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Representations of fermionic correlators at finite temperatures

Sourendu Gupta*
Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

~Received 18 March 1999; published 6 October 1999!

The symmetry group of the staggered fermion transfer matrix in a spatial direction is constructed at finite
temperature. Hadron-like operators carrying irreducible representations of this group are written down from the
breaking of the zero temperature group. Analysis of the correlators in free field theory suggests new measure-
ments which can test current interpretations.@S0556-2821~99!05519-8#
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I. INTRODUCTION

Lattice simulations of field theories in equilibrium at fini
temperature~T! use a discretization of the Euclidean form
lation for partition functions:

Z~b!5E Df expF2E
0

b

dtE d3xL~f!G , ~1!

wheref is a generic field,L the Lagrangian density, and th
Euclidean ‘‘time’’ runs from 0 tob51/T. The path integral
is over bosonic~fermionic! field configurations which are
periodic ~anti-periodic! in Euclidean time. Because of th
lack of symmetry between the space and Euclidean time
rections in Eq.~1!, this problem has only a subgroup of th
full 4-dimensional rotational symmetry of theT50 Euclid-
ean theory. In this paper we focus on the lattice discreti
problem, where all continuum symmetries break to a disc
subgroup.

It is possible to write the partition function of Eq.~1! as
the trace of the transfer matrix in one of the spatial dir
tions. The symmetry groups we examine leave such a tr
fer matrix invariant. The eigenvectors of the matrix car
irreducible representations~irreps! of these symmetry
groups.

Thermodynamics depends only on the leading eigenva
which always belongs to a scalar representation of the s
metry group. Hence the group theory is not crucial for t
study of properties such as the phase structure, trans
temperature,Tc , and other thermodynamic quantities.
fact, extensive measurements have been made ofTc for pure
gauge theories, and those with massless fermions@1#, and
our group theoretical analysis adds very little to this.

However, the symmetry properties are crucial to the stu
of screening correlation functions and the determination
screening masses. These can be written in terms of the
of the largest and an appropriate other eigenvalue of
transfer matrix. The significance of the equality~or other-
wise! of two screening masses will depend on whether or
the correlation function lies in the same irrep of the symm
try group of the transfer matrix. In the gauge sector of
theory this analysis has been carried out and applied to
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study of screening masses@2#, to demonstrate dimensiona
reduction in a fully non-perturbative manner.

Screening masses obtained from correlation functi
built out of staggered fermion field operators have also b
extensively studied in the past@3–5#. Screening masses i
the high temperature phase of QCD seem to approach t
expected from free field theory asT→2Tc @4–6#. Some
other measurements which seem to indicate that the pic
may be more complicated@6#, also turn out to be explained
in terms of weakly interacting quarks@7#. All these studies
have relied entirely on theT50 analysis of the lattice sym
metry group of staggered fermions.

In this paper we present the first analysis of the symm
tries of the corresponding finite temperature problem. W
find that all the screening masses measured until now
only one of the representations of the symmetry group. Ma
other masses can be studied, and are likely to yield furt
information about the theory. The free field theory of the
other representations is worked out.

One observation arising from the application of the
group theoretical results to previous simulations is wo
mentioning in the introduction. Since theT50 scalar and
pseudo-scalar mesons, and the symmetric linear comb
tions of the three components of the vector and pseu
vector, lie in the same irreducible representation~irrep! of
the point group of aT.0 spatial slice through the lattice
they must have degenerate masses in a free fermion the
When interactions switch on, the relevant symmetry b
comes that of an enveloping group, and the four degene
masses split into two pairs of degenerate masses. Obse
tion of such a splitting forT<2Tc @3–6# must then be inter-
preted as evidence for interactions@5#. Nothing further can
be said purely from the study of these correlators. Whet
the spectrum of screening masses comes from a weakly
teracting effective theory, or whether it is very similar to th
spectrum at zero temperature, are questions which can
be answered by measuring the masses in the other repre
tations which we write down explicitly.

