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Asymptotic behavior of the gluon propagator from lattice QCD
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We study the flavorless gluon propagator in the Landau gauge from high statistics lattice calculations.
Hypercubic artifacts are efficiently eliminated by taking the(pm

4 →0 limit. The propagator is fitted to the
three-loops perturbative formula in an energy window ranging from;2.5 GeV up to;5.5 GeV. as is
extracted from the best fit in a continuous set of renormalization schemes. The fits are very good, with ax2 per
DOF smaller than 1. We propose a more stringent test of asymptotic scaling based on scheme independence of
the resultingLMS . This method shows that asymptotic scaling at three loops is not reached by the gluon
propagator although we use rather large energies. We are only able to obtain an effective flavorless three-loops
estimateLMS

(3)
535362210

125 MeV. We argue that the real asymptotic value forL MS should plausibly be smaller.
@S0556-2821~99!06519-4#

PACS number~s!: 12.38.Gc, 11.10.Gh, 11.10.Jj, 11.15.Ha
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The nonperturbative calculation of the running coupli
constant of QCD is certainly one very important proble
This program has been performed using the Schro¨dinger
functional @1#, the heavy quark potential@2,3#, the Wilson
loop @4#, the Polyakov loop@5# and the three gluon couplin
@6,7#. The usual approach to determine the strong coup
constant~for instance in Ref.@4#! consists of the evaluation
of an ultraviolet quantity and of the further comparison
the numerical data with perturbative predictions. The glu
propagator at large momenta is a good candidate to be u

Much work has been recently devoted to the study on
lattice of the gluon propagator@8–14#, the effort being
mainly concentrated on infrared behavior. The authors
Ref. @10# have started an ultraviolet study by comparing t
asymptotic behavior to the one loop QCD prediction. In t
paper we would like to concentrate on the asymptotic beh
ior of the lattice propagator in the Landau gauge by a s
tematic use of the three-loops QCD prediction, leaving
study of the infrared to a later publication.

The propagator is evaluated to a much better statist
accuracy than the coupling constant computed in Refs.@6#
and @7#. The three-loops fit should allow a determination
the strong coupling constant and hence ofLQCD to a good
accuracy in view of the very large statistics we have ac
mulated ~1000 configurations atb56.2 on a 244 lattice!.
This can be done in any renormalization scheme as lon
the anomalous dimension of the gluon field and the b
function are known to three loop. A test of scheme dep
dence can thus be performed rather extensively. It will t
out that although the statistical accuracy is very good as

*Email address: Philippe.Boucard@th.u-psud.fr
†Email address: roiesnel@cpht.polytechnique.fr
0556-2821/99/60~9!/094509~10!/$15.00 60 0945
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pected, there remains a large systematic error due to the
asymptoticity of the gluon propagator.

In Sec. I, the general principle of the method is explain
In Sec. II we perform a discussion of the lattice artifac
related to the hypercubic geometry, and we propose a s
tion to eliminate them. In Sec. III the fit is performed in th
modified momentum space subtraction (MOM˜) scheme. In
Sec. IV we discuss in general the scheme dependence
conclude in Sec. V.

I. GENERAL DESCRIPTION OF THE METHOD

The Euclidean two point Green function in momentu
space writes in the Landau gauge:

Gm1m2

(2)a1a2~p,2p!5G(2)~p2!da1a2S dm1m2
2

pm1
pm2

p2 D , ~1!

wherea1 ,a2 are the color indices ranging from 1 to 8. In an
regularization scheme~lattice, dimensional regularization
etc.! with a cutoffL @a21, (d24)21] the bare gluon propa-
gator in the Landau gauge is such that

lim
L→`

d ln@p2Gbare
(2) ~p2,L!#

d ln p2
, ~2!

is independent of the regularization scheme.1 Lattice calcu-
lations provide us with an evaluation of the bare propaga
and hence of the logarithmic derivative in Eq.~2!. The latter

1We will return to this statement in the next subsection.
©1999 The American Physical Society09-1
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is an observable on which we will concentrate in this pa
and from which we will compute the strong coupling co
stant.

