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Monopole clustering and color confinement in the multi-instanton system

M. Fukushima,* H. Suganuma, and H. Toki
Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan

~Received 5 February 1999; published 27 September 1999!

We study color confinement properties of the multi-instanton system, which seems to carry an essence of the
nonperturbative QCD vacuum. Here we assume that the multi-instanton system is characterized by the infrared
suppression of instantons asf (r);r25 for large sizer. We first investigate a monopole clustering appearing
in the maximally Abelian~MA ! gauge by considering the correspondence between instantons and monopoles.
In order to clarify the infrared monopole properties, we make the ‘‘block-spin’’ transformation for monopole
currents. The feature of monopole trajectories changes drastically with the instanton density. At a high instan-
ton density, there appears one very long and highly complicated monopole loop covering the entire physical
vacuum. Such a global network of long-monopole loops resembles the lattice QCD result in the MA gauge.
Second, we observe that the SU(2) Wilson loop obeys an area law and the static quark potential is approxi-
mately proportional to the distanceR between quark and antiquark in the multi-instanton system using the
SU~2! lattice with a total volume ofV5(10 fm)4 and a lattice spacing ofa50.05 fm. We extract the string
tension from the 53106 measurements of Wilson loops. With an instanton density of (N/V)5(1/fm)4 and an

average instanton size ofr̄50.4 fm, the multi-instanton system provides a string tension of about 0.4 GeV/fm.
@S0556-2821~99!05317-5#

PACS number~s!: 11.15.Ha, 12.38.Aw
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I. INTRODUCTION

Quantum chromodynamics~QCD! has been established a
the fundamental theory of the strong interaction. In the inf
red region, there appear various nonperturbative phenom
such as color confinement and dynamical chiral-symme
breaking. Since the QCD vacuum is composed of glu
fields interacting in a highly complicated way, it is hard
understand these phenomena from perturbative points
view. On the other hand, a topological aspect may provid
useful approach for descriptions of the QCD vacuum. Ac
ally, there appear two nontrivial topological objects,instan-
tonsandmonopoles, due to the nonlinearity of QCD.

The instanton configuration discovered in 1975 by B
lavin, Polyakov, Shvarts and Tyupkin@1# is a classical and
self-dual solution of the Euclidean field equation in Yan
Mills theory. The appearance of instantons corresponds
homotopy group,P3„SU(Nc)…5Z` @2#. Instantons are im-
portant for nonperturbative phenomena related to the UA(1)
anomaly and the largeh8 mass@3#. Chiral-symmetry break-
ing could also be interpreted as the instanton effect@4–6#.
However, until now there has been no evidence that ins
tons have anything to do with color confinement
4-dimensional gauge theory, although Polyakov discove
that instantons cause confinement in certain 3-dimensi
Georgi-Glashow models@7#. With recent computationa
progress, instanton properties are investigated by lat
QCD simulations based on the cooling procedures, which
achieved by an artificial reduction of the local lattice actio
This method allows one to eliminate short-range quant
fluctuations of gluon fields and to extract only topologic
excitations like instantons from the nonperturbative QC
vacuum@8–13#. These investigations provide us the avera
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instanton sizer̄.(0.33– 0.4) fm and the instanton numb
density (N/V).1 fm24 @8–14#. Although the existence o
instantons with high density is agreed upon, the deta

numbers forr̄ and the size distribution depend largely on t
cooling procedure. These scale parameters suggest tha
QCD vacuum is the dense matter of instantons and a
instantons.

In 1981, ’t Hooft proposed the Abelian gauge, where t
color-magnetic monopole appears as a relevant degre
freedom for the description of color confinement@15#. In the
Abelian gauge, the SU(Nc) non-Abelian gauge theory is re
duced to the U(1)Nc21 Abelian gauge theory with color
magnetic monopoles. The appearance of magnetic mo
poles corresponds to another homotopy gro
P2„SU(Nc)/U(1)Nc21

…5Z`
Nc21 , which is different from

that of instantons. In the Abelian gauge the color confin
ment mechanism can be interpreted as the dual Meis
effect due to monopole condensation, which is a dual vers
of Cooper pair condensation in the ordinary superconduc
ity. Such a dual superconductor picture for color confinem
was proposed by Nambu, ’t Hooft and Mandelstam in t
middle of the 1970’s@16–18#. By lattice QCD simulations, it
is observed that large monopole clustering covers the en
physical vacuum in the confinement phase, which is ide
fied as a signal of monopole condensation being respons
for confinement @19,20#. Many studies indicate that th
monopole is a relevant degree of freedom for color confi
ment and chiral-symmetry breaking@21–28#.

