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Representations of fermionic correlators at finite temperatures
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The symmetry group of the staggered fermion transfer matrix in a spatial direction is constructed at finite
temperature. Hadron-like operators carrying irreducible representations of this group are written down from the
breaking of the zero temperature group. Analysis of the correlators in free field theory suggests new measure-
ments which can test current interpretatiof®0556-282(99)05519-§

PACS numbds): 11.15.Ha

[. INTRODUCTION study of screening mass¢2], to demonstrate dimensional
reduction in a fully non-perturbative manner.

Lattice simulations of field theories in equilibrium at finite  Screening masses obtained from correlation functions
temperaturdT) use a discretization of the Euclidean formu- built out of staggered fermion field operators have also been
lation for partition functions: extensively studied in the paf8—5|. Screening masses in

the high temperature phase of QCD seem to approach those
8 expected from free field theory a6—2T. [4—6]. Some
Z(ﬁ):f D¢ ex;{ —j dtf d3XE(¢)}, (1)  other measurements which seem to indicate that the picture
0 may be more complicateld], also turn out to be explained
in terms of weakly interacting quarkg]. All these studies
where ¢ is a generic field£ the Lagrangian density, and the have relied entirely on th&=0 analysis of the lattice sym-
Euclidean “time” runs from O toB=1/T. The path integral metry group of staggered fermions.
is over bosonic(fermionig) field configurations which are In this paper we present the first analysis of the symme-
periodic (anti-periodi¢ in Euclidean time. Because of the tries of the corresponding finite temperature problem. We
lack of symmetry between the space and Euclidean time difind that all the screening masses measured until now see
rections in Eq.(1), this problem has only a subgroup of the only one of the representations of the symmetry group. Many
full 4-dimensional rotational symmetry of the=0 Euclid- other masses can be studied, and are likely to yield further
ean theory. In this paper we focus on the lattice discretizeihformation about the theory. The free field theory of these
problem, where all continuum symmetries break to a discretether representations is worked out.
subgroup. One observation arising from the application of these

It is possible to write the partition function of E¢l) as  group theoretical results to previous simulations is worth
the trace of the transfer matrix in one of the spatial direc-mentioning in the introduction. Since the=0 scalar and
tions. The symmetry groups we examine leave such a tranpseudo-scalar mesons, and the symmetric linear combina-
fer matrix invariant. The eigenvectors of the matrix carrytions of the three components of the vector and pseudo-
irreducible representationgirreps of these symmetry vector, lie in the same irreducible representatiorep) of
groups. the point group of ar>0 spatial slice through the lattice,

Thermodynamics depends only on the leading eigenvalughey must have degenerate masses in a free fermion theory.
which always belongs to a scalar representation of the symWhen interactions switch on, the relevant symmetry be-
metry group. Hence the group theory is not crucial for thecomes that of an enveloping group, and the four degenerate
study of properties such as the phase structure, transitiomasses split into two pairs of degenerate masses. Observa-
temperature,T., and other thermodynamic quantities. In tion of such a splitting fof <2T [3—6] must then be inter-
fact, extensive measurements have been made fifr pure  preted as evidence for interactiofs. Nothing further can
gauge theories, and those with massless fermjafsand be said purely from the study of these correlators. Whether
our group theoretical analysis adds very little to this. the spectrum of screening masses comes from a weakly in-

However, the symmetry properties are crucial to the studyeracting effective theory, or whether it is very similar to the
of screening correlation functions and the determination obpectrum at zero temperature, are questions which can only
screening masses. These can be written in terms of the ratlwe answered by measuring the masses in the other represen-
of the largest and an appropriate other eigenvalue of th&ations which we write down explicitly.
transfer matrix. The significance of the equalir other- In Sec. Il we present a brief review of the symmetries of
wise) of two screening masses will depend on whether or nostaggered fermions &t=0. This serves to set up the nota-
the correlation function lies in the same irrep of the symme+ion, and indicates what changes to expect at finite tempera-
try group of the transfer matrix. In the gauge sector of theture. Section Il contains our main results on the character-
theory this analysis has been carried out and applied to thization of the group of symmetries of the spatial transfer

matrix at T>0 and its irreducible representatiofisreps.
Free field theory results for the screening masses is discussed
*Electronic address: sgupta@theory.tifr.res.in in Sec. IV, where presently available data are also discussed.
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TABLE |. Symmetry operations on staggered fermions. The up-the fermion numbeq. The representations &, in an irrep

per (lowen signs inR are used when>\ (k<\). Heree(x)  with fermion numbem, Dy(E ), obey the relation
=(—1yaetete g (x) =Tl i(— 1) and £;(x) = (— 1)*