In Sec. II we present a brief review of the symmetries
staggered fermions atT50. This serves to set up the nota
tion, and indicates what changes to expect at finite temp
ture. Section III contains our main results on the charac
ization of the group of symmetries of the spatial trans
matrix at T.0 and its irreducible representations~irreps!.
Free field theory results for the screening masses is discu
in Sec. IV, where presently available data are also discus
©1999 The American Physical Society05-1
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SOURENDU GUPTA PHYSICAL REVIEW D 60 094505
Two Appendices contain the technical details of induced r
resentations and character tables for the irreps of meson

II. SYMMETRIES OF STAGGERED FERMIONS

In this section we review the breaking of continuum sp
flavor symmetries for lattice staggered fermions@8# at zero
temperature, and identify how this pattern changes at fi
temperature. The continuum symmetry for four flavors
fermions isSUr(2)^ U f(4), where the first factor is the ro
tational symmetry, and the second is the flavor symme
We follow the notational conventions of@9,10#.

At T50 we are interested in the symmetries of fermi
operators which have zero momentum in the directions
thogonal to the Euclidean timet:

xA5(
m

Tz
2m3Ty

2m2Tx
2m1x~r !Tx

m1Ty
m2Tz

m35(
m

x~x12ma!.

~2!

Here the indexA denotes the corners of the hypercube
which the appropriate component of the quark field residea
is the lattice spacing,Ti are the generators of translations
the i th direction, and we have assumed that there are peri
boundary conditions in all directions on the slice. In writin
Eq. ~2!, we have chosen to study correlation functions
operators separated in the time direction. Because of
4-dimensional discrete rotational symmetry of theT50
theory, we could have chosen to study propagation in
other direction with the same result.

The symmetry elements of the theory are listed in Tabl
For staggered fermions, the shifts by one lattice spacing,Sm ,
are mixed flavor and translation operations. Pure translat
areTm5Sm

2 . We have chosen the transfer matrixT to beTt .
Nothing would have changed, atT50, if we had instead
chosenT to beTz .

Discrete flavor operations,Jm5SmTm
21/2, are vectors un-

der rotations, generated byRkl and transform as

Ri j
21JkRi j 5d ikJ j1d jkJ i1ue i jk uJk . ~3!

Here and elsewhere, Greek indices run from 1 to 4; La
indices over the three directions summed in Eq.~2! or its
analogue. A subgroupUB(1) of the continuum flavor group
remains unbroken on the lattice; this charge correspond

TABLE I. Symmetry operations on staggered fermions. The
per ~lower! signs in R are used whenk.l (k,l). Here e(x)
5(21)x11x21x31x4, h i(x)5)k, i(21)xk andz i(x)5)k. i(21)xk.

Operation Action

Rkl x(x)→R(Rkl
21x) x(Rkl

21x)
R(x)5

1
2 @16hk(x)hl(x)7zk(x)zl(x)

1hk(x)hl(x)zk(x)zl(x)#

I x(x)→h4(x)x(Ix)
Sm x(x)→zm(x)x(x1am)
C x(x)→e(x)x(x)
UB(1) x(x)→eiQBx(x)
09450
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the fermion numberq. The representations ofJm in an irrep
with fermion numberq, Dq(Jm), obey the relation

Dq~Jm!Dq~Jn!5eipqDq~Jn!Dq~Jm!. ~4!

Inversion, I, commutes withJ4, and anti-commutes~com-
mutes! with the otherJk in representations with odd~even!
values of q. Parity is defined byP5J4I . The remaining
discrete symmetry is that of charge-conjugation,C.

The symmetries ofT are the rest-frame group

RF~Jm ,Rkl ,I ,C! ^ UB~1!. ~5!

We have used the notationG(X) to mean the groupG gen-
erated by the operation~s! X. A subgroup ofRF is the group
of isometries of the lattice, called the geometric rest fra
group, GRF(Jm ,Rkl ,I ). In turn, GRF contains the time
slice group, which is the point group of the lattice:

TS~Rkl ,I !5Oh~Rkl ,I !5O~Rkl! ^ Z2~ I !. ~6!

This chain of groups builds up to the continuum symme
group:

TS,GRF,RF,SUd~2! ^ UB~1!, ~7!

whereSUd(2) is the diagonal subgroup of the direct produ
SUr(2)^ SUf(2) of rotations and flavor. The breaking o
SUf(4) to SUf(2) is specified by requiring that the funda

mental ofSUf(4) break into the irrep (12 , 1
2 ) of SUf(2).