Recent studies show remarkable facts that instantons
directly related to monopoles@29–47# in the Abelian gauge,
although these topological objects belong to different hom
topy group. For example, in the Polyakov-like gauge@29#,
monopoles appear due to the existence of the hedgehog
figurations near instanton centers. Such correlations indi
that instantons may be important for the promotion of lo
©1999 The American Physical Society04-1
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monopole loops. Therefore, we take the multi-instanton s
tem instead of the QCD vacuum in order to clarify monop
clustering and confinement properties in terms of instanto

II. TOPOLOGICAL OBJECTS IN THE QCD VACUUM

The instanton is a classical and nontrivial solution of t
Euclidean Yang-Mills theory, whose action is written asS
5*d4xGmn

a Gmn
a /4g2. Here, in order to make the notation an

the discussion simpler, we take the SU(2) case and repre
Am(x)[ igAm

a (x)ta/2 and Gmn(x)[ igGmn
a (x)ta/2, which

are defined as the anti-Hermite variables. Instanton and a
instanton configurations are characterized by the~anti-!self-
duality condition,

Gmn
a 56G̃mn

a , ~1!

by using the dual field strengthG̃mn[ 1
2 «mnabGab . This

condition provides the minimal actionS5 (8p2/g2) uQu.
Here, the topological charge is defined asQ
[*d4x$Gmn

a G̃mn
a %/32p2. These instanton solutions satis

the general Yang-Mills field equations automatical
DmGmn56DmG̃mn50. The self-dual solution withQ51 in
the singular gauge@2# is written as

Am
I ~x;z,r,O!5

ta

2

2iOabh̄bmn~x2z!nr2

~x2z!2$~x2z!21r2%
. ~2!

Here, the instanton solutions have several collective mo
related to the sizer and the positionz of instanton, which are
described by one and four parameters, respectively. For
SU(2) gauge theory, the instanton solution can be rotate
color space by the color orientation matrixO, which is char-
acterized by 3 parameters as the Euler angle. The ’t H
symbol h̄bmn is defined as

h̄bmn52h̄bnm[H «bmn, m,n51,2,3,

2dbm, n54.
~3!

The anti-self-dual solutionAm
Ī is obtained by replacingh̄bmn

to hbmn[(21)dm41dn4
h̄bmn in Eq. ~2!.

Now, let us discuss the appearance of QCD-monopole
the Abelian gauge. We consider the maximally Abeli
~MA ! gauge@19#, which is defined in the Euclidean SU(2
QCD by minimizing the variable

Rch@Am#5E d4x$„Am
1 ~x!…21„Am

2 ~x!…2% ~4!

under the gauge transformationV(x). In the MA gauge, the
off-diagonal fields are suppressed by the gauge transfor
tion and the full gauge fieldAm5Am

a (ta/2) behaves as the
abelian gauge fieldam5Am

3 (t3/2) approximately. In this pa-
per, we adopt the MA gauge, where the Abelian domina
holds for the nonperturbative QCD phenomena@22#. Under
the gauge transformation, the gauge field transforms as

Am~x!→Am
V~x!5V~x!„Am~x!1]m…V~x!†. ~5!
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After the gauge fixing, there only remains the Abelian gau
symmetry U(1)Nc21,SU(Nc). When we meet hedgeho
configurations like instantons, the multivaluedness happ
to the gauge functionV(x) and the gauge transformation o
Eq. ~5! develops a singularity. This singularity leads to t
monopole currentkm . The field strength is defined general
asGmn[@D̂m ,D̂n#2@ ]̂m ,]̂n# @48#, which returns to the stan
dard definition Gmn5@D̂m ,D̂n#5]mAn2]nAm1@Am ,An#
for the regular case. Under the singular gauge transforma
V(x), the field strength transforms as

Gmn
V 5VGmnV†5]mAn

V2]nAm
V1@Am

V ,An
V#2V@]m ,]n#V†.

~6!

Since the last term is diagonal, Abelian field strength is na
rally obtained as

Fmn5]man2]nam2V@]m ,]n#V†, ~7!

by performing the Abelian projection, Am
V→

AP

am

[tr(Am
Vt3)(t3/2). The Abelian Bianchi identity is broken

due to the existence of the last term in Eq.~7!, and the
magnetic currentkm(x) is obtained as

km~x![
1

2
«mnab]nFab52

1

2
«mnab]nV@]a ,]b#V†. ~8!

The obvious consequence of the monopole current conse
tion, ]mkm50, means that monopole currents form clos
loops.

III. CORRELATION BETWEEN INSTANTON AND
MONOPOLE FOR COLOR CONFINEMENT

Recently, both analytical and lattice studies showed
strong correlation between instantons and monopoles in
Abelian projected theory of QCD@29–47#. Let us briefly
review recent studies on the correlation between these to
logical objects in the MA gauge@35,39#. The minimizing
condition ofRch@Am# in Eq. ~4! satisfies the local condition

~]m7Am
3 !Am

650, Am
6[Am

1 6 iAm
2 . ~9!

