PHYSICAL REVIEW D, VOLUME 60, 094508

Comparison of the O(3) bootstrap o model with lattice regularization at low energies

Janos Balog
Research Institute for Particle and Nuclear Physics, P.O.B. 49, H-1525 Budapest 114, Hungary

Max Niedermaier
Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Ferenc Niedermayé&r
Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

Adrian Patrascioiu
Physics Department, University of Arizona, Tucson, Arizona 85721

Erhard Seiler and Peter Weisz
Max-Planck-Institut fu Physik, Fdiringer Ring 6, D-80805 Muchen, Germany
(Received 6 April 1999; published 8 October 1999

The renormalized couplingg defined through the connected four-point function at zero external momentum
in the nonlinear @) sigma model in two dimensions is computed in the continuum form factor bootstrap
approach with an estimated errer0.3%. New high precision data are presented darin the lattice-
regularized theory with the standard action for nearly thermodynamic lattiges7 and correlation length$
up to~122 and with the fixed point action for correlation lengths up-tt2. The agreement between the form
factor and lattice results is withir-1%. We also recompute the phase shifts at low energy by measuring
two-particle energies at finite volume, a task which was previously performed ssheu and Wolff using the
standard action, but this time using the fixed point action. Excellent agreement with the Zamolod8hikov
matrix is found.[S0556-282(199)04419-1

PACS numbsd(s): 11.15.Ha, 11.10.Lm

[. INTRODUCTION theory really describes an asymptotically free theory is
highly nontrivial®

The only presently known practical way to define a rela- This work is part of an ongoing effort of the present au-
tivistic quantum field theory nonperturbatively in four di- thors to test whether the “conventional wisdom” is correct
mensions is by using lattice regularization. For example, it ign a simpler model, the nonlinear(8 sigma model in two
hoped that one will, once sufficiently powerful computers aredimensions. This model is, like QCD, perturbatively asymp-
available, be able to answer the question as to whether QcCtgtically free and also has instanton and superinstaf@gn
is the correct theory of the strong interactions by studyingSolutions. It has, however, classically the additional, beauti-
the continuum limit of the lattice theory. ful_p.roperty of being integrable; in particular, therg exists an

It is, however, notoriously difficult to control the con- infinite set of nonlocal conserved charges. Assuming that .the
tinuum limit of a lattice theory. Analyses of lattice Feynman quantum theory has a mass 9ap and the spectrum contains a
graphs, as initially performed by Symandik], show that, vector multiplet of stable particles, the existence of such con-

: : : .__served charges in quantum theory forbid particle production
order by order in renormalized perturbation theory, physmam scattering and, as shown by &eher[3], fixes the two-

.quantities. approaqh their continL_Jum.Iimit as integer IOOWerSparticIeS matrix to that previously postulated by Zamolod-
in the Igttlcg spacm@up to logarithmic correc_uor)s How-~ thikov and ZamolodchikoyZZ) [4] [up to Castillejo-Dalitz-
ever, since it is not known that such behavior controls thebyson(CDD) ambiguitied

approach to the con.tinuum.limit in the full nonperturbatively ~ A|| these properties were obtained starting from a formal
defined theory, the invocation of such a power-law approadllagrangian, where one first computes off-sijboint func-

to extrapolate data produced in numerical simulation experifions and goes on shell via the Lehmann-Symanzik-
ments has merely the status ofmausible working hypoth-  zimmermann(LSZ) formalism to obtain theSmatrix ele-
esis. _The integer nature_ of the_powers adopted in studies @hents. The so-called form factor bootstréfFB) approach
theories such as QCD is considered to be connected to th6,6,7] proceeds in the other direction. One attempts to ob-
widely expected property of asymptotic freedom. Here againtain off-shell information starting from the knowledggos-

the very question whether the continuum limit of the latticetulate) of the stable particle spectrum and th8imatrix. In

*On leave from the Institute of Theoretical Physicstos Uni- lindeed, even the authors of this paper are divided into two sub-
versity, Budapest, Hungary. sets having different opinions on the probable answer.
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the first step one constructs the form factor@mposit¢  this method has been used to compute a four-point function,
operators, satisfying all physical constraintanalyticity, and it is rather surprising that one is apparently able to get
generalized Watson theorem, ¢tand then Green functions such a good approximation fgys .

are obtained by saturating with a complete set of states. This In Sec. lll we present results agy using two different

is a program which is only feasible in a theory where there idattice regularizations, the standard actiGncluding new

no particle productior(i.e., only in two dimensions Even  high precision data on thermodynamic lattices at large cor-
this program, for which there has recently been a lot offelation lengthsand the fixed pointFP) action. The nature
progresg8,9,10, involves mammoth effort. of the approach to the continuum limit is not so clear, but

Unfortunately, since lattice regularization breaks thesevhatever(reasonableextrapolation is made, it agrees with
conservation laws and the FFB relies on some nontrivial asthe truncated FFB result to better thai%.
sumptions, the expectation that the continuum limit of the
lattice O(3) model coincides with the FFB is not guaranteed.
A first investigation of this issue was by &cher and Wolff
[11] who computed the phase shifts on the lattice by mea-
suring two-particle state energies in a finite volume. Their There have been various approximation schemes to com-
results(taking account of lattice artifagtsvere completely pute low energy(nonperturbative quantities in the con-
consistent with the ZZ5 matrix. In the course of a similar tinuum formulation of the Qf) models in two dimen-
investigation of the nature of the continuum limit of thé2D  sions: theg expansion{17], the € expansior16], and the
model [12], in order to test our programs and a slightly 1/n expansion[18]. In this section we will present a new
modified form of the analysis, we repeated the measuremenifpproximation using the form factor bootstrap.
of the phase shifts in the (@ model. We also made simu-
lations with a fixed point actiofil3] and found indications
that the lattice artifacts are much smaller than in the case of
the standard action. An account of our investigations is given Consider a general continuum quantum field theory in two
in Sec. IV. Our results are again in good agreement with thelimensions, in infinite volume, with global @ symmetry.

