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Simple observables from fat link fermion actions
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A comparison is made of the~quenched! light hadron spectrum and of simple matrix elements for a
hypercubic fermion action~based on a fixed point action! and the clover action, both using fat links, at a lattice
spacinga.0.18 fm. Renormalization constants for the naive and improved vector current and the naive axial
vector current are computed using Ward identities. The renormalization factors are very close to unity, and the
spectroscopy of light hadrons and the pseudoscalar and vector decay constants agree well with simulations at
smaller lattice spacings~and with experiment!. @S0556-2821~99!00519-6#

PACS number~s!: 12.38.Gc, 11.15.Ha
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I. INTRODUCTION

This paper is a continuation of earlier work@1,2# studying
the properties of a particular type of improved action
studies of quenched QCD, with fermion–gauge-field co
plings parametrized by ‘‘fat links,’’ and a lattice anomalo
magnetic moment ‘‘clover’’ term. One of the actions studi
here has fermionic couplings extending over a hypercu
The other action is the fat link clover action. Both actions a
O(a2) improved. Features related to their chiral propert
appear to be superior to those of standard discretizati
though this does not correspond to a realization of an e
lattice symmetry relation. The goal of this paper is to co
pare a particular implementation of a fixed point~FP! action
for quenched QCD in four dimensions to a simpler improv
action, via the usual tests of improvement. Much more
egant studies have been carried out in two dimensions@3#.
The fat link clover action turns out to be an attractive alt
native to the more complicated action.

The hypercubic action is inspired by the fixed point acti
program @4#, applied to fermion actions for QCD in fou
dimensions@5–9#. FP actions are classically perfect, whic
means that they have the following desirable properties.

First, their spectrum has no lattice spacinga-dependent
corrections of the forman for any n. Second, and probabl
more importantly, FP actions satisfy the Ginsparg-Wils
@10# remnant chiral symmetry condition, namely that the a
ticommutator of the propagator withg5 is a local operator.
As a result, they suffer no additive quark mass renormal
tion and no multiplicative renormalization of axial vect
currents@11#, and satisfy the index theorem@12,13#. It would
clearly be a desirable thing to have a version of such
action which could be used in numerical simulations, a
this paper describes a candidate action which seems to
isfy all of the properties of a FP action very well, though n
exactly.

The particular hypercubic action I will test is one who
free-field limit is constructed by blocking out of the co
tinuum. It has the usual clover term, normalized to its tr
level value as described in@1#. The gauge connections o
0556-2821/99/60~9!/094501~12!/$15.00 60 0945
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both the hypercubic action and clover action I study are
placed by APE-blocked@14# links,

Vm
(n)~x!5~12a!Vm

(n21)~x!1a/6(
nÞm

@Vn
(n21)~x!

3Vm
(n21)~x1 n̂ !Vn

(n21)~x1m̂ !†1Vn
(n21)~x2 n̂ !†

3Vm
(n21)~x2 n̂ !Vn

(n21)~x2 n̂1m̂ !#, ~1!

with Vm
(n)(x) projected back ontoSU(3) after each step, and

Vm
(0)(n)5Um(n) the original link variable. I takea50.45

and N510 smearing steps, chosen because this fatten
produces a very small additive mass renormalization.

There are two differences between this work and Ref.@1#.
The first involves physics: since the completion of that wo
we @2# have discovered that the properties of lattice QC
~specifically the spectrum of real fermion eigenmode!
changes as the lattice spacing coarsens, and that above
amax.0.2 fm the would-be zero modes cannot be separa
from the doubler modes. Since there is a qualitative cha
in the underlying dynamics, it does not seem to be appro
ate to attempt to extrapolate to the continuum physics wh
involves chiral symmetry from lattice spacings greater th
amax. The second difference is that in this paper I study
operators, the analogues of the familiar ‘‘rotated’’ operato
of the Symanzik program. For the action used in@1#, the
recursion relation for the FP operators is contaminated b
redundant eigenvector. I chose to find a different renorm
ization group transformation~blocking out of the continuum
with a Gaussian blocking function! and a different hypercube
action, the ‘‘Gaussian’’ hypercubic action, in order to co
struct the operators.