It is noted that self-dual solutions such as an instanton sa
the stationary condition~9! automatically. However, this sta
tionary condition is not sufficient to realize the MA gauge.
the MA gauge the functionalRch@Am# must be minimized in
addition. The arbitrary gauge choice of a single instan
gauge field leads to a different value ofRch@Am#, although
the instanton gauge field satisfies the condition~9! in any
gauge@39#. For instance, in the singular gauge, which ha
point singularity at the instanton center, the instanton c
figuration gives a finite valueRch@Am

s #54p2r2 with r being
the instanton size. On the other hand, in the nonsing
gauge, there appears the divergence asRch@Am

n #
52*d4x@r2/(x21r2)2#→`. Therefore, it is necessary t
consider the minimization of the functionalRch@Am# for the
MA gauge fixing.
4-2
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Brower et al. consider the single instanton configuratio
in an ‘‘intermediate’’ gauge where the gauge field has
singularity at the closed loop with a radiusR around its cen-
ter @39#. This singularity leads a closed monopole loop
radius R around the instanton. The parameterR should be
decided by minimizing the functionalRch@Am#. It is numeri-
cally shown that the monopole loop with radiusR prefers to
shrink to a point@39#. This fact is natural from the following
consideration. There is no definite direction both in t
single instanton configuration and in the MA gauge con
tion due to the 4-dimensional rotation invariance. Then,
normal vector of the monopole loop cannot be fixed and
loop ought to shrink to a point. However, theR dependence
of Rch@Am# is found to be extremely small. Therefore, som
small perturbations as the presence of the finite volume ca
a closed monopole loop with a nonzero radiusR due to the
fragile nature of the monopole point solution, which is fir
reported by Hart and Teper using the lattice simulation@35#.
In the QCD vacuum, there are actually many instantons
anti-instantons, and here the appearance of monopole l
should be influenced by other instantons and anti-instant
Therefore, we would like to investigate the monopole loo
by using a more realistic multi-instanton system defined
the R4 space.

We first study the monopole clustering as a signal
monopole condensation in terms of instantons, which is m
tivated by these strong correlations between instantons
monopoles in the MA gauge. Second, we calculate the s
quark potential in the multi-instanton system by using
Wilson loop in order to clarify the relation of instantons wi
color confinement.

IV. MULTI-INSTANTON MODEL

In this section, we would like to model the nonperturb
tive QCD vacuum in terms of instantons. The QCD vacu
possesses the gluon condensate@49#, which relates the num
ber of instantons and anti-instantons@5#. If the total action
can be estimated as the sum of individual instanton actio
the gluon condensate is proportional to the instanton den
as ^Gmn

a Gmn
a &/32p2.(N/V). The QCD sum rule provides

the phenomenological value ^Gmn
a Gmn

a &/32p2

.(200 MeV)4, and hence the average instanton density
comes (N/V).(1/fm)4 by the above assumption. The lattic
QCD simulations suggest that the QCD vacuum is satura
with many instantons and anti-instantons. Hence, we mo
the QCD vacuum by the multi-instanton ensemble. First
all, we consider the partition functionZ inst

1 of the single
instanton as the basic ingredient of the multi-instan
theory. Using the collective coordinates,r, zm , O, the
single-instanton partition function@5# is expressed as

Z inst
1 5E d4zmE drE dO f0~r!,

f 0~r!5
C~Nc!

r5 F 8p2

g2~M !
G 2Nc

~Mr!bexpS 2
8p2

g2~M !
D ,

~10!
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with b5 11
3 Nc . Here, f 0(r) is the single-instanton weigh

function in the one-loop approximation@50,51#. This weight
function has a scaleM corresponding to the scale invarianc
breaking by the trace anomaly in QCD. The bare coupl
g2(M ) is given at this scaleM. The weight functionf 0(r)
with Nc>2 increases with the instanton sizer, and the in-
frared divergence appears inZ inst

1 within the one-loop ap-
proximation.

We consider now the multi-instanton system. Based
the single-instanton partition function, the multi-instant
partition function is expressed as

Z} (
N1N2

1

N1!

1

N2! )
n51

N11N2 E d4znE drnE dOn f 0~rn!

3exp$2Uint~zn ,rn ,On!%, ~11!

whereUint denotes the interaction between instantons~anti-
instantons! and depends generally onzn , rn , On . Here, we
follow the standard method, where the interactionUint is
taken to depend only on the sizer @52–54#. Therefore, we
consider nowf (r)5 f 0(r)exp$2Uint% as the instanton size
distribution. This interaction is found to be repulsive, whi
suppresses the appearance of large size instantons@52–54#.
We regard the positions and the color orientations as rand
variables in our calculation.

For the small instanton, the perturbative scheme is va
and the interactionUint can be neglected. Hence, the insta
ton size distributionf (r) behaves as the single instanto
weight f 0(r),

f ~r! →
r→0

const3rb25. ~12!