ZZ S matrix [4]. Let 0?(x), a=1, ... n, be a vector multiplet ofrenormal-

An off-shell quantity of physical interest is the current- ized) Euclidean scalar fields with two-point function
current J-J) correlation function. It has been shown that
J-J computed in the FFB approadB,9] agrees well with S%2(x1,X) =(%(X1) %2(X7)). (2.9
conventional renormalized perturbation theory at high ener-
gies, at least up tp/M ~ 10000, when the analytical value of The inverse of its Fourier transform,
the ratio of the mas$ to the A parametef14] is used.

Connected to this are two important interrelated properties:

First, the ZZ S matrix shows an “on-shell form of G(k) 5alaz=J d?x €¥*s22(x 0), (2.2
asymptotic freedonfAF),” in the sense that the phase shifts

fall logarithmically to zero with the energy at high energy

(see Sec. IY. Second, the thermodynamic Bethe ansatzjs assumed to have an expansion for small momenta:
which is used to computél/A, reproduces the two-loop
B-function coefficient. The agreement between the FFB and
lattice computations aJ-J is also within~1% for the entire
range of momenta up te-40M.

Despite this wealth of circumstantial evidence for the va- We denote the four-point function by
lidity of the conventional picture, there is still room for
doubt. In partlcular_, in a rece_znt paper, two of_ the presentsala2a3a4(xl,XZ,X31X4):<0al(xl)0a2(xz)ga3(xs)Ua4(x4)>
authors[15], assuming a certain form of the lattice artifacts, (2.4)
have found statistically significant deviations between the
continuum limit of the latticeJ-J correlation function and
the FFB at low energies.

Unfortunately, theJ-J correlation function at low ener-
gies is a quantity which behaves qualitatively similarly to Sila2a3a4(xl')(2,x3,x4):§1323334(X1,X2’X3,X4)
that in a free theory. It is plausible that a difference between
two theories would manifest itself more clearly in a quantity — S%1%2(xq,Xp) S%%4(X3,Xy)
which vanishes in the free theory, e.g., the zero-momentum _ g S
coupling g defined through the connected four-point func- (X1.X3) (X2,Xq)

Il. COMPUTATION OF ggr
IN THE CONTINUUM THEORY

A. Definitions

G(k) " t=Zg[MZ+k>*+0O(kY]. (2.3

and the connected four-point function by

tion. There is an enormous literature on the computation of — S2134(X; ,X4) S22%3( X5, X3).
this quantity in the two{and higher dimensional nonlinear
sigma models; see, e.g., REE6] and references therein. The (2.9

main new contribution of this paper, the computationggf
by the FFB, is outlined in Sec. Il. This is the first time that Introducing the Fourier transform by

094508-2



COMPARISON OF THE @) BOOTSTRAPo MODEL . .. PHYSICAL REVIEW D 60 094508

'éalaza3a4( klvk21k3ak4) ajajasa, — Zzy4 Ay sa3a ajaz Sara
. G*1 4(0,0,0,Q—W—(5a1 583344 59183 53284

= 11:[1 [d?x;e™i%]S?122%% (X1, X, X3,X4), + 57134 5%283) (2.16

(2.6 Strictly speaking, all observable physi¢®m a massive
B theory is on shell; different interpolating fields give the
and similarly S, for the connected part, the conventional same results. Off-shell amplitudes of particular composite
zero-momentum(dimensionless coupling (in two dimen-  (and “elementary’) operators are only of physical interest if
siong is defined by they are sources dfdealized infinitesimal weakly interact-
ing probes. The fields are characterized by their various
M2R 1 aabb quantum numbers and their dimensions, e.g., coded in the
9r=— WF;) G*%"%0,0,0,0, (2.7 pehavior of the two-point functiors(k). The assumption
’ (2.9 corresponds to a limitation on the behavior of the asso-
ciated spectral functiop(u) asu— . It is an implicit con-

where
nection to the association ef*(x) with a particular local
=a1a,333, _ 242 field in the Lagrangian quantum field theory. In the nonlinear
S (ka Kz kg ke) = (2m) %0 (ky kot kgt ky) O(n) sigma model the “elementary” field2(x) is charac-
X GU223334(k; Ky, Kz, Ky). terized by its vanishing engineering dimensi@m addition

to being an isovector and spacetime sgalfe can therefore
(2.9 assume that the short distance singularities of its two-point

. . . unction are sufficiently weakonly logarithmig so that the
We will assume that the two-point function has a Spectra{%pectral representatiof2.9) holds without subtractions. In-

representation deed, in the FFB approach, this uniquely defiqgs to nor-
" (1) malization an operato-?(x), which has form factors that
G(k)zzf d,u%, (2.9 are not growing too fast at infinity so that the corresponding
0 ntk spectral density(u) vanishes fast enough far— o,

where the normalization constadttakes into account that,
assuming that the spectrum of the theory contains a vector
multiplet of stable particles of madd, we normalize the The leading order computations for the spectral integrals
spectral density so that the one-particle contribution is in the 1h expansion have been performed in HdB].