Dy(E ) Dy(E,)=€™Dy(E,)Dy(E ). 4
Operation Action
Inversion, |, commutes with=Z 4, and anti-commutegcom-
R X() = R(RoX) X(RX) mutes with the otherZ, in representations with od@ven
R(X) =3[ 1% 7,() 7y (X) F £, (¥) {5(X) values ofq. Parity is defined byP==,. The remaining
+ 7,(X) 7 (X) £, (X) {1 (%) ] discrete symmetry is that of charge-conjugatién,
| X(X)— 74(X) (1) The symmetries oT are the rest-frame group
S, x(X)— £, (X) x(x+a,) _
c X(X)_>€_(X)X(X) RF(‘:M!Rklillc)@UB(l)- (5)
Ug(1) x()—€%x(x)

We have used the notatida(X) to mean the groufs gen-
erated by the operati¢s) X. A subgroup ofRF is the group
Two Appendices contain the technical details of induced repof isometries of the lattice, called the geometric rest frame

resentations and character tables for the irreps of mesons.group, GRFK(Z , ,Ry,1). In turn, GRF contains the time
slice group, which is the point group of the lattice:

II. SYMMETRIES OF STAGGERED FERMIONS
TSRy, 1)=On(Ry,1) =0O(Ry)®Z5(1). (6)

In this section we review the breaking of continuum spin-__ ) , ,
flavor symmetries for lattice staggered fermid@$ at zero 1S chain of groups builds up to the continuum symmetry
temperature, and identify how this pattern changes at finitd"0UP:
temperature. The continuum symmetry for four flavors of
fermions isSU,(2)®U;(4), where the first factor is the ro- TSCGRFCRFCSUy(2)@Us(D), 0

tational symmetry, and the second is the flavor symmetryyheresu,(2) is the diagonal subgroup of the direct product
We follow the notational conventions ¢9,10]. SU,(2)®SUs(2) of rotations and flavor. The breaking of

At T=0 we are interested in the sym.metriesl of f_ermionSUf(4) to SU;(2) is specified by requiring that the funda-
operators which have zero momentum in the directions Orfnental ofSUj(4) break into the irrep¥.2) of SU/(2)
thogonal to the Euclidean time f P32 1(2).

All correlation functions block diagonalize into irreps of
TS. This group,Oy,, is the group of symmetries of a cube. It
Xa=2 T;mST;mZT;mlx(r)TTlT?ZTTe’Z2 x(x+2ma).  has 48 elements in 10 conjugacy clasf&8]. It has four

" " (7  One-dimensional irepé; and A; , two two-dimensional

irepsE= and four three-dimensional irreps andF, . The

Here the indexA denotes the corners of the hypercube onphysical interpretation of each mass is obtained by tracing
which the appropriate component of the quark field resides, the descent of the irrep dfS through the whole chain in Eq.
is the lattice spacingl; are the generators of translations in (7) from the irreps of the continuum symmetrO(4)
theith direction, and we have assumed that there are periodi®@ SU(4). This is done in[9,10]. See also11] for some
boundary conditions in all directions on the slice. In writing details of the treatment of correlation functions.
Eg. (2), we have chosen to study correlation functions of For the study of equilibrium finite temperaturé>0,
operators separated in the time direction. Because of thehysics we are interested in screening masses and screening
4-dimensional discrete rotational symmetry of tiie=0  correlation functions, i.e., in the eigenvalues of the transfer
theory, we could have chosen to study propagation in anynatrix in spatial directions. Two distinctions from tfie=0
other direction with the same result. theory should be borne in mind.