On the other hand, for the large instanton, the direct esti
tion of f (r) is very complicated due to the nonperturbati
properties. The analytical studies and the numerical lat
QCD calculations@55,56# suggest a strong suppression of t
large size instanton as

f ~r! →
r→`

const3r2n, ~13!

which is caused by the repulsive force in the infrared regi
The ordinary instanton liquid model suggestsn55 @56#.

To connect the two tendencies in Eqs.~12! and ~13!
smoothly, we take the size distribution as

f ~r!5
1

S r

r1
D n

1S r2

r D b25 , ~14!

wherer1 denotes the infrared size parameter andr2 the ul-
traviolet size parameter. These two parameters are fixed
the average instanton sizer̄[*0

`drr f (r)50.4 fm @57# and
the normalization condition*0

`dr f (r)51.
The above discussion leads to the use of the parti

function
4-3
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Z} (
N1N2

1

N1!

1

N2! )
n51

N11N2 E d4znE
0

`

drnE dOn

3
1

S rn

r1
D n

1S r2

rn
D b25 . ~15!

As for the gluon fieldAm of the multi-instanton system, w
take the sum ansatz@58#,

Am~x!5(
k

Am
I ~x;zk ,rk ,Ok!1(

k̄

Am
Ī ~x;zk̄ ,r k̄ ,Ok̄!,

~16!

which is constructed by the instanton and anti-instanton
lutions in the singular gauge. Using the variational treatm
with this ansatz, Diakonov and Petrov have shown the
pearance of the repulsive force between instanton and
instanton in the infrared region@58#.

In actual calculations, we generate the ensemble of ins
tons and anti-instantons with random centerszk on the
4-dimensional Euclidean continuum space. The color ori
tations Ok are taken randomly. The instanton sizesrk are
randomly chosen following the size distributionf (r) in Eq.
~14!. In the simple sum ansatz, the interaction among th
pseudoparticles is supposed to be included effectively in
instanton size distributionf (r). The instanton size distribu
tion for the cases ofn55 and 3 are shown in Fig. 1.

V. MONOPOLE CLUSTERING IN MULTI-INSTANTON
SYSTEM

Based on the lattice gauge theory, we investig
monopole-loop distributions induced by instantons after
MA gauge fixing @43,44#. We introduce a lattice on the
multi-instanton configuration and define the link variab
Um(s)5exp„iaAm(s)…, where Am(s) is provided on each
link from Eq. ~16!. In the actual calculation, we use the 34

lattice with the lattice spacing ofa50.125 fm.
First of all, let us discuss the boundary condition of t

multi-instanton configuration. If instantons and an
instantons are generated only in the finite volumeV5

FIG. 1. The instanton size distributionf (r) as a function of the
instanton sizer. The instanton size distribution forn55 is denoted
by solid curve and that forn53 by dashed curve. In both cases, t

average sizer̄ is kept tor̄50.4 fm.
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(323a)45(4.0 fm)4, the strength of the gluon field is in
sufficient near the border of the volumeV. To avoid this
border problem, we adopt the periodic boundary conditi
which ensures adequate contributions also near the bo
Here, instantons are assumed to appear with the peri
position, size and color orientation out of the finite volum
V. A schematic view of this periodic condition of an insta
ton ensemble sliced into 2-dimensional plane is shown
Fig. 2. This means the consideration of the instantons in
34 boxes in the 4-dimensional case: it is 3259 boxes in the
2-dimensional case as shown in Fig. 2. In actual calculat
we construct link variables by considering all the instanto
in the neighboring boxes.

Now, we apply the MA gauge fixing@19# by maximizing

Rable5(
m,s

tr@Um~s!t3Um
† ~s!t3#

52(
s,m

@122$„Um
1 ~s!…21„Um

2 ~s!…2%#, ~17!

with Um(s)5Um
0 (s)1 i t iUm

i (s). The maximization ofR cor-
responds to the lattice expression of the minimization con
tion of Rch@Am# in Eq. ~4!. In the MA gauge, the SU(2) link
variableUm(s) is decomposed as

Um~s!5Mm~s!um~s!5S A12ucm~s!u2 2cm* ~s!

cm~s! A12ucm~s!u2
D

3S eium(s) 0

0 e2 ium(s)D , ~18!

where the Abelian angle variableum(s) and the non-Abelian
variablecm(s) are defined in terms ofUm(s) as

FIG. 2. A schematic demonstration of the periodic conditi
used for an instanton ensemble sliced into 2-dimensional plane.
introduce the lattice in the center of the instanton ensemble to
culate the link variables by considering all the instantons outsid
this central box obtained with a periodic condition for the siz
positions, and color orientations of instantons.
4-4



ul
nk

d
ly
le

le
-

no
ut
e

g
s

to
le

e
a

to
it
nt
e
ar
er

th
i

o-
d
ns
-

so-
s to
Fig.
le
op

tend
as

s.
ows
art

a-

oles
m
ome

of
le
e

MONOPOLE CLUSTERING AND COLOR CONFINEMENT . . . PHYSICAL REVIEW D 60 094504
tanum~s!5
Um

3 ~s!

