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Monopole clustering and color confinement in the multi-instanton system
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We study color confinement properties of the multi-instanton system, which seems to carry an essence of the
nonperturbative QCD vacuum. Here we assume that the multi-instanton system is characterized by the infrared
suppression of instantons &&)~ p~° for large sizep. We first investigate a monopole clustering appearing
in the maximally AbelianMA) gauge by considering the correspondence between instantons and monopoles.
In order to clarify the infrared monopole properties, we make the “block-spin” transformation for monopole
currents. The feature of monopole trajectories changes drastically with the instanton density. At a high instan-
ton density, there appears one very long and highly complicated monopole loop covering the entire physical
vacuum. Such a global network of long-monopole loops resembles the lattice QCD result in the MA gauge.
Second, we observe that the SU(2) Wilson loop obeys an area law and the static quark potential is approxi-
mately proportional to the distand® between quark and antiquark in the multi-instanton system using the
SU(2) lattice with a total volume oW = (10 fm)* and a lattice spacing af=0.05 fm. We extract the string
tension from the % 10° measurements of Wilson loops. With an instanton density\Ng#/) = (1/fm)* and an
average instanton size Ef: 0.4 fm, the multi-instanton system provides a string tension of about 0.4 GeV/fm.
[S0556-282099)05317-3

PACS numbed(s): 11.15.Ha, 12.38.Aw

I INTRODUCTION instanton sizep=(0.33—0.4) fm and the instanton number
density (N/V)=1 fm * [8—14]. Although the existence of

Quantum chromodynami¢QCD) has been established as jnstantons with high density is agreed upon, the detailed

the fundamental theory of the strong interaction. In the infra- — . S
. ; . numbers folp and the size distribution depend largely on the
red region, there appear various nonperturbative phenomena

such as color confinement and dynamical chiral-symmetr)?OOIing procedgre. These scale parameters suggest that t_he
breaking. Since the QCD vacuum is composed of quonQCD vacuum is the dense matter of instantons and anti-
fields interacting in a highly complicated way, it is hard to Stantons. _
understand these phenomena from perturbative points of N 1981, 't Hooft proposed the Abelian gauge, where the
view. On the other hand, a topological aspect may provide &0lor-magnetic monopole appears as a relevant degree of
useful approach for descriptions of the QCD vacuum. Actufreedom for the description of color confinemét$. In the
ally, there appear two nontrivial topological objedtsstan- ~ Abelian gauge, the SW(;) non-Abelian gauge theory is re-
tons and monopolesdue to the nonlinearity of QCD. duced to the U(1)s~* Abelian gauge theory with color-
The instanton configuration discovered in 1975 by Be-magnetic monopoles. The appearance of magnetic mono-
lavin, Polyakov, Shvarts and Tyupk[d] is a classical and Poles corresponds to another homotopy  group,
self-dual solution of the Euclidean field equation in Yang-HZ(SU(NC)/U(l)NC’1)=chfl, which is different from
Mills theory. The appearance of instantons corresponds to that of instantons. In the Abelian gauge the color confine-
homotopy groupll3(SU(N.))=Z. [2]. Instantons are im- ment mechanism can be interpreted as the dual Meissner
portant for nonperturbative phenomena related to tRél)Y  effect due to monopole condensation, which is a dual version
anomaly and the large’ mass[3]. Chiral-symmetry break- of Cooper pair condensation in the ordinary superconductiv-
ing could also be interpreted as the instanton effdet6]. ity. Such a dual superconductor picture for color confinement
However, until now there has been no evidence that instanwas proposed by Nambu, 't Hooft and Mandelstam in the
tons have anything to do with color confinement in middle of the 1970'$16—18. By lattice QCD simulations, it
4-dimensional gauge theory, although Polyakov discovereds observed that large monopole clustering covers the entire
that instantons cause confinement in certain 3-dimensiongdhysical vacuum in the confinement phase, which is identi-
Georgi-Glashow modeld7]. With recent computational fied as a signal of monopole condensation being responsible
progress, instanton properties are investigated by latticeor confinement[19,2(0. Many studies indicate that the
QCD simulations based on the cooling procedures, which armonopole is a relevant degree of freedom for color confine-
achieved by an artificial reduction of the local lattice action.ment and chiral-symmetry breaking1-2§.
This method allows one to eliminate short-range quantum Recent studies show remarkable facts that instantons are
fluctuations of gluon fields and to extract only topological directly related to monopold29-47 in the Abelian gauge,
excitations like instantons from the nonperturbative QCDalthough these topological objects belong to different homo-
vacuum[8-13. These investigations provide us the averageopy group. For example, in the Polyakov-like gaygé],
monopoles appear due to the existence of the hedgehog con-
figurations near instanton centers. Such correlations indicate
*Email address: masa@rcnp.osaka-u.ac.jp that instantons may be important for the promotion of long
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monopole loops. Therefore, we take the multi-instanton sysAfter the gauge fixing, there only remains the Abelian gauge

tem instead of the QCD vacuum in order to clarify monopolesymmetry U(1)}c"*CSU(N.). When we meet hedgehog

clustering and confinement properties in terms of instantonsonfigurations like instantons, the multivaluedness happens
to the gauge functiofi)(x) and the gauge transformation of