B. 1/nh and e expansions

D) = 8 p— 1
p P ()= 8(u—M). (2.10 ¥2=1+0.0067194% +0O

1
?>, (2.1

Then the coefficients appearing in the small momenta expan-

sion above can be expressed as 1 1
52=1+0.0002683§1—+O HZ) (2.18
2
7722 2.19)
62
, and also for the couplingl8],
MR 72
MZT s (212 8w 1 1
2 gR=? 1—0.602033ﬁ+0 2] (2.19

where vy, and §, are the moments:
which gives the approximatiogg=6.70 for the case=3.
o p(u) In the g expansion one obtaingg=6.66(6)[17] and in
72=M f d“?’ 213 the e expansiongg=6.55(8) [16]. Considering the rather
short series in each case, it is amazing how well the estimates

p(w) by the various methods agree.
52:|v|4f du T (2.19
C. Form factor bootstrap computation for n=3
Further, the couplingjr can be written as The form factor bootstrap aims at reconstructigoint
functions of local operators of integrable field theories from
Or=— n+2 vy, (2.15 knowledge of the spectrum of stable particles and tlgeir
R n  y,6,’ ' matrix. A description can be found in Smirnov’'s bof|,
the review of Karowsk[6], a recent papdr0], and in vari-
wherey, is defined through ous articles of two of the present auth$g.
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TABLE I. r-particle contribution toy,,d,. TABLE II. I-m-n-particle contribution toy, .
r Q) &) l,m,n Y4:mn
3 1.6799%1)x10 3 3.464941)x10°° 121 —4.1683%1)
5 6.6221)x10° 7.1141)x10°° 1,2,3 0.05178L)
321 0.05178L)
141 —0.0040651)

To our knowledge this is the first time that the method has
been applied to the computation of four-point functions. The

computation is rather involved, and here we will only give a ¥,=1.0016871), (2.26
very brief outline and present our results. The calculation in
this and in other integrable models will be described in detail 5,=1.00003465(1), (2.27

in a forthcoming papef20].

We assuméas did the Zamolodchikov brothers in their where the estimated errors come from inspecting the pattern
construction of theS matrix) that there are no bound states in of relative n-particle contributions suggested by the one,
the O() models. Then the spectral densjtyras an expan- three, five-particle states.
sion over contributions from the intermediate states with an The four-point function has an expansion in terms of con-
odd number of particlegdue to internal parity symmetry tributions of intermediate states witim,n particles, respec-

tively,
plp)= 2 p®(p), (2.20 T35k Ky kg, Ky)
- 24(2)
and correspondingly the spectral integrals (2m)°8% Ky +katks+ky)
* XM 6 Vap18P23p33Pa( K. Ko Kpa ,Kpa),
')/2=]_—|— 2 7(22k+l), (22]) pe%‘n:sP ( P1:"pP2:RP3 P4)
- (2.28
52:]."‘2 6(22k+1). (222 Whereki:(kil,kiz),
k=
' V#2832 (kg ko ks, Kyg)
The form factors are given by Smirnd%] for the Q3)
model and have been recomputed[®]. For example, the 2713\ 2 5(P|+k11)
matrix element of the Minkowski operatér®(0) associated =(2m) T —||<12
with the Euclidean fieldr?, connecting the vacuum to the
three-particle in-state with rapiditieg; = 6,= 65, is given X5(Prp+ ki1t Kag) O(Py—Kay)
by Em—ikia—ikae Entiks
<O|&a(o)|a1!01;a2!02;a3-03>in:\/nglaza3(01a02a03)l x(0[a#(0)|1){L]62(0)[m)(m|5°3(0)[n)(n[¢*+(0)|0),
(2.23 (2.29
with

wherel,n run over all states with odd numbeks of par-
ticles, andm over all states with an even numhee0. The
(01,0,,05)= 3H P(6;— 6,))[ (03— 05) 82 Sa.a somewhat symboli& in Eq. (2.29 really means, in addition
Lo to the summation over all internal quantum numbers of the
. articles and integration over all particle rapidities, a sum
T (61 05— 2m1) & Oaca, gver the integers, gm, andn. The Iinr")nit of zeropmomenta is
+(6,— 6y) ] (2.24 very delicate because each term in .t.he sum is a distributiqn
192 in the momenta where the singularities occur when certain
linear combinations of the momenta are zero. In particular,
the contributions from terms in the above sum witk 0 not

(60— i) only cancel the disconnected pie@s'S,, but also produce
‘ﬁ(e):mta”ﬁ? (229 exira terms proportional t@(ky;+k,,). The singularities
must be canceled by other terms in the sum with 0; e.g.,
The expression of the five-particle matrix element is alsahe singularity from the contribution 1-0-1 is canceled by
known explicitly, but it is much too long to be written here. that of the contribution 1-2-1. We can avoid this problem, for
Using these results the three- and five-particle contributionexample, by restricting ourselves to momeiga=AK;q,
to v, and &, are given in Table I. It seems that the serieswhereK;;+K;;#0 for anyi# |, and then taking the limit
converge extremely rapidly, and we would estimate NA=0 in our analytic expressions. An additional technical

Fa

18283

where
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COMPARISON OF THE @) BOOTSTRAPo MODEL . .. PHYSICAL REVIEW D 60 094508

TABLE Ill. ¢ x=3G(0) andgg for the standard action.