Um
0 ~s!

, cm~s!eium(s)5@2Um
2 ~s!1 iU m

1 ~s!#.

~19!

It is obvious from the expression of Eq.~17! that the off-
diagonal partsUm

1 (s) and Um
2 (s) of gluon fields are mini-

mized by the MA gauge transformation. Therefore, f
SU(2) link variables would be approximated as U(1) li
variables,Um(s).um(s), in the MA gauge.

Monopole currents can be defined by usingum(s) follow-
ing DeGrand and Toussaint@59#. Using a forward derivative
]m f (s)[ f (s1m̂)2 f (s) with unit vector m̂, the 2-form of
the lattice formulation,umn(s)[]mun(s)2]num(s), is de-
composed as

umn~s!5 ūmn~s!12pnmn~s!, ~20!

with ūmn(s)[mod2pumnP(2p,p# and nmn(s)PZ. Here,
ūmn(s) and 2pnmn(s) correspond to the regular fiel
strength and the singular Dirac string part, respective
Since the Abelian Bianchi identity is broken, the monopo
currentkm(* s) can be defined on the dual link (* s,m) as

km~* s![
1

4p
«mnab]nūab~s1m̂ !52]nñmn~* s!, ~21!

where ñmn(* s)[ 1
2 «mnabnab(s1m̂). The obvious current-

conservation law]m8 km(* s)50 leads to the closed monopo
loop in the 4-dimensional space. Here,]m8 denotes a back
ward derivative.

Since we are interested in the infrared behavior of mo
poles in multi-instanton configurations, it is useful to exec
a ‘‘block-spin’’ transformation on the dual lattice with th
scale factorN. The ‘‘block-spin’’ transformation removes
small monopole loops as numerical noises and keeps its
bal structure. Here, theN 3 extended monopole is defined a

nab
N ~s![ (

i , j 50

N21

nab~Ns1 i â1 j b̂ ! ~22!

on a sublattice with the spacing ofb5Na @60#. Then, the
extended monopole current is defined askm

N(* s)5

2 1
2 «mnab]nnab

N (s1m̂).
We start with a very dilute instanton system in order

clarify a local correlation between instantons and monopo
in the MA gauge. We take a density (N/V)!(0.5/fm)4

5(100 MeV)4, where instantons are separated complet
from each other. From the analytical consideration, one m
expect that a monopole loop prefers to shrink to a instan
center. However, we observe on the lattice that each fin
size monopole loop is localized around each instanton ce
as shown in Fig. 3~a!. Such a small monopole but finite-siz
loop is caused by finite lattice spacing and the bound
effect, which is numerically washed out by several numb
of ‘‘block-spin’’ transformation.

In the actual QCD vacuum, instantons saturate
4-dimensional space and stay close to each other with a
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stanton density of (N/V)5(1/fm)4 @6#. Therefore, we con-
sider three instanton number-density cases, (N/V)1/450.75,
1.00 and 1.25 fm21, and investigate the behaviors of mon
pole loops. Figure 4~a! shows the histograms of unblocke
monopole loops. The histograms of blocked configuratio
are shown in Figs. 4~b!–4~d!, which corresponds to the ex
tended monopoles on the sublattice withb52a, b54a and
b58a, respectively.

At the low instanton density where each instanton is i
lated, the monopole loop induced by the instanton prefer
be localized around each instanton center as shown in
3~a!. Thus, there appear only relatively short monopo
loops. This situation provides a peak at zero monopole-lo
length in the histogram as shown in Fig. 4~d-i!. As the
instanton density increases, some monopole trajectories
to hop from one instanton to another nearby instanton
shown in Fig. 3~b!, and there appear long monopole loop
Here, a clustering of long monopole loops appears and gr
gradually to be separated from the small monopole-loop p
in the histogram. Furthermore, the ‘‘block-spin’’ transform

FIG. 3. The local correlation between instantons and monop
for a dilute instanton system~a!, and for a dense instanton syste
~b!. The thick lines denote monopole currents which appear at s
time t. The bottom surface corresponds to the action density
instantonss(x,y) at a certain time slice. Here, we show monopo
currents which are transformed by one ‘‘block-spin’’ on th
322382 lattice with a50.125 fm.
4-5
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tion is available to clarify monopole loop behaviors at t
large scale by comparing Figs. 4~a-iii!, ~b-iii !, ~c-iii ! and~d-
iii !. Because this procedure removes small-size mono
loops and combine several long monopole-loops into
longer loop. At a high instanton density, there appears
very long and highly complicated monopole loop in ea
gauge configuration as shown in Fig. 4~d-iii !. Such an ap-
pearance of the monopole clustering over the entire phys
volume can be interpreted as the Kosterlitz-Thouless-t
phase transition@61,62#.

