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Asymptotic behavior of the gluon propagator from lattice QCD
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We study the flavorless gluon propagator in the Landau gauge from high statistics lattice calculations.
Hypercubic artifacts are efficiently eliminated by taking t}jpi—>0 limit. The propagator is fitted to the
three-loops perturbative formula in an energy window ranging frod.5 GeV up to~5.5 GeV. ¢ is
extracted from the best fit in a continuous set of renormalization schemes. The fits are very googyyitr a
DOF smaller than 1. We propose a more stringent test of asymptotic scaling based on scheme independence of
the resultingAws. This method shows that asymptotic scaling at three loops is not reached by the gluon
propagator although we use rather large energies. We are only able to obtain an effective flavorless three-loops
estimateA%: 353+ 2725 MeV. We argue that the real asymptotic value fogzs should plausibly be smaller.
[S0556-282(99)06519-4

PACS numbses): 12.38.Gc, 11.10.Gh, 11.10.Jj, 11.15.Ha

The nonperturbative calculation of the running couplingpected, there remains a large systematic error due to the non
constant of QCD is certainly one very important problem.asymptoticity of the gluon propagator.

This program has been performed using the Sdiniger In Sec. I, the general principle of the method is explained.
functional [1], the heavy quark potentigR,3], the Wilson In Sec. Il we perform a discussion of the lattice artifacts
loop [4], the Polyakov loof5] and the three gluon coupling related to the hypercubic geometry, and we propose a solu-
[6,7] The usual approach to determine the strong Coup”néion to eliminate them. In Sec. Il the f@erformed in the
constant(for instance in Ref[4]) consists of the evaluation modified momentum space subtraction (MPKEcheme. In

of an ultraviolet quantity and of the further comparison of Sec. IV we discuss in general the scheme dependence. We
the numerical data with perturbative predictions. The gluorconclude in Sec. V.

propagator at large momenta is a good candidate to be used.

Much work has been recently devoted to the study onthe | GENERAL DESCRIPTION OF THE METHOD
lattice of the gluon propagator8—14], the effort being
mainly concentrated on infrared behavior. The authors of The Euclidean two point Green function in momentum
Ref. [10] have started an ultraviolet study by comparing theSPace writes in the Landau gauge:
asymptotic behavior to the one loop QCD prediction. In this
paper we would like to concentrate on the asymptotic behav- (2)ara - PPy,
ior of the lattice propagator in the Landau gauge by a sys- G, 2p,—P)=GP(p*) 8aa,| Spyu,=—>5 |+ D
tematic use of the three-loops QCD prediction, leaving a P
study of the infrared to a later publication.

The propagator is evaluated to a much better statisticavherea, ,a, are the color indices ranging from 1 to 8. In any
accuracy than the coupling constant computed in Réf. regula.rization schemélattice, dimensional regularization,
and[7]. The three-loops fit should allow a determination of €t¢) With a cutoff A [a™t, (d— 4)~"] the bare gluon propa-
the strong coupling constant and henceAgfcp to a good ~ 9atorin the Landau gauge is such that
accuracy in view of the very large statistics we have accu-
mulated (1000 configurations aB=6.2 on a 24 lattice). ~ dIn[p?GE(p?A)]
This can be done in any renormalization scheme as long as lim
the anomalous dimension of the gluon field and the beta

function are known to three loop. A test of scheme depen- . . )
dence can thus be performed rather extensively. It will turrfS independent of the regularization scheniattice calcu-

out that although the statistical accuracy is very good as eXations provide us with an evaluation of the bare propagator,
and hence of the logarithmic derivative in Eg). The latter

2

Asoo dInp?

*Email address: Philippe.Boucard@th.u-psud.fr
TEmail address: roiesnel@cpht.polytechnique.fr Iwe will return to this statement in the next subsection.
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is an observable on which we will concentrate in this paper 2 7 by /b2
and from which we will compute the strong coupling con- q(a):,u( @ \/3277 bojl%bla(“)mzaz(“) °
stant. a(w) 32m°by+ 167ba+bya
In the momentum space subtractitOM) (or MOM) 21 1 - .
scheme, callingZ;(q) the gluon renormalization constant, ><exp{ b—o<;— m) + 2_b§(b°b2_4bl)
Z5(0, M) =0’ GiRda* M), 3

