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Probing the nonperturbative dynamics of the SU„2… vacuum
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The vacuum dynamics of SU~2! lattice gauge theory is studied by means of a gauge-invariant effective
action defined using the lattice Schro¨dinger functional. Numerical simulations are performed at zero tempera-
ture. The vacuum is probed using an external constant Abelian chromomagnetic field. The results suggest that
the external field is screened in the continuum limit.@S0556-2821~99!04021-7#
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I. INTRODUCTION

It is widely recognized that the effective action is a use
tool to investigate the quantum properties of field theories
the case of gauge theories when including the quantum fl
tuations one faces the problem of retaining in the effect
action the gauge invariance that is manifest at the class
level. In the perturbative approach, however, the problem
the gauge invariance of the effective action is not so co
pelling. Indeed in order to perform the perturbative calcu
tions we need to fix the gauge so that the gauge invarianc
lost anyway. Obviously the physical quantities turn out to
gauge invariant. In the case of the perturbative evaluatio
the effective action the problem of the gauge invariance
be efficiently resolved by the so-called method of the ba
ground effective action@1–3#. In the background field ap
proach one separates the quantum field into the fluctuat

h(x) and the background fieldĀm
a (x). In order to define the

background field effective action we introduce the partiti
function by coupling the external current to the fluctuatio
Using the background field gauge fixing it is easy to see
the partition function is invariant against gauge transform
tion of the background field. In this way, after performin
the usual Legendre transformation, one obtains an effec
action which is invariant for background field gauge tran
formations.

The lattice approach to gauge theories allows the non
turbative study of gauge systems without losing the ga
invariance. Thus, it is natural to seek for a lattice definiti
of the effective action. Previous attempts~both in three@4,5#
and four@6–8# dimensions! in this direction introduced the
background field by means of an external current couple
the lattice gauge field. It turns out, however, that the curr
term added to the lattice gauge action in general is not
variant under the local gauge transformations belonging
the gauge group. For instance, if one considers Abelian b
ground fields then the action with the current term turns
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to be invariant only for an Abelian subgroup of the gau
group. So that only in the case of Abelian U~1! gauge theory
the latttice background field action is gauge invariant.

The aim of the present paper is to discuss in deta
recently proposed method@9# to define on the lattice the
gauge-invariant effective action by using the so-cal
Schrödinger functional@10–12#.

Let us consider the continuum Euclidean Schro¨dinger
functional in Yang-Mills theories without matter field:

Z@A( f ),A( i )#5^A( f )ue2HTPuA( i )&. ~1!

In Eq. ~1! H is the pure gauge Yang-Mills Hamiltonian in th
fixed-time temporal gauge,T is the Euclidean time exten
sion, whileP projects onto the physical states.Ak

a( i )(xW ) and

Ak
a( f )(xW ) are static classical gauge fields, and the stateuA& is

such that

^AuC&5C@A#. ~2!

From Eq.~1!, inserting an orthonormal basisuCn& of gauge-
invariant energy eigenstates, it follows:

Z@A( f ),A( i )#5(
n

e2EnTCn@A( f )#C* @A( i )#. ~3!

Note that we are interested in the lattice version of the Sch¨-
dinger functional, so that it makes sense to perform a disc
sum in Eq.~3! for the spectrum is discrete in a finite volum
Equation~3! shows that the Schro¨dinger functional is invari-
ant under arbitrary gauge transformations of the fieldsA( f )

andA( i ).
Using standard formal manipulations and the gauge

variance of the Schro¨dinger functional it is easy to rewrite
Z@A( f ),A( i )# as a functional integral@10,11#

Z@A( f ),A( i )#5E DAe2*0
Tdx4*d3xLY M(x) ~4!

with the constraints

Am~x050!5Am
( i ) , ~5!
©1999 The American Physical Society06-1
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Am~x05T!5Am
( f ) .

Strictly speaking we should include in Eq.~4! the sum over
topological inequivalent classes. However, it turns out t
@12# on the lattice such an average is not needed becaus
functional integral Eq.~4! is already invariant under arbitrar
gauge transformations ofAm

( i ) andAm
( f ) .

On the lattice the natural relation between the continu
gauge fields and the corresponding lattice links is given

Um5P expH iagE
0

1

dtAm~x1atm̂ !J , ~6!

whereP is the path-ordering operator,a is the lattice spac-
ing, andg is the gauge coupling constant.