In addition, we discuss the case of the instanton size
tribution n53 with the average sizer̄50.4 fm as shown in

FIG. 4. The histograms of monopole-loop length with vario
densities (N/V)1/450.75, 1.0 and 1.25 fm21, after the various
‘‘block-spin’’ transformations in then55 case.~a! denotes the re-
sults of no ‘‘block-spin’’ transformation.~b!, ~c! and~d! denote the
results after one, two and three ‘‘block-spin’’ transformations,
spectively.
09450
le
e
e

al
e

s-

Fig. 1. Diakonov pointed out that if the instanton size dist
bution falls off asf (r);1/r3 in the infrared region, one get
a linear confinement potential@55#, which is based on the
formula for the interquark potential in Ref.@63#. Since in-
stantons tend to have large overlapping from each other
the n53 case, the simple treatment with the sum ans
which is based on the assumption of the statistical indep
dence, may not be applicable for the construction of
multi-instanton system. However, the infrared behavior
the instanton size distribution is interesting for the confin
ment properties in the long-range region. Therefore, we d
onstrate also then53 case. The histograms of then53 case
are qualitatively similar to the corresponding histograms
the n55 case, although there is a quantitative differen
between these two cases.

Lattice QCD simulations at finite temperature suggest t
the instanton density is largely reduced as the tempera
increases. Now, we compare the histograms of the mono
loop length in the multi-instanton system with those of t
SU(2) lattice QCD with 16334 at different temperature
(b52.2 and 2.35) in Fig. 5@41#. The monopole-loop distri-
bution at high instanton-density case as shown in Fig. 4~d-iii !
resembles with the result of the confinement phaseb
52.2) in Fig. 5~b!, where many instantons and ant
instantons saturate with the instanton density (N/V)
.(1/fm)4. On the other hand, the dilute instanton system
shown in Fig. 4~d-i! is similar to the result in the deconfine
ment phase in Fig. 5~a! obtained by the lattice QCD (b
52.35), where long monopole loops disappear. This res
blance seems to indicate that the instanton plays a rele
role on the promotion of monopole loops in the confinem
phase.

VI. COLOR CONFINEMENT IN MULTI-INSTANTON
SYSTEM

In the previous section, we have discussed that a h
density instanton system provides highly complicated mo
pole loops. We shall further work out the confining prope
in the multi-instanton system without referring to monopo
configurations in the MA gauge@64#. For the investigation of
confinement properties, it is reasonable to consider the W
son loop with a contourC, which is defined as

-

FIG. 5. The histograms of monopole-loop length in unit of t
lattice spacinga at high temperature~a!, and at low temperature~b!
in finite temperatureSU(2) lattice QCD.
4-6
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W@C#[tr P expF i R
C
AmdxmG5tr )

C
Um~s!. ~23!

If the contourC is a rectangle of the dimensionT by R, the
Wilson loop is related to the static quark potential@65# as

V~R!52 lim
T→`

$ lnW~R,T!/T%. ~24!

To extract the potential without the contamination of excit
states, the timeT has to be large enough compared to t
distanceR between quark and anti-quark,T@R @66#. Hence,
it is desired to take a large enoughT in the calculation of
W@C#. In the periodic boundary conditions, the time distan
is limited as a half ofNt3a, where Nt is the number of
lattice in the time direction anda is the lattice unit. There-
fore, we introduce the 364 lattice in the center of a
4-dimensional instanton configurations without the perio
condition for the sizes, positions and color orientations
instantons. Here, the large Wilson loop can be calculate
T.363a because of the nonperiodic boundary. A schema
view of this condition sliced into 2-dimensional plane
shown in Fig. 6.

In our actual calculation, we consider the instanton c
figuration with the entire volume ofV5(10 fm)4. We have
to fix now the lattice-spacinga. For instance, the instanto
density (N/V)5(1/fm)4 corresponds the instanton numb
N5N11N25104 in the volume (10 fm)4. Since the gluon
gauge field is constructed from the summation of instant

and anti-instantons asAm(s)5(N1 ,N2
(Am

I 1Am
Ī ), a fine

lattice-spacing is necessary to justify the continuity of t
link variablesU(s)5exp@iaAm(s)# in above situation. There
fore, we actually take a fine lattice spacing ofa50.05 fm
considering the continuity,aAm(s)!1.