The symmetry elements of the theory are listed in Table I. The first is that there are anti-periodic boundary condi-
For staggered fermions, the shifts by one lattice spa@pg, tions in the Euclidean time direction on fermions. As a result
are mixed flavor and translation operations. Pure translation§e lowest Fourier component has a non-vanishing momen-

areT, =S, . We have chosen the transfer maffixo beT,. ~ tum in this direction:
Nothing would have changed, §=0, if we had instead N2 NJ2_ i
chosenT to beT,. T XO) T =€7x(x),
Discrete flavor operation& w=SuT, Y2 "are vectors un- o (8)
i —Ny/2 N/2_ i
der rotations, generated 1, and transform as T, "x(X)T P =e""x(X),
R 'ERj = 6B+ ik Ei + €| Ex. (3  whereN; is the number of lattice points in the time direction.

This is a trivial change. For fermion bilinear operators it
Here and elsewhere, Greek indices run from 1 to 4; Latirmakes no difference. Operators with an odd number of fer-
indices over the three directions summed in E2). or its  mion fields are treated slightly differently. For example, the
analogue. A subgroupg(1) of the continuum flavor group projection on the lowest momentum state of a fermion field
remains unbroken on the lattice; this charge corresponds ts not written as in Eq(2), but as
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A. Meson operators

— irm /N
XA % e Mx(x-+2ma), © In a meson representation, the quark numiper0. As a

result, the representan¥ of the flavor generators, com-

wherem runs over the coordinates in a spatial slice, i.e., ovefMute- ConsequentiZ and| commute withX,.. At T=0, it
two spatial directions and the temporal directipff. The has been shown thai0]
phase factor in the sum is just the statement that the lowest RE=GREX R ©Z.(C 13
Matsubara frequency for fermions 4sT. a a:®Z(C), (13
In this paper we shall concern ourselves with the secondpere
and more important, difference—the isometries of a slice of
the lattice. Since we are interested in screening masses, we (Y
consider slices through the lattice orthogonal to one of the CRAX R, =G (X, Ria) @ Za(1)
spatial directions, say thedirection[as in Eq.(9) abovd. ®Z,(X1 XoX3)®Z5(Xy),  (14)
Then the isometries of theslice generate
with X, = X, X1 X,X3. The irreps ofGRF are denoted 47123,
TS= DZ=D4(RXy,R§t)®ZZ(I). (10 wherer denotes an irrep o5, and o, and o 1,3 are signs
which denote the irreps of th&, factor groups generated by
The identification of this group is easy, because it differsX4 andX1XzXs respectively.
from O, [Eq. (6)] by the fact that rotations o£/2 in thext Next we identify the groups. The X, generat a 4 ele-
andyt planes is not allowed. The spectrum of the screeningnent Abelian group called the Viergruppé=Z,®Z,. This
masses requires a classification by the irrep<D§f The i a normal subgroup d&. The transformation properties of
continuum symmetry will be built up by the group chain X, under rotations, Eq(3), show that G is the semi-direct

product G=V(X)<O. Now, the cubic group O
TSCGRFCRFCC®Ug(1)CSUy(2)®Ug(1), (11 =V(RZ)<S;, where the normal subgroup(RZ)) is gener-
ated by the three rotations by angie[14], and the other
whereC=0(2)®Z,(1) is the invariance group of a cylinder. factor is the permutation group of 3 elements. From @pit
To generate each of the lattice groups in the chain, we usis clear thatv(RZ)) has trivial action ov(X,), and we can
the construction at =0, only leaving out odd powers of the write
rotationsRy; .
D' has 16 elements in six conjugacy clasgg]. There G(X,Ra) = (V(X) @ V(RZ))=IS;. (15)
are eight one-dimensional irreps labelad , A, , B; and
B, , and two two-dimensional irreps~. The reductions of ~Since the normal subgroup is Abelian, the irrep&atan be
the irreps ofOy, to DE is as efficiently generated by the method of induced representa-
tions. Details are given in Appendix A, where we recover the
AP AP AP_BP results of[10].
1AL b This method makes it easy to construct e 0 group,