B L Runs L/¢ & X Or

15 60 110<20k 5.46910) 10.9712) 173.7631) 6.26920)
15 80 34420k 7.2537) 11.031) 175.9511) 6.55316)
15 100 3520k 9.05@8) 11.081) 176.516) 6.61317)
15 140 36K20k 12.681) 11.041) 176.30@5) 6.56018)
1.6 140 21420k 7.36115) 19.024) 447.306) 6.61217)
1.7 250 36K 20k 7.2464) 34.502) 1267.2057) 6.66514)
1.8 500 36X 20k 7.7174) 64.793) 3839.071.59 6.68815)
1.9 910 10 20k 7.439%6) 122.321) 11884.97.0) 6.73824)
1.95 1230 1x20k 7.35220) 167.30@45) 2083557) 6.75178)
20 1600 420k 6.94925) 230.2683) 36826142 6.981132
2.05 2100 520k 6.80467) 308.633.06 6301%731) 6.608216)

complication comes from the fact that each term in the sunfunction) and that the sum of the remaining contributidns
is rather involved because the matrix elements have parts m+n=8 is <10% of the sum of thé+m+n=6 contri-
with differing connectivity properties, e.g., the matrix ele- butions, we obtain the result
ment occurring in the 1-2-1 contributior®{> 65):

v4=—4.06910) (2.32

Z7 Y%, $|5%(0)|ay, 61;8,,0,)"
= Foaga,(B+im—i€,01,0,)+475] Sya (b= 01)

+4775(¢_Hz)salaz;ab(¢_02)1 (2-3()

and, hence, our final result

gr=6.77017). (2.33

Ill. LATTICE COMPUTATIONS OF ggr

where theSmatrix eIementsSalaz;ab are given in Sec. IV. In the framework of the lattice regularization, there are

The practicability of the computation of the zero- y,o methods to computgy in the O() models. The first is

momentum coupling using the form factor bootstrap ap-sing high temperaturéstrong coupling expansions and the
proach obviously depends crucially on the question as tQacond by numerical simulations.

whether the sum over intermediate states for the four-point
function,

O Bee=0.70
OBp=0.85

Ya= E Ya:mn (2.3) 68L
I,m,n 3

converges rapidly. We started to investigate this question in
the Ising model, and we found that the m+n=6 contri-
butions are much smaller than the leading 1-2-1 tE2Gj. &
Fortunately, for the @) model under investigation here, the
situation is rather similar. The contributions of them-n
intermediate states with+m+n<6 to y, are given in
Table II.

The leading 1-2-1 contribution is a facter42 greater in
magnitude than the sum &fm-n contributions withl +m
+n=6. It is extremely difficult to bound the rest of the con- . .
tributions, especially since the signs are not known in gen- 524 0005 0.01 0.015
eral. Even the computation of the states withm+n=8 zexp(-2)
would be quite an undertakirfgBut assuming that the pat-
tern in Table Il continuegas for the case of the two-point

FIG. 1. The couplingyg(z,B) for the FP(open symbolsand
standardsolid symbol3 actions plotted vs,z exp(~2). The corre-
lation lengths for the FP action are in the range 3.2-12.2, while for
the standard action in 11-122. The theoretical value from the FFB

°The calculation of thd +m+n=8 contributions in the Ising is also shown. The linear fits are motivated by the ffediction
model is, however, not so difficult; the results will be presented in(3.8) and are based on thesr=1.50 andBgp=0.85 data, respec-
Ref.[20]. tively.

094508-5



JANOS BALOG et al. PHYSICAL REVIEW D 60 094508

For numerical simulations we consider a square lattice es
with both the standard action

O original data
L] c%rected data
~ 1E fi .
S=- :82 a(X)-o(X+ ), 3.1 L xextra[.:olation
X ph 3. ---- i

< extrapolation

whereo(x) - o(x)==,0%x)c?(x)=1 and the FP action of
Ref.[13].

O

A. High temperature expansion

Concerning the high temperatufdT) expansion for the 58

standard action, long seri¢21] have been obtained for the
two- and four-point functions and for the second momepnt
defined by

65 s . . ,

0. ) ] 0.0 0.
:“2561132:2 XX o?1(x) 0%2(0)) (3.2 0 0.02 0.04 " 0.06 8 1
X

. 2 . FIG. 2. The measured values fgg together with the corrected
to obtainMg throughMg=4G(0)/u,, whereG(k) is de- ones al./£=7.25 for the standard action. The solid and dotted lines

fined analogously to Eq2.2), but with the integral replaced correspond to the fité3.10 and (3.11, respectively.
by a sum. The analyses of the HT expansion for the spectral

moments givey,=1.0013(2) [19] and ,=1.000029(5) other hand, are rather cautious and did not quote a value for

[22]. The agreement with the FFB values E(526), (2.27), o s
is acceptable; note that these are smaller than that anticipat('g,-h cas@=3 in Ref.[21]; if pressed, they would at present

from the leading order of the d/approximation, Eqs2.17), cite gr=6.6(2) [25].

(2.18.
The coupling is defined as the continuum limit B. Numerical simulations
—i 33 Monte Carlo computations afgz have a long history; see,
gr= lim gr(£), (3.3 e.g., Refs[17], [26]. In order to attempt to match the appar-

E—w

ent precision attained in the FFB approach outlined in Sec.

where¢ is the correlation length in lattice units. The analysis!! We decided to perform even more precise measurements
than were carried out previously.

is hampered by the lack of rigorous knowledge of the posi-
P y ¢ g P We work here on a square lattice of sizeén each direc-

tion of the critical point and the exact approach to it. In . L " h ina in fini
particular, the conventional wisdom that the critical point istion and periodic boundary conditions. The coupling in finite
volume is defined through Binder's cumulant

at 8= is usually built into the analyses. The various Pade

approximations show the coupling falling rapidly &sin- T

creases in the region of sma8| then a region of rather flat 9r(¢) |_“an Or(&,L), 34

behavior, after which the various approximations show di-

verse behavior; some analyses indicate that in fact there is a L\2

shallow minimum and that the continuum limit is actually QR(f,L)Z(—>

approached from belovisee, e.g., Ref§23], [16]). ¢
In Ref.[24] Campostriniet al. quote for the case= 3 the

result gg=6.6(1), and in amore recent publication Pelis- whereX2=3 0%(x). In this definition we have takefas in

setto and Vicari cite 6.58) [16]. Butera and Comi, on the Ref.[17]):

1+ (3.5

2 <(22)z>}
n Sy

TABLE IV. Data for the FP action.