All correlation functions block diagonalize into irreps o
TS. This group,Oh , is the group of symmetries of a cube.
has 48 elements in 10 conjugacy classes@13#. It has four
one-dimensional irrepsA1

6 and A2
6 , two two-dimensional

irrepsE6 and four three-dimensional irrepsF1
6 andF2

6 . The
physical interpretation of each mass is obtained by trac
the descent of the irrep ofTS through the whole chain in Eq
~7! from the irreps of the continuum symmetry,SO(4)
^ SU(4). This is done in@9,10#. See also@11# for some
details of the treatment of correlation functions.

For the study of equilibrium finite temperature,T.0,
physics we are interested in screening masses and scre
correlation functions, i.e., in the eigenvalues of the trans
matrix in spatial directions. Two distinctions from theT50
theory should be borne in mind.

The first is that there are anti-periodic boundary con
tions in the Euclidean time direction on fermions. As a res
the lowest Fourier component has a non-vanishing mom
tum in this direction:

Tt
2Nt/2x~x!Tt

Nt/25eipx~x!,

~8!
Tt

2Nt/2x̄~x!Tt
Nt/25e2 ipx̄~x!,

whereNt is the number of lattice points in the time directio
This is a trivial change. For fermion bilinear operators
makes no difference. Operators with an odd number of
mion fields are treated slightly differently. For example, t
projection on the lowest momentum state of a fermion fi
is not written as in Eq.~2!, but as

-

5-2
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REPRESENTATIONS OF FERMIONIC CORRELATORS AT . . . PHYSICAL REVIEW D60 094505
xA5(
m

e2ipmt /Ntx~x12ma!, ~9!

wherem runs over the coordinates in a spatial slice, i.e., o
two spatial directions and the temporal direction@4#. The
phase factor in the sum is just the statement that the low
Matsubara frequency for fermions ispT.

In this paper we shall concern ourselves with the seco
and more important, difference—the isometries of a slice
the lattice. Since we are interested in screening masses
consider slices through the lattice orthogonal to one of
spatial directions, say thez-direction @as in Eq.~9! above#.
Then the isometries of thez-slice generate

TS5D4
h5D4~Rxy ,Rxt

2 ! ^ Z2~ I !. ~10!

The identification of this group is easy, because it diffe
from Oh @Eq. ~6!# by the fact that rotations ofp/2 in thext
andyt planes is not allowed. The spectrum of the screen
masses requires a classification by the irreps ofD4

h . The
continuum symmetry will be built up by the group chain

TS,GRF,RF,C^ UB~1!,SUd~2! ^ UB~1!, ~11!

whereC5O(2)^ Z2(I ) is the invariance group of a cylinde
To generate each of the lattice groups in the chain, we
the construction atT50, only leaving out odd powers of th
rotationsRkt .

D4
h has 16 elements in six conjugacy classes@13#. There

are eight one-dimensional irreps labeledA1
6 , A2

6 , B1
6 and

B2
6 , and two two-dimensional irrepsE6. The reductions of

the irreps ofOh to D4
h is as

A1
P→A1

P , A2
P→B1

P ,

F1
P→A2

P
% EP, F2

P→B2
P

% EP,

EP→A1
P

% B1
P . ~12!

More details can be found in@2#.
In the rest of this paper we shall give these decomp

tions of meson and hadron operators using the languag
theT50 theory. This calls for some care in the interpretati
of results—although we shall talk of charge conjugation,C,
and parity,P, and the operators will have the same struct
and algebra as in theT50 theory, they may represent qui
different physical quantities@12#.

III. THE SYMMETRY GROUP AT T>0

In this section the symmetry groups are written down. T
representation theory of these groups in the meson~quark-
antiquark! sector is examined in detail. The symmetries
the quark fields are also examined briefly, and the repre
tation theory in the baryon sector is dealt with in less det
09450
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A. Meson operators

In a meson representation, the quark numberq50. As a
result, the representantsXk of the flavor generatorsJk com-
mute. ConsequentlyC and I commute withXk . At T50, it
has been shown that@10#

RF5GRF~Xm ,Rkl ,I ! ^ Z2~C!, ~13!

where

GRF~Xm ,Rkl ,I !5G~X̃k ,Rkl! ^ Z2~ I !

^ Z2~X1X2X3! ^ Z2~X4!, ~14!

with X̃k5XkX1X2X3. The irreps ofGRF are denotedrs4s123,
where r denotes an irrep ofG, and s4 and s123 are signs
which denote the irreps of theZ2 factor groups generated b
X4 andX1X2X3 respectively.