FP-AS®eEP, FS—BYoEP, GRF=G®Z,y(1)®Zy(X1X,X3)®Zx(Xy).  (16)

TABLE II. Irreps of G, defined in Eq(14), and their reduction
at finite temperature to irreps &, defined in Eq(16). The irreps
which are realized for mesons are marked. Meson states do not

More details can be found if2]. exhaust all the irreps dB, O or G, but do exhaust all the irreps of
In the rest of this paper we shall give these decomp05|D

tions of meson and hadron operators using the language of'

EF-APoBY. (12

theT=0 theory. This calls for some care in the interpretation g 0 & D, Meson
of results—although we shall talk of charge conjugatiGn,
and parity,P, and the operators will have the same structure 1 Ay 1 Ay Yes
and algebra as in th€=0 theory, they may represent quite 1’ A, 1, B,
different physical quantitiegl2]. 2 E 1+1, A, +B;
3 Fi 2,+ 1 A,+E Yes
ll. THE SYMMETRY GROUP AT T>0 ¥ Fa 2+l Bo+E
3 Fq 2,+1, A,+E Yes
In this section the symmetry groups are written down. The 3” F, 20+ 15 B,+E
representation theory of these groups in the mesprark- 3” A+E 2,+1, 2A,+B; Yes
antiquark sector is examined in detail. The symmetries of 3™ A+E 2+ 15 A;+2B;
the quark fields are also examined briefly, and the represen-g F,+F, 2,425+ 25 A,+B,+2E Yes

tation theory in the baryon sector is dealt with in less detail
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TABLE Ill. Representations of local staggered mesons. OnlyAfieoperators have been used in simu-
lations until now. Reduction of three-link separated mesons follows an identical pattern and generates the
opposite parity irreps olDQ.

GRF e D} Operator
1 1o Al = () x (%)
1 L Ar 2,74(3) £a() XX (X)
Ci 1 Al 2 ,€(X) ms(x) £3( X () x(x)
2 Al 2007100 £20x) + 72(0) £209 Tx () X (X)
By 20071030 £2(x) = 72(0) £209 TX() X ()
A L Ay 3 (%) 7(X) £a(X) 7303 £a(X) X (X) X (X)
2 Al+ 2 x€(X) 7a(X) C4(X)L771(X) £1(x)
+ 7500 L) Tx (X)X (x)
BY S€(X) 7409 £a() [ 72(X¥) £2(%)
= 7200 L) Tx (¥ x (%)

The rotation generators i& areRy, andR2,, and they gen-  tors but give the opposite parit%/. These two sets together
erate the grouD,. SinceD,=V(RZ)<Z,(R;,), we have  give us the remaining irreps @, i.e.,A; andB; .

G= (V(S'(k)®V( RE|))><Zz(R12) 17) B. Quark and baryon operators

Quark and baryon operators carry odd fermion charge.

G has 32 elements in 14 conjugacy classes. The irreps can J‘?e reptr%sl_?fnta:jnts &, aLntdlr-colrt'nmute antd tgener;\te the.32
constructed by the method of induced representatises element Clifford groupCL(4). Its commutator subgroup is

Appendix A). There are 8 one-dimensional and 6 two- isomorphic '[E)Zz and its AbelizationCL(4)/Z, is precisely
dimensional irreps o6 the groupV(X,) ® Z,(X,4) ® Z,(X1X,X3) encountered as the

The content of the various GRF irreps is shown in Tablenormal subgroup of the mesonic rotation-shift grdug].

) ) - Apart from the 16 one-dimensional irreps of this group,

Il. The reduction of irreps o6 to those of0, G andD, are CL(4) also has a four-dimensional quaternionic irrep famil-
perforr_ned using the_ characf[er tables In Appendlx B. Thes r to us from the algebra of the Dirac matrices.
_reductlons are consistent .W'th those_ given in Eip). The The rotation-shift group for fermionic operatorsiat 0 is
irreps obtained for mesoniguark-antiquark operators can
be identified through the Clebsch-Gordan series for the GRF Gr=CL(4)<0=(CL(4)®V(R))~<S;. (18
of fermionic representations.