Recent lattice QCD simulations provide us the avera
instanton sizer̄ and the instanton density (N/V). The instan-
ton properties are extracted from the smoothed QCD vacu
by using several cooling methods. DeGrandet al. investigate
a smoothing procedure based on the renormalization gr

FIG. 6. A random instanton configuration without the period
condition for sizes, positions and color orientations of instant
sliced into 2-dimensional plane. We introduce the lattice in
center of the random instanton ensemble.a denotes the lattice uni
and 36 corresponds to the number of lattice point in each ti
space direction.
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equation@13#. In this SU(2) lattice calculation, they find th
average size of instantons aboutr̄50.2 fm, which is too
small a value than that of usual instanton liquid model, a
density of about (N/V)52 fm24. On the other hand, de For
crandet al. use a cooling algorithm based on the improv
action with scale invariant instanton solution and provi
that the instanton size distribution is peaked around 0.43
@12#. These two cooling methods provide different valu
about the average instanton size. As for the instanton
distribution, there are much effort to extract a size distrib
tion from the lattice configurations by various smoothi
methods@11–14#. However, there is no consensus on the s
distribution either. In our calculation, we take the instant
density as (N/V)5(1/fm)4 and the average instanton siz
r̄50.4 fm. These parameters are used in the discussio
chiral symmetry breaking@67# and give us the monopole
length distribution in the range of those obtained by QC
simulation as shown in the previous section@44#. For sim-
plicity, we consider the typical case where the instan
number is equal to the anti-instanton one,NI5NĪ 5N/2.

Using the large 364 lattice without periodic boundary con
dition, we can make as many as 104 measurements of Wilson
loops for each instanton configuration. Actually, we estim
the expectation value of Wilson loops from about 53106

measurements of Wilson loops on 500 completely indep
dent configurations. Figure 7 shows the Wilson loop for t
case of n55. The Wilson loop seems to decay a
^W(R,T)&}exp@2sRT#, which indicates the existence of
linear confining potential. As shown in Fig. 8, the sta
quark potentialV(R) is proportional to the interquark dis
tance R up to the intermediate regionR.1.2 fm (,T).
Here, we have checked that the static potential atR
<1.2 fm does not depend onT (@R) within errors. We
speculate that instantons would be relevant degrees of f
dom for the linear potential between a quark and anti-qu
pair in the physically interesting region.

The area low behavior of the Wilson loop means that
errors of this value grow as the areaRT increases, since the
Wilson loop decreases exponentially withRT. The static
quark potential is not yet demonstrated at longer dista
region asR.1.2 fm, where it is necessary to calcula

s
e

-

FIG. 7. The ensemble average of the Wilson loop in the mu
instanton system with the infrared instanton size distribution on
55 as a function of the areaR3T. The instanton density is

(N/V)1/451 fm21 and the average size isr̄50.4 fm.
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larger Wilson loops withT@2.0 fm. To this end, we need
huge number of independent measurements and perform
smearing procedure to reduce the statistical error becaus
the small value of Wilson loopŝW(R,T)&}exp@2sRT#.

Finally, we discuss the relation between the strength
color confinement and the instanton density. In order to
tract the string tension, we measure the Creutz ratio

x~R,T![
^W~R,T!&^W~R21,T21!&

^W~R,T21!&^W~R21,T!&
~25!

from the SU(2) Wilson loop. If the logarithm of the Wilso
loop can be approximated as2 ln^W(R,T)&5sRT1m(R1T)
1const, the Creutz ratio gives the exponent of the str
tension,x5exp(2slat). The dimensionless lattice string ten
sion s lat provides the physical string tensionsphys with the
lattice-spacinga assphys5s lat /a2.

We estimate the string tension aroundR.0.8 fm for each
instanton density, (N/V)1/450.50, 0.75 and 1.0 fm21. As
shown in Fig. 9, the string tension depends directly on
instanton density, and grows drastically as the instanton d
sity increases. At a density of (N/V)5(1/fm)4 with n55,
the string tension comes out to be abouts.0.4 GeV/fm,
which corresponds to about a half of the physical string t
sion sexp.0.89 GeV/fm.

FIG. 8. The static potential in the multi-instanton system a
function of the distanceR extracted from the Wilson loop withT
51.8 fm of Fig. 7.

FIG. 9. The string tensions as a function of the instanton den
sity (N/V)1/4 with the infrared instanton size distributionn55.
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In addition, we demonstrate then53 case. As shown in
Fig. 10 and Fig. 11, the Wilson loop seems to obey the a
low and there appear a linear potential atR<1.2 fm, which
are qualitatively similar to then55 case. Figure 12 show
that the string tension of then53 case is larger than that o
the n55 case at the same density, which is caused by
large overlapping of instantons and anti-instantons in thn
53 case. Rigorously speaking, forn53 it may not be suit-
able to adopt the simple sum ansatz, which is based on
statistical independence of the instanton ensemble. Th
fore, one needs to construct a new formulation, which
workable also for the highly overlapping instanton system
the n53 case.