The outline of the paper is as follows: After reviewing th
properties of FP actions, I discuss the ways that approxi
tions to FP actions are imperfect. I summarize the phys
features of fat link actions. Then I present tests of spectr
copy and of vector and axial vector current matrix elemen
at lattice spacinga50.18 fm. I end with some conclusion
and speculations.
©1999 The American Physical Society01-1
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T. DeGRAND PHYSICAL REVIEW D 60 094501
II. QUICK REVIEW OF THE FIXED-POINT
ACTION FORMALISM

To find a FP action for QCD, one begins with a set
fermionic (cn ,c̄n) and gauge field@Um(n)# variables de-
fined either on a fine lattice or in the continuum. The fi
action is defined as

S5bSg~U !1c̄ iD~U ! i j c j . ~2!

Sg is the gauge action,i, j label sites, andD(U) is the fer-
mion action. Introducing a renormalization group~RG!
blocking kernel with a pure gauge pieceTg and a fermionic
piece parametrized by a constantK and a blocking function
anb ,n normalized byb,

T5bTg~U,V!1K(
nb

@C̄nb
2c̄n~ban,nb

† !#

3@Cnb
2~banb ,n8!cn8#, ~3!

one integrates out the fine degrees of freedom to construc
action involving coarse-grained variablesCnb

, C̄nb
and

Vm(nb).
The renormalization group equation

e2S85E dcdc̄dU e2(T1S) ~4!

has a pure gauge FP atg250 (b→`). In that limit the
gauge action dominates the integral; its RG equation is gi
by the same steepest-descent equation as for a pure g
model,

SFP~V!5min
$U%

@SFP~U !1T~U,V!#, ~5!

while the fermions sit in the gauge-field background. T
fermion action remains quadratic in the field variables, a
the transformation of the fermion action is given most eas
in terms of the propagator

@D8~V!#nb ,n
b8

21
5

1

K
dnb ,n

b8
1b2a~U !nb ,n@D~U !#n,n8

21 a~U !n8,n
b8

T

~6!

where$U% is the field configuration which minimizes Eq.~5!
for a given$V%. For a blocking factorF, it is useful to rescale
banb ,n5F3/2Vnb ,n with the Fourier transform ofVnb ,n for a

free theory normalized toV(q).11O(q2). Then~again in
free field theory! the momentum-space FP equation for t
propagator becomes

@D8~q!#215
1

K
1

1

F (
l

UVS q12p l

F D U2

DS q12p l

F D 21

.

~7!

Another useful quantity is the minimizing field, the valu
of the fine field ~as a function of the coarse field! which
minimizes the exponential in the Gaussian fermion integ
09450
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cmin~n!5z~n2Fnb!C~nb!

5 (
m,mb

D21~n2m!bam,Fmb
D~mb2nb!C~nb!.

~8!

A related object is the fixed-point field@4,15#, a local
average of fields which blocks into itself under a RG tran
formation ~RGT!,

cFP~n!5(
m

w~n2m!c~m!. ~9!

The averaging function obeys the recursion relation

(
m

w~Fnb2m!z~m2Fmb!5lw~nb2mb! ~10!

with l51/F3/2 carrying the canonical dimension of a fe
mion field. As the scale of the blocking transformationF
goes to infinity, the FP field and minimizing field coincid
Correlators involving the FP field have no power-law cuto
effects—they are also classically perfect. Thus they play
same role for a FP action as the familiar ‘‘rotated operato
does in the Symanzik improvement program.

The easiest way to find the FP field, for an action defin
by an RG transformation with a scale factorF, is to solve Eq.
~10! self-consistently forw(n). Unfortunately, for the action
studied in Ref.@1#, with a blocking factorF52 RGT, l
51/F3/2 is not the leading eigenvalue: The leading eigenv
tor is w(n)5D(n), with an eigenvalue of about 2.56/23/2.
The phenomenon has been described by Kunszt in@16#. In
terms of physics this does nothing:w(n)5D(n) just contrib-
utes a contact term to correlation functions. However, fr
an engineering point of view it is a serious problem, beca
it is quite difficult to determine the FP field by solving th
recursive equation forw, and pulling out a nonleading eigen
vector.

For a free field action constructed by blocking out of t
continuum (F→` or, equivalently,m a continuous variable
in the background of fixednb), the free FP field is readily
constructed using the momentum-space version of Eq.~8!.
Therefore, because I wanted to study FP operators, I dec
to construct a new action by following the MIT group@8,9#
and blocking directly out of the continuum. There is a pri
associated with this—I can no longer solve FP equations
the propagator in a nontrivial gauge field background, a
did in @1#. I will follow a hybrid approach, of constructing
the free field FP action, making it gauge invariant by usi
connections made of fat links, and just tuning the fattening
optimize the chiral properties of the action. The construct
of the free action is described in the Appendix.