In the momentum space subtraction~MOM! ~or MOM̃)
scheme, callingZ3(q) the gluon renormalization constant,

Z3~q,L!5q2Gbare
(2) ~q2,L!, ~3!

whereq is a positive energy scale defined byq2[p2, it hap-
pens that the expression in Eq.~2! is simply equal to
limL→`d ln Z3(q,L)/d ln q2.

An important point has to be stated here. The fact thatZ3
is the renormalization constant in the MOM scheme does
constrain us to stick to the MOM scheme all through. Eq
tion ~2! defines unambiguously a quantity, the evolution
which we can study inany scheme. This evolution is given
by the anomalous dimension ofZ3:

d ln Z3~q,L!

d ln q2
5G~a!

52S g0

4p
a1

g1

~4p!2
a2

1
g2

~4p!3
a31O~a4!D , ~4!

where it is understood that the coupling constant in a gi
scheme is a function ofq such that

]a

] ln q
5b~a!52

b0

2p
a22

b1

~2p!2
a32

b2

~4p!3
a41O~a5!

~5!

with

b0511, b1551, g05
13

2
~6!

in the flavorless case,g1 ,g2 and b2 being scheme depen
dent. As we shall see later, there is one scheme-indepen
relation betweeng1 ,g2 andb2. To be specific, in the flavor
less MOM̃scheme, for whichb2 is known @17#:

b2.4824.0, g15
29

8
, g2.960. ~7!

The calculation ofg1 andg2 will be explained later.
From Eqs.~4! and ~5! it is easy to integrate simulta

neously, up to three loops, lnZ3(q) anda(q) provided one is
given the valuesZ3(m) and a(m) at some initial valueq
5m,
09450
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q~a!5mS a

a~m!
A32p2b0116pb1a~m!1b2a2~m!

32p2b0116pb1a1b2a2 D b1 /b0
2

3expH 2p

b0
S 1

a
2

1

a~m! D1
p

2b0
2 ~b0b224b1

2!

3$H~a!2H@a~m!#%J ~8!

and

Z3~a!5Z3~m!S a

a~m! D
g0/2b0

3S 32p2b0116pb1a1b2a2

32p2b0116pb1a~m!1b2a2~m! D
g2 /2b22g0/4b0

3expH S g12
b1g0

b0
22

b1g2

b2
D $H~a!2H@a~m!#%J ,

~9!

where,2 for 2b0b224b1
2.0,

H~a!5
1

A2b0b224b1
2

arctanS 1

4p

8pb11b2a

A2b0b224b1
2D .

~10!

Eqs.~8!,~9! give a parametric representation of the exact
lution of the coupled differential equations~4! and~5!, where
a can be considered just as a parameter connectingZ3 andq.
The use of this parametric representation allows us to w
with exact solutions of Eqs.~4! and ~5!, the computation of
a(q) from Eq. ~8! being only approximatively possible
However, as explained in Sec. IV, no important discrepan
comes from the consistent perturbative expansion ona of the
exact solutions~8!,~9!.

Our general ‘‘strategy’’ will be to fit the lattice results
with one solution~8!,~9!. If an acceptable best fit exists,
will prove that the lattice results do agree in the conside
energy range with three-loops perturbative QCD. Moreov
it will provide us with the best initial valuesZ(m) anda(m).
Z(m) is just an overall multiplicative constant, but th
knowledge ofa(m) in a given scheme allows to compute a
estimate ofLQCD in this scheme, and henceLMS.

To our knowledge, this method of determining the stro
coupling constant on the lattice is new. In Ref.@10#, the
asymptotic behavior of the gluon propagator has been c
pared to the one loop perturbative QCD prediction. The
thors indeed find rough agreement. However, the value oL
that one can extract from the one loop fit is not meaning
since,g0 being scheme independent, one does not know
which scheme it is computed. In the following we will sy
tematically compare the two loops to the three loops resu

2We write the formal solution of Eqs.~4,5! for the case of positive
discriminant because this is the case, for instance, of MOM
modified minimal subtraction (MS) schemes.
9-2
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a large set of schemes, and we shall conclude that at
accessible scales of 2.5–5. GeV, the gluon propagator d
not scale to two loops and hardly does to three loops in
most favorable schemes. In theMS scheme, no sign of sca
ing is found.