The lattice implementation of the Schro¨dinger functional,
Eq. ~4!, is now straightforward:

Z@U ( f ),U ( i )#5E DUe2S. ~7!

In Eq. ~7! the functional integration is done over the link
Um(x) with the fixed boundary values:

U~x!ux4505U ( i ), U~x!ux45T5U ( f ). ~8!

Moreover the actionS is the standard Wilson action modifie
to take into account the boundaries atx450,T @12#:

S5
1

g2 (
x,m.n

Wmn~x!Tr@12Umn~x!#, ~9!

whereUmn(x) are the plaquettes in the (m,n) plane and

Wmn~x!5H 1/2 spatial plaquettes atx450,T,

1 otherwise.
~10!

Moreover, it is possible to improve the lattice actionS by
modifying the weightsWmn’s @12#. Note that, due to the fac
that U ( i )ÞU ( f ), one cannot impose periodic boundary co
ditions in the Euclidean time direction. On the other ha
one can assume periodic boundary conditions in the sp
directions.

Let us consider, now, a static external background fi
AW ext(xW )5AW a

ext(xW )la/2, wherela/2 are the generators of th
SU~N! Lie algebra. We introduce, now, a new functional

G@AW ext#52
1

T
lnHZ@Uext#

Z~0! J , ~11!

where

Z@Uext#5Z@Uext,Uext#, ~12!

andZ@0# means the Schro¨dinger functional Eq.~12! without
external background field (Um

ext51). The lattice linkUext is

obtained from the continuum background fieldAW ext through
Eq. ~6!.
09450
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From the previous discussion it is clear thatG@AW ext# is
invariant for lattice gauge transformations of the exter
links Um

ext. Morever, from Eq.~3! it follows that

lim
T→`

G@AW ext#5E0@AW ext#2E0@0#, ~13!

whereE0@AW ext# is the vacuum energy in presence of the e
ternal background field. In other wordsG@AW ext# is the lattice
gauge-invariant effective action for the static backgrou
field AW ext. In particular, if we consider background fields th
give rise to constant field strength, then due to the ga
invariance it is easy to show thatG@AW ext# is proportional to
the spatial volumeV. In this case one is interested in th
density of the effective action:

«@AW ext#52
1

V
lnFZ@Aext#

Z@0# G , ~14!

whereV5V•T. We stress that our definition of the lattic
effective action uses the lattice Schro¨dinger functional with
the same boundary fields atx450 andx45T. So that we can
glue the two hyperplanesx450 and x45T together. This
way we end up in a lattice with periodic boundary conditio
in the time direction too. Therefore, our lattice Schro¨dinger
functional turns out to be

Z@Uext#5E DUe2S, ~15!

where the functional integral is defined over a fou
dimensional hypertorus with the ‘‘cold-wall’’

Um~x!ux4505Um
ext. ~16!

Moreover, due to the lacking of free boundaries, the latt
action in Eq.~15! is now the familiar Wilson action

S5SW5
1

g2 (
x,m.n

Tr@12Umn~x!#. ~17!

In this paper we study the properties of the gauge-invar
lattice effective action in pure gauge non-Abelian theories
particular, we consider the SU~2! gauge theory in the pres
ence of constant Abelian chromomagnetic field at zero te
perature. The plan of the paper is as follows. In Sec. II
consider the SU~2! gauge theory on the lattice in presence
constant Abelian chromomagnetic background field. Sec
III is devoted to the discussion of the Nielsen-Olesen ins
bility on the lattice. In Sec. IV we present the numeric
results of the Monte Carlo simulations@13#. Finally our con-
clusions are drawn in Sec. V.

II. SU„2… IN A CONSTANT ABELIAN
CHROMOMAGNETIC FIELD

In this paper we are interested in the case of a cons
Abelian chromomagnetic field. Let us consider the SU~2!
gauge theory. In the continuum we have
6-2
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PROBING THE NONPERTURBATIVE DYNAMICS OF THE . . . PHYSICAL REVIEW D 60 094506
AW a
ext~xW !5AW ext~xW !da,3, AW k

ext~xW !5dk,2x1H. ~18!

