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The vacuum dynamics of SP) lattice gauge theory is studied by means of a gauge-invariant effective
action defined using the lattice Schinger functional. Numerical simulations are performed at zero tempera-
ture. The vacuum is probed using an external constant Abelian chromomagnetic field. The results suggest that
the external field is screened in the continuum lif80556-282(99)04021-7

PACS numbds): 11.15.Ha

[. INTRODUCTION to be invariant only for an Abelian subgroup of the gauge
group. So that only in the case of Abeliaril)) gauge theory
It is widely recognized that the effective action is a usefulthe latttice background field action is gauge invariant.

tool to investigate the quantum properties of field theories. In  The aim of the present paper is to discuss in detail a
the case of gauge theories when including the quantum fludecently proposed metho®] to define on the lattice the
tuations one faces the problem of retaining in the effectivedauge-invariant effective action by using the so-called
action the gauge invariance that is manifest at the classicaichralinger functiona(10-12. _ -
level. In the perturbative approach, however, the problem of L€t us consider the continuum Euclidean Sciinger
the gauge invariance of the effective action is not so comfunctional in Yang-Mills theories without matter field:
pelling. Indeed in_order to perform the perturbatiye cqlcula—_ ZTAD, AO] = (AN HTP|AD), 1)
tions we need to fix the gauge so that the gauge invariance is
lost anyway. Obviously the physical quantities turn out to bejy £q. (1) H is the pure gauge Yang-Mills Hamiltonian in the
gauge invariant. In the case of the perturbative evaluation ofixed-time temporal gaugel is the Euclidean time exten-

the effective action the problem of the gauge invariance cag;,, while P projects onto the physical states((x) and
be efficiently resolved by the so-called method of the back-, .

a(f) (o ; ; - :
ground effective actioril—3]. In the background field ap- A h(i(r: ztire static classical gauge fields, and the stajeis
proach one separates the quantum field into the fluctuationa'c" &

7n(x) and the background fieIAfL(x). In order to define the (A|W)=T[A]. 2

background field effective action we introduce the partition

function by coupling the external current to the fluctuations.From Eq.(1), inserting an orthonormal bagi¥,,) of gauge-

Using the background field gauge fixing it is easy to see thainvariant energy eigenstates, it follows:

the partition function is invariant against gauge transforma-

tion of the background field. In this way, after performing f) al)— —E,T ()11 A D)

the usual Legendre transformation, one obtains an effective ZATAT En: € Vol ATTPELAT. @

action which is invariant for background field gauge trans-

formations. Note that we are interested in the lattice version of the Schro
The lattice approach to gauge theories allows the nonpedinger functional, so that it makes sense to perform a discrete

turbative study of gauge systems without losing the gaugsum in Eq.(3) for the spectrum is discrete in a finite volume.

invariance. Thus, it is natural to seek for a lattice definitionEquation(3) shows that the Schdinger functional is invari-

of the effective action. Previous attemb®th in threg4,5]  ant under arbitrary gauge transformations of the fighéd

and four[6—8] dimensiong in this direction introduced the andA®.

background field by means of an external current coupled to Using standard formal manipulations and the gauge in-

the lattice gauge field. It turns out, however, that the currenvariance of the Schrbnger functional it is easy to rewrite

term added to the lattice gauge action in general is not inZ[ A A()] as a functional integrdl10,11]

variant under the local gauge transformations belonging to

the gauge group. For instance, if one considers Abelian back- - T 3

grOL?nd ?ielgs thpen the action with the current term turns out Z[A(f)’A(I)]:j DA fobl Tt “)

with the constraints
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A (x=T)=AD. From the previous discussion it is clear tH3tA®] is
invariant for lattice gauge transformations of the external

Strictly speaking we should include in E@t) the sum over  |inks U®, Morever, from Eq(3) it follows that
topological inequivalent classes. However, it turns out that #

[12] on the lattice such an average is not needed because the lim T[A®Y = Eo[ A — Eo[ 0], (13
functional integral Eq(4) is already invariant under arbitrary T
gauge transformations &) andA(].