X{H(a)—H[a(u)]} ®

whereq is a positive energy scale defined %= p?, it hap-
pens that the expression in EQ) is simply equal to
lim, _,..d In Z5(g,A)/dIn o2 a
An important point has to be stated here. The fact that Zs(a)zza(ﬂ)(m
is the renormalization constant in the MOM scheme does not H
constrain us to stick to the MOM scheme all through. Equa- 327%bg+ 16mb a+bya? | 72/2P2770/40
tion (2) defines unambiguously a quantity, the evolution of X ( 32m2bg+ 167-rb1a(,u)+b2a2(,u))
which we can study irany schemeThis evolution is given

and

) Y0289

by the anomalous dimension @k: ( _ M_ /3’172) _ ]
><exp{ "= 2 3, {H(a)—H[a(p)]} |,
din Z3(q2,A) () 9
ding where? for 28,8, — 48>0,
:_(%a_'_ 7126(2 H( ) 1 ¢ ’( 1 8’7T,81+B2a )
= ———=arctan ,— —|.
T (4m) O 2BoBo— 452 AT \[280B,— 47 0

. (4)

Egs.(8),(9) give a parametric representation of the exact so-
lution of the coupled differential equatiof®) and(5), where
can be considered just as a parameter conneztranda.
he use of this parametric representation allows us to work
with exact solutions of Eqg4) and (5), the computation of
a(q) from Eg. (8) being only approximatively possible.
4 5 However, as explained in Sec. IV, no important discrepancy
a"+0(a”) comes from the consistent perturbative expansion ofithe
5) exact solutiong8),(9).
Our general “strategy” will be to fit the lattice results
. with one solution(8),(9). If an acceptable best fit exists, it
with will prove that the lattice results do agree in the considered
energy range with three-loops perturbative QCD. Moreover,
13 it will provide us with the best initial valued(u) anda(u).
Bo=11, B1=51, vo=— (6)  Z(u) is just an overall multiplicative constant, but the
knowledge ofa(w) in a given scheme allows to compute an
estimate ofA o¢p in this scheme, and hendeys.
in the flavorless casey;,y, and 8, being scheme depen- To our knowledge, this method of determining the strong
dent. As we shall see later, there is one scheme-independesdupling constant on the lattice is new. In Rgf0], the
relation betweery,,y, andB,. To be specific, in the flavor- asymptotic behavior of the gluon propagator has been com-
less MOM scheme, for whicks, is known[17]: pared to the one loop perturbative QCD prediction. The au-
thors indeed find rough agreement. However, the valug of
29 that one can extract from the one loop fit is not meaningful
B,=4824.0, y,=—, v,=960. (7)  since,y, being scheme independent, one does not know in
8 which scheme it is computed. In the following we will sys-
tematically compare the two loops to the three loops result in

where it is understood that the coupling constant in a giverflf
scheme is a function af such that

da _ ﬁoaz B1 ot B2
(2m)? (4m)°

The calculation ofy; and vy, will be explained later.

From Egs.(4) and (5) it is easy to integrate simulta-
neously, up to three loops, k() and«(q) provided oneis  2We write the formal solution of Eq$4,5) for the case of positive
given the value<Z;(«) and a(w) at some initial valueqg discriminant because this is the case, for instance, of MOM and
=u, modified minimal subtractionM_S) schemes.
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a large set of schemes, and we shall conclude that at the dInZs(q,A)
accessible scales of 2.5-5. GeV, the gluon propagator does lim

not scale to two loops and hardly does to three loops in the =~ A—« ding?
most favorable schemes. In tMS scheme, no sign of scal-

ing is found. =I'(a)

Yo— Y1 — Y2 o

~ame (477)2& - (4W)3a O(a*)

A. Three loops expansion =

In a general renormalization scheme, which we call SC,
and in a fixed gauge 13 _ 155_3_2 6656__

=— - — S+0(a*). (16
G2 A)=Zs sda, AGEA P2 q) +O(LA)], 200" am?® @m0 19
(11

. o . B. General three-loops schemes
where Z5 s¢ is the renormalization constant in the scheme P

and G the renormalized gluon propagator. Notice by the I the strong coupling constant is expressed in some other
way, that from Eq.(11) one immediately obtains the well Scheme, which we shall call generically the “tilde” scheme,
known abovementioned result that once knowna as a function ofa, changing scheme simply
amounts to a change of variables. If
dinZs sda,A)  dinGE(p?.q)
m 5 =— 5 (12 . _ a_ b _
Ao dinqg ding a=a+ —a’+ as+ - (17
4 (47)2

is finite and independent of the regularization scheme, while
the right-hand sidéRHS) is independent op?. From Egs. then as shown for example in R¢L7],
(3) and(11), _ 5
Aws=Ae” 2P0, By= B, sT2B(b—a%) —4ap..
Z5(9,M) =0’ G2 d% ) (18)