We demonstrate the reduction of thé™ and3” ** ir-  This group has 45 conjugacy classes, and hence 45 irreps.
reps of GRF to the irreps CDQ in Table I, using the full set  Forty of these have been identified as the irnepp§123 of the
of local meson operators. All the operators which have beemesonic rotation-shift group. The remaining 5 are obtained
used to date for computing screening masses belong to th®y inducing with the remaining non-trivial irrep &€L(4).
DY irrep A;, and conversely, all tha; operators in Table This gives the five real irrep8, 8', 16, 24 and24'.
[l have been used in measurements. Notice, however, that The defining representation @g, 8, is given by zero
this one irrep ofT S descends from different irreps GRF. momentum staggered fermions on a time slice(2g.Under
The twoA; irreps descending frorh, must give degenerate Op the octet break§]
masses,as must the pairs descending from fheand the2,. e
However, there is no group theoretical necessity for the three 8—A; tAL +F; +Fy . (19
pairs to have the same mass.

The reduction o3™ =, 3"~ * and6™ * irreps obtained for

The Clebsch-Gordan coefficients f8x 8xX 8 show that only
one-link separated meson operators is given in Table IviN€8, 8" and16are found as irreps of baryof8]. The local
Reductions of two-link separated meson operators can a|§6aryo+n operators built from staggered fermions transform as
be read off from the structure of these reductions. The lattef€ A1 component of thes. o .
give positivel parity irreps ofDQ. Combining these two sets The rotation-shift group for fermionic operatorsiat 0 is
we have a set oA, , B, andE~ irreps. Three link separated _ _ 2

. =CL(4)xD,=(CL(4)® V(R )I<Z,. 2
operators reduce in the same way as the local meson opera- Gr=CL(4)xD4=(CL(4)®V(Ri)>Z, 20
This group has 61 conjugacy classes, and hence 61 irreps.
Fifty-six of these have been identified as the irrepg12s of

This is the phenomenon of “parity doubling” at high tempera- the T>0 mesonic rotation-shift group. The remaining 5 are
ture. obtained by inducing with the remaining non-trivial irrep of
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TABLE IV. Representations of one-link separated staggered mesons. Hgbéx) = d(x+ ,&)+¢(x

—,&). Reduction of two-link separated mesons follows an identical pattern and generates the opposite parity
irreps of DY

GRF e D Operator
3 L Az 2,m3() X(X) Dax(x)
2% E 2771, 4X) X (X)D1,2x(X)
3 Ls Ay 23 na(X) {a(X) ns(x)l(X)DsX(X)
2, = 2y 14(X) L4(X) 771,2(_X)X(X)D1,2X(X)
3 L Az 2€(X) £3(X) x(X) Dax ()
2% E” 2x€(X) £1,0X) x(X)D12x(X)
3 1, Az 2,74(X) £a(X) €(X) £5(X) x(X) Dax(X)
2 E 2><774(X)§4(X)‘E(X)fl,z(x))((x_)Dl,zx(x)
6 25 Az 2y 71(¥) + 720 173(x) X (X) D3x (%)
B, 2 72(X) = 720) 173(x) X (X) Dax (x)
2 = 2xe(X) 71(¥) 7200 X (X) D2x(x), 12
% B 2xe(X) 73(x) 1) X ()D1x(x), 12
6" 25 Az 2x€(X) 74(X) £4() [ 72(X) + 72(3)] 73(X) X (X) D3x (X)
B2 2x€(X) 74(X) £ [72(¥) = 72001 73(x) X (X) D3x (X)
2 E 2€(X) 74(X) £40) 71(¥) 72(X) X (X) D2x(X), 12
23 E 2 €(X) 74(X) £4(X) 73(X) 71(X) X (X)D1x(X), 1—2

CL(4). This gives the five real irref, 8;, 8,, 8;, 16. The  0dd structure of staggered fermion correlators. The screening
reductions of thef=0 baryon irreps alT >0 are mass,u, in this channel is