A. Three loops expansion

In a general renormalization scheme, which we call S
and in a fixed gauge

Gbare
(2) ~p2,L!5Z3 SC~q,L!@GSC

(2)~p2,q!1O~1/L!#,
~11!

where Z3 SC is the renormalization constant in the schem
and GSC

(2) the renormalized gluon propagator. Notice by t
way, that from Eq.~11! one immediately obtains the we
known abovementioned result that

lim
L→`

d ln Z3 SC~q,L!

d ln q2
52

d ln GSC
(2)~p2,q!

d ln q2
~12!

is finite and independent of the regularization scheme, w
the right-hand side~RHS! is independent ofp2. From Eqs.
~3! and ~11!,

Z3~q,L!5q2Gbare
(2) ~q2,L!

5Z3 SC~q,L!@q2GSC
(2)~q2,q!1O~1/L!# ~13!

whence

lim
L→`

d ln Z3~q,L!

d ln q2
5 lim

L→`

d ln Z3 SC~q,L!

d ln q2

1
d ln@q2GSC

(2)~q2,q!#

d ln q2
. ~14!

Expanding Eq.~14! in a introduces a dependence on t
scheme in whicha is expressed. We will now specify th
scheme SC to be theMS scheme since the gluon propaga
anomalous dimension has been computed to three loops†see
Eq. ~8! in Ref. @15#‡:

lim
L→`

d ln Z3 MS~q,L!

d ln q2
.2

13

2~4p!
ā2

531

8~4p!2
ā2

2
29311

32~4p!3
ā31O~ ā4!, ~15!

where ā is the coupling constant in theMS scheme and
where thee[d24→0 limit has been taken. Using now3 the
expression forq2,GMS

(2)(q2,q) in @16# we can rewrite Eq.~14!
as

3@q2GMS
(2)(q2,q)#21 is equal toJren as given in Eq.~8.13! in Ref.

@16#.
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lim
L→`

d ln Z3~q,L!

d ln q2

[G~ā!

52
g0

~4p!
ā2

ḡ1

~4p!2
ā22

ḡ2

~4p!3
ā31O~ ā4!

.2
13

2~4p!
ā2

155.3

~4p!2
ā22

6656

~4p!3
ā31O~ ā4!. ~16!

B. General three-loops schemes

If the strong coupling constant is expressed in some o
scheme, which we shall call generically the ‘‘tilde’’ schem
once knownã as a function ofā, changing scheme simply
amounts to a change of variables. If

ã5ā1
a

4p
ā21

b

~4p!2
ā31••• ~17!

then as shown for example in Ref.@17#,

LMS5L̃e2 a/2b0, b̃25b2 MS̄12b0~b2a2!24ab1.

~18!

The g̃ i ’s being defined from

lim
L→`

d ln Z3~q,L!

d ln q2
5G~ã!.2

g0

~4p!
ã2

g̃1

~4p!2
ã2

2
g̃2

~4p!3
ã31O~ ã4!, ~19!

are then computed from the change of variables~17! inserted
into Eq. ~16!, finally leading to the relations

LMS5L̃ expF g̃12ḡ1

2g0b0
G , ~20!

b̃25b2 MS12b0F ḡ22g̃2

g0
1S g̃1

g0
D 2

2S ḡ1

g0
D 2G

24b1F ḡ12g̃1

g0
G . ~21!

It results thatb̃2 , g̃1, andg̃2 are not independent param
eters. Knowing two among these three parameters allows
computation of the third one. We stress that in any ‘‘tilde
scheme, only two parameters are required for any purp
we need in the study that we present in this paper. In ot
words, the set of renormalisation schemes is a two param
space in which theMS is one point, and MOM̃another. On
the following, we will use the coordinates (g̃1 ,g̃2) to char-
acterize any renormalisation scheme of the two param
space. The possible use of this large parameter spac
9-3
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FIG. 1. Plot~a! shows~open circles! Z3(q), Eq. ~3!, as a function of the scaleq with a distinct point for each orbit. It also shows~black

circles! Z3(q) with the factorq2 replaced byq̃2 in Eq. ~3!. Even with the latter which reduces somehow the dispersion, the differ
between the individual orbits at a sameq exceeds by far the statistical errors. Plot~b! compares the ‘‘democratic’’ selection among orb

~lower curve!, as a function ofq̃ and the curve extrapolated top[4]50 as in Eq.~28!. The latter procedure gives obviously a much smoot
result.
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schemes will provide us with a tool which we will explo
extensively in the following. Note that wheng̃15g̃250, the
coupling constantã is nothing but the ‘‘effective charge’
@18# associated to the observable defined in Eq.~2!. In Ref.
@18# this charge was argued to be the proper object on wh
perturbation theory applies. We will generalize the latter p
losophy by considering also schemes with a non-vanish
g̃1 ,g̃2.