Next we identify the groupG. The X̃k generate a 4 ele-
ment Abelian group called the Viergruppe,V5Z2^ Z2. This
is a normal subgroup ofG. The transformation properties o
X̃k under rotations, Eq.~3!, show that G is the semi-direc
product G5V(X̃k)qO. Now, the cubic group O
5V(Rkl

2 )qS3, where the normal subgroup,V(Rkl
2 ) is gener-

ated by the three rotations by anglep @14#, and the other
factor is the permutation group of 3 elements. From Eq.~3! it
is clear thatV(Rkl

2 ) has trivial action onV(X̃k), and we can
write

G~X̃k ,Rkl!5„V~X̃k! ^ V~Rkl
2 !…qS3 . ~15!

Since the normal subgroup is Abelian, the irreps ofG can be
efficiently generated by the method of induced represe
tions. Details are given in Appendix A, where we recover t
results of@10#.

This method makes it easy to construct theT.0 group,

GRF5Ǧ^ Z2~ I ! ^ Z2~X1X2X3! ^ Z2~X4!. ~16!

TABLE II. Irreps of G, defined in Eq.~14!, and their reduction

at finite temperature to irreps ofǦ, defined in Eq.~16!. The irreps
which are realized for mesons are marked. Meson states do

exhaust all the irreps ofG, O or Ǧ, but do exhaust all the irreps o
D4.

G O Ǧ D4 Meson

1 A1 10 A1 Yes
18 A2 11 B1

2 E 10111 A11B1

3 F1 22116 A21E Yes
38 F2 22117 B21E
39 F1 20112 A21E Yes
3- F2 20113 B21E
399 A11E 24114 2A11B1 Yes
3-9 A21E 24115 A112B1

6 F11F2 21123125 A21B212E Yes
5-3
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TABLE III. Representations of local staggered mesons. Only theA1
1 operators have been used in sim

lations until now. Reduction of three-link separated mesons follows an identical pattern and genera
opposite parity irreps ofD4

h .

GRF Ǧ D4
h Operator

111 10 A1
1

(xx̄(x)x(x)
112 10 A1

1
(xh4(x)z4(x)x̄(x)x(x)

3-812 14 A1
1

(xe(x)h3(x)z3(x)x̄(x)x(x)
24 A1

1
(xe(x)@h1(x)z1(x)1h2(x)z2(x)#x̄(x)x(x)

B1
1

(xe(x)@h1(x)z1(x)2h2(x)z2(x)#x̄(x)x(x)
3-811 14 A1

1
(xe(x)h4(x)z4(x)h3(x)z3(x)x̄(x)x(x)

24 A1
1 (xe(x)h4(x)z4(x)@h1(x)z1(x)

1h2(x)z2(x)#x̄(x)x(x)
B1

1 (xe(x)h4(x)z4(x)@h1(x)z1(x)

2h2(x)z2(x)#x̄(x)x(x)
n
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The rotation generators inǦ areR12 andR13
2 , and they gen-

erate the groupD4. SinceD45V(Rkl
2 )qZ2(R12), we have

Ǧ5„V~X̃k! ^ V~Rkl
2 !…qZ2~R12! ~17!

Ǧ has 32 elements in 14 conjugacy classes. The irreps ca
constructed by the method of induced representations~see
Appendix A!. There are 8 one-dimensional and 6 tw
dimensional irreps ofǦ.

The content of the various GRF irreps is shown in Ta
II. The reduction of irreps ofG to those ofO, Ǧ andD4 are
performed using the character tables in Appendix B. Th
reductions are consistent with those given in Eq.~12!. The
irreps obtained for mesonic~quark-antiquark! operators can
be identified through the Clebsch-Gordan series for the G
of fermionic representations.

We demonstrate the reduction of the116 and3-816 ir-
reps of GRF to the irreps ofD4

h in Table III, using the full set
of local meson operators. All the operators which have b
used to date for computing screening masses belong to
D4

h irrep A1
1 , and conversely, all theA1

1 operators in Table
III have been used in measurements. Notice, however,
this one irrep ofTS descends from different irreps ofGRF.
The twoA1

1 irreps descending from10 must give degenerat
masses,1 as must the pairs descending from the14 and the24.
However, there is no group theoretical necessity for the th
pairs to have the same mass.