8—>80, 8,—>82, 16—>80+82 (21) T 2
pa=2 m2a2+sin2(N—>—> N =2nTa. (23

UnderD, we find that T

8y— Al +A] +A] +A; +ET+E . (220 Hereais the lattice spacingN. is the lattice size in the
Euclidean time direction, aneh is the quark mass. The limit

The components of the quark field which carry different rep-S t@ken for smalmand largeN, and is equal to twice the
resentations oT S and TS are shown in Table V. minimum Matsubara frequency,_wZ’ [3,4,19. Finite size
Given the classification of baryon operators[@] it is a effects are clearly strong, even in FFT, and have been ana-

simple matter to construct tH} irreps from them. We do YZzed before{4,5]. ) L "
not present a detailed table, because the state of the art jn 1€ rémaining local “mesons” are in tti, irrep ofD.
measurements with baryons has not progressed far beyorln'al FFT these correlation functions vanish. This is easy to

the measurement of the purely local operators evéi-a. understand. In FFT the andy direction propagators are
exactly equivalent, and hence their differerisee Table II)

cancels.
IV. FREE FIELD THEORY AND BEYOND

In a free field theory of staggered fermions, the symme- TABLE V. Representations of the quark fiejgy . The “zero-
tries of the Hamiltonian become symmetries of the field con-momentum” projection is performed as shown in E@). The8 of
figuration. As a result, there are many more degeneracieSr is the same as th&, of the G¢ .
among the screening masses than in the general probler:

The only relevant group turns out to B&, in the sense that GRF O D} Component
all correlators in the same irrep ofS have degenerate 8 At AT (0)
; : - 1 1 X

masses, even if they descend through different irrepR fof A; A (3+5+2)
and GRF. However, the degeneracies are even higher than E+ AF XTI
would be predicted by the application of the group theory of L 2 A {(HV)A X
TS E {x(x+2),—x(y+2)}

The local “mesons” in theA; irrep of D} have been Fi A, x(2)
analyzed extensively in free field theofiFFT) [4,5]. It is E- {x(X), x(¥)}

known that the correlation functions show the typical even
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TABLE VI. Induced representations &= (V®V)S;. A rep- (1) Fermions in QCD af >T, are weakly coupled, since
resentative member of each orbit is underlined. The trivial isotropythe Af screening masses coming from &kﬁ and the2, ~
group is denoted byE}. This construction reproduces the result of agree very well with Eq(23). This picture becomes a better
[10]. approximation with increasing.

(2) QCD atT.<T<2T, is not very different from that at

Orbit Isotropy  Dimension  Multiplicity T<T., since theA; from thel; = is quite different from
(0,0) S; 1 2 Eq. (23). Furthermore, thé; from thel, = and the2, = are
- 2 1 just the same as the vector/pseudo-vector at zero tempera-
(0,1),(0,2),(0,3) Z5(R1») 3 2 ture.
(1,0),(2,0),(3,0) Z»(Ry)) 3 2 To resolve this controversy one needs first to measure the
(1,1),(2,2),(3.3) Z5(Ry») 3 2 B, coming from the2; = and check whether it agrees with
(1,2),(1,3),(2,1), either of the models above. Beyond this, one needs to mea-
(2,3),(3,1),(3,2) {E} 6 1 sure screening masses in other irreps of@RF which are

in the same irreps of the continuum group as the measured
local fermion bilinears. This would check whether the sec-
eond model is viable or not.

The non-local mesons also divide into two groups. Th
A7, A5 andE™ irreps of D!} give rise to screening masses
according to Eq.(23). In contrast, theB; and B, irreps V. SUMMARY
vanish in FFT. Deviations from any of these free figld theory | this paper we have studied the symmetries of the trans-
results can be used as a measure of the interaction strengi} matrix for staggered fermions. By using the method of
between fermions. induced representations we have reproduced old, known re-

It is interesting to recall past measuremed®-5. g5 for the spin-flavor symmetry group and its irreps at zero
Screening masses have been measured with foytmneraturd9,10). This method allows a simple generaliza-

correlat(%rg— . _ . tion to the analysis of the spatial direction transfer matrix at
the Dy irrep A; descending from thé,; = of the GRF,  finjte temperature. Our main result is the identification of the

and irreps of the finite temperature symmetry group given in
a linear combination of the two pairs @/ irreps A; Table 1X.