Finally, we would like to discuss the difference of th
present results with the previous works. In our previous c
culation @64#, we fixed the peak of the instanton size dist
bution asrpeak50.4 fm, which corresponds to the avera
instanton size ofr̄.0.45 fm. We extracted then the stat
potential using smaller Wilson loops. Since the string tens
strongly depends also on the average instanton sizer̄, we
obtained a larger value for the string tension@64# than that of
the present calculation. Recently, Broweret al. report that
the slope of the heavy quark potential is about 0.1 GeV/fm
the average instanton sizer̄51/3 fm and the density

a FIG. 10. The ensemble average of the Wilson loop in the mu
instanton system with the infrared instanton size distributionn53
as a function of the areaR3T. The instanton density and the ave
age size are kept the same as the case ofn55.

FIG. 11. The static potential in the multi-instanton system a
function of the distanceR extracted from the Wilson loop of Fig
10.
4-8
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(N/V)5(1/fm)4 @68#. The main reason of the discrepancy
the different choice of the average instanton sizer̄. In addi-
tion, they use larger Wilson loops withT above 3 fm. The
large Wilson loop justifies the extraction of the string te
sion. In this sense, they should obtain a better value for
string tension at long distance@68#. However, in their calcu-
lation, the perpendicular 2-dimensional directions (x2y) to
the plane (z2t) of Wilson loops are limited to be muc
narrower than the size of the Wilson loop, although the ot
directions are very wide for the calculation of large Wils
loops. Our preliminary study of the contributions of insta
tons away from the plane of the Wilson loop in thex2y
plane indicates appreciable contributions to such a large W
son loop. Hence, it would be necessary to consider a la
volume even in thex2y direction for the large Wilson loop
which is outside of the scope of this work.

VII. SUMMARY AND CONCLUSION

We have studied color confinement and nonperturba
quantities of the QCD vacuum using the multi-instanton c
figuration. We have made the present study by being m
vated by the presence of a strong correlation between ins
tons and monopoles after the Abelian gauge fixing in p
SU(2) gauge theory. In our calculation, the multi-instant
system is constructed by assuming the suppression of
large size instanton asf (r);r25 due to the infrared repul
sive interaction between instantons.

First, we have investigated the monopole-loop distrib
tion in the multi-instanton system by using the maxima
Abelian gauge. Here, we have executed the ‘‘block-sp
transformation in order to extract the infrared properties
monopole loops. The dilute-instanton system produces s
monopole loops localized around each isolated instanton
instantons are well separated each other, monopole loops
appear in the continuum limita→0. However, as the instan
ton density becomes higher, several small monopole lo
combine into one longer loop. At a high instanton dens
there appears a highly complicated monopole loop cove

FIG. 12. The string tensions as a function of the instanton
density (N/V)1/4 with the infrared instanton size distributionn53.
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the entire physical volume. The appearance of long mo
pole loops of this system resembles that of the lo
temperature lattice QCD where color confinement is reali
through monopole condensation@48#. Our results indicate
that instantons play an essential role on the promotion o
global network of monopoles.

We have found that the high instanton density provide
highly complicated and long monopole loop. This seems
indicate that instantons are responsible also for confinem
Therefore, we have calculated the Wilson loop in the mu
instanton system without the Abelian gauge fixing. Here,
take the instanton density of (N/V)5(1/fm)4 and the aver-
age instanton size ofr̄50.4 fm. We have found that the
instanton ensemble gives an area law behavior of the Wil
loop and the static quark potential is approximately prop
tional to the interquark distance,V(R).sR, up to R.1.2
fm. In this situation, the string tension has been evaluated
s.0.4 GeV/fm, which corresponds to about a half of t
physical string tensionsexp.0.89 GeV/fm. Furthermore, we
have discussed the dependence of the string tension on
instanton density. The string tension tends to decrease
notonously as the instanton density becomes smaller. Su
tendency is consistent with the disappearance of long mo
pole loop as the instanton number decreases. At the h
temperature QCD vacuum where the string tension is z
instantons and anti-instantons almost disappear and also
long monopole loops do. From this close relation betwe
the monopole clustering and the instanton density, we spe
late that instantons would be relevant degrees of freedom
the linear potential between quark and antiquark in the ph
cally interesting region.

In the multi-instanton system, the string tension depe
directly on both the instanton density and the average ins
ton size. Therefore, one has to fix these parameters from
original QCD vacuum. To this end, for instance, the im
proved cooling@12# and the inverse-blocking@13# are very
interesting scheme for the extraction of topological quantit
like instantons. Finally, it is necessary to simulate the sta
quark potential at longer distance (R@1.2 fm) using larger
Wilson loops and enormous configurations in order to clar
the confinement properties up to very long distance. Ho
ever, the calculation of such a large Wilson loop would
facing the limit of the present computation power.
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