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The renormalized couplinggR defined through the connected four-point function at zero external momentum
in the nonlinear O~3! sigma model in two dimensions is computed in the continuum form factor bootstrap
approach with an estimated error;0.3%. New high precision data are presented forgR in the lattice-
regularized theory with the standard action for nearly thermodynamic latticesL/j;7 and correlation lengthsj
up to;122 and with the fixed point action for correlation lengths up to;12. The agreement between the form
factor and lattice results is within;1%. We also recompute the phase shifts at low energy by measuring
two-particle energies at finite volume, a task which was previously performed by Lu¨scher and Wolff using the
standard action, but this time using the fixed point action. Excellent agreement with the ZamolodchikovS
matrix is found.@S0556-2821~99!04419-7#

PACS number~s!: 11.15.Ha, 11.10.Lm
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I. INTRODUCTION

The only presently known practical way to define a re
tivistic quantum field theory nonperturbatively in four d
mensions is by using lattice regularization. For example,
hoped that one will, once sufficiently powerful computers a
available, be able to answer the question as to whether Q
is the correct theory of the strong interactions by study
the continuum limit of the lattice theory.

It is, however, notoriously difficult to control the con
tinuum limit of a lattice theory. Analyses of lattice Feynma
graphs, as initially performed by Symanzik@1#, show that,
order by order in renormalized perturbation theory, physi
quantities approach their continuum limit as integer pow
in the lattice spacing~up to logarithmic corrections!. How-
ever, since it is not known that such behavior controls
approach to the continuum limit in the full nonperturbative
defined theory, the invocation of such a power-law appro
to extrapolate data produced in numerical simulation exp
ments has merely the status of a~plausible! working hypoth-
esis. The integer nature of the powers adopted in studie
theories such as QCD is considered to be connected to
widely expected property of asymptotic freedom. Here ag
the very question whether the continuum limit of the latti

*On leave from the Institute of Theoretical Physics, Eo¨tvös Uni-
versity, Budapest, Hungary.
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theory really describes an asymptotically free theory
highly nontrivial.1

This work is part of an ongoing effort of the present a
thors to test whether the ‘‘conventional wisdom’’ is corre
in a simpler model, the nonlinear O~3! sigma model in two
dimensions. This model is, like QCD, perturbatively asym
totically free and also has instanton and superinstanton@2#
solutions. It has, however, classically the additional, bea
ful property of being integrable; in particular, there exists
infinite set of nonlocal conserved charges. Assuming that
quantum theory has a mass gap and the spectrum conta
vector multiplet of stable particles, the existence of such c
served charges in quantum theory forbid particle product
in scattering and, as shown by Lu¨scher@3#, fixes the two-
particle S matrix to that previously postulated by Zamolo
chikov and Zamolodchikov~ZZ! @4# @up to Castillejo-Dalitz-
Dyson ~CDD! ambiguities#.

All these properties were obtained starting from a form
Lagrangian, where one first computes off-shellN-point func-
tions and goes on shell via the Lehmann-Symanz
Zimmermann~LSZ! formalism to obtain theS-matrix ele-
ments. The so-called form factor bootstrap~FFB! approach
@5,6,7# proceeds in the other direction. One attempts to
tain off-shell information starting from the knowledge~pos-
tulate! of the stable particle spectrum and theirS matrix. In

1Indeed, even the authors of this paper are divided into two s
sets having different opinions on the probable answer.
©1999 The American Physical Society08-1
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JÁNOS BALOG et al. PHYSICAL REVIEW D 60 094508
the first step one constructs the form factors of~composite!
operators, satisfying all physical constraints~analyticity,
generalized Watson theorem, etc.! and then Green function
are obtained by saturating with a complete set of states.
is a program which is only feasible in a theory where there
no particle production~i.e., only in two dimensions!. Even
this program, for which there has recently been a lot
progress@8,9,10#, involves mammoth effort.

Unfortunately, since lattice regularization breaks the
conservation laws and the FFB relies on some nontrivial
sumptions, the expectation that the continuum limit of t
lattice O~3! model coincides with the FFB is not guarantee
A first investigation of this issue was by Lu¨scher and Wolff
@11# who computed the phase shifts on the lattice by m
suring two-particle state energies in a finite volume. Th
results~taking account of lattice artifacts! were completely
consistent with the ZZS matrix. In the course of a simila
investigation of the nature of the continuum limit of the O~2!
model @12#, in order to test our programs and a slight
modified form of the analysis, we repeated the measurem
of the phase shifts in the O~3! model. We also made simu
lations with a fixed point action@13# and found indications
that the lattice artifacts are much smaller than in the cas
the standard action. An account of our investigations is gi
in Sec. IV. Our results are again in good agreement with
ZZ S matrix @4#.

An off-shell quantity of physical interest is the curren
current (J-J) correlation function. It has been shown th
J-J computed in the FFB approach@8,9# agrees well with
conventional renormalized perturbation theory at high en
gies, at least up top/M;10000, when the analytical value o
the ratio of the massM to the L parameter@14# is used.
Connected to this are two important interrelated propert
First, the ZZ S matrix shows an ‘‘on-shell form of
asymptotic freedom~AF!,’’ in the sense that the phase shif
fall logarithmically to zero with the energy at high energ
~see Sec. IV!. Second, the thermodynamic Bethe ansa
which is used to computeM /L, reproduces the two-loop
b-function coefficient. The agreement between the FFB
lattice computations ofJ-J is also within;1% for the entire
range of momenta up to;40M .

