2;m2,0!5
i

~4p!2 F1

e
121

m22k2

k2 ln
m22k2

m̄2 2
m2

k2 ln
m2

m̄2G1O~e!

5
i

~4p!2 F1

e
121

m2

k2 ln S 12
k2

m2D2 ln
m22k2

m̄2 G1O~e!. ~A12!

For k2!m2, we can expand in powers ofk2/m2 to get

I ~k2;0,m2!5I ~k2;m2,0!

5
i

~4p!2 F1

e
112 ln

m2

m̄2 1
1

2 S k2

m2D1
1

6 S k2

m2D 2

1
1

12S k2

m2D 3

1
1

20S k2

m2D 4G
1O„e,~k2/m2!5

…. ~A13!

6. I „k2;ma
2,mb

2
… for k2,ma

2!mb
2

If k2,ma
2!mb

2, we can expand Eq.~A6! or ~A7! in negative powers ofmb
2 to get

I ~k2;ma
2,mb

2!5
i

~4p!2
F 1

e
112 ln

mb
2

m̄2 1

1

2
k21ma

2 ln
ma

2

mb
2

mb
2 1

k2S 1

6
k21

3

2
ma

2D1ma
2~k21ma

2!ln
ma

2

mb
2

mb
4

1

k2S 1

12
k41

7

3
k2ma

21
5

2
ma

4D1ma
2~k413k2ma

21ma
4!ln

ma
2

mb
2

mb
6

1

k2S 1

20
k61

35

12
k4ma

21
17

2
k2ma

41
7

2
ma

6D1ma
2~k616k4ma

216k2ma
41ma

6!ln
ma

2

mb
2

mb
8

G1O~e,mb
210 ln mb

2!.

~A14!

7. I „k2;ma
2,mb

2
… for k2!ma

2,mb
2

Here
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I ~k2;ma
2,mb

2!5
i

~4p!2
F 1

e
112

ma
2 ln

ma
2

m̄22mb
2 ln

mb
2

m̄2

ma
22mb

2 1S ma
21mb

2

2~ma
22mb

2!22
ma

2mb
2

~ma
22mb

2!3 ln
ma

2

mb
2D k2

1S ma
4110ma

2mb
21mb

4

6~ma
22mb

2!4 2
ma

2mb
2~ma

21mb
2!

~ma
22mb

2!5 ln
ma

2

mb
2D k41S ma

6129ma
4mb

2129ma
2mb

41mb
6

12~ma
22mb

2!6

2
ma

2mb
2~ma

413ma
2mb

21mb
4!

~ma
22mb

2!7 ln
ma

2

mb
2D k6G1O~k8,e!. ~A15!
s

8. Calculation of D1 , D2 , D3 , D4 , D5

To compute the quantitiesD1–D5 defined in Eq.~24!, we
first need some preliminaries. Letf in the following be some
function of p2 and (p1k)2.

Contracting

E
p
pa f 5A

ka

k2 ~A16!

with ka gives

A5E
p
~p•k! f . ~A17!

Contracting

E
p
papb f 5A8gab1B8

kakb

k2 ~A18!

with gab andkakb and solving the resulting equations forA8
andB8, we get

A85
1

d21 Ep
S p22

~p•k!2

k2 D f , ~A19!
09500
B85
1

d21 Ep
S 2p21d

~p•k!2

k2 D f .

~A20!

Contracting

E
p
papbpg f 5A9

kagbg1kbgga1kggab

k2 1B9
kakbkg

k4

~A21!

with kagbg and kakbkg and solving the resulting equation
for A9 andB9, we get

A95
1

d21 Ep
S p2~p•k!2

~p•k!3

k2 D f , ~A22!

B95
1

d21 Ep
S 23p2~p•k!1~d12!

~p•k!3

k2 D f .

~A23!

Contracting
E
p
papbpgpd f 5A-~gabggd1gaggbd1gadgbg!

1B-
gabkgkd1gagkbkd1gadkbkg1ggdkakb1gbdkakg1gbgkakd

k2 1C-
kakbkgkd

k4 ~A24!
with gabggd , kakbggd andkakbkgkd and solving the result-
ing equations forA-, B-, andC-, we get

A-5
1

~d21!~d11!
E

p
S p422

p2~p•k!2

k2 1
~p•k!4

k4 D f ,

~A25!
B-5
1

~d21!~d11!
E

p
S 2p41~d13!

p2~p•k!2

k2

2~d12!
~p•k!4

k4 D f ,
~A26!
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C-5
1

~d21!~d11!
E

p
S 3p426~d12!

p2~p•k!2

k2

1~d12!~d14!
~p•k!4

k4 D f . ~A27!

Using the above results, some trivial but lengthy alge
on the integrand, the properties of dimensional regular
tion, the results for one-loop integrals in the preceding pa
of the Appendix, as well as

E
p
~p•k!2nf ~p2!5cn~k2!nE

p
~p2!nf ~p2!, ~A28!
09500
a
-

ts

with

c051, cn5
2n21

d12n22
cn21 , ~A29!

i.e.,

cn5
G~n11/2!G~d/2!

G~n1d/2!G~1/2!
, ~A30!

we can computeD1–D5 . The results are given in the mai
text in Eqs.~26!–~35!.
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