On the lattice the natural relation between the contmuunwhereEo[Ae“] is the vacuum energy in presence of the ex-
gauge fields and the corresponding lattice links is given byternal background field. In other word§ A®*] is the lattice

gauge-invariant effective action for the static background

(6) field A% In particular, if we consider background fields that
give rise to constant field strength, then due to the gauge
invariance it is easy to show th&{ A®] is proportional to
the spatial volumeV. In this case one is interested in the
density of the effective action:

l ~
u,=P exp{ iagJo dtA,(x+atu) |,

whereP is the path-ordering operataa, is the lattice spac-
ing, andg is the gauge coupling constant.

The lattice implementation of the Scldiager functional,
Eq. (4), is now straightforward:

8[AEXt] =—— In

Z[Ae“]}
Z[0]

where(Q)=V-T. We stress that our definition of the lattice
effective action uses the lattice ScHimger functional with
the same boundary fieldsxat=0 andx,=T. So that we can
glue the two hyperplanes,=0 andx,=T together. This
E0) _(H way we end up in a lattice with periodic boundary conditions
U)lk,=0=U™, U)l,-r=U™. ® in the time direction too. Therefore, our lattice Safirmer

o . . ... . functional turns out to be
Moreover the actioi®is the standard Wilson action modified

(14)
Z[um,u“)]:f DUe" S, 7

In Eq. (7) the functional integration is done over the links
U ,(x) with the fixed boundary values:

to take into account the boundariesxat=0,T [12]:
Z[UeY= J DUe S, (15)
S= ; X;;V W () TITL=U ()], ©) where the functional integral is defined over a four-

dimensional hypertorus with the “cold-wall”

whereU _ (x) are the plaquettes in th lane and
,lLV( ) plaq W(V) p UM(X)|X4:0:UZXI- (16)

1/2 spatial plaquettes a;=0,T,

W, (x)= (100  Moreover, due to the lacking of free boundaries, the lattice

1  otherwise. action in Eq.(15) is now the familiar Wilson action
Moreover, it is possible to improve the lattice actiSrby
modifying the weightdV,,,’s [12]. Note that, due to the fact S= SW_— > Ti1- U,.(x)]. (17)
that UM = UM one cannot impose periodic boundary con- Xop>v

ditions in the Euclidean time direction. On the other hand,

one can assume periodic boundary conditions in the spati%'ﬂ

directions. at
Let us consider, now, a static external background fiel

A(x) =AZ(X)\ /2, where\,/2 are the generators of the
SU(N) Lie algebra. We introduce, now, a new functional

this paper we study the properties of the gauge-invariant
tice effective action in pure gauge non-Abelian theories. In
Qoartlcular we consider the $B) gauge theory in the pres-
ence of constant Abelian chromomagnetic field at zero tem-
perature. The plan of the paper is as follows. In Sec. Il we
consider the S(2) gauge theory on the lattice in presence of
constant Abelian chromomagnetic background field. Section

ex
T[ASY=— _| [Z[U t]] (11)  lll'is devoted to the discussion of the Nielsen-Olesen insta-
Z(0) bility on the lattice. In Sec. IV we present the numerical
results of the Monte Carlo simulatioh$3]. Finally our con-
where clusions are drawn in Sec. V.
Uex — Uext,Uex , 12
2l t] 2l t] (12 II. SU(2) IN A CONSTANT ABELIAN

and 2[0] means the Schrbnger functional Eq(12) without CHROMOMAGNETIC FIELD
external background fieldJ;;'=1). The lattice linkU®is In this paper we are interested in the case of a constant
obtained from the continuum background fid&" through  Abelian chromomagnetic field. Let us consider the(SU
Eq. (6). gauge theory. In the continuum we have
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Agxt(;): Aext()'(’) Sz Aﬁ’(‘(i): SexXiH. (18) On(Ien orr_(tj:Sr to evaluate the effective action in the continuum
Wri

The external links corresponding ﬁf“(i) are easily evalu-

ated from Eq.(6): AZ(x)=A%(X)+ 75(X), (23

Xty 1 rext 1 rext S where A%(x) = 8,,6%x;H and 7%(x) is the quantum fluc-
UTx,0 = U5 (x0=Ug(x0=1, 19 tuation over the background field. In the background gauge

agHx, &Hxl) [8%°9,~ g2*AC ()] 75(x) =0. (24
).