Despite this wealth of circumstantial evidence for the v
lidity of the conventional picture, there is still room fo
doubt. In particular, in a recent paper, two of the pres
authors@15#, assuming a certain form of the lattice artifac
have found statistically significant deviations between
continuum limit of the latticeJ-J correlation function and
the FFB at low energies.

Unfortunately, theJ-J correlation function at low ener
gies is a quantity which behaves qualitatively similarly
that in a free theory. It is plausible that a difference betwe
two theories would manifest itself more clearly in a quant
which vanishes in the free theory, e.g., the zero-momen
couplinggR defined through the connected four-point fun
tion. There is an enormous literature on the computation
this quantity in the two-~and higher! dimensional nonlinear
sigma models; see, e.g., Ref.@16# and references therein. Th
main new contribution of this paper, the computation ofgR
by the FFB, is outlined in Sec. II. This is the first time th
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this method has been used to compute a four-point funct
and it is rather surprising that one is apparently able to
such a good approximation forgR .

In Sec. III we present results ongR using two different
lattice regularizations, the standard action~including new
high precision data on thermodynamic lattices at large c
relation lengths! and the fixed point~FP! action. The nature
of the approach to the continuum limit is not so clear, b
whatever~reasonable! extrapolation is made, it agrees wit
the truncated FFB result to better than;1%.

II. COMPUTATION OF gR

IN THE CONTINUUM THEORY

There have been various approximation schemes to c
pute low energy~nonperturbative! quantities in the con-
tinuum formulation of the O(n) models in two dimen-
sions: theg expansion@17#, the e expansion@16#, and the
1/n expansion@18#. In this section we will present a new
approximation using the form factor bootstrap.

A. Definitions

Consider a general continuum quantum field theory in t
dimensions, in infinite volume, with global O(n) symmetry.
Let sa(x), a51, . . . ,n, be a vector multiplet of~renormal-
ized! Euclidean scalar fields with two-point function

Sa1a2~x1 ,x2!5^sa1~x1!sa2~x2!&. ~2.1!

The inverse of its Fourier transform,

G~k!da1a25E d2x eikxSa1a2~x,0!, ~2.2!

is assumed to have an expansion for small momenta:

G~k!215ZR
21@MR

21k21O~k4!#. ~2.3!

We denote the four-point function by

Sa1a2a3a4~x1 ,x2 ,x3 ,x4!5^sa1~x1!sa2~x2!sa3~x3!sa4~x4!&
~2.4!

and the connected four-point function by

Sc
a1a2a3a4~x1 ,x2 ,x3 ,x4!5Sa1a2a3a4~x1 ,x2 ,x3 ,x4!

2Sa1a2~x1 ,x2!Sa3a4~x3 ,x4!

2Sa1a3~x1 ,x3!Sa2a4~x2 ,x4!

2Sa1a4~x1 ,x4!Sa2a3~x2 ,x3!.

~2.5!

Introducing the Fourier transform by
8-2
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S̃a1a2a3a4~k1 ,k2 ,k3 ,k4!

5E )
j 51

4

@d2xje
ik j xj #Sa1a2a3a4~x1 ,x2 ,x3 ,x4!,

~2.6!

and similarly S̃c for the connected part, the convention
zero-momentum~dimensionless! coupling ~in two dimen-
sions! is defined by

gR52
MR

2

G~0!2

1

n2 (
a,b

Gaabb~0,0,0,0!, ~2.7!

where

S̃c
a1a2a3a4~k1 ,k2 ,k3 ,k4!5~2p!2d~2!~k11k21k31k4!

3Ga1a2a3a4~k1 ,k2 ,k3 ,k4!.

~2.8!

We will assume that the two-point function has a spec
representation

G~k!5ZE
0

`

dm
r~m!

m21k2 , ~2.9!

where the normalization constantZ takes into account that
assuming that the spectrum of the theory contains a ve
multiplet of stable particles of massM, we normalize the
spectral densityr so that the one-particle contribution is

r~1!~m!5d~m2M !. ~2.10!

Then the coefficients appearing in the small momenta exp
sion above can be expressed as

ZR5Z
g2

2

d2
, ~2.11!

MR
2

M2 5
g2

d2
, ~2.12!

whereg2 andd2 are the moments:

g25M2E dm
r~m!

m2 , ~2.13!

d25M4E dm
r~m!

m4 . ~2.14!

Further, the couplinggR can be written as

gR52
n12

n

g4

g2d2
, ~2.15!

whereg4 is defined through
09450
l

l

or

n-

Ga1a2a3a4~0,0,0,0!5
Z2g4

M6 ~da1a2da3a41da1a3da2a4

1da1a4da2a3!. ~2.16!