Il. TOPOLOGICAL OBJECTS IN THE QCD VACUUM Eq. (5) develops a singularity. This singularity leads to the
monopole currenk,, . The field strength is defined generally

Euclidean Yang-Mills theory, whose action is written &s aSGWI[P{‘,’D”]_[aM’{V] [‘}8]’ which returns o the stan-
=[d*xG},,G%,/4g%. Here, in order to make the notation and dard definition G,,=[D,.D,]1=d,A,—d, A +[AL Al
the discussion simpler, we take the SU(2) case and represef the regglar case. Under the singular gauge transformation
AM(x)EigAZ(x) A2 and GMV(x)Eing,,(x) /2. which (x), the field strength transforms as

are defined as the anti-Hermite variables. Instanton and anti~o _ t_ O Q QO AQq_ t
instanton configurations are characterized by (dti-)self- b“”_QG”VQ =W IALTIALAL] Q[a‘“a”]ﬂ(é)
duality condition,

The instanton is a classical and nontrivial solution of the

Since the last term is diagonal, Abelian field strength is natu-

GL,==GL,, (D) rally obtained as
by using the dual field strengtﬁZWE%swaﬂGaﬁ. This FMV:a#aV_aVaM_Q[gM,aV]QT, (7)
condition provides the minimal actio®= (872/g?)|Q)|.
Here, the topological charge is defined a® AP

=/d*X{G},,G;,,}/32n. These instanton solutions satisfy by ~performing = the Abelian  projection, AL—a,
the general Yang-Mills field equations automatically, =tr(A;;7%)(7%2). The Abelian Bianchi identity is broken
D,LGW=iD,L(~3W=0- The self-dual solution wit9=1 in  due to the existence of the last term in Hg), and the
the singular gaugg?] is written as magnetic currenk,(x) is obtained as

Ta 2ioab_bp,v X—2), 2 . 1 _ 1 +
AL (x2,p,0) = 7 (X7 2)up @ KE(0= 2 € g ap= = 5 € gL, 9107 (®)

2 (x-=2)%(x—2)%+p?}

Here, the instanton solutions have several collective modes € 0PVious consequence of the monopole current conserva-
related to the sizp and the positiorz of instanton, which are 1" 9,k"=0, means that monopole currents form closed
described by one and four parameters, respectively. For pu#8°ps'

SU(2) gauge theory, the instanton solution can be rotated in

color space by the color orientation matfx which is char- ll. CORRELATION BETWEEN INSTANTON AND
acterized by 3 parameters as the Euler angle. The 't Hooft MONOPOLE FOR COLOR CONFINEMENT
b H : . . .
symbol 7°#" is defined as Recently, both analytical and lattice studies showed a

buv —123 strong correlation between instantons and monopoles in the
e K V=589, (3y  Abelian projected theory of QCID29-47. Let us briefly
— &, v=4. review recent studies on the correlation between these topo-
_ o logical objects in the MA gaug€35,39. The minimizing
The anti-self-dual solutioAL is obtained by replacing®”  condition ofR¢x[A,] in Eq. (4) satisfies the local condition,
to pPHr=(—1)""+ 9" buv in Eq. (2). - 1
Now, let us discuss the appearance of QCD-monopoles in (D FADAL=0, A=A, TIAL. ©)
the Abelian gauge. We consider the maximally Abelian ) ) )
(MA) gauge[19], which is defined in the Euclidean SU(2) Itis noted that self-dual solutions such as an instanton satisfy
QCD by minimizing the variable the stationary conditiof®) automatically. However, this sta-
tionary condition is not sufficient to realize the MA gauge. In
B . 1 ) ) ) the MA gauge the function®[ A, ] must be minimized in
Rch[Au]_f d™XUAL D)™+ (AL (4) addition. The arbitrary gauge choice of a single instanton
gauge field leads to a different value Rfi[A, ], although
under the gauge transformatiél(x). In the MA gauge, the the instanton gauge field satisfies the conditi®hin any
off-diagonal fields are suppressed by the gauge transformgauge[39]. For instance, in the singular gauge, which has a
tion and the full gauge ﬁe'd\M:Ai(Ta/Z) behaves as the point singularity at the instanton center, the instanton con-
abelian gauge field,, = A3 (7°/2) approximately. In this pa- figuration gives a finite valuRi[ A5 1=42p® with p being
per, we adopt the MA gauge, where the Abelian dominancéhe instanton size. On the other hand, in the nonsingular
holds for the nonperturbative QCD phenoméf4d]. Under gauge, there appears the divergence ﬁQh[A;‘L]
the gauge transformation, the gauge field transforms as  =2fd*x[ p?/(x?>+ p?)?]—x. Therefore, it is necessary to

o : consider the minimization of the functionBL,[A,] for the
AL(X)—=AL(X)=Q(X)(ALX)+3,)Q(X) . ()  MA gauge fixing.