The external links corresponding toAW a
ext(xW ) are easily evalu-

ated from Eq.~6!:

U1
ext~xW ,0!5U3

ext~xW ,0!5U4
ext~xW ,0!51,

~19!

U2
ext~xW ,0!5 cosS agHx1

2 D1 is3 sinS agHx1

2 D .

Our Schro¨dinger functionalZ@AW ext# is defined on a lattice
with periodic boundary conditions, so that we impose tha

U2~x1 ,x2 ,x3 ,x4!5U2~x11L1 ,x2 ,x3 ,x4!, ~20!

whereL1 is the lattice extension in thex1 direction~in lattice
units!. As a consequence the magnetic fieldH turns out to be
quantized

a2gH

2
5

2p

L1
next, ~21!

with next integer.
According to our previous discussion in evaluating t

lattice functional integral Eq.~15! we impose that the links
belonging to the time slicex450 are frozen to the configu
ration Eq.~19!. Moreover we impose also that the links at t
spatial boundaries are fixed according to Eq.~19!. In the
continuum this last condition amounts to the usual requ
ment that the fluctuations over the background fields van
at infinity.

Note that the background links must be consistent w
the lattice geometry, and this has been achieved by impo
Eq. ~20!. On the other hand, the fluctuationsh(x) by defini-
tion satisfy the boundary conditionsh(x450)5h(x45L4)
50. Therefore, the geometry of the lattice is immaterial
far as the dynamics of the fluctuating fields is concerned

An alternative possibility is given by constraining th
links belonging to the time slicex450 and those at the spa
tial boundaries to the condition

U2~x!5U2
ext~xW !, ~22!

while the linksUm(x) with mÞ1,2 are unconstrained. Th
main advantage of the condition~22! resides in the fact tha
the timelike plaquettes nearest the frozen hypersurfacex4
50 behave symmetrically in the update procedure. Ob
ously in the thermodynamic limit both conditions shou
agree as the effective action is concerned.

III. THE NIELSEN-OLESEN INSTABILITY ON THE
LATTICE

As it is well known in the continuum the perturbativ
evaluation of the effective action for the constant Abeli
chromomagnetic field faces with the problem of Nielse
Olesen unstable modes@14#. Let us briefly discuss the origin
of the unstable modes in the continuum.
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In order to evaluate the effective action in the continuu
one writes

Am
a ~x!5Ām

a ~x!1hm
a ~x!, ~23!

where Ām
a (x)5dm2da3x1H and hm

a (x) is the quantum fluc-
tuation over the background field. In the background gau

@dab]m2gabcĀm
c ~x!#hm

b ~x!50. ~24!

We rewrite the pure gauge action in the one-loop appro
mation as

S5Sclass1
1

2E d4xhm
a ~x!O mn

ab~x!. ~25!

The one-loop effective action can be obtained by perform
the Gaussian integration over the quantum fluctuations
including the Faddeev-Popov determinant. However, if
solve the eigenvalue equation

O mn
abfn

b~x!5lfm
a ~x!, ~26!

then we find that there are negative eigenvalues:

lu5p0
21p3

22gH. ~27!

As a matter of factlu,0 whengH.p0
21p3

2. If we perform
formally the Gaussian functional integration in the one-lo
approximation then the effective action picks up an ima
nary part. The point is that in the functional integration ov
the unstable modes one must include the positive qua
term. It turns out that the unstable modes behave like a t
dimensional tachyonic charged scalar field. Thus the dyn
ics of the unstable modes resemble the dynamical Hi
mechanism. As a consequence the response of the g
system to the external field turns out to be strong even in
nominally perturbative regime@15#.

In order to ascertain if the Nielsen-Olesen one-loop ins
bility survives the lattice regularization one should evalu
the Schro¨dinger functional Eq.~12! in the weak-coupling
region. To this end we write the lattice version of Eq.~23!:

Um~x!5 exp„iagqm~x!…Um
ext, ~28!

where the fluctuationsqm(x)5qm
a (x)sa/2 satisfy the bound-

ary condition

qm~x!ux45050. ~29!