Strictly speaking, all observable physics~in a massive
theory! is on shell; different interpolating fields give th
same results. Off-shell amplitudes of particular compos
~and ‘‘elementary’’! operators are only of physical interest
they are sources of~idealized! infinitesimal weakly interact-
ing probes. The fields are characterized by their vario
quantum numbers and their dimensions, e.g., coded in
behavior of the two-point functionG(k). The assumption
~2.9! corresponds to a limitation on the behavior of the as
ciated spectral functionr~m! asm→`. It is an implicit con-
nection to the association ofsa(x) with a particular local
field in the Lagrangian quantum field theory. In the nonline
O(n) sigma model the ‘‘elementary’’ fieldsa(x) is charac-
terized by its vanishing engineering dimension~in addition
to being an isovector and spacetime scalar!. We can therefore
assume that the short distance singularities of its two-p
function are sufficiently weak~only logarithmic! so that the
spectral representation~2.9! holds without subtractions. In
deed, in the FFB approach, this uniquely defines~up to nor-
malization! an operatorŝa(x), which has form factors tha
are not growing too fast at infinity so that the correspond
spectral densityr~m! vanishes fast enough form→`.

B. 1/n and e expansions

The leading order computations for the spectral integr
in the 1/n expansion have been performed in Ref.@19#.

g25110.00671941
1

n
1OS 1

n2D , ~2.17!

d25110.00026836
1

n
1OS 1

n2D , ~2.18!

and also for the coupling@18#,

gR5
8p

n F120.602033
1

n
1OS 1

n2D G , ~2.19!

which gives the approximationgR56.70 for the casen53.
In the g expansion one obtainsgR56.66(6) @17# and in

the e expansiongR56.55(8) @16#. Considering the rathe
short series in each case, it is amazing how well the estim
by the various methods agree.

C. Form factor bootstrap computation for n53

The form factor bootstrap aims at reconstructingN-point
functions of local operators of integrable field theories fro
knowledge of the spectrum of stable particles and theiS
matrix. A description can be found in Smirnov’s book@5#,
the review of Karowski@6#, a recent paper@10#, and in vari-
ous articles of two of the present authors@9#.
8-3
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To our knowledge this is the first time that the method h
been applied to the computation of four-point functions. T
computation is rather involved, and here we will only give
very brief outline and present our results. The calculation
this and in other integrable models will be described in de
in a forthcoming paper@20#.

We assume~as did the Zamolodchikov brothers in the
construction of theSmatrix! that there are no bound states
the O(n) models. Then the spectral densityr has an expan-
sion over contributions from the intermediate states with
odd number of particles~due to internal parity symmetry!,

r~m!5 (
k50

`

r~2k11!~m!, ~2.20!

and correspondingly the spectral integrals

g2511 (
k51

`

g2
~2k11! , ~2.21!

d2511 (
k51

`

d2
~2k11! . ~2.22!

The form factors are given by Smirnov@5# for the O~3!
model and have been recomputed in@9#. For example, the
matrix element of the Minkowski operatorŝa(0) associated
with the Euclidean fieldsa, connecting the vacuum to th
three-particle in-state with rapiditiesu1>u2>u3 , is given
by

^0uŝa~0!ua1 ,u1 ;a2 ,u2 ;a3 ,u3&
in5AZFa1a2a3

a ~u1 ,u2 ,u3!,

~2.23!

with

Fa1a2a3

a ~u1 ,u2 ,u3!5p3)
i , j

c~u i2u j !@~u32u2!da1

a da2a3

1~u12u322p i !da2

a da3a1

1~u22u1!da3

a da1a2
#, ~2.24!

where

c~u!5
~u2p i !

u~2p i 2u!
tanh2

u

2
. ~2.25!

The expression of the five-particle matrix element is a
known explicitly, but it is much too long to be written her
Using these results the three- and five-particle contributi
to g2 and d2 are given in Table I. It seems that the seri
converge extremely rapidly, and we would estimate

TABLE I. r-particle contribution tog2 ,d2 .

r g2
(r ) d2

(r )

3 1.67995~1!31023 3.46494~1!31025

5 6.622~1!31026 7.114~1!31029
09450
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g251.001687~1!, ~2.26!

d251.000034657~1!, ~2.27!

where the estimated errors come from inspecting the pat
of relative n-particle contributions suggested by the on
three, five-particle states.

The four-point function has an expansion in terms of co
tributions of intermediate states withl,m,n particles, respec-
tively,

S̃a1a2a3a4~k1 ,k2 ,k3 ,k4!

5~2p!2d~2!~k11k21k31k4!

3M 26 (
permsP

VaP1aP2aP3aP4~kP1 ,kP2 ,kP3 ,kP4!,

~2.28!

whereki5(ki1 ,ki2),

Va1a2a3a4~k1 ,k2 ,k3 ,k4!

5~2p!3M6 (
lI,mI ,nI

d~PlI1k11!

ElI2 ik12

3
d~PmI 1k111k21!

EmI 2 ik122 ik22

d~PnI 2k41!