+ia®sin

USi(x,0) = cos(
We rewrite the pure gauge action in the one-loop approxi-
Our Schralinger functionalZ[A®] is defined on a lattice Mation as
with periodic boundary conditions, so that we impose that

1
S=Sasst = | d*%72(x)022(x). 25
Uo(Xq,X2,X3,X) =Ua(Xg+L1,X5,X3,Xg), (20) class 2[ 7uX)0 ulX) @9

wherelL, is the lattice extension in the, direction(in lattice ~ The one-loop effective action can be obtained by performing
units)_ As a consequence the magnetic fieldurns out to be the Gaussian |ntegrat|0n over the quantum fluctuations and

quantized including the Faddeev—Poppv determinant. However, if we
solve the eigenvalue equation
2
a‘gH 2=« oo
o= L—lnext: (21 O P (X)) =N (x), (26)

) ) then we find that there are negative eigenvalues:
with ng,, integer.

According to our previous discussion in evaluating the Au=p5+p3—gH. (27)
lattice functional integral Eq(15) we impose that the links
belonging to the time slice,=0 are frozen to the configu- As a matter of fach ;<0 whengH>p3+ p3. If we perform
ration Eq.(19). Moreover we impose also that the links at the formally the Gaussian functional integration in the one-loop
spatial boundaries are fixed according to Ef9). In the  approximation then the effective action picks up an imagi-
continuum this last condition amounts to the usual requirenary part. The point is that in the functional integration over
ment that the fluctuations over the background fields vanisithe unstable modes one must include the positive quartic
at infinity. term. It turns out that the unstable modes behave like a two-
Note that the background links must be consistent withdimensional tachyonic charged scalar field. Thus the dynam-
the lattice geometry, and this has been achieved by imposinigs of the unstable modes resemble the dynamical Higgs
Eq. (20). On the other hand, the fluctuation$x) by defini-  mechanism. As a consequence the response of the gauge
tion satisfy the boundary conditiong(x,=0)= 7(Xs=L,) system to the external field turns out to be strong even in the
=0. Therefore, the geometry of the lattice is immaterial asnominally perturbative regimgl5].
far as the dynamics of the fluctuating fields is concerned. In order to ascertain if the Nielsen-Olesen one-loop insta-
An alternative possibility is given by constraining the bility survives the lattice regularization one should evaluate
links belonging to the time slice,=0 and those at the spa- the Schrdinger functional Eq.(12) in the weak-coupling
tial boundaries to the condition region. To this end we write the lattice version of ERJ):

U,(x) =USX), (22) U,.(x)= expliaga,(x))Us", (28)

while the linksU ,(x) with u#1,2 are unconstrained. The where the fluctuationg,,(x) = qj,(x) */2 satisfy the bound-
main advantage of the conditid@2) resides in the fact that ary condition
the timelike plaquettes nearest the frozen hypersurface

=0 behave symmetrically in the update procedure. Obvi-

ously in the thermodynamic limit both conditions should
agree as the effective action is concerned.

0,(%)]x,—0=0. (29
Inserting Eq.(28) into the plaquette

U,,(x)=U,x)U,(x+ppa)Ut(x+ra)Ul(x), (30
I1l. THE NIELSEN-OLESEN INSTABILITY ON THE w ( ) 'U'( ) ( H® ) ’u( ) V( ) ( )
LATTICE we rewrite the Wilson action

As it is well known in the continuum the perturbative A

: : - : 1
evaluation of the effective action for the constant Abelian

. =— 1--trU,,(x 31
chromomagnetic field faces with the problem of Nielsen- Sw g2 ; ,LZV 2 ) (3
Olesen unstable mod@$4]. Let us briefly discuss the origin
of the unstable modes in the continuum. in the quadratic approximation as
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Sw=S"452), (32)  external actiorS™"in the naive continuum limit reduces to
the classical action
where
H2

so= VT (34)