The reduction of326, 3926 and626 irreps obtained for
one-link separated meson operators is given in Table
Reductions of two-link separated meson operators can
be read off from the structure of these reductions. The la
give positiveI parity irreps ofD4

h . Combining these two set
we have a set ofA2

6 , B2
6 andE6 irreps. Three link separate

operators reduce in the same way as the local meson op

1This is the phenomenon of ‘‘parity doubling’’ at high temper
ture.
09450
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tors but give the oppositeI parity. These two sets togethe
give us the remaining irreps ofD4

h , i.e., A1
6 andB1

6 .

B. Quark and baryon operators

Quark and baryon operators carry odd fermion char
The representants ofJm anti-commute and generate the 3
element Clifford groupCL(4). Its commutator subgroup is
isomorphic toZ2 and its Abelization,CL(4)/Z2 is precisely
the groupV(X̃k) ^ Z2(X4) ^ Z2(X1X2X3) encountered as the
normal subgroup of the mesonic rotation-shift group@14#.
Apart from the 16 one-dimensional irreps of this grou
CL(4) also has a four-dimensional quaternionic irrep fam
iar to us from the algebra of the Dirac matrices.

The rotation-shift group for fermionic operators atT50 is

GF5CL~4!qO5„CL~4! ^ V~Rkl
2 !…qS3 . ~18!

This group has 45 conjugacy classes, and hence 45 irr
Forty of these have been identified as the irrepsrs4s123 of the
mesonic rotation-shift group. The remaining 5 are obtain
by inducing with the remaining non-trivial irrep ofCL(4).
This gives the five real irreps8, 88, 16, 24 and248.

The defining representation ofGF , 8, is given by zero
momentum staggered fermions on a time slice Eq.~2!. Under
Oh the octet breaks@9#

8→A1
11A1

21F1
11F1

2 . ~19!

The Clebsch-Gordan coefficients for83838 show that only
the8, 88 and16 are found as irreps of baryons@9#. The local
baryon operators built from staggered fermions transform
the A1

1 component of the8.
The rotation-shift group for fermionic operators atT.0 is

GF5CL~4!qD45„CL~4! ^ V~Rkl
2 !…qZ2 . ~20!

This group has 61 conjugacy classes, and hence 61 irr
Fifty-six of these have been identified as the irrepsrs4s123 of
the T.0 mesonic rotation-shift group. The remaining 5 a
obtained by inducing with the remaining non-trivial irrep
5-4
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TABLE IV. Representations of one-link separated staggered mesons. HereDmf(x)5f(x1m̂)1f(x
2m̂). Reduction of two-link separated mesons follows an identical pattern and generates the opposit
irreps ofD4

h .

GRF Ǧ D4
h Operator

321 16 A2
2

(xh3(x)x̄(x)D3x(x)
22 E2

(xh1,2(x)x̄(x)D1,2x(x)
322 16 A2

2
(xh4(x)z4(x)h3(x)x̄(x)D3x(x)

22 E2
(xh4(x)z4(x)h1,2(x)x̄(x)D1,2x(x)

3922 12 A2
2

(xe(x)z3(x)x̄(x)D3x(x)
20 E2

(xe(x)z1,2(x)x̄(x)D1,2x(x)
3921 12 A2

2
(xh4(x)z4(x)e(x)z3(x)x̄(x)D3x(x)

20 E2
(xh4(x)z4(x)e(x)z1,2(x)x̄(x)D1,2x(x)

622 25 A2
2

(xe(x)@h1(x)1h2(x)#h3(x)x̄(x)D3x(x)
B2

2
(xe(x)@h1(x)2h2(x)#h3(x)x̄(x)D3x(x)

21 E2
(xe(x)h1(x)h2(x)x̄(x)D2x(x), 1↔2

23 E2
(xe(x)h3(x)h1(x)x̄(x)D1x(x), 1→2

621 25 A2
2

(xe(x)h4(x)z4(x)[h1(x)1h2(x)]h3(x)x̄(x)D3x(x)
B2

2
(xe(x)h4(x)z4(x)[h1(x)2h2(x)]h3(x)x̄(x)D3x(x)

21 E2
(xe(x)h4(x)z4(x)h1(x)h2(x)x̄(x)D2x(x), 1↔2

23 E2
(xe(x)h4(x)z4(x)h3(x)h1(x)x̄(x)D1x(x), 1→2
p
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CL(4). This gives the five real irreps80 , 81 , 82 , 83 , 16. The
reductions of theT50 baryon irreps atT.0 are

8→80 , 88→82 , 16→80182 . ~21!