;b,u,vz _;bv,uE
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Brower et al. consider the single instanton configuration with b=%N.. Here, fo(p) is the single-instanton weight
in an “intermediate” gauge where the gauge field has thefunction in the one-loop approximatids0,51]. This weight
singularity at the closed loop with a radilsaround its cen- function has a scal®l corresponding to the scale invariance
ter [39]. This singularity leads a closed monopole loop ofbreaking by the trace anomaly in QCD. The bare coupling
radius R around the instanton. The parameRshould be g?(M) is given at this scalél. The weight functionf,(p)
decided by minimizing the function&®[A,]. It is numeri-  with N;=2 increases with the instanton sige and the in-
cally shown that the monopole loop with radiBprefers to  frared divergence appears &, within the one-loop ap-
shrink to a poin{39]. This fact is natural from the following proximation.
consideration. There is no definite direction both in the We consider now the multi-instanton system. Based on
single instanton configuration and in the MA gauge condi-the single-instanton partition function, the multi-instanton
tion due to the 4-dimensional rotation invariance. Then, theartition function is expressed as
normal vector of the monopole loop cannot be fixed and the
loop ought to shrink to a point. However, tiedependence 11 NefN-
of R.y[A,] is found to be extremely small. Therefore, some 2= > NN d4znj dpnf dO;, folpn)
small perturbations as the presence of the finite volume cause ~ N+N- " +° -7 0=t
a closed monopole loop with a nonzero radRislue to the Xexp{ —Uin(z,,pn.0n)}, (11
fragile nature of the monopole point solution, which is first
reported by Hart and Teper using the lattice simulaf@bl.  whereU;,, denotes the interaction between instanttansti-

In the QCD vacuum, there are actually many instantons anghstantong and depends generally aq, p,, O,. Here, we
anti-instantons, and here the appearance of monopole 00gg§jiow the standard method, where the interactip, is
should be influenced by other instantons and anti-instantongaken to depend only on the sige[52—54. Therefore, we
Therefore, we would 'Iik.e to inygstigate the monopol_e loopsconsider nowf (p) = fo(p)exp—U,} as the instanton size
by using a more realistic multi-instanton system defined ofyjstribution. This interaction is found to be repulsive, which
the R™ space. , _ suppresses the appearance of large size instaff@rs4.

We first study the monopole clustering as a signal ofyye regard the positions and the color orientations as random
monopole condensation in terms of instantons, which is Moy ariaples in our calculation.
tivated by these strong correlations between instantons and ¢ the small instanton, the perturbative scheme is valid
monopoles in the MA gauge. Second, we calculate the statignq the interactiot);,, can be neglected. Hence, the instan-

quark potential in the multi-instanton system by using theyqn sjze distributionf(p) behaves as the single instanton
Wilson loop in order to clarify the relation of instantons with weight fo(p)

color confinement.

p—0
IV. MULTI-INSTANTON MODEL f(p) — constx pb75. (12

_ In this section, we would like to model the nonperturba- o, the other hand, for the large instanton, the direct estima-
tive QCD vacuum in terms of instantons. The QCD vacuumon of £(p) is very complicated due to the nonperturbative
possesses the gluon condengd®, which relates the num- pronerties. The analytical studies and the numerical lattice

ber of instqntons and anti-instan_to[&_‘sg: If thg total actioq QCD calculation§55,56 suggest a strong suppression of the
can be estimated as the sum of individual instanton acuonsrarge size instanton as

the gluon condensate is proportional to the instanton density
as (G},G5,)/32m*=(N/V). The QCD sum rule provides o
the phenomenological value (GZVGZV>/32772 f(p) — constxp~ (13)
=(200 MeV)* and hence the average instanton density be-
comes (N/V)=(1/fm)* by the above assumption. The lattice which is caused by the repulsive force in the infrared region.
QCD simulations suggest that the QCD vacuum is saturate®he ordinary instanton liquid model suggests 5 [56].
with many instantons and anti-instantons. Hence, we model To connect the two tendencies in Eqd2) and (13)
the QCD vacuum by the multi-instanton ensemble. First ofsmoothly, we take the size distribution as
all, we consider the partition functio ., of the single
instanton as the basic ingredient of the multi-instanton
theory. Using the collective coordinatep, z,, O, the f(p)=r——F 5>, (14
single-instanton partition functiofb] is expressed as (ﬂ + (2)