2
S"‘X‘—4Q[ - co{gHa) , (33

2
g . . .
As concerns the quadratic acti&?’, following the method
with Q=L;XL,XLsXL, the lattice volume. Note that the of Ref.[16] a standard calculation gives

s®=a* > TH[D,q,(x)~D,q,() U0} —a* > Tr{[D,q,(x),D,d,()]U55(x)}
X, =>v

X, 1> v

—2a% 3 Tr{[0,(0),q,00]U00 —a% > Tr{([D,0,(x),d,(0)]1-[D,.a,(x),d,(0HUX)}, (35
X, u=>v X, u>v

whereD , is the lattice covariant derivative in the external . 1 oxt 1 . N
backgroundJ §(x): Dy f(x)=Z[f()= (U, “(x—au)f(x—au)

1 A xUS(x—au)]. (41)
D, f(x)= 5[u;ixt(x)f(x+ pa)Us(x)—f(x)]. (36)

Taking into account that

Observing that

a

(o
with and using Eq(19), we perform the trace over the color in-
dexes. After a rather long but otherwise elementary calcula-
1 (w,v)#(1,2), tion we get
_ 2
™ cos(a B ww-aa, S®=5(g?) +SA(q"q7), 43
where
0 (m,v)#(1,2), . . ,
H = a’gB 39 d, (X)=0,(X) =q5(x). (44)
nv sin( Zg ) (,LL,V)Z(].,Z), ( ) M M M
We have

and integrating by parts, we rewrite the quadratic action as .
a
SAA%) =5 2 2 Guld(0ATA,a00

S@=2a* > G,,Trq,(x)(D*D,—5,,D%D,)q,(x)]
— A (0)ARA,LE (0], (45)

+2ia* X Tr[q,(x)D%D ,q,(x)H ,,(X)] where

X, >V

1 .
+2ia® > T, (x)(D%+D,)q,()H ., (X)] Auf0) = xFpa)=1(x)],

ony (46)
—4ia? X Tra,(x)q,(x)H (3], (40) A% f(x )=—[f(><)—f(x pa)l.
X, u>v
where Moreover we have
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s<2’<q+,q—)— E 2 G4, (X)D, D 1d; (X)+0a,(X)D,D,d,(x)—d, (XD, D, q,(X)=q, (x)D,D,q, (X))
a I
+ 5 2 @ (0D;DIaz () -a; ()D; Dy <x>>H12+ E (A (X)D3 D1 g5 (%)

—d; (X)D; Dy 0y (X))Hp+ iaZEX: (@2 ()5 () =d; (X)d5 (X)H 1z, (47)

with ) at . -
S®(q*,q7)+ gf>= 2 > g, (x)[—01]q, (x)+H.c.
Y23

DEf(x)=A f +2i5 '(agH )f + 4 a*
“ (x)=4, (X)—g w2 SIN Txl (X+pa), +_E 2 (8,10,
(48)
~8,28,1)0, ()00, (X)+H.c.,
— 2i _[agH -
DMf(x)=AZf(x)i;5M23|n(7x1)f(x—,ua). (52)

where we restricted the quantum fluctuations to the class of

Obviously we need, now, to fix the gauge. To this end Wefuncuon

add a gauge fixing term to the action and the associated . (DX PaXa)
Faddeev-Popov ghost field action. We use the background Q(X1,X2,X3,%4) = SIN(P4X4) €P22 TP (xy).  (53)
gauge condition
Note that the class of functions E@3) is relevant for the
constraint Eq(19). Similar results can be obtained with the

2 D.q,(x)=0 (49) constraint Eq(22). The periodic boundary conditions imply
KR ' that
+ =
In the Landau gauge the gauge-fixing term in the one-loop foatLy)=10x) 649
approximation is given by )
ar
Pu=T " Nu n=2,3,4, (55)

2
s@=a*> Tr[z D ,q,(x) (50)
X M

andn,, integer. Within the class of functions E¢3) we
have

Moreover, in the same approximation we get the following
Faddeev-Popov contribution: angl