III. IMPERFECTION

A. Comparison to the standard tests of imperfection

A FP action is classically perfect, but an approximation
a FP action is not. It is thus an interesting exercise to
how imperfect an approximate FP action will be.
1-2
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SIMPLE OBSERVABLES FROM FAT LINK FERMION ACTIONS PHYSICAL REVIEW D60 094501
One can approximately reconstruct the free field FP ac
and field by blocking out of the continuum. In Eq.~7! the l
50 term in the mode sum is the most singular for smalq
and the next higher order term is the 1/K term. Keeping only
those contributions, a few lines of algebra yields

D~q!5
1

V~q!2

2 ig•q1m1
q21m2

KV2

11
2m

KV2 1
q21m2

~KV2!2

~11!

z~q!5
1

V~q!2

11
ig•q1m

KV2

11
2m

KV2 1
q21m2

~KV2!2

. ~12!

As V;11q21•••, the reader will recognize these formula
as rather baroque variations of the usual Symanzik-impro
action and rotated field—up to an overall normalization co
stant. Indeed

D.S g•D1m2
1

K
~D22m2! D S 12

2m

K D1••• ~13!

z.S 11
m2g•D

K D S 12
2m

K D1••• ~14!

and so we identify the Wilsonr parameter with 1/K5ra/2.
The most serious lattice artifacts of a Wilson-like acti

come from its vertices. In the absence of an explicit co
struction of a FP action in a nontrivial background gau
field configuration, what can one say? First of all, a sim
expansion of the action in powers ofa shows that any hy-
percubic action made of thin or fat links hasO(a) contribu-
tions to its vertex, just like the Wilson action. These con
butions must cancel in perturbation theory between the sc
vertices and an additional anomalous magnetic mom
‘‘clover’’ term, which of course is absent in the free theor

In principle, the clover term could have any coefficie
but one fact we know is that the spectrum of a FP action
classically perfect. One can consider the spectrum of a
mion with infinitesimal momentump in an infinitesimal ex-
ternal magnetic fieldB, E5m01p2/2mK2B/mB1••• and
constrainmB5mK5m0, by hand, if necessary. This con
straint turns out to be identical to the requirement that
clover term have its usual tree level value. Now the calcu
tion just paraphrases the old perturbative result of Hea
et al. @17# and the result is as expected: the spectrum o
hypercubic approximation to a FP action, with the clov
term, is improved throughO(a2), and if matrix elements are
measured using FP operators, they also have noO(a) dis-
cretization errors.

B. Chiral properties

Violations of chiral symmetry in Wilson-like actions ar
an old story@18#: Write the fermion action as
09450
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D~m!5D01m0 ~15!

and consider a flavor nonsinglet chiral rotationc(x)
→exp@iea(x)(la/2)g5#c(x), c̄(x)→c̄(x)exp@iea(x)(la/2)g5#.
The Ward identity for this rotation is

d^O~x1 , . . . ,xn!&
dea~x!

5^O~x1 , . . . ,xn!]mJm
5 ~x!a&

2 K O~x1 , . . . ,xn!m0c̄~x!
la

2
g5c~x!L

2 K O~x1 , . . . ,xn!S c̄~x!
la

2
$g5 ,D0%c~x! D L .

~16!

The last term is the lattice artifact. In a generic non-FP
tion, it will mix with lower-dimensional operators

c̄~x!$g5 ,D0%c~x!5~12ZA!]mJm
5 ~x!1Dmc~x!g5c~x!

1O~a!1••• ~17!

to give a nonzero additive renormalization to the quark m
and an overall multiplicative renormalization to the ax
current. It is also responsible for the mixing of opposite p
ity operators in matrix elements appropriate to, for examp
BK . In perturbation theory all of these mixings are due
one-loop graphs and areO(g2).

The Ginsparg-Wilson relation eliminates these mixin
and renormalizations@12# ~or to be more precise convert
them into local corrections to the Ward identities!, by can-
celing the propagator connecting the operator to the cur
with the anticommutator against the action term from t
anticommutator.