UnderD4
h , we find that

80→A1
11A1

21A2
11A2

21E11E2. ~22!

The components of the quark field which carry different re
resentations ofTS andTS are shown in Table V.

Given the classification of baryon operators in@9# it is a
simple matter to construct theD4

h irreps from them. We do
not present a detailed table, because the state of the a
measurements with baryons has not progressed far be
the measurement of the purely local operators even atT50.

IV. FREE FIELD THEORY AND BEYOND

In a free field theory of staggered fermions, the symm
tries of the Hamiltonian become symmetries of the field c
figuration. As a result, there are many more degenera
among the screening masses than in the general prob
The only relevant group turns out to beTS, in the sense tha
all correlators in the same irrep ofTS have degenerate
masses, even if they descend through different irreps ofRF
and GRF. However, the degeneracies are even higher t
would be predicted by the application of the group theory
TS.

The local ‘‘mesons’’ in theA1
1 irrep of D4

h have been
analyzed extensively in free field theory~FFT! @4,5#. It is
known that the correlation functions show the typical eve
09450
-

in
nd

-
-
es
m.

n
f

-

odd structure of staggered fermion correlators. The scree
mass,m, in this channel is

ma52Am2a21sin2S p

Nt
D→ 2p

Nt
52pTa. ~23!

Here a is the lattice spacing,Nt is the lattice size in the
Euclidean time direction, andm is the quark mass. The limi
is taken for smallm and largeNt , and is equal to twice the
minimum Matsubara frequency, 2pT @3,4,15#. Finite size
effects are clearly strong, even in FFT, and have been a
lyzed before@4,5#.

The remaining local ‘‘mesons’’ are in theB1
1 irrep of D4

h .
In FFT these correlation functions vanish. This is easy
understand. In FFT thex and y direction propagators are
exactly equivalent, and hence their difference~see Table III!
cancels.

TABLE V. Representations of the quark fieldxA . The ‘‘zero-
momentum’’ projection is performed as shown in Eq.~9!. The8 of
GF is the same as the80 of the GF .

GRF Oh D4
h Component

8 A1
1 A1

1 x(0)
A1

2 A1
2

x( x̂1 ŷ1 ẑ)
F1

1 A2
1

x( x̂1 ŷ)
E1

$x( x̂1 ẑ),2x( ŷ1 ẑ)%
F1

2 A2
2

x( ẑ)
E2

$x( x̂),x( ŷ)%
5-5
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The non-local mesons also divide into two groups. T
A1

6 , A2
6 andE6 irreps ofD4

h give rise to screening masse
according to Eq.~23!. In contrast, theB1

6 and B2
6 irreps

vanish in FFT. Deviations from any of these free field theo
results can be used as a measure of the interaction stre
between fermions.

It is interesting to recall past measurements@3–5#.
Screening masses have been measured with
correlators—

the D4
h irrep A1

1 descending from the10
16 of the GRF,

and
a linear combination of the two pairs ofD4

h irreps A1
1

descending from the14
16 and 24

16 of the GRF ~see Table
III !.

Since they all belong to the same irrep ofTS, we might
expect them to give the same screening mass in FFT. Ex
sive numerical work was performed in the 4-flavor@4# and
quenched@5# SU(3) theories atT'Tc , T53Tc/2 and T
52Tc . It was found that the masses within each group
come degenerate already quite close toTc , but the masses o
the two groups differed by about 10% even at 2Tc . In the
light of the preceding calculations, the natural explanat
for this observation is that there are residual interactions

A minor controversy persists in the interpretation of the
observations. The two viewpoints can be summarized as

TABLE VI. Induced representations ofG5(V^ V)qS3. A rep-
resentative member of each orbit is underlined. The trivial isotro
group is denoted by$E%. This construction reproduces the result
@10#.

Orbit Isotropy Dimension Multiplicity

(0,0) S3 1 2
2 1

(0,1),(0,2),(0,3) Z2(R12) 3 2
(1,0),(2,0),(3,0) Z2(R12) 3 2
(1,1),(2,2),(3,3) Z2(R12) 3 2
(1,2),(1,3),(2,1),
(2,3),(3,1),(3,2) $E% 6 1

TABLE VII. Induced representations ofǦ5(V^ V)qZ2. A
representative member of each orbit is underlined. The trivial is
ropy group is denoted by$E%.