_Ol_ A A1+ Sll’]2

é )
- 1- cosp,a
o

(2) — _ _ *
Soem i De‘{ % Pub 51 —32sin(angl)sin(pza)—izsin2 agHXl)
a a 2

The lattice version of the continuum operat®f® in Eq. X (1—cosp,a)), (56)
(25) can be extracted from Eg&t4), (47), and(50). Unlike
the continuum case it is not possible to solve in closed form 2i  [(a’gH\ i
the lattice version of the eigenvalue equati@6). However, Op=—sin — +— sin(gHa’)coggHax)
if we neglect the irrelevant terms and keep only the contri- a a
butions that survive in the naive continuum lirait-0, then 2 +A*
we are able to solve the eigenvalue equations and obtain the — —sm(ag Hx,)sin(p,a) (57)
spectrum. In this approximation we replaGg,, with the a?

identity, so thas‘?)(g®) does not depend on the background
field and we can discard it. Moreover the sum of By keeping only the relevant terms, the operatGssand O,
S?(q*,q7) ands{? simplifies considerably. We get further simplify as
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agHx
2

4
~ 0= —AF A+ — i
a

4

2 2
——sm(angl)sm(pza - —cogp;a)),
a’ /Fl
(58)
02|_ang i_|_|2 2i  [(a’gH
2—¥sm 5 +¥sm(g a)—;sm > |-
(59)
Introducing the complex scalar fields
¢=0,(x), ¢*=q2(x),
_ . (60)
p=09-(x), " =095(x),
whereq. = 1/1/2(q,%q,), we get
s®(a*.a7)+ s
a4
=5 2 2, a,(x0[~0iq, +H.c.
X v=34
a4
5 2 L= 01 Oy +H.e.
a4
+5; ¢* ([~ 01~ 0,]¢(x) +H.c. (61)

It is easy to verify that the contribution to the one-loop ef-
,mu=3,4 can-
cels the one due to the Faddeev-Popov determinant. So that 4

fective action due to the fluctuating fiel

we are left with the following quadratic action:
Sy, ¢)=a2 ¢ (0L 0x(x)+ m?]y(x)

+a4§ * ([~ O1(x) —m?]p(x), (62)

where
2
m’=— sin(a’gH). (63
a

Let us introduce the operators

eP22—1] 2

Hax
+— 3| g L

C:A1_| 2

: (64)

e P2_1] 2

C[gHax;
+—sin
a

2

C*=—A*+i (65)

PHYSICAL REVIEW D60 094506

4
1 2
—0y=5[C*C+CC* ]+ 23 ;(1—cospﬂa) (66)

and
4 [gH&?
[C,C*]=—23|n (67
a 2
So that we find that the eigenvalue equation
fa(Xp) =N\ (X1) (68)
admits the solutions
4n  [gHa?
)\nzgsm 2
2 4
+ = E (1—cosp,a), n=012.... (69
a2 i-s3

Note that the eigenvalues are degenerate. As a matter of fact
the order of the degeneracy of the Landau levels turns out to
be

L.a
2m

2
—sin

gHa?
2

L2a
2m

g= (70)

We have numerically checked that the approximate spectrum
Eq. (69 agrees quite well with the exact one as longLas
=32 and for weak magnetic fields.

From Egs.(68) and (69) we find the following eigenval-

gHa

)\,‘ﬁ’=2 2 —(1—cosp, a)+(2n+3)£$m2

n=012..., (70)

4

2 2 Ha
A= 2—(1 cosp,a)+(2n— 1)—s|nzg

n=0,12.... (72)

It is now evident that theb mode withn=0 is the Nielsen-
Olesen mode with eigenvalues

2 2 2
Ny=—,(1—cospza)+ — (1—cosp,a) — —; i’
a a a

gHa?
2

(73

which is the discretized version of EQR7).