P

P1

Zilnst=f d4zﬂf dpf dOfy(p), Whe_repl o_Ienotes the infrared size parameter apdhe L_JI-
traviolet size parameter. These two parameters are fixed by
the average instanton sige= [;dppf(p)=0.4 fm[57] and
the normalization conditioffydpf(p)=1.
The above discussion leads to the use of the partition
(10 function
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fp)

FIG. 1. The instanton size distributidifp) as a function of the
instanton size. The instanton size distribution for=5 is denoted
by solid curve and that for=3 by dashed curve. In both cases, the

average size is kept top=0.4 fm.
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As for the gluon fieldA , of the multi-instanton system, we

take the sum ansafb8],

AUX) =2 AL (X2 P10+ 2 AL (X2, Pk O,
k
(16)

which is constructed by the instanton and anti-instanton so-
lutions in the singular gauge. Using the variational treatmen
with this ansatz, Diakonov and Petrov have shown the ap*<
pearance of the repulsive force between instanton and an

instanton in the infrared regidrb8].

In actual calculations, we generate the ensemble of instan-

tons and anti-instantons with random centegson the

4-dimensional Euclidean continuum space. The color orien-

tations Oy are taken randomly. The instanton sizgsare
randomly chosen following the size distributidfp) in Eq.

(14). In the simple sum ansatz, the interaction among these
pseudoparticles is supposed to be included effectively in the

instanton size distributiofi(p). The instanton size distribu-
tion for the cases of=5 and 3 are shown in Fig. 1.

V. MONOPOLE CLUSTERING IN MULTI-INSTANTON
SYSTEM

Based on the lattice gauge theory, we investigate
monopole-loop distributions induced by instantons after the

MA gauge fixing [43,44]. We introduce a lattice on the

multi-instanton configuration and define the link variable

U, (s)=exp(iaA,(s)), whereA (s) is provided on each
link from Eq. (16). In the actual calculation, we use the*32
lattice with the lattice spacing af=0.125 fm.
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FIG. 2. A schematic demonstration of the periodic condition
used for an instanton ensemble sliced into 2-dimensional plane. We
introduce the lattice in the center of the instanton ensemble to cal-
culate the link variables by considering all the instantons outside of
this central box obtained with a periodic condition for the sizes,
positions, and color orientations of instantons.

(32xa)*=(4.0 fm)*, the strength of the gluon field is in-
sufficient near the border of the volumé To avoid this
border problem, we adopt the periodic boundary condition,
which ensures adequate contributions also near the border.
Here, instantons are assumed to appear with the periodic
position, size and color orientation out of the finite volume
V. A schematic view of this periodic condition of an instan-
ton ensemble sliced into 2-dimensional plane is shown in
Fig. 2. This means the consideration of the instantons in the
4 boxes in the 4-dimensional case: it i$=39 boxes in the
-dimensional case as shown in Fig. 2. In actual calculation,

{jve construct link variables by considering all the instantons

in the neighboring boxes.
Now, we apply the MA gauge fixinfL9] by maximizing

Rapie= 2, U ,(s) U (s)7°]
.S

=2§ [1-2{(UL(9)2+ (U(s)ZH],  (17)

with U ,(s)=U%(s) +i7'U},(s). The maximization oR cor-
responds to the lattice expression of the minimization condi-
tion of Rey[A,] in Eq. (4). In the MA gauge, the SU(2) link
variableU ,(s) is decomposed as

U (e1—m )_(Jl—lcﬂ<s>|2 —ci(s)
=M, (S)U,(8)= Cu(s) 1-lc,(s)|?

ei 0#(5)

0

0

e 10,09 (18

X

|

First of all, let us discuss the boundary condition of the

multi-instanton  configuration.
instantons are generated only in the finite voluiMe

If instantons and anti-

where the Abelian angle variabtg,(s) and the non-Abelian
variablec,(s) are defined in terms df ,(s) as
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us _
tand ,(s)= Ug—i:, c(s)e u® =] - Ui(s) +iU }L(s)].
: (19

It is obvious from the expression of E(GL7) that the off-
diagonal partsU’,(s) and U%(s) of gluon fields are mini-
mized by the MA gauge transformation. Therefore, full
SU(2) link variables would be approximated as U(1) link
variables,U ,(s)=u,(s), in the MA gauge.