Inserting Eq.~28! into the plaquette

Umn~x!5Um~x!Un~x1m̂a!Um
† ~x1 n̂a!Un

†~x!, ~30!

we rewrite the Wilson action

SW5
4

g2 (
x

(
m.n

F12
1

2
tr Umn~x!G ~31!

in the quadratic approximation as
6-3
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SW5Sext1S(2), ~32!

where

Sext5
4V

g2 F12 cosS gHa2

2 D G , ~33!

with V5L13L23L33L4 the lattice volume. Note that th
al

as

09450
external actionSext in the naive continuum limit reduces t
the classical action

Scl5VT
H2

2
. ~34!

As concerns the quadratic actionS(2), following the method
of Ref. @16# a standard calculation gives
S(2)5a4 (
x,m.n

Tr$@Dmqn~x!2Dnqm~x!#2Umn
ext~x!%2a4 (

x,m.n
Tr$@Dnqm~x!,Dmqn~x!#Umn

ext~x!%

22a2 (
x,m.n

Tr$@qm~x!,qn~x!#Umn
ext~x!%2a3 (

x,m.n
Tr$~@Dnqm~x!,qm~x!#2@Dmqn~x!,qn~x!# !Umn

ext~x!%, ~35!
-
la-
whereDm is the lattice covariant derivative in the extern
backgroundUm

ext(x):

Dm f ~x!5
1

a
@Um

ext~x! f ~x1m̂a!Um
ext†~x!2 f ~x!#. ~36!

Observing that

Umn
ext5Gmn1 iH mn ~37!

with

Gmn5H 1 ~m,n!Þ~1,2!,

cosS a2gB

2 D ~m,n!5~1,2!,
~38!

Hmn5H 0 ~m,n!Þ~1,2!,

sinS a2gB

2 D ~m,n!5~1,2!,
~39!

and integrating by parts, we rewrite the quadratic action

S(2)52a4 (
x,m,n

Gmn Tr@qm~x!~Dn* Dm2dmnDs* Ds!qn~x!#

12ia4 (
x,m.n

Tr@qm~x!Dn* Dmqn~x!Hmn~x!#

12ia3 (
x,m.n

Tr@qm~x!~Dn* 1Dn!qm~x!Hmn~x!#

24ia2 (
x,m.n

Tr@qn~x!qm~x!Hmn~x!#, ~40!

where
Dn* f ~x!5
1

a
@ f ~x!2~Um

ext!21~x2am̂ ! f ~x2am̂ !

3Um
ext~x2am̂ !#. ~41!

Taking into account that

qm~x!5qm
a ~x!

sa

2
~42!

and using Eq.~19!, we perform the trace over the color in
dexes. After a rather long but otherwise elementary calcu
tion we get

S(2)5S(2)~q3!1S(2)~q1,q2!, ~43!

where

qm
6~x!5qm

1 ~x!6qm
2 ~x!. ~44!

We have

S(2)~q3!5
a4

2 (
x

(
mn

Gmn@qm
3 ~x!Dn* Dmqn

3~x!

2qn
3~x!Dm* Dmqn

3~x!#, ~45!

where

Dm f ~x!5
1

a
@ f ~x1m̂a!2 f ~x!#,

~46!

Dm* f ~x!5
1

a
@ f ~x!2 f ~x2m̂a!#.

Moreover we have
6-4
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S(2)~q1,q2!5
a4

4 (
x

(
mn

Gmn„qm
2~x!D̄n

1D m
1qn

1~x!1qm
1~x!D̄n

2D m
2qn

2~x!2qn
2~x!D̄m

1D m
1qn

1~x!2qn
1~x!D̄m

2D m
2qn

2~x!…

1
ia4

2 (
x

„q1
2~x!D̄2

1D 1
1q2

1~x!2q1
1~x!D̄2

2D̄1
2q2

2~x!…H121
ia3

2 (
x

„q1
2~x!D̄2

1D 1
1q2

1~x!

2q1
1~x!D̄2

2D 1
2q2

2~x!…H121 ia2(
x

„q2
2~x!q1

1~x!2q1
2~x!q2

1~x!…H12, ~47!
w
te
u

o

ng

rm

tr

t

nd
o

s of

e
y

with

D m
6 f ~x!5Dm f ~x!6

2i

a
dm2 sinS agH

2
x1D f ~x1m̂a!,

~48!

D̄m
6 f ~x!5Dm* f ~x!6

2i

a
dm2 sinS agH

2
x1D f ~x2m̂a!.