=73 sdd,M[a’°GL(a%a)+O(L/A)] (13)  TheY's being defined from

whence _dInZs(q,A) ~ Yo ~ V1 ~5
I|m —ZZF(Q)"‘—T ——2
dinZy(q,A) . dInZs sdq,A) A= dIng (4m) " (4m)
m = lim
A dIng? Asce ding? Yy B
- 3a3+ O(a?), (19
dIn[q’G&(a%a)] 10 (4m)
+ .

ding? are then computed from the change of varialfle8 inserted

, ) ) into Eq. (16), finally leading to the relations
Expanding Eq.(14) in « introduces a dependence on the

scheme in whichx is expressed. We will now specify the

71—
scheme SC to be thdS scheme since the gluon propagator Aws=A exr{ L

, (20
anomalous dimension has been computed to three [emes 270bo
Eqg. (8) in Ref.[15]]: — ~ ~\2 =2
~ Y272 Y1 Y1
=B, ys+2 +| = —|—
i dInZs s(a,0) 13 531 Pa= B2 Wt 2Py = (70) 70)
=— a— (4%
A—w  dIng? 2(4m) " 8(4m)? -7
—4B; (21)
29311 _, Yo

a®+0(a?), (15
32(4m)? It results thaiB,, y;, andy, are not independent param-
_ _ eters. Knowing two among these three parameters allows the
where a is the coupling constant in th®1S scheme and computation of the third one. We stress that in any “tilde”
where thee=d—4—0 limit has been taken. Using ndithe  scheme, only two parameters are required for any purpose
expression fop?,G{2(q?,q) in [16] we can rewrite Eq(14)  we need in the study that we present in this paper. In other
as words, the set of renormalisation schemes is a two parameter

space in which thé/S is one point, and MOManother. On

the following, we will use the coordinates/{,y,) to char-
T026E(q2,0)] L is equal toJ™ as given in Eq(8.13 in Ref.  acterize any renormalisation scheme of the two parameter
[16]. space. The possible use of this large parameter space of
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FIG. 1. Plot(a) shows(open circles Z3(q), Eq. (3), as a function of the scalgwith a distinct point for each orbit. It also showslack
circles Z,(q) with the factorg? replaced byg? in Eq. (3). Even with the latter which reduces somehow the dispersion, the difference
between the individual orbits at a samexceeds by far the statistical errors. Rlot compares the “democratic” selection among orbits

(lower curve, as a function ofj and the curve extrapolated p&*!=0 as in Eq(28). The latter procedure gives obviously a much smoother
result.

schemes will provide us with a tool which we will exploit N o
extensively in the following. Note that whepy =7,=0, the AS=AC(a)| 1+
coupling constantr is nothing but the “effective charge”

[18] as_,sociated to the observable defined in E()l In Ref. _ In Egs.(23),(24) we have omitted for simplicity to write the
[18] this charge was argued to be the proper object on which , dependence ok
perturbation theory applies. We will generalize the latter phi-’“ P '

losophy by considering also schemes with a non-vanishing

Y172
In any “tilde” scheme, once evaluated (), we can
computeX up to three loops. For a discussion of the differ- ~ We refer to Ref[7] for a description of the lattice simu-
ent formulas, see Ref17]. At two loops we will use the lations which have been performed, the calculation of the
conventional formula Green functions, their Fourier transform, the checks of the
531’32 color dependence of the propagators, and the set of

882— BofBo.
B2 ﬂoﬁza). ”

167233

Il. HYPERCUBIC ARTIFACTS
AND OTHER O(a?p?) EFFECTS

~ a0\ —B1IBY momenta cqnsidered for the Qiffere_nt lattices studied. We

AO= 4 ex —2m x ( Boar (1) 22) will use in this study 1000 configurations At=6.2 on a 24

Boa( w?) Aar lattice and 100 configurations gt=6.4 on a 32 lattice. The
large statistics involved will reduce the statistical error to a