In any ‘‘tilde’’ scheme, once evaluatedã(m), we can
computeL̃ up to three loops. For a discussion of the diffe
ent formulas, see Ref.@17#. At two loops we will use the
conventional formula

L̃ (c)[m expS 22p

b0ã~m2!
D 3S b0ã~m2!

4p
D 2b1 /b0

2

~22!

At three loops, we will use, whenD[2b0b̃224b1
2.0, ei-

ther the unexpanded formula

L̃ (3)[L̃ (c)~ ã !S 11
b1ã

2pb0
1

b̃2ã2

32p2b0
D b1/2b0

2

3expH b0b̃224b1
2

2b0
2AD

FarctanS AD

2b11b̃2ã/4p
D

2arctanS AD

2b1
D G J ~23!

or the expanded one
09450
h
i-
g

L̃exp
(3)[L̃ (c)~ ã !S 11

8b1
22b0b̃2

16p2b0
3

ã D . ~24!

In Eqs.~23!,~24! we have omitted for simplicity to write the
m2 dependence ofã.

II. HYPERCUBIC ARTIFACTS
AND OTHER O„a2p2

… EFFECTS

We refer to Ref.@7# for a description of the lattice simu
lations which have been performed, the calculation of
Green functions, their Fourier transform, the checks of
da1 ,a2

color dependence of the propagators, and the se
momenta considered for the different lattices studied.
will use in this study 1000 configurations atb56.2 on a 244

lattice and 100 configurations atb56.4 on a 324 lattice. The
large statistics involved will reduce the statistical error to
negligible value.

In a finite hypercubic volume the momenta are the d
crete sets of vectors

pm5
2p

L
nm , ~25!

wherenm are integer andL is the lattice size. As explained in
Ref. @7#, we have averaged the propagators on the hype
bic isometry groupH4. The momenta corresponding to, e.g
nm5(2,0,0,0) andnm5(1,1,1,1), belong to different orbits
although they both have the samep254(2p)2/L2, i.e., they
belong to the same orbit of thecontinuumisometry group
SO(4). Our statistical errors are so tiny that the differen
between the evaluated propagators for two such orbits
samep2 are quite visible, as shown in Fig. 1~a!. Such differ-
9-4
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FIG. 2. Plot~a! shows~full line! the best fit of the three loops formula toG2(q̃2)q̃2 with the ‘‘democratic’’ selection of orbits for 2.74

GeV <q̃< 4.21 GeV. The fit is prolongated outside the energy window in dashed line. Thex2 per DOF is 15.5. Plot~b! shows the best fit

of G2(q2)q2 extrapolated top[4]50 according to Eq.~28! for 2.78 GeV<q̃< 4.32 GeV. Thex2 per DOF is 0.52. The improvement of th
x2 per DOF by a factor;30 is dramatic. Notice furthermore that the number of points is larger in plot~b! because the ‘‘democratic’’
selection eliminates all the orbits for some values ofq.
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ences are understood as anO(a2p2) artifact of the hypercu-
bic geometry of the lattice. For example, if one uses, rat
than Eq.~25!, the momentum

p̃m5
2

a
sinS apm

2 D . ~26!

The resulting momentum squared differs by a relat
O(a2p2):

p̃25p22
1

12
a2p[4]1•••, where p[4][(

m
pm

4 . ~27!