B L Runs L/& I3 X Or
0.70 18 11%360k 5.6823) 3.1681) 19.5018) 6.49310)
0.70 22 19% 360k 6.9243) 3.1711) 19.6466) 6.67412)
0.70 26 36X 360k 8.1763) 3.1801) 19.6864) 6.761(12)
0.85 32 3600k 5.3595) 5.9715) 55.745) 6.417114)
0.85 34 18%X 360k 5.6782) 5.9882) 56.032) 6.4858)
0.85 36 52360k 6.0064) 5.9944) 56.243) 6.581(13)
0.85 42 14360k 6.9863) 6.0123) 56.512) 6.691(14)
1.00 70 691100k 5.7344) 12.2078) 189.41) 6.487114)
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o G(0)
= 2sina) VGiky b

g (36) 1.15 T T T T

whereko=(27/L,0). In this paper we will us€ to denote 3
the second moment correlation length, to which E}6)
converges, for largé. Although conceptually different is 110 | *
very close to the exponential correlation lengh,f): also
using Egs.(2.3) and (2.12 in the definition(3.6), the FFB -
results(2.26) and (2.27) yield '

1.05 b ' = i
%: \/%: 1.0008261). (3.7 - I }
) .

3

The standard action Monte Carlo measurements were pe|
formed using a method similar to the cluster estimator of 1.00-r—---=-=~-«-nmmmemm oo -
[11]. We measuredg at correlation lengths ranging from 11
to 122 atL/é~7. These measurements were used to investi- 7 18 18 20 22 24
gate the approach to the continuum. To study the finite vol- B
ume effects, we repeated the runséat1l on three other
lattices withL/£~5.5, L/givg, andL/§~ 13. The results of FIG. 3. The measured values of tyés? ratio divided by the
all these rungtogether with the preliminary results corre- foyr-joop approximation to the predictids.15.
sponding tof~ 167, 230, and 30%re recorded in Table Ill.

In this table we also indicate the number of measuresence of even parity @) invariants with odd engineering
ments. Each run consisted of 20k sweeps of the lattice witQjjmensions suggests an approach to the continuum limit with
measurements after each sweep. The error was computgd,ding behavior (Ig)/¢2. As stressed in the Introduction,
from this sample by using the jackknife method. there is no rigorous nonperturbative proof of this behavior.

We have measuregl, with the FP action at three different  £igyre 2 shows two fits. The first is a quadratic fit of the

v_alues ofB: 0.70, 0.85, and 1.00, corresponding to cqrrela-form suggested by the Symanzik analysis, where we have
tion lengthsé~3.2, 6.0, and 12.2, at the valueszfL/¢ in takenr =13

the range 5.4-8.2.
To get a feeling of the finite volume effects, we took the

expression foigg in the leading order &/ expansion from gr(£,2=7.25=0gr(»,z=7.25| 1+ Lc;gng b_i
[18] and simply replaced the integral over momenta by a ¢ 3
discrete sum. In this way we obtained (3.10

gR[L]:gR[oo][l—al\/Ee*Z[lJr O(1/z)]+---], (8.8  With gr(»,z=7.25)=6.702(16), b;=—4.4(2.2), andb,
=8(5). Wemade also a second fit in Fig. 2 of the form
with a;=87=5.013 for largez=L/¢. Figure 1 shows
these results forgg plotted against the combination d,
JZ exp(-2), motivated by the I result(3.9). 9r(§,2=7.29=0r(*,2=7.29 1+ 3
We have determined the Monte CatMC) prediction of
gr both for the standard action and the FP action. Making g, .+, gr(,2=7.25)=6.710(13), andd,=—0.274). Al-

linear fit in ﬁeXP(—Z) to the four data points @=1.50 for  ,4,gh there is no theoretical basis for such a fit, it describes
the standard actiofsee Fig. ], one obtains the present data as well as the first.

One sees that our datavhich are the best available at
present do not allow one to discriminate between the two
fits [or between any intermediate fits with leading behavior
(In &"/& with, say, larger]. The accuracy of the MC deter-
mination of the continuum value @y is thus unfortunately
limited; nevertheless, assuming a power-law approach, we

Next, we extrapolated the results of our measurements yould estimategg(>,z=7.25)=6.71(2). Needless to say, if
the continuum limit. In Fig. 2 we show both the measured"® @Pproach to the continuum is much slower, say, Ef(In
and corrected values af; versus 1£ for the data withL/¢ thg con_tlnuum value ofjg could differ considerably from
~7. It clearly indicates that the continuum limit afy is  thiS estimate.
approached from below as is the case in the leading order of
the 1h approximation of the lattice theoryl8]. The only
theoretic framework for estimating lattice artifacts comes 3This is the analytic form found in the leading orden ¥xpan-
from considering Symanzik’§1] effective action. The ab- sion withb;=— 3, b,=—3 In2+3 [18].