EnI 1 ik42

3^0uŝa1~0!u lI&^ lIuŝa2~0!umI &^mI uŝa3~0!unI &^nI usI a4~0!u0&,

~2.29!

where l,n run over all states with odd numbersl,n of par-
ticles, andm over all states with an even numberm>0. The
somewhat symbolic( in Eq. ~2.29! really means, in addition
to the summation over all internal quantum numbers of
particles and integration over all particle rapidities, a su
over the integersl, m, andn. The limit of zero momenta is
very delicate because each term in the sum is a distribu
in the momenta where the singularities occur when cer
linear combinations of the momenta are zero. In particu
the contributions from terms in the above sum withm50 not
only cancel the disconnected piecesS̃2S̃c , but also produce
extra terms proportional tod(k111k21). The singularities
must be canceled by other terms in the sum withm.0; e.g.,
the singularity from the contribution 1-0-1 is canceled
that of the contribution 1-2-1. We can avoid this problem,
example, by restricting ourselves to momentaki15lKi1 ,
whereKi11K j 1Þ0 for any iÞ j , and then taking the limit
l50 in our analytic expressions. An additional technic

TABLE II. l -m-n-particle contribution tog4 .

l,m,n g4;lmn

1,2,1 24.16835~1!

1,2,3 0.05175~1!

3,2,1 0.05175~1!

1,4,1 20.004065~1!
8-4
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TABLE III. j, x53G(0) andgR for the standard action.

b L Runs L/j j x gR

1.5 60 110320k 5.469~10! 10.97~2! 173.76~31! 6.269~20!

1.5 80 344320k 7.253~7! 11.03~1! 175.95~11! 6.553~16!

1.5 100 350320k 9.050~8! 11.05~1! 176.51~6! 6.613~17!

1.5 140 361320k 12.68~1! 11.04~1! 176.30~5! 6.560~18!

1.6 140 214320k 7.361~15! 19.02~4! 447.30~6! 6.612~17!

1.7 250 367320k 7.246~4! 34.50~2! 1267.20~57! 6.665~14!

1.8 500 361320k 7.717~4! 64.79~3! 3839.07~1.54! 6.688~15!

1.9 910 101320k 7.4395~6! 122.32~1! 11884.9~7.0! 6.738~24!

1.95 1230 12320k 7.352~20! 167.30~45! 20835~57! 6.751~78!

2.0 1600 4320k 6.949~25! 230.26~83! 36826~142! 6.981~132!
2.05 2100 5320k 6.804~67! 308.63~3.06! 63011~731! 6.608~216!
um
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complication comes from the fact that each term in the s
is rather involved because the matrix elements have p
with differing connectivity properties, e.g., the matrix el
ment occurring in the 1-2-1 contribution (u1.u2):

Z21/2^b,fuŝa~0!ua1 ,u1 ;a2 ,u2&
in

5Fba1a2

a ~f1 ip2 i e,u1 ,u2!14pda2

a dba1
d~f2u1!

14pd~f2u2!Sa1a2 ;ab~f2u2!, ~2.30!

where theS-matrix elementsSa1a2 ;ab are given in Sec. IV.
The practicability of the computation of the zer

momentum coupling using the form factor bootstrap a
proach obviously depends crucially on the question as
whether the sum over intermediate states for the four-p
function,

g45 (
l ,m,n

g4;lmn , ~2.31!

converges rapidly. We started to investigate this questio
the Ising model, and we found that thel 1m1n56 contri-
butions are much smaller than the leading 1-2-1 term@20#.
Fortunately, for the O~3! model under investigation here, th
situation is rather similar. The contributions of thel -m-n
intermediate states withl 1m1n<6 to g4 are given in
Table II.

The leading 1-2-1 contribution is a factor;42 greater in
magnitude than the sum ofl -m-n contributions withl 1m
1n56. It is extremely difficult to bound the rest of the co
tributions, especially since the signs are not known in g
eral. Even the computation of the states withl 1m1n58
would be quite an undertaking.2 But assuming that the pat
tern in Table II continues~as for the case of the two-poin

2The calculation of thel 1m1n58 contributions in the Ising
model is, however, not so difficult; the results will be presented
Ref. @20#.
09450
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function! and that the sum of the remaining contributionsl
1m1n>8 is <10% of the sum of thel 1m1n56 contri-
butions, we obtain the result

g4524.069~10! ~2.32!

and, hence, our final result

gR56.770~17!. ~2.33!

III. LATTICE COMPUTATIONS OF gR

In the framework of the lattice regularization, there a
two methods to computegR in the O(n) models. The first is
using high temperature~strong coupling! expansions and the
second by numerical simulations.

n

FIG. 1. The couplinggR(z,b) for the FP~open symbols! and
standard~solid symbols! actions plotted vsAz exp(2z). The corre-
lation lengths for the FP action are in the range 3.2–12.2, while
the standard action in 11–122. The theoretical value from the F
is also shown. The linear fits are motivated by the 1/n prediction
~3.8! and are based on thebST51.50 andbFP50.85 data, respec
tively.
8-5
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For numerical simulations we consider a square lat
with both the standard action

S52b(
x,m

s~x!•s~x1m̂ !, ~3.1!

wheres(x)•s(x)5(asa(x)sa(x)51 and the FP action o
Ref. @13#.