] ~ ) ) negligible value.
At three loops, we will use, wheA=28,8,—4p1>0, ei- In a finite hypercubic volume the momenta are the dis-
ther the unexpanded formula crete sets of vectors
~ =2\ A28 2w
7\(3)57\(0)('&) 14 Bra N Boa ) pM—TnM, (25
27Bo  327B,

wheren, are integer andl is the lattice size. As explained in
; VA Ref.[7], we have averaged the propagators on the hypercu-
arcta 2B+ Boaldar bic isometry grougH,. The momenta corresponding to, e.g.,

p{ﬁoﬁz_‘lﬂ%
X ex
n,=(2,0,0,0) andn,=(1,1,1,1), belong to different orbits

285\A

JA although they both have the sap&=4(27)?%/L?, i.e., they
—arctar{ ﬁ) (23 belong to the same orbit of theontinuumisometry group
1 SQO(4). Our statistical errors are so tiny that the difference
between the evaluated propagators for two such orbits of
or the expanded one samep? are quite visible, as shown in Fig(al. Such differ-
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FIG. 2. Plot(a) shows(full line) the best fit of the three loops formula &,(g2) g2 with the “democratic” selection of orbits for 2.74
GeV <q= 4.21 GeV. The fit is prolongated outside the energy window in dashed liney¥per DOF is 15.5. Plotb) shows the best fit
of G,(g?)g? extrapolated t@!* =0 according to Eq(28) for 2.78 GeV<(q=< 4.32 GeV. They? per DOF is 0.52. The improvement of the
x> per DOF by a factor~30 is dramatic. Notice furthermore that the number of points is larger in(pjobecause the “democratic”
selection eliminates all the orbits for some valuegjof

ences are understood as @a“p?®) artifact of the hypercu- factor as a functios2)(p2,p!*l). When several orbits exist

bic geometry of the lattice. For example, if one uses, rathefor one p2, it is possible to extrapolate tpl*/=0 and we

than Eq.(25), the momentum define
~ 2  |ap G@ (p)= lim G@®(p2 pl4ly. 28
pﬂ:asm TM . (26) bare(p ) p[‘:]rio Iat(p P ) ( )

The resulting momentum squared differs by a relativelt is easy to see that, neglecti(a?), if one uses Eq(26)
O(a®p?): instead of Eq. (25), defining accordingly p!* and
G2 (p%p!"), one has

T2_ 12 1 2 [4]+ [4] — 4
pc=p 12a p , Where p % Pu- (27 lim th)(pzva): lim él(azt)('f)z,'f)[q)' (29)
pl41_0 P40

To reduce the hypercubic artifact, the authors of R&@]

advocate both the use of E(6) rather than Eq(25), and  where the limit in the rhs is taken at constaift We have
the restriction to a “democratic” set of momenta, i.e. thoseindeed numerically checked form E(R9) the absence of
for which p? is rather equally distributed on the different sizableO(a*) effects.

directions 02). In Fig. 1(b), the “democratic” Z3(q) and the one com-
We will now propose another approach which we will puted from Eq.(28) are compared. The latter provides
eventually compare to the “democratic” one. In general, dif- much smoother Zq). This is confirmed by the? of the fit
ferent orbits with the samp? have differentp!*). For ex- i the next section. The best fit of the “democratiz; using
ample (2,0,0,0 hasni*!==n% =16 while (1,1,1,3 hasn,  the Egs.(4) and (5) gives ay? per DOF of 15.5, see Fig.
=4. On the lattice, the functio®®)(p?) defined in Eq(1)  2(a), while the best fit t&; computed from Eq(28) gives a
is indeed a scalar form factor invariant undey, that we  y2 per DOF of=0.52, Fig. Zb). For sure, thep*)—0 ex-
shall assume to be a smooth function. The general structuteapolation increases the errors @ as compared to the
of polynomials invariant under a finite group is known from errors in the individual orbits, but not too much. We have
invariant theory{19]. For our purpose it is sufficient to know computed the errors on the extrapolated points using the
that any smoott ,-invariant function is indeed a function of jackknife method. Typically the extrapolation increases the
the 4 invariantSp[”]ZE#pZ ,n=2,4,6,8. We will neglect the errors by a factor- 2 which cannot account for an improve-
invariants with degree higher than 4 since they vanish ament by a factor~30 on thex? per DOF. While this paper
least asa* and parametrize the lattice two-point scalar formwas in writing appeared a study by Ma4], who suggests
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the use of the variablp?+a?p!*/12 to cure hypercubic ar- A%:O.S%A%M:M&S MeV,
tifacts. He shows a significant smoothirigig. 2 in Ref.
[14]). © ©
We therefore conclude that E@®8) allows us to eliminate Apis=0.346\ 1,5y =441 MeV. (33

in a consistent way the hypercubic artifacts. This does not

mean that allO(a?) artifacts are thus eliminated: for in- The comparison between the results @& 6.4 and atg
stance, the lattice artifactsa2(p?)2, which do not break =6.2 seems to indicate that the lattice artifacts other than
SQ(4) invariance, are obviously not. Only a comparison ofthosexa?pl*! are not too important. We did not use our data
our results for different lattice spacings allows to estimatedt 8=6.0 since they do not reach a large enough energy

the latter effects. scale.
IIl. GENERAL FIT IN THE MOM _ SCHEME IV. SCHEME DEPENDENCE
We first show the fit of our data g= 6.2 (1000 configu- A. MS scheme

rations with solutions of the coupled differential equations |t might look a little too involved to fit the data as a