. (311

gr(z=>, £=11.0=6.601), (3.9

with a;=5.0(4). Since the finite size dependena least at
this correlation lengthis quite well described by Eq3.9),
we used this formula to “renormalize” our data with-7 in
Table Il to the common physical size=7.25.
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TABLE V. Parameters of simulations in the(®) model. On

latticesA and B the standard action was used, whideand E de-
mote simulations with the FP action.
Lattice B TXL m~? mL
A 1.54 256<128 13.6326) 9.4
B 1.40 128<64 6.8833) 9.3
D 0.85 128<64 6.031) 10.0 06
E 0.70 64x32 3.18615) 10.6 03 T | 1 T -0.4
= =2
=%
02 -06 -
Finally, we used Eq(3.8) again to extrapolate the con- X
tinuum result for the finite physical size=7.25 to the ther- T %
modynamic limitz=o. Thus our final result based on the °'y 198 =
standard action lattice measureme(kseping in mind the
cautionary remark aboyes 0 . . . » . . .
0 0.5 1 1.5 2 0 0.5 1 1.5 2
p/M p/M
g3'=6.7712). (3.12

FIG. 4. The phase shifts in units af/2 vs p/M. The open
This error contains both the ambiguity in using the(3it10 zﬁrrnl;?,lesa;:fe:;(;nr:tslqiﬁlﬂ'etzr:g r:ztst!c;%r;;rég;o\ll:/?thsytrhn: o\ﬁFare
or (3.11) and the error 'm%' . . method discussed here. The crosses denote results using the FP
The data for the FP action seem to lie on a universal curVgtion (D andE). The solid curve corresponds to the Zmatrix.
(the slope of which roughly corresponds to the ptedic-
tion) in spite of the extremely short correlation length. We ) )
interpret this as an indication that the lattice artifacts for theldn temperature expansions discussed above, but very con-
FP action are small, in any case smaller than our error bari(.')Stent with each other and with the res(@t33 from the
The measured values for the standard action show a consit™M factor bootstrap. o ,
erable lattice artifact, but the datazt7 seem to converge /e would like to end this section with a comparison of an

to the FP result with increasing Extrapolating the FS ef- analytic prediction of the ratigy/¢ with the MC data. In
fects toz=2, we get Ref.[9] the perturbative short distance expansion of the spin

two-point function was refined to

gR =6.772) (3.13

A Z56M%2 5 In|In M |x]]|

and a,=5.0(3). This extrapolation is based on the four ~ S™**(x,0=——5 (INM|x|)%} 1+ 0 M )|
Bep=0.85 data points, but including all points of Table IV (3.149
does not alter the extrapolation significantly.

Our results(3.12 and (3.13 are above Kim's value,
6.6(1), determined previously via finite size scalif2p], al-  The new result was the exaghough nonrigoroysdetermi-
though statistically compatible within the error estimate.nation of the overall nonperturbative constant. Using this we
They are also above the central values quoted on the basis cén straightforwardly derive the relatigh9]

TABLE VI. Phase shifts from latticé\.

I k Oexact O Swr to M SLw

0 1 1.4595 1.3®) 1.492) 1 20 1.367)
1.4505) 1.504) 8 8

2 1.2840 1.28) 1.302) 1 20 1.223)
1.386) 1.345) 8 8

1 1 0.1751 0.1Q) 0.173) 1 20 0.1%1)
0.193) 0.195) 8 8

2 0.2692 0.182) 0.232) 1 20 0.231)
0.234) 0.245) 8 8

2 1 —1.3874 —1.51(2) —-1.371) 1 20 —-1.392)
~1.433) ~1.362) 8 8

2 ~1.0944 ~1.11(1) ~1.061) 1 20 ~1.051)
—1.042) —1.062) 8 8
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TABLE VII. Phase shifts from lattice3.

I k Oexact O Swr to M SLw
0 1 1.4584 1.4(1) 1.4411) 1 20 1.517)
1.471) 1.491) 3 10
2 1.2818 1.2a1) 1.291) 1 20 1.21)
1.351) 1.301) 3 10
1 1 0.1764 0.04) 0.121) 1 20 0.141)
0.121) 0.121) 3 10
2 1 —1.3859 —1.421) -1.351) 1 20 -1.382)
—-1.361) —-1.351) 3 10
2 —1.0914 —1.051) -1.031) 1 20 —1.021)
—1.021) —1.031) 3 10
3 —0.9102 —-0.782) -0.781) 1 20 —0.81(2)
—-0.761) -0.781) 3 10
y 3mA 1 c In fact, the Zamolodchikovs specified ti& matrix for
n . .
2715 F{1+ Z F} (3.19 generaln.>3 and these expressions have peen verified to
3 2 n=1 O(1h?) in the 1h expansion. For the particular case of

. . . . 0(3), Luscher and Wolff{11] checked the expressions for
The first three nonuniversal perturbative coefficients arg,, energies using MC simulations. The agreement was
known for the standard action lattice regularizati@]: completely satisfactory; in particular, the data were consis-
tent with the highly nontrivial nonperturbative property that
the S matrix at zero energy is repulsive, ,.,p(0)=
— 38242, Which is a crucial condition in the FFB con-
struction. We repeated the measuremen{4d.of for the stan-
g dard action using a modified method of analysis. In addition,
that Eq.(3ﬁ1]5) stehems tol be satisfied byl our czja;ta;ota}[hbette(,ve also performed measurements using the FP action. Since
accuracy than the analogous one foalone[27], but the the S matrix is the essential ingredient in the FFB construc-

ratios decrease rapidly and we do not know if they eventuﬂon, we report the results here.

ally overshoot the asymptotic value of 1. Note also that the The method of ['scher and Wolff11] is based on the
prediction(3.19 is independent of thé//As ratio 8k of following idea: The momentum of one of the particles in a
Ref. [14]. two-particle state with zero total momentum in a periodic
box (in one dimensiontakes discrete valugs, given by the
IV. PHASE SHIFT ANALYSIS periodicity condition
FROM FOUR-SPIN CORRELATORS

c,=0.1816, ¢,=0.1330, c3=0.1362. (3.16

Figure 3 shows the measured values of ¢’ ratio divided
by the four-loop approximation to the predictié®15. Note