A. High temperature expansion

Concerning the high temperature~HT! expansion for the
standard action, long series@21# have been obtained for th
two- and four-point functions and for the second momentm2
defined by

m2da1a25(
x

x2^sa1~x!sa2~0!& ~3.2!

to obtainMR throughMR
254G(0)/m2 , whereG(k) is de-

fined analogously to Eq.~2.2!, but with the integral replaced
by a sum. The analyses of the HT expansion for the spec
moments giveg251.0013(2) @19# and d251.000029(5)
@22#. The agreement with the FFB values Eqs.~2.26!, ~2.27!,
is acceptable; note that these are smaller than that anticip
from the leading order of the 1/n approximation, Eqs.~2.17!,
~2.18!.

The coupling is defined as the continuum limit

gR5 lim
j→`

gR~j!, ~3.3!

wherej is the correlation length in lattice units. The analys
is hampered by the lack of rigorous knowledge of the po
tion of the critical point and the exact approach to it.
particular, the conventional wisdom that the critical point
at b5` is usually built into the analyses. The various Pa´
approximations show the coupling falling rapidly asb in-
creases in the region of smallb, then a region of rather fla
behavior, after which the various approximations show
verse behavior; some analyses indicate that in fact there
shallow minimum and that the continuum limit is actua
approached from below~see, e.g., Refs.@23#, @16#!.

In Ref. @24# Campostriniet al.quote for the casen53 the
result gR56.6(1), and in amore recent publication Pelis
setto and Vicari cite 6.56~4! @16#. Butera and Comi, on the
09450
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other hand, are rather cautious and did not quote a value
the casen53 in Ref. @21#; if pressed, they would at presen
cite gR56.6(2) @25#.

B. Numerical simulations

Monte Carlo computations ofgR have a long history; see
e.g., Refs.@17#, @26#. In order to attempt to match the appa
ent precision attained in the FFB approach outlined in S
II, we decided to perform even more precise measurem
than were carried out previously.

We work here on a square lattice of sizeL in each direc-
tion and periodic boundary conditions. The coupling in fin
volume is defined through Binder’s cumulant

gR~j!5 lim
L→`

gR~j,L !, ~3.4!

gR~j,L !5S L

j D 2F11
2

n
2

^~S2!2&

^S2&2 G , ~3.5!

whereSa5Sxs
a(x). In this definition we have taken~as in

Ref. @17#!:

FIG. 2. The measured values forgR together with the corrected
ones atL/j57.25 for the standard action. The solid and dotted lin
correspond to the fits~3.10! and ~3.11!, respectively.
TABLE IV. Data for the FP action.

b L Runs L/j j x gR

0.70 18 1153360k 5.682~3! 3.168~1! 19.501~8! 6.493~10!

0.70 22 1973360k 6.924~3! 3.177~1! 19.646~6! 6.674~12!

0.70 26 3633360k 8.176~3! 3.180~1! 19.686~4! 6.761~12!

0.85 32 313600k 5.359~5! 5.971~5! 55.74~5! 6.417~14!

0.85 34 1893360k 5.678~2! 5.988~2! 56.03~2! 6.485~8!

0.85 36 523360k 6.006~4! 5.994~4! 56.24~3! 6.581~13!

0.85 42 1403360k 6.986~3! 6.012~3! 56.51~2! 6.691~14!

1.00 70 6913100k 5.734~4! 12.207~8! 189.4~1! 6.487~14!
8-6
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j5
1

2 sin~p/L !
AG~0!

G~k0!
21, ~3.6!

wherek05(2p/L,0). In this paper we will usej to denote
the second moment correlation length, to which Eq.~3.6!
converges, for largeL. Although conceptually different,j is
very close to the exponential correlation length (jexp): also
using Eqs.~2.3! and ~2.12! in the definition~3.6!, the FFB
results~2.26! and ~2.27! yield

jexp

j
5Ag2

d2
51.000826~1!. ~3.7!

The standard action Monte Carlo measurements were
formed using a method similar to the cluster estimator
@11#. We measuredgR at correlation lengths ranging from 1
to 122 atL/j;7. These measurements were used to inve
gate the approach to the continuum. To study the finite v
ume effects, we repeated the runs atj;11 on three other
lattices withL/j;5.5, L/j;9, andL/j;13. The results of
all these runs~together with the preliminary results corre
sponding toj;167, 230, and 309! are recorded in Table III.

In this table we also indicate the number of measu
ments. Each run consisted of 20k sweeps of the lattice w
measurements after each sweep. The error was comp
from this sample by using the jackknife method.

We have measuredgR with the FP action at three differen
values ofb: 0.70, 0.85, and 1.00, corresponding to corre
tion lengthsj'3.2, 6.0, and 12.2, at the values ofz5L/j in
the range 5.4–8.2.

To get a feeling of the finite volume effects, we took t
expression forgR in the leading order 1/n expansion from
@18# and simply replaced the integral over momenta by
discrete sum. In this way we obtained

gR@L#5gR@`#@12a1Aze2z@11O~1/z!#1¯#, ~3.8!

with a15A8p55.013 for largez5L/j. Figure 1 shows
these results forgR plotted against the combinatio
Az exp(2z), motivated by the 1/n result ~3.8!.