(4) and (5) in the MOM scheme. It has been performed on function of amom(w) and then to converA,\Lﬂ%ﬂl into A%.

the lattice propagator in the energy windb®97-4.32 GeV.  \would it not be simpler to work all the way NS, i.e., to
The result of the fit is perform the fit as a function af(«) and to convert directly

Z4(4.32 GeVJ=1.6255), the result intoA%? We have done this exercise and found

Z3(4.3 GeVj=1.6235),
ayom(4.32 Ge\j=0.300515), x?/DOF=0.44 a( V) 35)

30 _
30 (4.3 GeV)=0.20712), x*/DOF=0.64
The x? per DOF is significantly smaller than 1. This feature (34
may be a sign of some correlation between the points at
different values of the energy. Using Egs.(23), (22), and  leading via Eq(23) to
(20) we obtain
A =549+9 Mev, A=765 MeV. (3
AR=03460 =354 2¢ 25 MeV, e e %
The discrepancy between Ed85) and(31) comes as a big
A%20.346/\%,|°OLM:454 MeV, (3D surprise, since we have only performed a change of vari-
ables. The only difference between the two methods comes
where the error is only statistical. The difference between thé&om the truncation of the perturbative series. To be more
two-loops and the three-loops result is large. We will discusgrecise, when we work witlgy to three loops, we trun-
this feature in the next section. We have checked that theate the serie¢4) and (5) beyond the third term. Changing
result is not significantly changed when other energy win-variables toa means expanding in terms of aj;gy up to
dows are used. the third term, Eq(17), implementing this change into the
The study of our data g&8=6.4 (100 configurationswill  functionsI'(«) and3(«) and expanding the result up to the
be useful to estimate lattice artifact®?(p?)2. The best fitis  third term. This final expansion rejects in a consistent way
now obtained for the window 2.97-5.48 GeV . The resultssome parts which are formally equivalent to four and higher

for such a fit are the following loops. Could it be that four-loop effects are so large as to
induce the discrepancy between E5) and(31), although
Z3(5.48 GeVy=1.45218), we are working at an energy scale larger than 4 GeV ?

To dig into this question, we have performed the follow-
aviow(5.48 GeVy=0.2554), x?DOF=1.1 (32 ing exercise. In Fig. @) we plot 2'(«) as a function of
A%, using Egs.(4) and(23). We do this in both schemes.
For comparison with Eq(30), performing the fit in the en-  The horizontal line, at -0.35 is about the slope
ergy window 2.97-4.32 GeV, we obtatiyon(4.32 GeV)  5InZy(q)/dInq evaluated from our lattice data around 4.
=0.287(10). Notice that thp!*! -0 extrapolation meant to GeV. What happens is now obvious. the curve corresponding
reduce hypercubic artifacts, E@8), is slightly Ies; gﬁicier)t _to MS at three loops is far from the MOMhe at such a large
than atf=6.2, maybe due to the smaller statistics. Still it 5p5o)te value of the logarithmic slope as 0.35. It is also

allows a gain of a factor 15 for the? with regard to the  pyyious from the Fig. @) that, had the slope been smaller in
democratic” analysis. It results absolute value, i.e., had the horizontal line been, say at -0.20,
the two schemes would have agreed much better. But the
lattice results show that such a slope can only be reached at
“This best fit has been performed on a slightly different energya much larger energy than 4 GeV even though we are work-
window than in Fig. 2b). ing at three loops. In other words, the lesson is that the Lan-
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TI'(0) function of A, T(a) function of A,¢

I\I TT l TTT I TTT I LI I TTT I LI I TTT I TT II \(\l T | T hLJ\I TT I TTT I TTT I TTT | TTT I TT II
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FIG. 3. Plot(a) shows in full line I'(«) in the MOM scheme as a function off\,l% using Eqs(4) and (23). It shows in dashed line
2F(a) in the MS scheme as a function otfwsg using Eqgs.(16) and (23). The horizontal line corresponds to a typical value of the
logarithmic derivatived In Z5(q)/d1n g evaluated from our lattice data around 4 GeV. Rtadds to the preceding plot the curveB(2)
[2F(a)] truncated at first order, i.ey;= y,=0 [y1—72—0] and at second order, i.ey,=0 ('yz—O) in full lines (dashed lines In both
cases the curves range from right to left with increasing number of terms. In all cases an energy scale of 4.1 GeV has been used to compute