L+28(p,)=27n. (4.9
The prediction for the scattering amplitude of two par- P (Pn

ticles at center-of-mass momentyrs M sinhgin the Q3)  Accordingly, the energy of this state is given by
nonlinear sigma model by Zamolodchikov and Zamolod-
g Y En=2E®(p,)=2\pZ+M?,

chikov [4] is given by (4.6
2 whereE(®)(p) is the energy of a one-particle state with mo-
Sarpr-an(0)= z gdap! (4.1) mentump. From the measurement of the energy spectiéym
' =0 arbriab for some low lying states, one can then calculate the momen-

tum p,, and using Eq(4.5 the phase shif6(p,). VaryingLL
whereP' are the isospin projectors and the phase shifts and taking different values af, one can determiné(p) at

are given simply by several values of its argument.
_ To determine the two-particle energies the correlation ma-
G2id0p)_ z+?w, @2 trix has been measuréd:
—2im
Cyy(t)=(vadO(x,000(y,t)|vag., 4.7
. 0+2im 6—im
2'51(13):
€ 0—2im7 0+iw’ (4.3

4Actually, in Ref. [11] the measurement was done in Fourier
space(i.e., in relative momenjabut this difference is not signifi-
(4.4) cant here. Fgr our purpose the coordinate space representation is
more convenient.

O—im

2i85(p) —
e 2\ = —.
O+ia
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TABLE VIII. Phase shifts from latticeD.

PHYSICAL REVIEW D 60 094508

TABLE IX. Phase shifts from lattic&.

I k ‘Sexact 5E 5WF l k 5exact 5E 5WF
0 1 1.4726 1.4B) 1.461) 0 1 1.4664 1.44) 1.441)
2 1.3107 1.2@) 1.292) 2 1.2977 1.27) 1.291)
1 1 0.1598 0.14) 0.142) 1 1 0.1674 0.18) 0.151)
2 0.2545 0.2®) 0.271) 2 0.2619 0.26l) 0.281)
2 1 —1.4056 —-1.41(2) -1.411) 2 1 —1.3968 -1.351) -1.391)
2 —1.1321 -1.151) -1.161) 2 —1.1138 —-1.141) -1.131)
where Luscher and Wolff11] suggested to determine the ener-
gies of the two-particle states from the generalized eigen-
= value problem
0= 2y o(zDo(ztxD. 48 C(Va=An(t,t0)Clto)Vy- (412

We omit here the Qf) structure and indices. The subscript
in Eq. (4.7) means that in thé=0 channel the vacuum con-
tribution is subtracted.

Using the eigenvectoris) of the transfer matrix as inter-
mediate states, one has

cxy<t>=; e Bty (X) n(y), (4.9

where

n(x) = (vadO(x,0)|n) (4.10
is the “wave function” of the corresponding state. The low-
est energy states in E¢.9 are the two-particle states, and
they will dominate at sufficiently large values of

Note that the relative momentunpg of the two-particle
states is encoded not only in the enefgy, but also in the
wave functionyg,(x). For the symmetric wave functior($
=0,2 channels one should have

Pa(X)=Acosp,(x—L/2) for R<x<L—-R, (4.1))

and similarly with sirp,(x—L/2) for thel =1 channel. Here
R is the “interaction range.” For a relative distance
>R, the particles propagatessentially freely.

The eigenvalues of Ed4.12) are givenexactlyby

Nn(t,tg)=e"Fn(t710), (4.13
provided the sum in Eq4.9) is restricted toN terms, <n
<N. It is also easy to show th&with an appropriate nor-
malization ofv,)

wn<x>=§ Cy(to)Va(Y). (4.14

Solving Eq.(4.12 involves an inversion oE(ty), and the
distortion of its small eigenvalues by the statistical noise is
enhanced. This could affect strongly the values and errors of
E, obtained. Foity>1, taking allN~L/2 states introduces
significant instability in the resuftBecause of this, we have
introduced a modification: before considering the general-
ized eigenvalue problem, we truncate the correlation func-
tion to anM-dimensional subspacé/<N) spanned by the
first M eigenvectors ofC(ty) (to those with the largest
eigenvalues and still stable against the statistical fluctua-
tions). The generalized eigenvalue problem, E4.12, is

written then for the matrice€(t) in this reduced basis. The
energies we used were obtained from Egsl2 and(4.13.

We also determined/,(x) from Eq. (4.12. One can use
them as some givefmearly optimal projectors which satisfy

(4.195

Note that as a result of statistical errors@y,(t), the ob-

(Vm,C(t)vp)= 5mne_En(t_t0)-

One expects that the additional information obtained fromtainedv,(x)’s will differ from the true ones and hence these
the wave function will provide a more precise determinationequations will be only approximately valid. They provide a

of p and hence of(p).

A. Determination of the energy spectrum and wave functions

The rankN of the matrixC(t) in Eq. (4.9 is L/2, L/2
—1,andL/2+1 in thel =0, 1, and 2 channels, respectively.
We assume that for=t, (with somety) no more thanN
states contribute t€,,(t), in the sense that the total contri-
bution of the statea>N is much smaller than the statistical
error 5Cyy(t).

useful consistency check and, also, a somewhat different
method to determin&,,.