descending from thd, = and 2, = of the GRF (see Table Using this, we have decomposed fhe 0 irreps into the

). T>0 irreps. This reduction is shown for “mesons” in

Since they all belong to the same irrep ™, we might  Tables Il and IV. For quarks the reduction is given in Table
expect them to give the same screening mass in FFT. Exten, The reduction for local “baryons” may be read off from
sive numerical work was performed in the 4-flajyd] and  the same table.
guenched5] SU(3) theories atT~T,, T=3TJ/2 and T The phenomenon of “parity doubling” at high tempera-
=2T.. It was found that the masses within each group betures is allowed by the group theory. In a free fermion
come degenerate already quite clos& ¢o but the masses of theory, in fact, the degeneracies are much higher—the
the two groups differed by about 10% even dt.2 In the  screening masses are classified by the point group of the
light of the preceding calculations, the natural explanatiorspatial slice of the lattice. In an interacting theory this is not
for this observation is that there are residual interactions. true; the descent of each irrep through the chain of envelop-

A minor controversy persists in the interpretation of theseing groupgsee Eq(11)] is important. This has been seen in
observations. The two viewpoints can be summarized as the A; irrep of the point group. Whether the physicsTat

>T. is a small perturbation around the free theory or the

TABLE VII. Induced representations ob=(V®V)=Z, A  Z€rotemperature theofgr something else altogetharan bg
representative member of each orbit is underlined. The trivial isot€xplored by studying other irreps. T is a good candi-

ropy group is denoted b{E}. date because it is also built from local fermion bilinear op-
erators.
Orbit Isotropy Dimension Multiplicity
(0,0) z, 1 5 ACKNOWLEDGMENTS
0,3 Z; 1 2 | would like to thank F. Karsch and E. Laermann for
3.0 Z; 1 2 discussions when this work was started, and T. Venkatara-
(3.3) Z; 1 2 manna for patient tutorials on the use of the theory of in-
(0,1),(0,2) {E} 2 1 duced representations.
(1,0),(2,0) {E} 2 1
1.1).(2.2) {E} 2 1 APPENDIX A: INDUCED REPRESENTATIONS
(1,2),(2,1) {E} 2 1
(1,3),(2,3) {E} 2 1 The method of induced representations for a semi-direct
(3,1),(3,2) {E} 2 1 product groupG=NH, for Abelian N, can be found in

[14]. Here we quote the results required in this paper. The
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TABLE VIII. The character table foilG=(V(u)®V(v))S;. The second line of the table gives the
number of operators in each class.

G O E u Y u-v uv C R urR VR wR
1 3 3 3 6 32 12 12 12 12
1 A 1 1 1 1 1 1 1 1 1 1
1 A, 1 1 1 1 1 1 -1 -1 -1 -1
2 E 2 2 2 2 2 -1 0 0 0 0
3 Fqi 3 3 -1 -1 -1 0 1 1 -1 -1
3 F, 3 3 -1 -1 -1 0 -1 -1 1 1
3’ F, 3 -1 -1 3 -1 0 1 -1 -1 1
3" Fi 3 -1 -1 3 -1 0 -1 1 1 -1
3" E+A; 3 -1 3 -1 -1 0 1 -1 1 -1
3" E+A, 3 -1 3 -1 -1 0 -1 1 -1 1
6 Fi+F, 6 -2 -2 -2 2 0 0 0 0 0

dual,N (set of equivalence classes of irreps\yf, is isomor-  irrep of the first factor andi of the secondS; has two one-
phic to N, and the action oH on N is isomorphic to its d!mens!onal !rreps(the trivial and th_e S|g)1_and one two-
action onN dimensional irrepZ, has two one-dimensional irreps, the
Under the action oH, the dual breaks up into disjoint tnwal_and the sign. These are t_he only inputs into the con-
orbits O, i.e. N=®,0;. Examine the isotropy group struction of the irreps we require. The construction of the
i Ty - i~ ]