3)
Ays-

dau gauge gluon propagator reaches asymptotic scaling onjtbitrary couple of parameters/{,y,). From Eq.(21) one

at very large energies. We are indeed starting a study Aliso knowsB, and from Eq.(20) the ratioAgs/A. Hoping

Iargl;_ir energles. tion to add is whether it i ibl tto find schemes for which asymptotic scaling is reached, our
€ next question 1o address IS whether it IS possibie %trategy will be to scan the latter parameter space, and to try

choose the best scheme, in the sense of the scheme WhICha§It of the data a8=6.2 in order to find the true asymptotic

closest to asymptotics? Of course we have a prejudice, fror}n\ We select the domain of the “good schemes” by im
MS- -

glthirn;hgg:egvcvil ;:e?lyg(spign[ﬁ} nlt%l fﬁ:{?ﬁ;’ ?ebsbuultgi,n”gq posing some const~raints which will be discussed right now,
(31) is better. However, it would be more consistent to con-and the variation o\ ®) in the latter domain will provide an
' ' stimate of one source of systematic uncertainty.

clude about this question with the only evidences cominge q q . h d seh i
from the analysis of the gluon propagator. In Figb)3we h In order to ﬁte][_mlne the go?] ?C" e“?es_ we will impose
plot the same curve as in Fig(&8, together with the equiva- three criteria. The first two are the following:
Ierl‘lt plots, but takingy,=0, and the ones wﬁhyl:. Zic_), |A(2) A(3)|<Ama>u SA< S (36)
It is clear that the three curves are much closer in the MOM
scheme than in th®1S one. This is an argument in favor of 3) _ @)
MOM while MS proves really bad for this problem: the two- With Ays computed to three loops, using Hg@3), andA s
loops is more than 200 MeV away from the three-loops, notomputed to two loops, i.e., taking the samg but with
to speak of the one-loop which does not even cross the ling,=0, and Eq.(22); SA is the differencd AG% .~ AR,
in our plot. with AE) exp COMpUted to three loops, using H&4). Typi-
cally A pax WI|| be taken around 100 MeV and,,,, around
B. Search in the scheme space 10 to 25 MeV. The reason for these selection criteria should

As long as we are engaged in comparing the scheme§€ rather clear: we wish the series of the functigiia) and
why not exploit the richness of the large scheme space t'(«) to look as though they are in their convergence do-
which we can access up to three loops simply by definingnain; the difference between the two-loops and the three-
loops should thus not be exceedingly large as discussed in
the preceding subsection. Finally we wish that expanding the
formula for A® does not change drastically the result in

SWe have kept for these curves the three-loops computatigh of I .
P P P order to keep some faith in the perturbative character of the

according to Eq(23) with nonvanishingy,: these are not genuine
two or one-loop calculations. Later we will rather compare theIatter formul_a. . e .
three-loop result with the consistent two-loop calculation of the ~ 1Ne criteria in Eq(36) are not restrictive enough to forbid
same scheme, using E@2). Our qualitative conclusion about the exceedingly large values af; andy,. To cure this we try
“pbest” schemes will not change. some reasonable guesses about higher order terms. We ex-
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tend to four loops the method which lead us to E,

2,32(7}’1_ Y1) " 4,31(3’1_ 71)2 _ 4,30(3’1_ 71)3

Ba=PBa+
Yo v s

N 8Bo(y1— 71)(27’%_ 29171~ YoYa+ ¥072)

'}’g 50
484 ~ ~
-3 (=534 6% y1— v17i+5%07172 &
Yo
4,30(;’3_ ¥3)

—3%0y172— 2Y0Y172) — (37 150

Yo

wherey, andg; are in the MOMscheme, Eq(7), and where 0
the beta function is defined up to four loops as