Monopole currents can be defined by usings) follow-
ing DeGrand and Toussaif9]. Using a forward derivative
d,f(s)=f(s+u)—f(s) with unit vector u, the 2-form of
the lattice formulation,,,,(s)=4,0,(s)—4d,0,(s), is de-
composed as

0,,(S)=0,,(8)+2mn,,,(3), (20)

with 6,,(s)=mod,,0,,e(—m,7] and n,,(s)eZ. Here,
0,,(s) and 2mn,(s) correspond to the regular field
strength and the singular Dirac string part, respectively.
Since the Abelian Bianchi identity is broken, the monopole
currentk ,(*s) can be defined on the dual link¢, ) as

1A
-
o

1 _ R - %Y,
kM(*S)E ESMVﬂBaVaaB(S_F ,LL) == [?Vnﬂ,l/(* S)r (21) "‘::::{"::’:‘:t:‘,": e T
~ _1 - , I e S
where n,,(*s)=3¢&,,,5N,5(St1). The obvious current- 10 “3‘&"&‘(‘“\"‘:::‘
conservation law, k,,(*s) =0 leads to the closed monopole “;‘.::go‘.““’ .
loop in the 4-dimensional space. Herg, denotes a back- (b) U

ward derivative. . )

Since we are interested in the infrared behavior of mono- FIG- 3. The local correlation between instantons and monopoles
poles in multi-instanton configurations, it is useful to executg" @ dilute instanton systerta), and for a dense instanton system
a “block-spin” transformation on the dual lattice with the (b). The thick lines denote monopole currents which appear at some
scale factor\. The “block-spin” transformation removes time t. The bottom surface corresponds to the action density of
small monopole loops as numerical noises and keeps its glér_]stantonss(x,y) at a certain time slice. Here, we show monopole

3 - - currents which are transformed by one “block-spin” on the
bal structure. Here, th&/* extended monopole is defined as ;2. g2 |atice witha=0 125 fm.

N-1
n'::/ﬁ(s)z > naﬁ(/\/s+i&+j[3) (22)  stanton density of N/V)=(1/fm)* [6]. Therefore, we con-
ij=0 sider three instanton number-density casé§M)*=0.75,
] ] ] 1.00 and 1.25 fm?, and investigate the behaviors of mono-
on a sublattice with the spacing bf=A\a [60]. Then, the  hoe oops. Figure @) shows the histograms of unblocked

extended monopole current is defined ag/(*s)= monopole loops. The histograms of blocked configurations
- %swaﬁaynﬁfﬁ(s+ o). are shown in Figs. @)—4(d), which corresponds to the ex-

We start with a very dilute instanton system in order totended monopoles on the sublattice whtk 2a, b=4a and
clarify a local correlation between instantons and monopoleb=8a, respectively.
in the MA gauge. We take a densityN(V)<(0.5/fm)* At the low instanton density where each instanton is iso-
=(100 MeV)*, where instantons are separated completelyated, the monopole loop induced by the instanton prefers to
from each other. From the analytical consideration, one mape localized around each instanton center as shown in Fig.
expect that a monopole loop prefers to shrink to a instantod(a). Thus, there appear only relatively short monopole
center. However, we observe on the lattice that each finiteloops. This situation provides a peak at zero monopole-loop
size monopole loop is localized around each instanton centdéength in the histogram as shown in Fig(d4). As the
as shown in Fig. @). Such a small monopole but finite-size instanton density increases, some monopole trajectories tend
loop is caused by finite lattice spacing and the boundargyo hop from one instanton to another nearby instanton as
effect, which is numerically washed out by several numbershown in Fig. 8b), and there appear long monopole loops.
of “block-spin” transformation. Here, a clustering of long monopole loops appears and grows

In the actual QCD vacuum, instantons saturate thegradually to be separated from the small monopole-loop part
4-dimensional space and stay close to each other with a irin the histogram. Furthermore, the “block-spin” transforma-
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©.75/fm)* (1.25/fm)*
1 4 -
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Monopole Loop Length Monopole Loop Length Monopole Loop Length
(i) (ii) (iii) 1000 2000 4000 6000 100o 2000 4000 6000
@ Monopole Loop Length Monopole Loop Length
10 10 10t
(0.75/fm)* (1.00/fm)* (1.25/fm)* (a) (b)
10 1 19 E 10°
B 1 B ] B FIG. 5. The histograms of monopole-loop length in unit of the
° e . ° lattice spacing at high temperaturé&), and at low temperatur)
10 - 1 10 . . .
in finite temperaturesU(2) lattice QCD.
m.o * m'oo * 4000 10.0 2000 4000 l‘:..0 2000 4000 i . ) ) i ) ) i
Monopole Loop Length Monopole Loop Length Monopole Loop Length Fig. 1. Diakonov pointed out that if the instanton size distri-
. . bution falls off asf(p) ~ 1/p° in the infrared region, one gets
(b) (i) (ii) (iii) a linear confinement potentif§b5], which is based on the
o o formula for the interquark potential in Reff63]. Since in-
©.75/m)* (12578 stantons tend to have large overlapping from each other for
o 1 the v=3 case, the simple treatment with the sum ansatz,
B i which is based on the assumption of the statistical indepen-
Um, dence, may not be applicable for the construction of the
multi-instanton system. However, the infrared behavior of
O 3500 0 R the instanton size distribution is interesting for the confine-
Monopole Loop Length Monopole Loop Length Monopole Loop Length

ment properties in the long-range region. Therefore, we dem-
) .. onstrate also the=3 case. The histograms of the=3 case

© ) (i) (iii) are qualitatively similar to the corresponding histograms of
the v=5 case, although there is a quantitative difference
between these two cases.