Obviously we need, now, to fix the gauge. To this end
add a gauge fixing term to the action and the associa
Faddeev-Popov ghost field action. We use the backgro
gauge condition

(
m

Dmqm~x!50. ~49!

In the Landau gauge the gauge-fixing term in the one-lo
approximation is given by

Sg f
(2)5a4(

x
TrF(

m
Dmqm~x!G2

. ~50!

Moreover, in the same approximation we get the followi
Faddeev-Popov contribution:

SF2P
(2) 52 ln DetF2(

m
Dm* DmG . ~51!

The lattice version of the continuum operatorO mn
ab in Eq.

~25! can be extracted from Eqs.~44!, ~47!, and~50!. Unlike
the continuum case it is not possible to solve in closed fo
the lattice version of the eigenvalue equation~26!. However,
if we neglect the irrelevant terms and keep only the con
butions that survive in the naive continuum limita→0, then
we are able to solve the eigenvalue equations and obtain
spectrum. In this approximation we replaceGmn with the
identity, so thatS(2)(q3) does not depend on the backgrou
field and we can discard it. Moreover the sum
S(2)(q1,q2) andSg f

(2) simplifies considerably. We get
09450
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S(2)~q1,q2!1Sg f
(2)5

a4

2 (
x

(
m

qm
1~x!@2O1#qm

2~x!1H.c.

1
a4

2 (
x

(
m,n

~dm1dn2

2dm2dn1!qm
2~x!O 2qn

1~x!1H.c.,

~52!

where we restricted the quantum fluctuations to the clas
function

q~x1 ,x2 ,x3 ,x4!5sin~p4x4!ei (p2x21p3x3) f ~x1!. ~53!

Note that the class of functions Eq.~53! is relevant for the
constraint Eq.~19!. Similar results can be obtained with th
constraint Eq.~22!. The periodic boundary conditions impl
that

f ~x11L1!5 f ~x1! ~54!

pm5
2p

Lm
nm m52,3,4, ~55!

and nm integer. Within the class of functions Eq.~53! we
have

2O152D1* D11
4

a2
sin2S agHx1

2 D1
2

a2 (
m51

4

~12cospma!

2
2

a2
sin~agHx1!sin~p2a!2

4

a2
sin2S agHx1

2 D
3„12cos~p2a!…, ~56!

O25
2i

a2
sinS a2gH

2 D1
i

a2
sin~gHa2!cos~gHax1!

2
2

a2
sin~agHx1!sin~p2a!

D11D1*

2
. ~57!

By keeping only the relevant terms, the operatorsO1 andO2
further simplify as
6-5
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2O152D1* D11
4

a2
sin2S agHx1

2 D
2

2

a2
sin~agHx1!sin~p2a!1

2

a2 (
m51

4

„12cos~p2a!…,

~58!

O25
2i

a2
sinS a2gH

2 D1
i

a2
sin~gHa2!.

2i

a2
sinS a2gH

2 D .

~59!

Introducing the complex scalar fields

f5q1
2~x!, f* 5q2

1~x!,
~60!

c5q2
2~x!, c* 5q1

1~x!,

whereq651/A2(q16q2), we get

S(2)~q1,q2!1Sg2 f
(2)

5
a4

2 (
x

(
n53,4

qn
1~x!@2O1#qn

21H.c.

1
a4

2 (
x

c* ~x!@2O11O2#c~x!1H.c.

1
a4

2 (
x

f* ~x!@2O12O2#f~x!1H.c. ~61!

It is easy to verify that the contribution to the one-loop e
fective action due to the fluctuating fieldsqm

6 ,m53,4 can-
cels the one due to the Faddeev-Popov determinant. So
we are left with the following quadratic action:

S(2)~c,f!5a4(
x

c* ~x!@2O1~x!1m2#c~x!

1a4(
x

f* ~x!@2O1~x!2m2#f~x!, ~62!

where

m25
2

a2
sin~a2gH!. ~63!