We have determined the Monte Carlo~MC! prediction of
gR both for the standard action and the FP action. Makin
linear fit in Az exp(2z) to the four data points atb51.50 for
the standard action~see Fig. 1!, one obtains

gR~z5`, j511.0!56.60~1!, ~3.9!

with a155.0(4). Since the finite size dependence~at least at
this correlation length! is quite well described by Eq.~3.8!,
we used this formula to ‘‘renormalize’’ our data withz;7 in
Table III to the common physical sizez57.25.

Next, we extrapolated the results of our measurement
the continuum limit. In Fig. 2 we show both the measur
and corrected values ofgR versus 1/j for the data withL/j
;7. It clearly indicates that the continuum limit ofgR is
approached from below as is the case in the leading orde
the 1/n approximation of the lattice theory@18#. The only
theoretic framework for estimating lattice artifacts com
from considering Symanzik’s@1# effective action. The ab-
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sence of even parity O~3! invariants with odd engineering
dimensions suggests an approach to the continuum limit w
leading behavior (lnj)r/j2. As stressed in the Introduction
there is no rigorous nonperturbative proof of this behavio

Figure 2 shows two fits. The first is a quadratic fit of th
form suggested by the Symanzik analysis, where we h
takenr 51:3

gR~j,z57.25!5gR~`,z57.25!F11
b1 logj

j2 1
b2

j2G ,
~3.10!

with gR(`,z57.25)56.702(16), b1524.4(2.2), andb2
58(5). Wemade also a second fit in Fig. 2 of the form

gR~j,z57.25!5gR~`,z57.25!F11
d2

j G , ~3.11!

with gR(`,z57.25)56.710(13), andd2520.27(4). Al-
though there is no theoretical basis for such a fit, it descri
the present data as well as the first.

One sees that our data~which are the best available a
present! do not allow one to discriminate between the tw
fits @or between any intermediate fits with leading behav
(ln j)r/j2 with, say, larger#. The accuracy of the MC deter
mination of the continuum value ofgR is thus unfortunately
limited; nevertheless, assuming a power-law approach,
would estimategR(`,z57.25)56.71(2). Needless to say, if
the approach to the continuum is much slower, say, 1/(lnj)r,
the continuum value ofgR could differ considerably from
this estimate.

3This is the analytic form found in the leading order 1/n expan-
sion with b152

1
4 , b252

5
8 ln 21

1
4 @18#.

FIG. 3. The measured values of thex/j2 ratio divided by the
four-loop approximation to the prediction~3.15!.
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Finally, we used Eq.~3.8! again to extrapolate the con
tinuum result for the finite physical sizez57.25 to the ther-
modynamic limitz5`. Thus our final result based on th
standard action lattice measurements~keeping in mind the
cautionary remark above! is

gR
ST56.77~2!. ~3.12!

This error contains both the ambiguity in using the fit~3.10!
or ~3.11! and the error ina1 .

The data for the FP action seem to lie on a universal cu
~the slope of which roughly corresponds to the 1/n predic-
tion! in spite of the extremely short correlation length. W
interpret this as an indication that the lattice artifacts for
FP action are small, in any case smaller than our error b
The measured values for the standard action show a con
erable lattice artifact, but the data atz'7 seem to converge
to the FP result with increasingj. Extrapolating the FS ef-
fects toz5`, we get

gR
FP56.77~2! ~3.13!

and a155.0(3). This extrapolation is based on the fo
bFP50.85 data points, but including all points of Table I
does not alter the extrapolation significantly.

Our results ~3.12! and ~3.13! are above Kim’s value,
6.6~1!, determined previously via finite size scaling@26#, al-
though statistically compatible within the error estima
They are also above the central values quoted on the bas

TABLE V. Parameters of simulations in the O~3! model. On
latticesA and B the standard action was used, whileD and E de-
mote simulations with the FP action.

Lattice b T3L m21 mL

A 1.54 2563128 13.632~6! 9.4
B 1.40 128364 6.883~3! 9.3
D 0.85 128364 6.03~1! 10.0
E 0.70 64332 3.186~15! 10.6
09450
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high temperature expansions discussed above, but very
sistent with each other and with the result~2.33! from the
form factor bootstrap.

We would like to end this section with a comparison of
analytic prediction of the ratiox/j2 with the MC data. In
Ref. @9# the perturbative short distance expansion of the s
two-point function was refined to

Sa1a2~x,0!5
Zda1a2

3p3 ~ ln M uxu!2H 11OS lnu ln M uxuu
ln M uxu D J .

~3.14!

The new result was the exact~though nonrigorous! determi-
nation of the overall nonperturbative constant. Using this
can straightforwardly derive the relation@19#

FIG. 4. The phase shifts in units ofp/2 vs p/M . The open
symbols are from Ref.@11#. The corresponding solid symbols ar
our measurements on the same latticesA and B, with the WF
method discussed here. The crosses denote results using th
action ~D andE!. The solid curve corresponds to the ZZS matrix.
TABLE VI. Phase shifts from latticeA.

I k dexact dE dWF t0 M dLW

0 1 1.4595 1.36~3! 1.49~2! 1 20 1.36~7!

1.45~5! 1.50~4! 8 8
2 1.2840 1.25~2! 1.30~2! 1 20 1.22~3!