&0’2_ Blza?,_ B23a4_ ﬁ34a5.
2w (2m) (4) (4)
(38 FIG. 4. Domain of the “good schemes” in thg , 7, plane. The
. . . - level curves correspond to values afiys, ranging from =380
SInce _73 N'S unknown, we restrict the “'d,e\ECheme by MeV for the darkest down te=-345 MeV. The black circle indicates
imposingys= 3. We do not knowg; in the MOM scheme, e position of the MOMscheme. ThéS scheme is far outside.
but we believe that it cannot be too large because the good fit
of a, extracted from the three gluon vertex in REL7],  nareq 1o the three-loop one. In Fig(bs we plot assuming
using the three-loops expressiGre., with 53=0), persisted é83=0 the behavior of different schemes among our “good
down to rather low energies. Therefore, by bounding th N . o~
) = ) ~ schemes” as a function of3: 3 is computed fromy,; and
distance betweerB; and B3 we will keep S5 reasonably 5 _ o yia Eq.(37). We see that their predictions forys
small. Now we are ready to a_dd to E®@6) a third criterion tend to converge for positiver; where the value of s
to bound a reasonable domain of the “good schemes™ o reases. Of course convergence between the schemes is an
~ indication that we are closer to the correct valueygf Con-
|Bs— Ba|<4mpB,. (39 sequently, wexpect that the asymptotitygs will be smaller
than the effectiveA% which has been estimated in this
ork.

10 15

Bla)=—

It is worth noticing that this last criterion eliminates the
larger values of\ 5 accepted by the criterio(86).

The three conditions(36) and (39) define in the
(71.7,)-parameter space a domain of “good schemes” V. CONCLUSIONS
which is plotted in Fig. 4. The values dfys vary between
%345 MeV ano-=380 M(?V' We W'l.l take this as an '.”d'.ca' resent energy scale give a reliable estimaté @& from the
tion about our systematic uncertainty. However, this is no

. luon propagator because it has not yet reached its
the whole story. Al our an_aIyS|s has shov_vn that the gluonasymptotic regime at three loops. This is surprising since a
propagatoris not asymptotic at three loops the present

scale as large as 5 GeV is often assumed, without further
energy range. The rang®345 t0 =380 Me_-V may be far scrutiny, to be large enough to be asymptotic even at two
from the real asymptotic value ofyg but it providesan | The MOMsch . “q00d sch "
effective three-loop\% It is difficult to estimate the dis- 0°P> '€ SCNeme 1S among our |good Schemes.
. is amongst the schemes closest to asymptotic convergence.
tance of the latter from the former, ignorant as we are of th —

four-loops coeffcientg andys. This distance can be large. °"\y % TR0 S 0 8 TR ACIOOEIE i of
as we shall illustrate now. We plot in Fig(& the behavior P

of Ags, computed by obtaining the best fit over the Strongasymptoticity.lt is not enough to have a good fit over a large
MS > — energy range with an asymptotic formula to check asympto-

coupling constant in the MOMcheme, as a function of the iy “Our fits are good because the error we introduce by
unknownf3; assumingy;=0. As can be seen, a positfgs ignoring higher orders isnly logarithmic Our energy range,
would reduce the value of the four-loop effectikgrs com- oo large as it may look, corresponds to an increase oftigg
only =0.4. Therefore the higher loops effects can be mim-
icked by a simple rescaling ofys. The difference in the
5The positive sign for3; is plausible as this is the sign ¢ ,i functional behavior of higher orders would only be apparent
=0...2 and a$3; yi>0. on an energy range containing severa foldings,” i.e.,

Our initial aim has not been fulfilled. We cannot at the
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pB=6.2; Volume=244 p=6.2; Volume=244

A I T T T I T T T I T T T I T T T I A I T T T I T T T I T T T I
. - - 420 |- -
360 | window=[2.97,4.32] (GeV) L g window=[2.97,4.32] (GeV) _
r (@ T I b ]
- . 370 |- —
340 |- — - -
- 1 32 [ _'
320 |- _ L ]
i 1 20 [ ]
300 |- i i ]
L i 220 |- i
280 | - 170 | ]

I 1 I 1 1 1 I 1 1 1 I 1 1 1 I

ﬁ3 Y3

0.0 1.5 3.0 45 6.0 0.0 1.0 20 3.0

FIG. 5. Plot(a) showsAws as a function of the unknowg; in the MOM scheme assuming;=0. Plot (b) shows three different
schemes as a function ef assumingB8;=0. The solid line if for the MOMscheme. A tendency to converge is seeryaicreases.

changes of log by several units. Such a study over severalseveral renormalisation schemes can be used.
“e foldings” up to a very high scale has been performed in ~ Finally we have proposed a new method to eliminate the
Ref.[1]. hypercubic lattice artifacts, namely, to take the lirpit
Combining our results foB=6.2 and3=6.4, we end up —0, Eq. (28). We demonstrated that this method is very
with the following value for the effective three-loops esti- efficient. From the result of the present analysis we have
mate: undertaken a lattice calculation at smaller lattice spacings,
hoping to reach the asymptotic regime.