To reduce the hypercubic artifact, the authors of Ref.@10#
advocate both the use of Eq.~26! rather than Eq.~25!, and
the restriction to a ‘‘democratic’’ set of momenta, i.e. tho
for which p2 is rather equally distributed on the differe
directions (pm

2 ).
We will now propose another approach which we w

eventually compare to the ‘‘democratic’’ one. In general, d
ferent orbits with the samep2 have differentp[4] . For ex-
ample ~2,0,0,0! has n[4][(nm

4 516 while ~1,1,1,1! has n4

54. On the lattice, the functionG(2)(p2) defined in Eq.~1!
is indeed a scalar form factor invariant underH4 that we
shall assume to be a smooth function. The general struc
of polynomials invariant under a finite group is known fro
invariant theory@19#. For our purpose it is sufficient to know
that any smoothH4-invariant function is indeed a function o
the 4 invariantsp[n]5(mpm

n ,n52,4,6,8. We will neglect the
invariants with degree higher than 4 since they vanish
least asa4 and parametrize the lattice two-point scalar fo
09450
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factor as a functionGlat
(2)(p2,p[4] ). When several orbits exis

for one p2, it is possible to extrapolate top[4]50 and we
define

Gbare
(2) ~p2![ lim

p[4]→0

Glat
(2)~p2,p[4] !. ~28!

It is easy to see that, neglectingO(a4), if one uses Eq.~26!

instead of Eq. ~25!, defining accordingly p̃[4] and
G̃lat

(2)( p̃2,p̃[4] ), one has

lim
p[4]→0

Glat
(2)~p2,p[4] !5 lim

p̃[4]→0

G̃lat
(2)~ p̃2,p̃[4] !, ~29!

where the limit in the rhs is taken at constantp2. We have
indeed numerically checked form Eq.~29! the absence of
sizableO(a4) effects.

In Fig. 1~b!, the ‘‘democratic’’ Z3(q̃) and the one com-
puted from Eq.~28! are compared. The latter providesa
much smoother Z3(q). This is confirmed by thex2 of the fit
in the next section. The best fit of the ‘‘democratic’’Z3 using
the Eqs.~4! and ~5! gives ax2 per DOF of 15.5, see Fig
2~a!, while the best fit toZ3 computed from Eq.~28! gives a
x2 per DOF of.0.52, Fig. 2~b!. For sure, thep[4]→0 ex-
trapolation increases the errors onZ3 as compared to the
errors in the individual orbits, but not too much. We ha
computed the errors on the extrapolated points using
jackknife method. Typically the extrapolation increases
errors by a factor;2 which cannot account for an improve
ment by a factor;30 on thex2 per DOF. While this paper
was in writing appeared a study by Ma@14#, who suggests
9-5
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the use of the variablep̃21a2p̃[4] /12 to cure hypercubic ar
tifacts. He shows a significant smoothing~Fig. 2 in Ref.
@14#!.

We therefore conclude that Eq.~28! allows us to eliminate
in a consistent way the hypercubic artifacts. This does
mean that allO(a2) artifacts are thus eliminated: for in
stance, the lattice artifacts}a2(p2)2, which do not break
SO(4) invariance, are obviously not. Only a comparison
our results for different lattice spacings allows to estim
the latter effects.

III. GENERAL FIT IN THE MOM̃ SCHEME

We first show the fit of our data atb56.2 ~1000 configu-
rations! with solutions of the coupled differential equation
~4! and ~5! in the MOM̃ scheme. It has been performed o
the lattice propagator in the energy window4 2.97–4.32 GeV.
The result of the fit is

Z3~4.32 GeV!51.625~5!,

aMOM̃~4.32 GeV!50.3005~15!, x2/DOF50.44
~30!

The x2 per DOF is significantly smaller than 1. This featu
may be a sign of some correlation between the points
different values of the energyq. Using Eqs.~23!, ~22!, and
~20! we obtain

LMS
(3).0.346LMOM̃

(3)
5354.262.5 MeV,

LMS
(c) .0.346LMOM̃

(c) .454 MeV, ~31!

where the error is only statistical. The difference between
two-loops and the three-loops result is large. We will disc
this feature in the next section. We have checked that
result is not significantly changed when other energy w
dows are used.

The study of our data atb56.4 ~100 configurations! will
be useful to estimate lattice artifacts}a2(p2)2. The best fit is
now obtained for the window 2.97–5.48 GeV . The resu
for such a fit are the following

Z3~5.48 GeV!51.452~18!,

aMOM̃~5.48 GeV!50.255~4!, x2/DOF51.1 ~32!