IV. MONTE CARLO SIMULATIONS

Our numerical simulations have been done on a lattice of

By keeping the leading terms in the continuum limit it is not size L,L,L 3L, with periodic boundary conditions. In order

too hard to see that

to project onto the ground state according to EtB) we
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needL,>1. Moreover, in order to be close to the continuum L L B B B L L BB
limit, Egs. (33) and (21) imply also L;>1. As a conse- i erall
guence we performed the numerical simulations on lattices i : Li;8 )
with L;=L,=32. The transverse size of the lattice=L, i e L =10
=L3 has been varied fromh, =6 up toL, =32. We are i N L6l T
interested in the density of the effective action Etg). We L5 < Li=24 7
face the problem of computing a partition function which is I v L =32|]
the exponential of an extensive quantjfy7]. To avoid this i ]
problem we consider the derivative .qfﬁe’“] with respect to - { }
B by takingn (i.e., gH) fixed [see Eq.(21)]. From Egs. % L i1 33¢ ]
(14), (15), and(17) it follows that = }h : Bgidnay g ]
o L 3 -
P G N NS Uiy - T
B Q| ziueyq 9B - {i i,z 1
0 05 f‘: 2 3 x z x -
1 9 1 1 - .
——Z[]:—E—Truy(x) I {f el s s ]

Z[O] B Q X, > v 2 m 0 Ii' v ¥ ¥ ¥

L 1 _
L D 1 I i i o, | | | ]
\a X m>v ETr U slX) Aext’ 74 % 2 3 4 5 6

p
where the subscripts on the average indicate the value of the

external links at the boundaries. Obviouﬁﬁ/ﬂexr] can be FIG. 1. Thep derivative of the internal energy density E@8)
obtained by a numerical integration j# versusg at different values of the transverse lattice dize.

o B . whereA is the ensemble of the internal lattice sites.
ext _ [N ext pr
el AT B]= fo dg’e'[A™B], (75) To implement the constraint at the boundaries in the nu-
merical simulations we update only the internal links, i.e.,

where we have taken into account that Ams[,&e’“,ﬂ] the linksU ,(x) with xe A. .

~0 We use the over-relaxed heat-bath algorithm to update the
" ] o . gauge configurations. Simulations have been performed by
It is evident that the contributions to/[A®] due to the  means of the APE100/Quadrics computer. Since we are mea-

frozen time slice ak,=0 and to the fixed links at the spatial syring a local quantity such as the plaquette, a low statistics

boundaries must be subtracted. In other words, only the dyfrom 1000 up to 5000 configurations required in order to

namical links must be taken into account in evaluatmggetagood estimation of/,,.

e'[A®]. We recall that) =L, L,L ;L , is the total number of In Fig. 1 we display the derivative of the energy density
lattice sites(i.e., the lattice volumebelonging to the lattice normalized to the derivative of the external energy density:
A. If we denote with(),,; the lattice sites whose links are
fixed according to Eq(19):

, gH 2
Eex=1—CO > =1-co L—lnext (79
Qex=Lilolat+ (La—DILaloLs—(L1—2)(L2—2)

X (Ls—2)], (76)  versusp for L;=L,=32 and 6L, <32. From Fig. 1 we
see that in the strong-coupling regigg<1 the external
then the volume occupied by the “internal” lattice sites is background field is completely shielded. Moreoegy, dis-
given by plays a peak aB=2.2 resembling the behavior of the spe-
cific heat[18,19. This is not surprising since our previous
Qint=0— Qey. (77)  studies[20] in U(1) showed that/,, behaves like a specific
AccordinglyL we define the derivative of the internal energyhe?r:' the weak-coupling regio3=3 Fig. 1 shows that the
densitye;,[A®] as ratio &/, /e.,, Stays constant. Actually the constant does de-
pend onL, andngy. Indeed in Fig. 1 the dependence lon
D ETr U (x)> for fixed external magnetic field is evident. On the other
2 wy hand, in Fig. 2 we keep, =32 fixed and varnn,,;. We see
0 clearly that the weak-coupling plateau decreases by increas-
1 1 ing the external field. In order to extrag} (B, Neyy), We can
- < O, XEMM ST UW(X)> B (78) numerically integrate the data fef (8, Nex)/ 4 USNg the
et Aext trapezoidal rule