Lattice QCD simulations at finite temperature suggest that
the instanton density is largely reduced as the temperature
increases. Now, we compare the histograms of the monopole

loop length in the multi-instanton system with those of the

S 10 00 00 SU(2) lattice QCD with 18x4 at different temperatures
Monopole Loop Length Monopole Loop Length Monopole Loop Length (B:22 and 235) in Flg 541] The mOﬂOpOle-lOOp diStri-

. .. bution at high instanton-density case as shown in Ridyii)
@ M (i) (iii) resembles with the result of the confinement phage (
=2.2) in Fig. 8b), where many instantons and anti-
instantons saturate with the instanton densitj/\()
=(1/fm)*. On the other hand, the dilute instanton system as
shown in Fig. 4d-i) is similar to the result in the deconfine-
ment phase in Fig. (8) obtained by the lattice QCDZ
=2.35), where long monopole loops disappear. This resem-
blance seems to indicate that the instanton plays a relevant
role on the promotion of monopole loops in the confinement
phase.

(0.75/fm)* (1.25/m)*

FIG. 4. The histograms of monopole-loop length with various
densities N/V)Y4=0.75, 1.0 and 1.25 fim', after the various
“block-spin” transformations in thev=>5 case(a) denotes the re-
sults of no “block-spin” transformation(b), (c) and(d) denote the
results after one, two and three “block-spin” transformations, re-
spectively.

tion is available to clarify monopole loop behaviors at the
large scale by comparing Figs(adiii), (b-iii), (c-iii) and(d-
iii). Because this procedure removes small-size monopole
loops and combine several long monopole-loops into one VI. COLOR CONFINEMENT IN MULTI-INSTANTON
longer loop. At a high instanton density, there appears one SYSTEM
very long and highly complicated monopole loop in each |n the previous section, we have discussed that a high-
gauge configuration as shown in Figd4ii). Such an ap- density instanton system provides highly complicated mono-
pearance of the monopole clustering over the entire physicgjole loops. We shall further work out the confining property
volume can be interpreted as the Kosterlitz-Thouless-typgn the multi-instanton system without referring to monopole
phase transitiofi61,62. configurations in the MA gaudé4]. For the investigation of

In addition, we discuss the case of the instanton size disconfinement properties, it is reasonable to consider the Wil-
tribution v= 3 with the average size=0.4 fm as shown in son loop with a contou€, which is defined as
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FIG. 6. A random instanton configuration without the periodic ~ FIG. 7. The ensemble average of the Wilson loop in the multi-
condition for sizes, positions and color orientations of instantonsnstanton system with the infrared instanton size distribution of
sliced into 2-dimensional plane. We introduce the lattice in the=5 as a function of the are®XT. The instanton density is
center of the random instanton ensemilelenotes the lattice unit  (N/v)Y4=1 fm~! and the average sizeTstOA fm.
and 36 corresponds to the number of lattice point in each time-
space direction. equation[13]. In this SU(2) lattice calculation, they find the

average size of instantons abgut 0.2 fm, which is too
:trH U.(s) 23 smaII_ a value than that of usual instanton liquid model, at a
c M density of aboutIy/V)=2 fm™*. On the other hand, de For-
crandet al. use a cooling algorithm based on the improved
If the contourC is a rectangle of the dimensidnby R, the  action with scale invariant instanton solution and provide

W[C]=trP ex;{i 36 A, dx,
c

Wilson loop is related to the static quark potenfiéb] as that the instanton size distribution is peaked around 0.43 fm.
_ [12]. These two cooling methods provide different values
V(R)=— lim {InW(R,T)/T}. (24 about the average instanton size. As for the instanton size

T—ox

distribution, there are much effort to extract a size distribu-
tion from the lattice configurations by various smoothing

To extract the potential without the contamination of exc'tedmethods[ll—lzl]. However, there is no consensus on the size

states, the im& has to be Iarge_ enough compared to thedistribution either. In our calculation, we take the instanton
distanceR between quark and anti-quarke R [66). Hence, density as K/V)=(1/fm)* and the average instanton size

it is desired to take a large enoudhin the calculation of — ; i -
W[C]. In the periodic boundary conditions, the time distance? = 0-4 fm. These parameters are used in the discussion of
is limited as a half ofN,xa, whereN, is the number of Cchiral symmetry breaking67] and give us the monopole
lattice in the time direction and is the lattice unit. There- |€ngth distribution in the range of those obtained by QCD
fore, we introduce the 36 lattice in the center of a simulation as shown in the previous sectie]. For sim-