For comparison with Eq.~30!, performing the fit in the en-
ergy window 2.97–4.32 GeV, we obtainaMOM̃(4.32 GeV)
50.287(10). Notice that thep[4]→0 extrapolation meant to
reduce hypercubic artifacts, Eq.~28!, is slightly less efficient
than atb56.2, maybe due to the smaller statistics. Still
allows a gain of a factor 15 for thex2 with regard to the
‘‘democratic’’ analysis. It results

4This best fit has been performed on a slightly different ene
window than in Fig. 2~b!.
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LMS
(3).0.346LMOM̃

(3)
534668 MeV,

LMS
(c) .0.346LMOM̃

(c) .441 MeV. ~33!

The comparison between the results atb56.4 and atb
56.2 seems to indicate that the lattice artifacts other th
those}a2p[4] are not too important. We did not use our da
at b56.0 since they do not reach a large enough ene
scale.

IV. SCHEME DEPENDENCE

A. MS scheme

It might look a little too involved to fit the data as
function of aMOM̃(m) and then to convertLMOM̃

(3) into LMS
(3) .

Would it not be simpler to work all the way inMS, i.e., to
perform the fit as a function ofā(m) and to convert directly

the result intoLMS
(3)? We have done this exercise and foun

Z3~4.3 GeV!51.623~5!,

ā~4.3 GeV!50.207~2!, x2/DOF50.64
~34!

leading via Eq.~23! to

LMS
(3)

554969 MeV, LMS
(c) .765 MeV. ~35!

The discrepancy between Eqs.~35! and ~31! comes as a big
surprise, since we have only performed a change of v
ables. The only difference between the two methods com
from the truncation of the perturbative series. To be m
precise, when we work withaMOM̃ to three loops, we trun-
cate the series~4! and ~5! beyond the third term. Changin
variables toā means expandingā in terms ofaMOM̃ up to
the third term, Eq.~17!, implementing this change into th
functionsG(a) andb(a) and expanding the result up to th
third term. This final expansion rejects in a consistent w
some parts which are formally equivalent to four and high
loops. Could it be that four-loop effects are so large as
induce the discrepancy between Eqs.~35! and~31!, although
we are working at an energy scale larger than 4 GeV ?

To dig into this question, we have performed the follow
ing exercise. In Fig. 3~a! we plot 2G(a) as a function of
LMS

(3) , using Eqs.~4! and ~23!. We do this in both schemes
The horizontal line, at -0.35 is about the slop
] ln Z3(q)/] ln q evaluated from our lattice data around
GeV. What happens is now obvious. the curve correspond
to MS at three loops is far from the MOM˜ one at such a large
absolute value of the logarithmic slope as 0.35. It is a
obvious from the Fig. 3~a! that, had the slope been smaller
absolute value, i.e., had the horizontal line been, say at -0
the two schemes would have agreed much better. But
lattice results show that such a slope can only be reache
a much larger energy than 4 GeV even though we are wo
ing at three loops. In other words, the lesson is that the L

y
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FIG. 3. Plot~a! shows in full line 2G(a) in the MOM̃ scheme as a function ofLMS
(3) , using Eqs.~4! and ~23!. It shows in dashed line

2G(ā) in the MS scheme as a function ofLMS
(3) , using Eqs.~16! and ~23!. The horizontal line corresponds to a typical value of t

logarithmic derivative] ln Z3(q)/] ln q evaluated from our lattice data around 4 GeV. Plot~b! adds to the preceding plot the curves 2G(a)

@2G(ā)# truncated at first order, i.e.,g15g250 @ ḡ15ḡ250# and at second order, i.e.,g250 (ḡ250) in full lines ~dashed lines!. In both
cases the curves range from right to left with increasing number of terms. In all cases an energy scale of 4.1 GeV has been used
LMS
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dau gauge gluon propagator reaches asymptotic scaling
at very large energies. We are indeed starting a stud
larger energies.

The next question to address is whether it is possible
choose the best scheme, in the sense of the scheme wh
closest to asymptotics? Of course we have a prejudice, f
other theoretical and experimental sources aboutLMS, in-
cluding our own analysis ofa @7,17#, that the result in Eq.
~31! is better. However, it would be more consistent to co
clude about this question with the only evidences com
from the analysis of the gluon propagator. In Fig. 3~b! we
plot the same curve as in Fig. 3~a!, together with the equiva
lent plots, but takingg250, and the ones with5 g15g250.
It is clear that the three curves are much closer in the MO˜
scheme than in theMS one. This is an argument in favor o
MOM̃ while MS proves really bad for this problem: the two
loops is more than 200 MeV away from the three-loops,
to speak of the one-loop which does not even cross the
in our plot.