Orbit Isotropy Dimension Multiplicity

(0,0) Z2 1 2
(0,3) Z2 1 2
(3,0) Z2 1 2
(3,3) Z2 1 2
(0,1),(0,2) $E% 2 1
(1,0),(2,0) $E% 2 1
(1,1),(2,2) $E% 2 1
(1,2),(2,1) $E% 2 1
(1,3),(2,3) $E% 2 1
(3,1),(3,2) $E% 2 1
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~1! Fermions in QCD atT.Tc are weakly coupled, since
theA1

1 screening masses coming from the14
16 and the24

16

agree very well with Eq.~23!. This picture becomes a bette
approximation with increasingT.

~2! QCD atTc,T,2Tc is not very different from that at
T,Tc , since theA1

1 from the 10
16 is quite different from

Eq. ~23!. Furthermore, theA1
1 from the14

16 and the24
16 are

just the same as the vector/pseudo-vector at zero temp
ture.

To resolve this controversy one needs first to measure
B1

1 coming from the24
16 and check whether it agrees wit

either of the models above. Beyond this, one needs to m
sure screening masses in other irreps of theGRF which are
in the same irreps of the continuum group as the measu
local fermion bilinears. This would check whether the se
ond model is viable or not.

V. SUMMARY

In this paper we have studied the symmetries of the tra
fer matrix for staggered fermions. By using the method
induced representations we have reproduced old, known
sults for the spin-flavor symmetry group and its irreps at z
temperature@9,10#. This method allows a simple generaliz
tion to the analysis of the spatial direction transfer matrix
finite temperature. Our main result is the identification of t
irreps of the finite temperature symmetry group given
Table IX.

Using this, we have decomposed theT50 irreps into the
T.0 irreps. This reduction is shown for ‘‘mesons’’ i
Tables III and IV. For quarks the reduction is given in Tab
V. The reduction for local ‘‘baryons’’ may be read off from
the same table.

The phenomenon of ‘‘parity doubling’’ at high tempera
tures is allowed by the group theory. In a free fermi
theory, in fact, the degeneracies are much higher—
screening masses are classified by the point group of
spatial slice of the lattice. In an interacting theory this is n
true; the descent of each irrep through the chain of enve
ing groups@see Eq.~11!# is important. This has been seen
the A1

1 irrep of the point group. Whether the physics atT
.Tc is a small perturbation around the free theory or t
zero temperature theory~or something else altogether! can be
explored by studying other irreps. TheB1

1 is a good candi-
date because it is also built from local fermion bilinear o
erators.
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APPENDIX A: INDUCED REPRESENTATIONS

The method of induced representations for a semi-dir
product groupG5NqH, for Abelian N, can be found in
@14#. Here we quote the results required in this paper. T

y

t-
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TABLE VIII. The character table forG5„V(u) ^ V(v)…qS3. The second line of the table gives th
number of operators in each class.

G O E u v u•v uv C R uR vR uvR

1 3 3 3 6 32 12 12 12 12

1 A1 1 1 1 1 1 1 1 1 1 1
18 A2 1 1 1 1 1 1 21 21 21 21
2 E 2 2 2 2 2 21 0 0 0 0
3 F1 3 3 21 21 21 0 1 1 21 21
38 F2 3 3 21 21 21 0 21 21 1 1
39 F1 3 21 21 3 21 0 1 21 21 1
3- F1 3 21 21 3 21 0 21 1 1 21
3-8 E1A1 3 21 3 21 21 0 1 21 1 21
3-8 E1A2 3 21 3 21 21 0 21 1 21 1
6 F11F2 6 22 22 22 2 0 0 0 0 0
t
,

os
e

.
e

t

e
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he

ly.

10
dual,N̂ ~set of equivalence classes of irreps ofN), is isomor-
phic to N, and the action ofH on N̂ is isomorphic to its
action onN.

Under the action ofH, the dual breaks up into disjoin
orbits Oi , i.e., N̂5 % iOi . Examine the isotropy group
Hi,H of one representativex iPOi . We need to know two
cases—

When the orbitOi has only one element, i.e.,Hi5H, then
the induced representations are precisely the irreps ofH.

For otherx i when Hi is Abelian, the dimension of the
induced representation is the number of elements in the c
H/Hi , and the multiplicity of such irreps is given by th
number of classes inHi .