4-dimensional instanton configurations without the periodicP!iCity, we consider the typical case where the instanton
condition for the sizes, positions and color orientations offUMber is equal to the anti-instanton ohg=N;=N/2.
instantons. Here, the large Wilson loop can be calculated as USing the large 3blattice without periodic boundary con-
T=36x a because of the nonperiodic boundary. A schematdition, we can make as many as‘I@easurements of Wilson
view of this condition sliced into 2-dimensional plane is loops for eac_h instanton conflguratlon. Actually, we estimate
shown in Fig. 6. the expectation value of Wilson loops from aboux 5P

In our actual calculation, we consider the instanton con/n€asurements of Wilson loops on 500 completely indepen-
figuration with the entire volume of = (10 fm)*. We have dent configurations. F|ggre 7 shows the Wilson loop for the
to fix now the lattice-spacing. For instance, the instanton ¢as€ Of »=5. The Wilson loop seems to decay as
density (N/V) = (L/fm)* corresponds the instanton number (W(R,T))=exd—oRT], which indicates the existence of a
N=N,+N_=10" in the volume (10 fmj. Since the gluon linear conflnl.ng pote_nual. As .shown in Flg. 8, the stguc
gauge field is constructed from the summation of instanton§u@rk potentialV(R) is proportional to the interquark dis-
and anti-instantons ag (s)=3 (A +A'_) a fine tance R up to the intermediate reg|oR§1.2fm (§T).

. > w N N_APR 28l @ Here, we have checked that the static potential Rat
Igttlce—gpaC|ng is necessary to .]ustlfy the.con.tlnmty of the<1 2 fm does not depend ofi (>R) within errors. We
link variablesU (s) =exdiaA,(s)] in above situation. There- gpecylate that instantons would be relevant degrees of free-
fore, we actually take a fine lattice spacing @#0.05fm  gom for the linear potential between a quark and anti-quark
considering the continuityaA,(s)<1. pair in the physically interesting region.

Recent lattice QCD simulations provide us the average The area low behavior of the Wilson loop means that the
instanton sizep and the instanton densitiN(V). The instan-  errors of this value grow as the arBa increases, since the
ton properties are extracted from the smoothed QCD vacuurwilson loop decreases exponentially wilT. The static
by using several cooling methods. DeGraatdil. investigate  quark potential is not yet demonstrated at longer distance
a smoothing procedure based on the renormalization grougegion asR>1.2 fm, where it is necessary to calculate
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FIG. 8. The static potential in the multi-instanton system as @ i 19, The ensemble average of the Wilson loop in the muilti-
function of the distanc& extracted from the Wilson loop Wit g4anton system with the infrared instanton size distributien
=1.8fm of Fig. 7. as a function of the are@x T. The instanton density and the aver-

age size are kept the same as the case-o5.
larger Wilson loops withf>2.0 fm. To this end, we need a
huge number of independent measurements and perform the In addition, we demonstrate the=3 case. As shown in
smearing procedure to reduce the statistical error because Bfg. 10 and Fig. 11, the Wilson loop seems to obey the area
the small value of Wilson loopéW(R, T))=exd —oRT]. low and there appear a linear potentialRs£ 1.2 fm, which

Finally, we discuss the relation between the strength otre qualitatively similar to thee=5 case. Figure 12 shows
color confinement and the instanton density. In order to exthat the string tension of the=3 case is larger than that of

tract the string tension, we measure the Creutz ratio the =5 case at the same density, which is caused by the
large overlapping of instantons and anti-instantons inithe
(WR,T)W(R-1T-1)) =3 case. Rigorously speaking, for=3 it may not be suit-
x(RT)= (25) able to adopt the simple sum ansatz, which is based on the

(WR,T—1))}W(R—1T)) statistical independence of the instanton ensemble. There-

fore, one needs to construct a new formulation, which is
from the SU(2) Wilson loop. If the logarithm of the Wilson workable also for the highly overlapping instanton system as
loop can be approximated asI{\W(RT))=cRT+m(R+T)  the»=3 case.
+const, the Creutz ratio gives the exponent of the string Finally, we would like to discuss the difference of the
tension,y =exp(—oi,). The dimensionless lattice string ten- present results with the previous works. In our previous cal-
sion a5, provides the physical string tensien,, s with the  culation[64], we fixed the peak of the instanton size distri-
lattice-spacinga as oy s= O1al@%. bution asppea=0.4 fm, which corresponds to the average
We estimate the string tension arouRek0.8 fm for each  instanton size ofp=0.45 fm. We extracted then the static
instanton density, N/V)¥4=0.50, 0.75 and 1.0 fm. As  potential using smaller Wilson loops. Since the string tension

shown in Fig. 9, the string tension depends directly on thestrongly depends also on the average instanton sizee
instanton density, and grows drastically as t?e instanton denyptained a larger value for the string tensj6d] than that of
sity increases. At a density oN(V) =(1/fm)” with =5, {he present calculation. Recently, Browetral. report that
the string tension comes out to be abeut0.4 GeV/fm,  the slope of the heavy quark potential is about 0.1 GeV/fm at
which corresponds to about a half of the physical string ten;[he average instanton sizgz 1/3 fm and the density
Sion o¢x;=0.89 GeV/fm.