The ingredient of an approximate FP action most nec
sary to reproduce this feature of a FP action is a fat link. T
dominant graphs contributing toZA21 andDm contain tad-
poles, whose contributions from largeq2 are suppressed b
the softqq̄g vertices of a fat link action@2#. The presence of
the fat link in the one explicit realization of the Ginspar
Wilson relation, the ‘‘overlap action’’@19#

D5
K

2 F12S 12
2

K
D0D YAU12

2

K
D0U2G , ~18!

using a thin linkD0, can be seen easily by making a hoppi
parameter expansion inD0.

Finally, can one quantify the size of chiral violations e
pected for an approximate FP action? Imagine constructin
FP action by beginning with the Wilson action and perfor
ing a series of factor-of-2 RGT’s. The Wilson term violat
the Ginsparg-Wilson relation. It is a dimension-5 operat
and so under each blocking step its size decreases by a f
of 1/2. After N blocking steps the action will have a rang
O(N) and the size of the violating operator will b
O„exp(2N ln 2)…. This exponential decrease of chiral viola
1-3
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T. DeGRAND PHYSICAL REVIEW D 60 094501
tions with range of the action seems superficially to be
same behavior as is seen with domain wall fermions~where
N is the length of the fifth dimension@20#!. One can easily
see this behavior in explicit calculations using free fie
theory.

IV. TUNING FOR CHIRAL BEHAVIOR

The most visible aspect of bad chiral behavior for Wilso
like fermions is the presence of exceptional configuratio
which arise when the Dirac operatorD0 has a real eigenmod
at l52m, a value which happens to coincide with the ba
massm at which one attempts to construct a propagator
D01m @21#. We have argued in Ref.@2# that an action
whose gauge connections are fat links has a narrower ra
of real eigenvalues than a thin link action does.

In Ref. @2# we proposed a method for tuning an action
optimize its chiral behavior. This involved measuring t
spread of real eigenmodes of the Dirac operator, and var
the amount of fattening and the size of the clover term
narrow the spread of real eigenmodes. This is computat
ally costly and, if the amount of fattening is large, produc

TABLE I. Best-fit masses, Gaussian hypercube action,b
53.70 (aTc51/4).

amq PS V N D

0.32 1.116~ 3! 1.246~ 5! 1.935~11! 2.040~12!

0.24 0.959~ 5! 1.117~ 6! 1.726~10! 1.862~16!

0.16 0.789~ 6! 0.994~ 8! 1.517~13! 1.735~17!

0.10 0.649~ 6! 0.902~13! 1.370~15! 1.622~23!

0.06 0.541~ 7! 0.851~19! 1.264~21! 1.543~29!

FIG. 1. mp
2 and the quark mass vs bare quark mass for vari

fermion actions. Data are diamonds and small plusses with cir
at their centers formp

2 and the quark mass from the PCAC~partial
conservation of axial vector current! relation respectively, for the
fat link clover action of Ref.@2#, with the clover term boosted by
factor of 1.2, and octagons and fancy crosses for the Gaussian
percubic action. Both actions have fat links witha50.45, N510.
The lines represent naive linear fits of (amp)2 or amq vs the bare
quark massam0.
09450
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only the unsurprising result that a clover coefficient close
the tree-level value is the optimum one.

Here, I take a simpler~though more tasteless! approach:
fix the clover coefficient to its tree-level value and vary t
amount of fattening until the additive mass renormalizatio
measured naively by extrapolating the squared pion m
linearly to zero, appears to be small. This is done at sm
quark masses, but not at masses which are so small tha
quenched approximation breaks down due to the presenc
unpaired instanton modes@22#. The results are shown in Fig
1. Data are diamonds and small plusses with circles at t
centers formp

2 and the quark mass from the PCAC~partial
conservation of axial vector current! relation respectively, for
the fat link clover action of Ref.@2#, with the clover term
boosted by a factor of 1.2, and octagons and fancy cro
for the Gaussian hypercubic action. Both actions have
links with a50.45, N510. A jacknife fit of the four lightest
masses ofmp

2 5A(m02mc) or mq5A(m02mc) ~this is the
lattice quark mass from the PCAC relation; see Sec. VI!
gives mc520.0226(15) frommp

2 and mc520.0248(7)
from the quark mass, for the hypercubic action, andmc
50.0023(19) and20.0002(18) for the fat link clover ac
tion.

TABLE II. Best-fit masses, fat link clover action,b
53.70 (aTc51/4).

k PS V N D

0.114 1.094~ 3! 1.226~ 4! 1.887~10! 1.984~ 9!