1.38~6! 1.34~5! 8 8
1 1 0.1751 0.10~1! 0.17~3! 1 20 0.15~1!

0.19~3! 0.19~5! 8 8
2 0.2692 0.15~2! 0.23~2! 1 20 0.23~1!

0.23~4! 0.24~5! 8 8
2 1 21.3874 21.51~2! 21.37~1! 1 20 21.39~2!

21.43~3! 21.36~2! 8 8
2 21.0944 21.11~1! 21.06~1! 1 20 21.05~1!

21.04~2! 21.06~2! 8 8
8-8
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TABLE VII. Phase shifts from latticeB.

I k dexact dE dWF t0 M dLW

0 1 1.4584 1.41~1! 1.48~1! 1 20 1.51~7!

1.47~1! 1.49~1! 3 10
2 1.2818 1.29~1! 1.29~1! 1 20 1.2~1!

1.35~1! 1.30~1! 3 10
1 1 0.1764 0.09~1! 0.12~1! 1 20 0.14~1!

0.12~1! 0.12~1! 3 10
2 1 21.3859 21.42~1! 21.35~1! 1 20 21.38~2!

21.36~1! 21.35~1! 3 10
2 21.0914 21.05~1! 21.03~1! 1 20 21.02~1!

21.02~1! 21.03~1! 3 10
3 20.9102 20.78~2! 20.78~1! 1 20 20.81~2!

20.76~1! 20.78~1! 3 10
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The first three nonuniversal perturbative coefficients
known for the standard action lattice regularization@27#:

c150.1816, c250.1330, c350.1362. ~3.16!

Figure 3 shows the measured values of thex/j2 ratio divided
by the four-loop approximation to the prediction~3.15!. Note
that Eq.~3.15! seems to be satisfied by our data to a be
accuracy than the analogous one forj alone @27#, but the
ratios decrease rapidly and we do not know if they even
ally overshoot the asymptotic value of 1. Note also that
prediction~3.15! is independent of theM /LMS ratio 8/e of
Ref. @14#.

IV. PHASE SHIFT ANALYSIS
FROM FOUR-SPIN CORRELATORS

The prediction for the scattering amplitude of two pa

ticles at center-of-mass momentump5M sinh 1
2u in the O~3!

nonlinear sigma model by Zamolodchikov and Zamolo
chikov @4# is given by

Sa8b8;ab~u!5(
I 50

2

e2id I ~p!Pa8b8;ab
I , ~4.1!

wherePI are the isospin projectors and the phase shiftsd I
are given simply by

e2id0~p!5
u12ip

u22ip
, ~4.2!

e2id1~p!5
u12ip

u22ip

u2 ip

u1 ip
, ~4.3!

e2id2~p!5
u2 ip

u1 ip
. ~4.4!
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In fact, the Zamolodchikovs specified theS matrix for
generaln>3 and these expressions have been verified
O(1/n2) in the 1/n expansion. For the particular case
O~3!, Lüscher and Wolff@11# checked the expressions fo
low energies using MC simulations. The agreement w
completely satisfactory; in particular, the data were cons
tent with the highly nontrivial nonperturbative property th
the S matrix at zero energy is repulsiveSa8b8;ab(0)5
2da8bdb8a , which is a crucial condition in the FFB con
struction. We repeated the measurements of@11# for the stan-
dard action using a modified method of analysis. In additi
we also performed measurements using the FP action. S
the S matrix is the essential ingredient in the FFB constru
tion, we report the results here.

The method of Lu¨scher and Wolff@11# is based on the
following idea: The momentum of one of the particles in
two-particle state with zero total momentum in a period
box ~in one dimension! takes discrete valuespn given by the
periodicity condition

pnL12d~pn!52pn. ~4.5!

Accordingly, the energy of this state is given by

En52E~1!~pn!52Apn
21M2, ~4.6!

whereE(1)(p) is the energy of a one-particle state with m
mentump. From the measurement of the energy spectrumEn
for some low lying states, one can then calculate the mom
tum pn and using Eq.~4.5! the phase shiftd(pn). Varying L
and taking different values ofn, one can determined(p) at
several values of its argument.

To determine the two-particle energies the correlation m
trix has been measured:4

Cxy~ t !5^vacuO~x,0!O~y,t !uvac&c , ~4.7!

4Actually, in Ref. @11# the measurement was done in Fouri
space~i.e., in relative momenta!, but this difference is not signifi-
cant here. For our purpose the coordinate space representati
more convenient.
8-9
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where

O~x,t !5
1

L (
z50

L21

s~z,t !s~z1x,t !. ~4.8!

We omit here the O(n) structure and indices. The subscriptc
in Eq. ~4.7! means that in theI 50 channel the vacuum con
tribution is subtracted.

Using the eigenvectorsun& of the transfer matrix as inter
mediate states, one has

Cxy~ t !5(
n

e2Entcn~x!cn~y!, ~4.9!

where

cn~x!5^vacuO~x,0!un& ~4.10!

is the ‘‘wave function’’ of the corresponding state. The low
est energy states in Eq.~4.9! are the two-particle states, an
they will dominate at sufficiently large values oft.