V(R) [GeV]
O [GeV/fm] E 7
1OF I 0.4F x¥
L E L X ]
F £ 4
L = ]
N x ]
!! 4
I ] 02F Wy ]
“r ] z E
% Z **)K* ]
4 L *)K
o = 0.0 ;***T* NP T B
0.0 T, S BN 00 05 1.0 [fm]
0.0 0.5 1.0 R

AR
FIG. 11. The static potential in the multi-instanton system as a
FIG. 9. The string tensiomr as a function of the instanton den- function of the distanc&® extracted from the Wilson loop of Fig.
sity (N/V)Y* with the infrared instanton size distributior=5. 10.
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O [GeV/fm] the entire physical volume. The appearance of long mono-
F 3 pole loops of this system resembles that of the low-
1’0_‘ ] temperature lattice QCD where color confinement is realized

through monopole condensatidrd8]. Our results indicate
that instantons play an essential role on the promotion of a

i global network of monopoles.
051 T We have found that the high instanton density provides a
I ] highly complicated and long monopole loop. This seems to
indicate that instantons are responsible also for confinement.
Therefore, we have calculated the Wilson loop in the multi-
05 7o instanton system without the Abelian gauge fixing. Here, we
N [fm] take the instanton density oN(V)=(1/fm)* and the aver-
_ ) _ ) age instanton size ghb=0.4 fm. We have found that the

FIG. 12. The string tensiow as a function of the instanton jnstanton ensemble gives an area law behavior of the Wilson
density (N/V)¥* with the infrared instanton size distribution= 3. loop and the static quark potential is approximately propor-

) . _ tional to the interquark distanc®,(R)=oR, up to R=1.2

(N/V) = (1/fm)* [68]. The main reason of the discrepancy is fm. In this situation, the string tension has been evaluated as
the different choice of the average instanton gizén addi- ¢=0.4 GeV/fm, which corresponds to about a half of the
tion, they use larger Wilson loops with above 3 fm. The  physical string tensiom,,~0.89 GeV/fm. Furthermore, we
large Wilson loop justifies the extraction of the string ten-have discussed the dependence of the string tension on the
sion. In this sense, they should obtain a better value for thinstanton density. The string tension tends to decrease mo-
string tension at long distan¢é8]. However, in their calcu- notonously as the instanton density becomes smaller. Such a
lation, the perpendicular 2-dimensional directioms-fy) to  tendency is consistent with the disappearance of long mono-
the plane £—t) of Wilson loops are limited to be much pole loop as the instanton number decreases. At the high
narrower than the size of the Wilson loop, although the othetemperature QCD vacuum where the string tension is zero,
directions are very wide for the calculation of large Wilsoninstantons and anti-instantons almost disappear and also the
loops. Our preliminary study of the contributions of instan-long monopole loops do. From this close relation between
tons away from the plane of the Wilson loop in tke-y  the monopole clustering and the instanton density, we specu-
plane indicates appreciable contributions to such a large Willate that instantons would be relevant degrees of freedom for
son loop. Hence, it would be necessary to consider a largéhe linear potential between quark and antiquark in the physi-
volume even in the—y direction for the large Wilson loop, cally interesting region.

¥

00k, . ¥ -
0.0

which is outside of the scope of this work. In the multi-instanton system, the string tension depends
directly on both the instanton density and the average instan-
VII. SUMMARY AND CONCLUSION ton size. Therefore, one has to fix these parameters from the

original QCD vacuum. To this end, for instance, the im-

We have studied color confinement and nonperturbativeproved cooling[12] and the inverse-blockinfl3] are very
quantities of the QCD vacuum using the multi-instanton conqnteresting scheme for the extraction of topological quantities
figuration. We have made the present study by being motilike instantons. Finally, it is necessary to simulate the static

vated by the presence of a strong correlation between instaguark potential at longer distanc&®$ 1.2 fm) using larger
tons and monopoles after the Abelian gauge fixing in pureyilson loops and enormous configurations in order to clarify
SU(2) gauge theory. In our calculation, the multi-instantonthe confinement properties up to very long distance. How-
system is constructed by assuming the suppression of th&er, the calculation of such a large Wilson loop would be

large size instanton ap)~p~° due to the infrared repul- facing the limit of the present computation power.
sive interaction between instantons.
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