0.116 0.977~ 3! 1.137~ 5! 1.741~ 9! 1.862~12!

0.118 0.856~ 5! 1.048~ 6! 1.595~10! 1.740~16!

0.120 0.718~ 5! 0.960~ 9! 1.449~12! 1.616~25!

0.122 0.551~ 7! 0.866~18! 1.280~19! 1.555~25!

0.123 0.437~ 7! 0.807~28! 1.190~30! 1.482~32!

s
es

y-

FIG. 2. Smallest real eigenmode of the massless Dirac oper
vs instanton size for various fermion actions. Diamonds and squ
show the usual thin-link Wilson and clover actions while the sm
plusses with circles at their centers show the fat link clover act
and octagons show the hypercubic action~both with fatteninga
50.45 andN510 steps!.
1-4
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SIMPLE OBSERVABLES FROM FAT LINK FERMION ACTIONS PHYSICAL REVIEW D60 094501
To make a controlled comparison of the zero mode sp
tra of these actions, I show in Fig. 2 the real eigenmo
spectrum of several of these actions on a family of sin
instanton configurations. The construction of the instant
is described in Ref.@23#. They areSU(2) instantons in sin-
gular gauge centered at (L/211/2,L/211/2,L/211/2,L/2
11/2) in a periodic lattice of sizeL58. The vertical line at
r.0.95 marks the smallest radius visible to the approxim
FP gauge action of Ref.@1#. Diamonds and squares show th
usual thin-link Wilson and clover actions while the oth
plotting symbols show fat link actions. As the instanto

FIG. 3. Edinburgh plot showingb56.15 staggered fermion
from Ref. @25# ~crosses!, the fat link clover action~diamonds! and
the Gaussian hypercube action~octagons!.

FIG. 4. N/r mass ratio interpolated top/r50.80 ~a!, 0.70 ~b!,
0.65 ~c!. Shown are the nonperturbatively improved~thin-link! clo-
ver action~bursts!, csw51.2 fat link clover action~squares onb
55.7 Wilson gauge actions, diamonds on FP gauge configuratio!,
hypercubic action of Ref.@1# ~fancy crosses!, and Gaussian hyper
cubic action~crosses!. Octagons areb56.15 staggered simulations
09450
c-
e
e
s

te
shrink, the smallest real eigenmode becomes more posi
and then, when the instanton disappears, it collides with
other real eigenmode~a doubler! to produce a complex con
jugate pair of eigenvalues.

For future reference, recall that an action obeying
Ginsparg-Wilson relation would have a zero eigenmode o
topologically nontrivial configuration, but when the instanto
‘‘falls through the lattice’’ the eigenmode should jump di
continuously to some positive value. Presumably the m
improved an action is, the sharper the rise of the real eig
mode as the instanton size shrinks. All fat link actions, b
hypercube and clover, satisfy that criterion. Based on
studies with fat link clover actions@2#, we believe that this
feature, like the small mass renormalization, is caused by
fat link, not by features of the fermion action which could b
seen in the free-field limit.

V. NUMERICAL TESTS

A. Spectroscopy

I carried out quenched spectroscopy on a set of
83324 background gauge field configurations with a latt
spacinga.0.18 fm using the approximate FP gauge acti
of Ref. @1#, at b53.70. As a fiducial test of a simpler actio
I recomputed the spectrum of the fat link clover action
Ref. @2# on the same set of background configurations~in
order to remove all effects of the gauge fields from compa
sons!. This action also hasa50.45,N510 APE-smeared fa
links and its clover term is rescaled by a factorCSW51.2.

The cost of the hypercubic action compared to the clo
action is a factor of about 17 per multiplicationc5(D
1m)x during the iterative construction of the propagato
Both the fat link clover action and hypercubic actions app

s

FIG. 5. c2 for the fat link clover action~diamonds! and Gaussian
hypercubic action~octagons!, for ~a! pseudoscalar~b! vector and~c!
nucleon correlators. Hadron masses are shown in units of the
confinement temperatureTc51/(4a).
1-5



T. DeGRAND PHYSICAL REVIEW D 60 094501
TABLE III. Rp,0
X,Y , Gaussian hypercube action,b53.70 (aTc51/4).

amq Rp,0
C,L(qW 50) Rp,0

C,L(qW 52p/8) Rp,0
C,I(qW 50) Rp,0

C,I(qW 52p/8) Rp,0
I ,L (qW 50) Rp,0

I ,L (qW 52p/8)

0.32 0.970~1! 1.01~2! 1.074~1! 1.19~1! 0.906~2! 0.87~2!