Let us introduce the operators

C5D12 i Feip2a21

a G1
2

a
sinS gHax1

2 D , ~64!

C* 52D1* 1 i Fe2 ip2a21

a G1
2

a
sinS gHax1

2 D . ~65!

By keeping the leading terms in the continuum limit it is n
too hard to see that
09450
hat

2O15
1

2
@C* C1CC* #1 (

n53

4
2

a2
~12cospma! ~66!

and

@C,C* #5
4

a2
sinS gHa2

2 D . ~67!

So that we find that the eigenvalue equation

2O1f l~x1!5l f l~x1! ~68!

admits the solutions

ln5
4n

a4
sinS gHa2

2 D
1

2

a2 (
m53

4

~12cospma!, n50,1,2, . . . . ~69!

Note that the eigenvalues are degenerate. As a matter of
the order of the degeneracy of the Landau levels turns ou
be

g5S L1a

2p D S L2a

2p D 2

a2
sinS gHa2

2 D . ~70!

We have numerically checked that the approximate spect
Eq. ~69! agrees quite well with the exact one as long asL1
>32 and for weak magnetic fields.

From Eqs.~68! and ~69! we find the following eigenval-
ues:

ln
c5 (

n53

4
2

a2
~12cospna!1~2n13!

2

a2
sin2

gHa2

2
,

n50,1,2, . . . , ~71!

ln
f5 (

n53

4
2

a2
~12cospna!1~2n21!

2

a2
sin2

gHa2

2
,

n50,1,2, . . . . ~72!

It is now evident that thef mode withn50 is the Nielsen-
Olesen mode with eigenvalues

lu5
2

a2
~12cosp3a!1

2

a2
~12cosp4a!2

2

a2
sin2S gHa2

2 D ,

~73!

which is the discretized version of Eq.~27!.

IV. MONTE CARLO SIMULATIONS

Our numerical simulations have been done on a lattice
size L1L2L3L4 with periodic boundary conditions. In orde
to project onto the ground state according to Eq.~13! we
6-6
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needL4@1. Moreover, in order to be close to the continuu
limit, Eqs. ~33! and ~21! imply also L1@1. As a conse-
quence we performed the numerical simulations on latti
with L15L4532. The transverse size of the latticeL'5L2
5L3 has been varied fromL'56 up to L'532. We are
interested in the density of the effective action Eq.~14!. We
face the problem of computing a partition function which
the exponential of an extensive quantity@17#. To avoid this
problem we consider the derivative of«@AW ext# with respect to
b by taking next ~i.e., gH) fixed @see Eq.~21!#. From Eqs.
~14!, ~15!, and~17! it follows that

«8@AW ext#5
]«@AW ext#

]b
52

1

V F 1

Z@Uext#

]Z@Uext#

]b

2
1

Z@0#

]Z@0#

]b G5K 1

V (
x,m.n

1

2
Tr Umn~x!L

0

2K 1

V (
x,m.n

1

2
Tr Umn~x!L

AW ext

, ~74!

where the subscripts on the average indicate the value o
external links at the boundaries. Obviously«@AW ext# can be
obtained by a numerical integration inb

«@AW ext,b#5E
0

b

db8«8@AW ext,b8#, ~75!

where we have taken into account that lim
b→0

«@AW ext,b#

50.
It is evident that the contributions to«8@AW ext# due to the

frozen time slice atx450 and to the fixed links at the spatia
boundaries must be subtracted. In other words, only the
namical links must be taken into account in evaluat
«8@AW ext#. We recall thatV5L1L2L3L4 is the total number of
lattice sites~i.e., the lattice volume! belonging to the lattice
L. If we denote withVext the lattice sites whose links ar
fixed according to Eq.~19!:

Vext5L1L2L31~L421!@L1L2L32~L122!~L222!

3~L322!#, ~76!

then the volume occupied by the ‘‘internal’’ lattice sites
given by

V int5V2Vext. ~77!

Accordingly, we define the derivative of the internal ener
density« int8 @AW ext# as

« int8 @AW ext#5K 1

V int
(

xPL̃,m.l

1

2
Tr Umn~x!L

0

2K 1

V int
(

xPL̃,m.l

1

2
Tr Umn~x!L

AW ext

, ~78!
09450
s

he

y-

whereL̃ is the ensemble of the internal lattice sites.
To implement the constraint at the boundaries in the

merical simulations we update only the internal links, i.
the linksUm(x) with xPL̃.

We use the over-relaxed heat-bath algorithm to update
gauge configurations. Simulations have been performed
means of the APE100/Quadrics computer. Since we are m
suring a local quantity such as the plaquette, a low statis
~from 1000 up to 5000 configurations! is required in order to
get a good estimation of« int8 .