I [ AEX 1
8in'[l:'a‘ t]= QO

int XE/N\,,U,>}\
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0-5 L} L} L} T I L} L} L} T I L} L) L) 1 I L) L) L) T
i A o n =1 ]
- ™ ncxt=2 .
0'4._ " e, =3 ]
L &% ]
L " i
= 03 s L d —
.5 L TY Y
[ o 0000 geg00 -1
= L 4
o L i
~
~ .8 B 1
w02 \ -
» » i
L LT T T T T T, i
r H 2000000000 00000 i
01F . —
L ' _
i ¢ ]
O_Jl I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
0 2 4 6 8

FIG. 2. Theg derivative of the internal energy density E@8)
versusp for a transverse lattice side, =32 at different values of
applied external field strength.

B i,n (B!nex
Sint(ﬁvnext)zséxtJOSt,‘)dﬁ,- (80)

Eext

In Fig. 3 we displaye;(3,Nex) Obtained from Eq(80). The

plateau of the derivative of the internal energy density in the
weak-coupling region results in a linear rising term in the

energy density. Fog>1 we get

sint(lganext):ﬂséxta(next)- (81)

Moreover, forg>1 we get also

2 LIELBLEL I LILELEL I LILBLEL I LILELEL I LILELEL I LI I LILELEL I LILELEL
- e n_ =1 a(n )=0281(3) k
B [ ] nm=2 a(nm)=0‘165(1) ,
Lsl e n =3 a(n )=0.114(1) N
5 L 4

.~ @

) I 4
= 1 -
[«
~ - ]

W ]

FIG. 3. The energy density Eq480) versusg for transverse
lattice sizeL, =32 at different values of applied external field
strength. The solid lines are the linear fits E8(l).
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FIG. 4. The data displayed in Fig. 2 near the peaks of ghe
derivative of the internal energy density E@8) in correspondence
of each value ohg,;. The solid lines are the fits E¢88).

2 1 )
Bein=B| 1—C0S—Ney| = s H". (82
L, 2
So that in the weak-coupling region
1 2
Sint(ﬂanext):a(next)gH , p>1. (83

Figure 1 shows tha#i(ng,) =1 for L, =6—8 andng=1.

On the other handi(n.,,) decreases by increasiihg or the
external background field. This peculiar behavior can be
compared with the Abelian case where we found that
a(ng,)=1 independently orL, and n. [9,20]. Previous
theoretical studiegl5] suggested that due to the presence of
the Nielsen-Olesen modes the gauge system reacts strongly
to the external perturbation even in the nominally perturba-
tive regime. It turns out that the Nielsen-Olesen modes be-
have like a(1+1)-dimensional tachionic charged scalar field.
The condensation of these modes takes place only in the
thermodynamic limit. As a consequence the applied external
background magnetic field is almost completely screened
and there is a dramatic reduction of the vacuum magnetic
energy. Indeed it turns out that in the infinite volume limit
the perturbative vacuum and the magnetic condensate
vacuum are degenerate for vanishing gauge coupling.

On the lattice the Nielsen-Olesen modes display the one-
loop instability when\, given by Eq.(73) becomes nega-
tive. In the approximation adopted in Sec. Il we find that
gets negative by increasirlg for fixed external field. Thus
we can switch on and off the one-loop instability by varying
L, . This has been also noticed by the authors of R&f].

For instance, by using Eq$21), (55), and (73) with L,
=L,=32 andn,=1 we find that\ ;<0 for L, =11.

Our numerical results in Fig. 1 show that fog,=1 and
L, =10 there is no the Nielsen-Olesen instability and the
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< o+ 8 FIG. 6. The scaling curve obtained by rescaling all lattice data
W 05 N for &/ (B.Next,Lex) according to Eq(89).
r T peak for various lattice sizes and valuesmgf; can be ex-
i i pressed as a function of the scaling variabjelefined in Eq.
1111 1) I T Y I | I T T T T I o I N T N e 84 :
% 0.1 0.2 0.3 04 4]
x=ay /Ly &int( B:Next)
—— = k(B)x". (87)
FIG. 5. The lattice data fot; (8, Nex)! € o at different values of Eext

the transverse lattice size, and external field strength,,; for g8
=5 (a) and 8= Bpeax (D), versus the scaling variable defined in Eq.
(84). The solid lines are the fits E¢B87) with a=1.5.