All 4 irreps of the Viergruppe,V, are one-dimensional
We label them by the numbers 0, 1, 2 and 3. The trivial irr
is called 0. The irrep labeledk (Þ0) hasx(E)5x(Xk)51
and the other two characters21. Irreps of the direct produc
V^ V are labeled by the ordered pair (k,l ) where k is an
09450
et

p

irrep of the first factor andl of the second.S3 has two one-
dimensional irreps~the trivial and the sign! and one two-
dimensional irrep.Z2 has two one-dimensional irreps, th
trivial and the sign. These are the only inputs into the co
struction of the irreps we require. The construction of t
irreps ofG and Ǧ @see Eqs.~15! and ~17!# follow from the
rules above, and are given in Tables VI and VII respective

APPENDIX B: CHARACTER TABLES

In this appendix we define the irreps ofG andǦ @see Eqs.
~15!,~17!# by writing down the character tables.

In Appendix A we showed that the groupG of Eq. ~15!
has 10 irreps. Hence the 96 elements of the group fall into
conjugacy classes. For everygPG, we can write uniquely
g5uvs, whereuPV(X̃k), vPV(Rkl

2 ), and sPS3. We use
the notationRkl and C respectively for the operators inS3
which permute the pairkl and make a cyclic shift. In terms
ass.
TABLE IX. The character table forǦ5„V(u) ^ V(v)…qZ2. The second line of the table gives the number of operators in each cl

Ǧ D4 E u v uv u v uv vu u•v uv R uR vR uvR

1 1 1 1 2 2 2 2 2 2 4 4 4 4

10 A1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 B1 1 1 1 1 1 1 1 1 1 1 21 21 21 21
12 A2 1 1 1 1 21 21 21 21 1 1 1 21 21 1
13 B2 1 1 1 1 21 21 21 21 1 1 21 1 1 21
14 A1 1 1 1 1 21 1 1 21 21 21 1 21 1 21
15 B1 1 1 1 1 21 1 1 21 21 21 21 1 21 1
16 A2 1 1 1 1 1 21 21 1 21 21 1 1 21 21
17 B2 1 1 1 1 1 21 21 1 21 21 21 21 1 1
20 E 2 22 22 2 0 0 0 0 2 22 0 0 0 0
21 E 2 22 22 2 0 0 0 0 22 2 0 0 0 0
22 E 2 2 22 22 2 0 0 22 0 0 0 0 0 0
23 E 2 2 22 22 22 0 0 2 0 0 0 0 0 0
24 A11B1 2 22 2 22 0 2 22 0 0 0 0 0 0 0
25 A21B2 2 22 2 22 0 22 2 0 0 0 0 0 0 0
5-7
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of this decomposition, the 10 conjugacy classes are—
identity E, ui ~with i 51,2,3), v i , u•v ~meaning byuiv i),
uiv j ~with j Þ i , and denoteduv), C, Rkl , uiRi j ~denoted
uR), v iRi j ~denotedvR), uiv jRi j ~denoteduvR). The char-
acter table is constructed by standard methods, and give
Table VIII. The reduction of irreps ofG to that of the sub-
group of cubic rotationsO is performed by inspecting th
characters2 of the conjugacy classes ofO. These are the ro
tations byp/2 (R), rotations byp (v), rotations by 2p/3 (C)
and the remaining 2-fold rotations (vR).

The construction, in Appendix A, of the irreps of th

2Character tables forOh andD4
h may be found in@13#.
s.
.

s.

09450
e

in

group Ǧ of Eq. ~17! shows that there are 14 conjugac

classes. For everygPǦ we have the unique decompositio

g5uvs, whereuPV(X̃k), vPV(Rkl
2 ), andsPZ2. Using the

notationR for the nontrivial element ofZ2, we can write the
conjugacy classes asE, u5u3 , v5v3 , ui ~with i 51,2 and
denotedu), v ~in the same notation!, uv, uiv i ~with i 51,2
and denotedu•v), uv, vu, uv ~meaning uiv j with iÞ j
51,2), R ~which is equivalent touvR, uR and vR), uR
~also equivalent tovuR), vR ~also equivalent touvR), and
uvR. The character table is given in Table IX. The deco
position to irreps ofD4 needs the identificationR12

2 5v, the
p rotations about thex and y axes arev, R125R and the
remaining 2-fold symmetries arevR.
i-
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