In Fig. 1 we display the derivative of the energy dens
normalized to the derivative of the external energy densi

«ext8 512cosS gH

2 D512cosS 2p

L1
nextD ~79!

versusb for L15L4532 and 6<L'<32. From Fig. 1 we
see that in the strong-coupling regionb&1 the external
background field is completely shielded. Moreover« int8 dis-
plays a peak atb.2.2 resembling the behavior of the sp
cific heat @18,19#. This is not surprising since our previou
studies@20# in U~1! showed that« int8 behaves like a specific
heat.

In the weak-coupling regionb*3 Fig. 1 shows that the
ratio « int8 /«ext8 stays constant. Actually the constant does d
pend onL' andnext. Indeed in Fig. 1 the dependence onL'

for fixed external magnetic field is evident. On the oth
hand, in Fig. 2 we keepL'532 fixed and varynext. We see
clearly that the weak-coupling plateau decreases by incr
ing the external field. In order to extract« int(b,next), we can
numerically integrate the data for« int8 (b,next)/«ext8 using the
trapezoidal rule

FIG. 1. Theb derivative of the internal energy density Eq.~78!
versusb at different values of the transverse lattice sizeL' .
6-7
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« int~b,next!5«ext8 E
0

b« int8 ~b,next!

«ext8
db8. ~80!

In Fig. 3 we display« int(b,next) obtained from Eq.~80!. The
plateau of the derivative of the internal energy density in
weak-coupling region results in a linear rising term in t
energy density. Forb@1 we get

« int~b,next!.b«ext8 a~next!. ~81!

Moreover, forb@1 we get also

FIG. 2. Theb derivative of the internal energy density Eq.~78!
versusb for a transverse lattice sizeL'532 at different values of
applied external field strength.

FIG. 3. The energy density Eq.~80! versusb for transverse
lattice sizeL'532 at different values of applied external fie
strength. The solid lines are the linear fits Eq.~81!.
09450
e

b« int8 5bS 12cos
2p

L1
nextD.

1

2
H2. ~82!

So that in the weak-coupling region

« int~b,next!.a~next!
1

2
H2, b@1. ~83!

Figure 1 shows thata(next).1 for L'.628 andnext51.
On the other hand,a(next) decreases by increasingL' or the
external background field. This peculiar behavior can
compared with the Abelian case where we found t
a(next).1 independently onL' and next @9,20#. Previous
theoretical studies@15# suggested that due to the presence
the Nielsen-Olesen modes the gauge system reacts stro
to the external perturbation even in the nominally pertur
tive regime. It turns out that the Nielsen-Olesen modes
have like a~111!-dimensional tachionic charged scalar fiel
The condensation of these modes takes place only in
thermodynamic limit. As a consequence the applied exte
background magnetic field is almost completely scree
and there is a dramatic reduction of the vacuum magn
energy. Indeed it turns out that in the infinite volume lim
the perturbative vacuum and the magnetic conden
vacuum are degenerate for vanishing gauge coupling.

On the lattice the Nielsen-Olesen modes display the o
loop instability whenlu given by Eq.~73! becomes nega
tive. In the approximation adopted in Sec. III we find thatlu
gets negative by increasingL' for fixed external field. Thus
we can switch on and off the one-loop instability by varyin
L' . This has been also noticed by the authors of Ref.@21#.
For instance, by using Eqs.~21!, ~55!, and ~73! with L1
5L4532 andnext51 we find thatlu&0 for L'*11.

Our numerical results in Fig. 1 show that fornext51 and
L'&10 there is no the Nielsen-Olesen instability and t

FIG. 4. The data displayed in Fig. 2 near the peaks of theb
derivative of the internal energy density Eq.~78! in correspondence
of each value ofnext . The solid lines are the fits Eq.~88!.
6-8
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gauge system responds weakly to the external perturbatio
the weak-coupling region. On the other hand, by increas
L' ~see Fig. 1! or next ~see Fig. 2! we increment the lattice
Nielsen-Olesen modes. As a consequence we find a c
reduction of the vacuum energy density for both the pe
values of« int8 (b,next) and the coefficienta(next) in Eq. ~83!
decreases towards zero in the thermodynamic limit. To
this we need to perform the infinite volume extrapolatio
We can extract more information from our numerical data
expressing them versus

x5
aH

Leff
, ~84!