H,CH of one representativg; € O, . We need to know two '"€PS 0fG andG [see Eqs(15) and (17)] follow from the

cases— rules above, and are given in Tables VI and VIl respectively.
When the orbiO; has only one element, i.éd;=H, then
the induced representations are precisely the irreps. of APPENDIX B: CHARACTER TABLES

For othery; whenH; is Abelian, the dimension of the ) ) ] . .
induced representation is the number of elements in the coset In this appendix we define the irreps @fandG [see Egs.
H/H;, and the multiplicity of such irreps is given by the (15),(17)] by writing down the character tables.
number of classes iHl; . In Appendix A we showed that the group of Eqg. (15)

All 4 irreps of the Viergruppe), are one-dimensional. has_lO irreps. Hence the 96 elements of the group f_aII into 10
We label them by the numbers 0, 1, 2 and 3. The trivial irreptOnjugacy classes. For evege G, we can write uniquely
is called 0. The irrep labelekl (#0) hasy(E)=x(X,)=1 g=uvs, whereueV(X,), veV(RZ), andseS;. We use
and the other two charactersl. Irreps of the direct product the notationR,, and C respectively for the operators 8,
V®V are labeled by the ordered paik,() wherek is an  which permute the pakl and make a cyclic shift. In terms

TABLE IX. The character table foé:(V(u)®V(v))>422. The second line of the table gives the number of operators in each class.

G D, E u % uv u % uv vu u-v uv R ur VR uvR
1 1 1 1 2 2 2 2 2 2 4 4 4 4
1 Aq 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 B, 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
1, A, 1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1
1, B, 1 1 1 1 -1 -1 -1 -1 1 1 -1 1 1 -1
1, A 1 1 1 1 -1 1 1 -1 -1 -1 1 -1 1 -1
15 B, 1 1 1 1 -1 1 1 -1 -1 -1 -1 1 -1 1
16 A, 1 1 1 1 1 -1 -1 1 -1 -1 1 1 -1 -1
1, B, 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 1 1
2 E 2 -2 -2 2 0 0 0 0 2 -2 0 0 0 0
2; E 2 -2 -2 2 0 0 0 0o -2 2 0 0 0 0
2, E 2 2 -2 -2 2 0 0o -2 0 0 0 0 0 0
2, E 2 2 -2 -2 -2 0 0 2 0 0 0 0 0 0
2 A+B;, 2 -2 2 -2 0 2 -2 0 0 0 0 0 0 0
2 A+B, 2 -2 2 -2 0o -2 2 0 0 0 0 0 0 0
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of this decomposition, the 10 conjugacy classes are—thgroup G of Eg. (17) shows that there are 14 conjugacy
|dent|(ty_tlr51, l_Ji#(_W'th cli:dllzyf)(’jji, UC'V R(’meanllgg (k:jyuivit) g classes. For everge G we have the unique decomposition
uv; (with j#i, and denotediv), €, Rq, UR; (denote g=uvs, whereue V(X,), ve V(RZ), andse Z,. Using the

uR), viRj; (denotedvR), u;v;R;; (denoteduvR). The char- onR for th ial el oF ite th
acter table is constructed by standard methods, and given fptationR for the nontrivial element of,, we can write the

Table VIII. The reduction of irreps o6 to that of the sub- Cconjugacy classes & u=us, v=vs, u; (with i=1,2 and
group of cubic rotation® is performed by inspecting the denotedu), v (in the same notatiopuv, ujv; (with i=1,2
characterkof the conjugacy classes @f. These are the ro- and denotedu-v), uv, vu, uv (meaningu;v; with i#]

tations bys/2 (R), rotations by (v), rotations by 27/3 (¢)  =1.2), R (which is equivalent tauvR, uR andvR), uR
and the remaining 2-fold rotations'R). (also equivalent tcvuR), VR (also equivalent taivR), and

The construction, in Appendix A, of the irreps of the uvR. The character table is given in Table IX. The decom-
position to irreps oD, needs the identificatioﬁﬁz:v, the
7 rotations about thex andy axes arev, R;,=R and the

%Character tables fob, andD% may be found if{13]. remaining 2-fold symmetries amR.
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