B. Search in the scheme space

As long as we are engaged in comparing the schem
why not exploit the richness of the large scheme space
which we can access up to three loops simply by defin

5We have kept for these curves the three-loops computation oL
according to Eq.~23! with nonvanishingg2: these are not genuin
two or one-loop calculations. Later we will rather compare t
three-loop result with the consistent two-loop calculation of
same scheme, using Eq.~22!. Our qualitative conclusion about th
‘‘best’’ schemes will not change.
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arbitrary couple of parameters (g̃1 ,g̃2). From Eq.~21! one
also knowsb̃2 and from Eq.~20! the ratioLMS/L̃. Hoping
to find schemes for which asymptotic scaling is reached,
strategy will be to scan the latter parameter space, and to
a fit of the data atb56.2 in order to find the true asymptoti
LMS. We select the domain of the ‘‘good schemes’’ by im
posing some constraints which will be discussed right no
and the variation ofL̃ (3) in the latter domain will provide an
estimate of one source of systematic uncertainty.

In order to determine the good schemes we will impo
three criteria. The first two are the following:

uLMS
(2)

2LMS
(3)u,Dmax, dL,dmax ~36!

with LMS
(3) computed to three loops, using Eq.~23!, andLMS

(2)

computed to two loops, i.e., taking the sameg̃1, but with
g̃250, and Eq.~22!; dL is the differenceuLMS exp

(3)
2LMS

(3)u,
with LMS exp

(3) computed to three loops, using Eq.~24!. Typi-
cally Dmax will be taken around 100 MeV anddmax around
10 to 25 MeV. The reason for these selection criteria sho
be rather clear: we wish the series of the functionsb(ã) and
G(ã) to look as though they are in their convergence d
main; the difference between the two-loops and the thr
loops should thus not be exceedingly large as discusse
the preceding subsection. Finally we wish that expanding
formula for L (3) does not change drastically the result
order to keep some faith in the perturbative character of
latter formula.

The criteria in Eq.~36! are not restrictive enough to forbi
exceedingly large values ofg̃1 and g̃2. To cure this we try
some reasonable guesses about higher order terms. W
9-7
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D. BECIREVIC et al. PHYSICAL REVIEW D 60 094509
tend to four loops the method which lead us to Eq.~7!,

b̃35b31
2b2~ g̃12g1!

g0
1

4b1~ g̃12g1!2

g0
2

2
4b0~ g̃12g1!3

g0
3

1
8b0~ g̃12g1!~2g1

222g1g̃12g0g21g0g̃2!

g0
3

2
4b0

g0
3 ~25g1

316g1
2g̃12g1g̃1

215g0g1g2

23g0g̃1g222g0g1g̃2!2
4b0~ g̃32g3!

g0
, ~37!

whereg i andb i are in the MOM̃scheme, Eq.~7!, and where
the beta function is defined up to four loops as

b~a!52
b0

2p
a22

b1

~2p!2
a32

b2

~4p!3
a42

b3

~4p!4
a5.

~38!

Since g3 is unknown, we restrict the ‘‘tilde’’ scheme b
imposingg̃3[g3. We do not knowb3 in the MOM̃ scheme,
but we believe that it cannot be too large because the goo
of a, extracted from the three gluon vertex in Ref.@17#,
using the three-loops expression~i.e., with b350), persisted
down to rather low energies. Therefore, by bounding
distance betweenb3 and b̃3 we will keep b̃3 reasonably
small. Now we are ready to add to Eq.~36! a third criterion
to bound a reasonable domain of the ‘‘good schemes’’:

ub̃32b3u,4pb2 . ~39!

It is worth noticing that this last criterion eliminates th
larger values ofLMS accepted by the criterion~36!.