where

aH5A2p

gH
5A L1

2next
~85!

is the magnetic length and

Leff5V int
1/4 ~86!

is the lattice effective linear size. Indeed, we find that
data for « int8 (b,next)/«ext8 at the perturbative tail and at th

FIG. 5. The lattice data for« int8 (b,next)/«ext8 at different values of
the transverse lattice sizeL' and external field strengthnext for b
55 ~a! andb5bpeak ~b!, versus the scaling variable defined in E
~84!. The solid lines are the fits Eq.~87! with a51.5.
09450
in
g

ar
k

e
.
y

e

peak for various lattice sizes and values ofnext can be ex-
pressed as a function of the scaling variablex @defined in Eq.
~84!#:

« int8 ~b,next!

«ext8
5k~b!xa. ~87!

For the perturbative tail of« int8 (b,next)/«ext8 we keep the
value of the ratio atb55. On the other hand, the peak va
ues have been extracted by fitting the values around the p
to ~see Fig. 4!

« int8 ~b,next!

«ext8
5

a1

a2~b2bpeak!
211

. ~88!

From Eq.~88! we extract the peak value,a1, and the peak
positionbpeak. It has been found that the data are compati
with the scaling law Eq.~87! with a51.5 ~see Fig. 5!. It is
remarkable that the same power law arises if we adopt
alternative boundary conditions given by Eq.~22!. So we see
that both boundary conditions Eq.~20! or Eq.~22! lead to the
same thermodynamic limit.

If we, further, take into account the shiftsDb of the peak
values, which turn out to depend only onnext, we are led to
the universal scaling law

x2a
« int8 ~ b̃,next,Leff!

«ext8
5k~b̃!, ~89!

whereb̃5b2Db. Indeed Fig. 6 shows that all our numer
cal data~for all the values ofaH and Leff) can be approxi-
mately arranged on the scaling curvek(b). Remarkably we
find that the peak ink(b) is located atbc52.2209(68)
which agrees with the peak position of the specific heat
trapolated to the infinite volume limitbc52.23(2) @19#. By

FIG. 6. The scaling curve obtained by rescaling all lattice d

for « int8 (b̃,next ,Leff) according to Eq.~89!.
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using Eq.~89! we can determine the infinite volume limit o
the vacuum energy density« int . We have

lim
Leff→`

« int~b,next,Leff!5«ext8 E
0

b̃
db̃8k~b̃8! lim

Leff→`
S aH

Leff
D a

.
H2

2b F E
0

b̃
db̃8k~b̃8!G

3 lim
Leff→`

S aH

Leff
D a

50, ~90!

in the whole range ofb. This in turn implies that in the
continuum limit (Leff→`,b→`) the SU~2! vacuum com-
pletely screens the external chromomagnetic Abelian fi
In other words, the continuum vacuum behaves as an A
lian magnetic condensate medium in accordance with
dual superconductivity scenario.

V. CONCLUSIONS

We have studied the nonperturbative dynamics of
vacuum of SU~2! lattice gauge theory by means of th
gauge-invariant effective action defined using the latt
Schrödinger functional.
.

si,

ys

09450
d.
e-
e

e

e

Our numerical results indicate that in the continuum lim
Leff→`, b→` we have

«@AW ext#50, ~91!

so that the vacuum screens completely the external chro
magnetic Abelian field. In other words, the continuu
vacuum behaves as an Abelian magnetic condensate me
in accordance with the dual superconductivity scenario.
particular we have

«@AW ext#;Hk
aBk

a5
1

m
Fi j

a Fi j
a , ~92!

wherem is the vacuum color magnetic permeability. Th
Eq. ~91! implies thatm→` in the continuum limit. As a
consequence by Lorentz invariance the vacuum color die
tric constant tends to zero. This in turns implies that t
vacuum does not support an isolated color charge, i.e.,
color confinement.

Let us conclude by stressing that our method can be ea
extended to the SU~3! gauge theory. Moreover we also fe
that the lattice gauge-invariant effective action could be a
employed to study different background fields.
cl.
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@12# M. Lüscher, R. Narayanan, P. Weisz, and U. Wolff, Nu
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