gauge system responds weakly to the external perturbation

For the perturbative tail o (B,Nex)/caxe WE keep the
value of the ratio aB=5. On the other hand, the peak val-
ues have been extracted by fitting the values around the peak
iQ (see Fig. 4

the weak-coupling region. On the other hand, by increasing ,
L, (see Fig. 1 or n, (see Fig. 2 we increment the lattice Eint( B, Nex) _
Eext

i (88)
Nielsen-Olesen modes. As a consequence we find a clear

. . az(ﬂ_ﬁpeal<)2+l
reduction of the vacuum energy density for both the peak
values ofs;(B8,Ne, and the coefficien(ne,) in Eq. (83)  From Eq.(88) we extract the peak value,, and the peak
decreases towards zero in the thermodynamic limit. To sepositionBpe4. It has been found that the data are compatible
this we need to perform the infinite volume extrapolation.with the scaling law Eq(87) with a=1.5 (see Fig. 3. It is
We can extract more information from our numerical data byremarkable that the same power law arises if we adopt the

expressing them versus

2 (84
X=—),
Leff
where
277 Ll 85
= Vgh~ Van, (89
is the magnetic length and
Leg= QM (86)

alternative boundary conditions given by EB2). So we see
that both boundary conditions E@0) or Eq.(22) lead to the
same thermodynamic limit.

If we, further, take into account the shiftss@ of the peak
values, which turn out to depend only ag,;, we are led to
the universal scaling law

i ~, extrLe ~
X—aelnt(ﬂ n, t ﬁ)ZK(,B),

Cext

(89

where3=pB—Ap. Indeed Fig. 6 shows that all our numeri-
cal data(for all the values ofay andL.q) can be approxi-
mately arranged on the scaling curw€B). Remarkably we
find that the peak ink(B) is located atB.=2.2209(68)

is the lattice effective linear size. Indeed, we find that thewhich agrees with the peak position of the specific heat ex-

data for e (B,Nex)/cax @t the perturbative tail and at the

trapolated to the infinite volume limjg.=2.23(2)[19]. By
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using Eq.(89) we can determine the infinite volume limit of Our numerical results indicate that in the continuum limit

the vacuum energy density,,;. We have Leg—, B—o we have
. o E ~r T . ay “ /E\e)(t]:o 91
M &in(B.Next,Le) =&ext| dB (B") lim | — el ' (91
L op— 0 0 L op— 00 Lef‘f
eff eff

so that the vacuum screens completely the external chromo-

2 ~
_ fﬁdz”K(E')} magnetic Abelian field. In other words, the continuum
2B Jo vacuum behaves as an Abelian magnetic condensate medium
a. e in accordance with the dual superconductivity scenario. In
% lim <_H) =0, (90)  particular we have
Le—oe\ —eff
in the whole range of3. This in turn implies that in the s[AEXt]~HEB§=%FﬁFﬁ, (92

continuum limit Lgf— 0, B8—) the SU2) vacuum com-
pletely screens the external chromomagnetic Abelian field. ) ) N
In other words, the continuum vacuum behaves as an Ab&¥hereu is the vacuum color magnetic permeability. Thus

lian magnetic condensate medium in accordance with th&d- (91) implies thaty—oo in the continuum limit. As a
dual superconductivity scenario. consequence by Lorentz invariance the vacuum color dielec-

tric constant tends to zero. This in turns implies that the
vacuum does not support an isolated color charge, i.e., the
color confinement.

We have studied the nonperturbative dynamics of the Letus conclude by stressing that our method can be easily
vacuum of SW2) lattice gauge theory by means of the extended to the S@3) gauge theory. Moreover we also feel
gauge-invariant effective action defined using the latticethat the lattice gauge-invariant effective action could be also

V. CONCLUSIONS

Schralinger functional. employed to study different background fields.
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