AB)=353+ 2725 Mev, (40)

where the first error is statistical and the second is the sys- ACKNOWLEDGMENTS

tematic uncertainty estimated from the scheme dependence. These calculations were performed on the QUADRICS
From a study of the plausible effect of the fourth loop, weQH1 |ocated in the Center de Ressources Informatiques
have argued that the real asymptaligrs should lay below  (paris-sud, Orsayand purchased thanks to funding from the
the result in Eq(40). Ministére de I'Education Nationale and the CNRS. D.B. ac-

We have discovered that tizeheme independence of the knowledges the Italian INFN, and J.R.Q. the Spanish Funda-
result is a much more demanding criterion of asymptoticitycijon Ramm Areces for financial support. We are indebted to
than the quality of fit. We have used mamyad ho¢'  jacek Wosiek for useful discussions. We are especially in-
schemes simply defined by a couple of parameteisy,). debted to Georges Grunberg for extensive and illuminating
This technique could be and should be extended to othediscussions. Laboratoire de Physique difigue in Unife
methods to compute and more generally to any program Mixte de Recherche-UMR 8627. Centre de Physique Theo
which performs a matching to perturbative QCD, as long asque is UniteMixte de Recherche C7644 du CNRS.

[1] M. Luscher, talk given at th&8th International Symposium on  [5] G. de Divitiiset al., Nucl. PhysB433 390(1995; B437, 447

Lepton-Photon Interactions Hamburg, 1997; Lecture at (1995.
I'Ecole des Houches, 1997; M. kaher, R. Sommer, P. Weisz, [6] B. Alles, D. Henty, H. Panagopoulos, C. Parrinello, C. Pittori,
and U. Wolf, Nucl. PhysB413 481(1994; ALPHA Collabo- and D.G. Richards, Nucl. Phy&502 325 (1997; C. Par-
ration, S. Capitani, M. Lscher, R. Sommer, and H. Wittig, rinello, Nucl. Phys. B(Proc. Supp). 63, 245(1998; B. Alles,
ibid. B544, 669 (1999. D. Henty, H. Panagopoulos, C. Parrinello, and C. Pittori,

[2] G.S. Bali and K. Schilling, Phys. Rev. &7, 661 (1993. IFUP-TH-23-96, hep-lat/9605033.

[3] G.S. Bali, “In Protvino 1993, Problems on high energy phys- [7] Ph. Boucaud, J.P. Leroy, J. Micheli, O.reg and C. Roiesnel,
ics and field theory 147-163,” hep-lat/9311009. J. High Energy Physl0, 017 (1998.

[4] G.P. Lepage and P. Mackenzie, Phys. Revi&)2250(1992. [8] C. Bernard, C. Parrinello, and A. Soni, Phys. Rev® 1585

094509-9



D. BECIREVIC et al. PHYSICAL REVIEW D 60 094509

(19949. hep-lat/9902024.
[9] P. Marenzoni, G. Martinelli, and N. Stella, Nucl. Phy155 [14] 3.P. Ma, hep-lat/9903009.
339 (1999, P. Marenzoni, G. Martinelli, N. Stella, and M. [15] S.A. Larin and J.A.M. Vermaseren, Phys. Lett.383 334

Testa, Phys. Lett. 818 511 (1993. (1993.

[10] D.B. Leinweber, J.I. Skullerud, A.G. Williams, and C. Par- [16] A.I. Davydychev, P. Osland, and O.V. Tarasov, Phys. Rev. D
rinello, Nucl. PhysB544, 669 (1999. 58, 036007(1998.

[11] A. Nakamura and S. Sakai, Prog. Theor. Phys. SUf. 585  [17] ph. Boucaud, J.P. Leroy, J. Micheli, O.ree and C. Roiesnel,
(1998. J. High Energy Physl2, 004 (1998.

[12] H. Nakajima and S. Furui, Nucl. Phys. @roc. Supp). 73, [18] G. Grunberg, Phys. Rev. D9, 2315(1984).

635 (1999' i [19] T.A. Springer, Lecture Notes in Mathematics No. 585
[13] A. Cucchieri, Phys. Rev. B0, 034508(1999; Nucl. Phys. B (Springer-Verlag, Berlin, 1977

(Proc. Supp). 73, 632 (1999; A. Cucchieri and T. Mendes,

094509-10