Note that the relative momentum 2pn of the two-particle
states is encoded not only in the energyEn , but also in the
wave functioncn(x). For the symmetric wave functions~I
50,2 channels!, one should have

cn~x!5A cospn~x2L/2! for R,x,L2R, ~4.11!

and similarly with sinpn(x2L/2) for the I 51 channel. Here
R is the ‘‘interaction range.’’ For a relative distancex
.R, the particles propagate~essentially! freely.

One expects that the additional information obtained fr
the wave function will provide a more precise determinat
of p and hence ofd(p).

A. Determination of the energy spectrum and wave functions

The rankN of the matrixC(t) in Eq. ~4.9! is L/2, L/2
21, andL/211 in theI 50, 1, and 2 channels, respectivel
We assume that fort>t0 ~with some t0! no more thanN
states contribute toCxy(t), in the sense that the total contr
bution of the statesn.N is much smaller than the statistic
error dCxy(t).

TABLE VIII. Phase shifts from latticeD.

I k dexact dE dWF

0 1 1.4726 1.47~3! 1.46~1!

2 1.3107 1.29~2! 1.29~2!

1 1 0.1598 0.16~1! 0.14~2!

2 0.2545 0.23~2! 0.27~1!

2 1 21.4056 21.41~2! 21.41~1!

2 21.1321 21.15~1! 21.16~1!
09450
Lüscher and Wolff@11# suggested to determine the ene
gies of the two-particle states from the generalized eig
value problem5

C~ t !vn5ln~ t,t0!C~ t0!vn . ~4.12!

The eigenvalues of Eq.~4.12! are givenexactlyby

ln~ t,t0!5e2En~ t2t0!, ~4.13!

provided the sum in Eq.~4.9! is restricted toN terms, 1<n
<N. It is also easy to show that~with an appropriate nor-
malization ofvn!

cn~x!5(
y

Cxy~ t0!vn~y!. ~4.14!

Solving Eq.~4.12! involves an inversion ofC(t0), and the
distortion of its small eigenvalues by the statistical noise
enhanced. This could affect strongly the values and error
En obtained. Fort0.1, taking allN;L/2 states introduces
significant instability in the result.6 Because of this, we have
introduced a modification: before considering the gene
ized eigenvalue problem, we truncate the correlation fu
tion to anM-dimensional subspace (M,N) spanned by the
first M eigenvectors ofC(t0) ~to those with the largestM
eigenvalues and still stable against the statistical fluct
tions!. The generalized eigenvalue problem, Eq.~4.12!, is
written then for the matricesC̄(t) in this reduced basis. The
energies we used were obtained from Eqs.~4.12! and~4.13!.
We also determinedvn(x) from Eq. ~4.12!. One can use
them as some given~nearly optimal! projectors which satisfy

„vm ,C~ t !vn…5dmne
2En~ t2t0!. ~4.15!

Note that as a result of statistical errors inCxy(t), the ob-
tainedvn(x)’s will differ from the true ones and hence thes
equations will be only approximately valid. They provide
useful consistency check and, also, a somewhat diffe
method to determineEn .

As an alternative way to get the phase shifts, we used
momentapn determined from the wave function~WF! using

5This equation was considered already before by Michael@28#, in
connection with a variational approach for evaluating the static
tential in lattice gauge theory.

6In Ref. @11# ;L/4 states were used witht0<1.

TABLE IX. Phase shifts from latticeE.

I k dexact dE dWF

0 1 1.4664 1.49~1! 1.48~1!

2 1.2977 1.27~1! 1.28~1!

1 1 0.1674 0.18~1! 0.15~1!

2 0.2619 0.26~1! 0.28~1!

2 1 21.3968 21.35~1! 21.39~1!

2 21.1138 21.14~1! 21.13~1!
8-10
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Eq. ~4.14!. For a givent0 and M one can also check th
self-consistency of the obtained parameters by compa
Cxy(t) built from En andcn(x) @cf. Eqs.~4.13! and ~4.14!#
with the MC result.

B. Results

We performed the calculations with the standard act
for the same lattices~A,B! as in Ref.@11#.7 In addition, we
also repeated the calculations using the fixed point action
the O~3! model @13,29#. The parameters of our measur
ments are summarized in Table V~herem is the inverse of
the exponential correlation length!.

The phase shifts obtained from the analysis for the s
dard and FP actions are shown in Fig. 4 together with
results from Ref.@11#. The results for the standard action a
also given in Tables VI and VII and for the FP action

7Reference@11# also measured an additional latticeC with mL
;5.
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Tables VIII and IX. The columndE gives the phase shif
calculated from the energy by Eq.~4.12!: WF labels the re-
sults obtained from the wave function, Eq.~4.14!. The data
shown correspond tot053, M510 for latticeD and t051,
M510 for lattice E. However, the results—especially fo
dWF—are quite stable against this choice. We tookR;3/m
in Eq. ~4.11!. Taking into account that the correlation lengt
used with the FP action were onlyj'3 and 6, the agreemen
with the analytic prediction is very good. Note, however, th
a similar suppression of lattice artifacts has been obser
previously with this action for other observables@13,29,30#.
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