As an alternative way to get the phase shifts, we used the
momentap, determined from the wave functidiiVF) using

SThis equation was considered already before by Micf2&]l in
connection with a variational approach for evaluating the static po-
tential in lattice gauge theory.

bIn Ref.[11] ~L/4 states were used with<1.
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Eq. (4.14. For a givent, and M one can also check the Tables VIII and IX. The columnde gives the phase shift
self-consistency of the obtained parameters by comparingalculated from the energy by E(.12: WF labels the re-

C,y(t) built from E, and ¢,(x) [cf. Egs.(4.13 and (4.14)] sults obtained from the wave function, Ed.14). The data
with the MC result. shown correspond tt,=3, M=10 for latticeD andty=1,

M=10 for lattice E. However, the results—especially for
B. Results _5W,_—are quite s_tab!e against this choice. We t®k3/m
) ) ~in Eg.(4.1)). Taking into account that the correlation lengths
We performed the calculations with the standard action;sed with the FP action were ondy=3 and 6, the agreement
. . 7 oy 1
for the same lattice¢A,B) as in Ref.[11]." In addition, we it the analytic prediction is very good. Note, however, that
also repeated the calculations using the fixed point action 0§ simjlar suppression of lattice artifacts has been observed

the Q3) model [13,29. The parameters of our measure- yreviously with this action for other observablgs,29,3Q.
ments are summarized in Table (Yerem is the inverse of

the exponential correlation length
The phase shifts obtained from the analysis for the stan-

dard and FP actions are shown in Fig. 4 together with the We would like to thank Michael Karowski for useful dis-

results from Ref[11]. The results for the standard action are cussions and Paolo Butera, Paolo Rossi, and Ettore Vicari for

also given in Tables VI and VII and for the FP action in informative correspondence. This investigation was sup-
ported in part by the Hungarian National Science Fund
(OTKA) (under T016233 and T01991L@nd also by the Sch-

"Reference11] also measured an additional latti€with mL ~ weizerischer Nationalfonds. The work of M.N. was sup-
~5. ported by NSF grant 97-22097.

ACKNOWLEDGMENTS

[1] K. Symanzik, Nucl. PhysB226, 187 (1983; for a review, see [14] P. Hasenfratz, M. Maggiore, and F. Niedermayer, Phys. Lett.
M. Luscher, inCritical Phenomena, Random Systems, Gauge B 245, 522(1990.
Theories Proceedings of the Les Houches Summer School of15] A. Patrascioiu and E. Seiler, Phys. Lett4B5 160 (1999.
Theoretical Physics, Les Houches, 1985, edited by K. Osterf16] A. Pelissetto and E. Vicari, Nucl. PhyB519, 626 (1998.
walder and R. StordElsevier, Amsterdam, 1986pp. 359~  [17] M. Falcioni, G. Martinelli, M. L. Paciello, G. Parisi, and B.

374; in Probing the Standard Model of Particle Interactions Taglienti, Nucl. PhysB225, 313(1983.

Proceedings of the Les Houches Summer School of Theoretir1g] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Nucl.
cal Physics, Les Houches, 1997, edited by R. Gugttal. Phys.B459, 207 (1996; Nucl. Phys. B(Proc. Supp). 47, 751
(Elsevier, Amsterdam, 1999 (1996.

[2] A. Patrascioiu and E. Seiler, Phys. Rev. L&#, 1920(1995.

[3] M. Luscher, Nucl. PhysB135, 1 (1978.

[4] A. B. and Al. B. Zamolodchikov, Ann. Phy$N.Y.) 120, 253
(1979; Nucl. Phys.B133 525(1978.

[5] F. A. Smirnov,Form Factors in Completely Integrable Models
of Quantum Field TheorjWorld Scientific, Singapore, 1992

[6] M. Karowski, in Field Theoretical Methods in Particle Phys-

[19] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys.
Lett. B 402 141(1997.

[20] J. Balog, M. Niedermaier, F. Niedermayer, A. Patrascioiu, E.
Seiler, and P. Weistin preparatioin

[21] P. Butera and M. Comi, Phys. Rev. 3}, 15 828(1996); 50,
3052(1994; 58, 11 552(1999.

ics, edited by W. Ral (Plenum, New York, 1980 p. 307. [22] P. Rossi and E. Vicariprivate communication
[7] M. Karowski and P. Weisz, Nucl. PhyB139, 455 (1978. [23] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys.
[8] J. Balog, M. Niedermaier, and T. Hauer, Phys. Lett386 Rev. B54, 7301(1996.

224(1996. [24] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys.
[9] J. Balog and M. Niedermaier, Nucl. PhyB500, 421 (1997); Rev. D54, 1782(1996; Nucl. Phys. B(Proc. Supp). 47, 755

Phys. Rev. Lett78, 4151(1997. (1996.
[10] H. Babuijian, A. Fring, M. Karowski, and A. Zapletal, Nucl. [25] P. Butera(private communication

Phys.B538 535(1999. [26] J. Kim, Phys. Lett. B345 469(1995.
[11] M. Luscher and U. Wolff, Nucl. Phys8339, 222 (1990. [27] S. Caracciolo and A. Pelissetto, Nucl. Phd55 619(1995.
[12] J. Balog, M. Niedermaier, F. Niedermayer, A. Patrascioiu, E.[28] C. Michael, Nucl. PhysB259, 58 (1985.

Seiler, and P. Weisfin preparation [29] M. Blatter, R. Burkhalter, P. Hasenfratz, and F. Niedermayer,
[13] P. Hasenfratz and F. Niedermayer, Nucl. Phpd14, 785 Phys. Rev. D63, 923(1996.

(19949. [30] S. P. Spiegel, Phys. Lett. B00, 352 (1997.

094508-11