The three conditions~36! and ~39! define in the
(g̃1 ,g̃2)-parameter space a domain of ‘‘good scheme
which is plotted in Fig. 4. The values ofLMS vary between
.345 MeV and.380 MeV. We will take this as an indica
tion about our systematic uncertainty. However, this is
the whole story. All our analysis has shown that the glu
propagatoris not asymptotic at three loopsin the present
energy range. The range.345 to .380 MeV may be far
from the real asymptotic value ofLMS but it providesan
effective three-loopLMS

(3) . It is difficult to estimate the dis-
tance of the latter from the former, ignorant as we are of
four-loops coefficientsb3 andg3. This distance can be larg
as we shall illustrate now. We plot in Fig. 5~a! the behavior
of LMS, computed by obtaining the best fit over the stro
coupling constant in the MOM˜ scheme, as a function of th
unknownb3 assumingg350. As can be seen, a positive6 b3
would reduce the value of the four-loop effectiveLMS com-

6The positive sign forb3 is plausible as this is the sign ofb i ,i
50 . . . 2 and asb3 MS.0.
09450
fit
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pared to the three-loop one. In Fig. 5~b! we plot assuming
b350 the behavior of different schemes among our ‘‘go
schemes’’ as a function ofg3 : g̃3 is computed fromg3 and
b350 via Eq. ~37!. We see that their predictions forLMS
tend to converge for positiveg3 where the value ofLMS
decreases. Of course convergence between the schemes
indication that we are closer to the correct value ofg3. Con-
sequently, weexpect that the asymptoticLMS will be smaller
than the effectiveLMS

(3) which has been estimated in th
work.

V. CONCLUSIONS

Our initial aim has not been fulfilled. We cannot at th
present energy scale give a reliable estimate ofLMS from the
gluon propagator because it has not yet reached
asymptotic regime at three loops. This is surprising sinc
scale as large as 5 GeV is often assumed, without fur
scrutiny, to be large enough to be asymptotic even at
loops. The MOM̃scheme is among our ‘‘good schemes.’’
is amongst the schemes closest to asymptotic converge
On the contraryMS is very far from convergence.

We have learned an important lesson about the criteria
asymptoticity.It is not enough to have a good fit over a larg
energy range with an asymptotic formula to check asymp
ticity. Our fits are good because the error we introduce
ignoring higher orders isonly logarithmic. Our energy range
as large as it may look, corresponds to an increase of logq by
only .0.4. Therefore the higher loops effects can be mi
icked by a simple rescaling ofLMS. The difference in the
functional behavior of higher orders would only be appar
on an energy range containing several ‘‘e foldings,’’ i.e.,

FIG. 4. Domain of the ‘‘good schemes’’ in theg̃1 ,g̃2 plane. The
level curves correspond to values ofLMS , ranging from.380
MeV for the darkest down to.345 MeV. The black circle indicates

the position of the MOM̃scheme. TheMS scheme is far outside.
9-8
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FIG. 5. Plot ~a! showsLMS as a function of the unknownb3 in the MOM̃ scheme assumingg350. Plot ~b! shows three different

schemes as a function ofg3 assumingb350. The solid line if for the MOM̃scheme. A tendency to converge is seen asg3 increases.
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changes of logq by several units. Such a study over seve
‘‘e foldings’’ up to a very high scale has been performed
Ref. @1#.

Combining our results forb56.2 andb56.4, we end up
with the following value for the effective three-loops es
mate:

LMS
(3)

535362210
125 MeV, ~40!

where the first error is statistical and the second is the
tematic uncertainty estimated from the scheme depende
From a study of the plausible effect of the fourth loop, w
have argued that the real asymptoticLMS should lay below
the result in Eq.~40!.

We have discovered that thescheme independence of th
result is a much more demanding criterion of asymptotic
than the quality of fit. We have used many ‘‘ad hoc’’
schemes simply defined by a couple of parameters (g̃1 ,g̃2).
This technique could be and should be extended to o
methods to computeas and more generally to any progra
which performs a matching to perturbative QCD, as long
n
t
,

,

s-
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several renormalisation schemes can be used.
Finally we have proposed a new method to eliminate

hypercubic lattice artifacts, namely, to take the limitp[4]

→0, Eq. ~28!. We demonstrated that this method is ve
efficient. From the result of the present analysis we ha
undertaken a lattice calculation at smaller lattice spacin
hoping to reach the asymptotic regime.
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