0.24 0.971~1! 1.11~2! 1.081~1! 1.24~1! 0.899~2! 0.91~1!

0.16 0.971~1! 1.03~3! 1.088~1! 1.24~1! 0.892~3! 0.86~1!

0.10 0.971~1! 1.42~8! 1.094~1! 1.35~2! 0.868~3! 0.99~3!
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to require about half the number of iterations as the us
thin link clover action to converge to the same residueuc
2(D1m)xu2/uxu2, presumably because their high Fouri
modes decouple from the gauge fields. Neither of these
tions developed any exceptional configurations over the s
ied range (p/r>0.54 and 0.64!. In Ref. @2# we did a scan of
80 83324 b55.7 Wilson gauge action configurations wi
the fat link clover action and the thin link clover action wi
nonperturbativeCSW52.25 and found no exceptional con
figurations for the fat link action formp /mr>0.4 (amp

>0.3) while 11 configurations were exceptional for the th
link action.

The spectrum analysis is completely standard@1#. Both
actions reproduce the results of spectroscopy calculation
more conventional actions at smaller lattice spacings.
spectroscopy is tabulated in Tables I and II.

To show the data graphically, I begin with an Edinbur
plot, Fig. 3, containingb56.15 staggered fermion data@24#
and data from the two actions shown here, the fat link clo
action and the Gaussian hypercubic action. I compare sca
violations in hyperfine splittings by interpolating the data
fixed p/r mass ratios and plotting theN/r mass ratio vs
mra. I do this at threep/r mass ratios, 0.80, 0.70, and 0.6
in Fig. 4. The bursts are from the nonperturbatively i
proved~thin link! clover action of Refs.@25# and @26#. The
octagons show data from staggered fermions atb56.15. The
other plotting symbols show our test actions: They are
hypercubic action of Ref.@1# ~fancy crosses! and of this
work ~crosses! and the csw51.2 fat link clover action
~squares onb55.7 Wilson gauge actions@2#, diamonds on
FP gauge configurations!. The data indicate that the im
proved kinetic properties of the hypercubic action do n
affect hyperfine splittings very strongly. The two out
straight lines in the figure are linear fits in (amr)2 to the
staggered and nonperturbatively improved clover data.
inner straight line is a constant at the value of the extra
lateda50 value of the staggered data.

The fat link clover action on Wilson gauge configuratio
has a slightly larger hyperfine splitting than the other actio
Could this be an effect of the gauge action on the spectru
Could it be due to the fact that the Wilson gauge act
overproduces small instantons compared to the FP gaug
tion?

Differences appear when one compares the dispersion
lations ~Fig. 5!. The squared speed of light,c25@E(p)2

2m2#/p2, for pW 52p/8(1,0,0), is computed by performing
correlated fit to the two propagators, one at the nonzeropW ,
the other atpW 50. At larger mass the clover action’sc2 falls
away from unity while the hypercubic action shows a fai
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constantc221.0.025. To achieve the same mismatch
c221 as the hypercubic action, at the samem/Tc , one
would have to decrease the lattice spacing by about a fa
of roughly 2 @assumingc221.O(a2)#.

B. Vector currents

There are many definitions of conserved currents. T
simplest one is constructed by writing@10,12# Um(n)51
1 igAm(n)1••• and defining

Jm~n!52 i
dS

dAm~n!
. ~19!

In these actions I have replaced the thin links by fat lin
Vm(n)511 igBm(n)1•••, which in linear approximation
corresponds to

Bm~n!5(
r ,n

cmn~r !An~r ! ~20!

for some smearing functioncmn(r ). It is more convenient to
replace Eq.~19! with a ‘‘fat conserved current’’

Ĵm~n!52 i
dS

dBm~n!
. ~21!

Are ]mJm(n)50 and]mĴm(n)50 consistent? Yes. In gen
eral, cmn has two parts. The first is a term proportional
dmn , which is parity even@dmncS(r )Am(r ) with cS(r 1l̂)
5cS(r 2l̂)#, and a term which is proportional to (1
2dmn), (12dmn)cA(r )An(r ) with cA(r 1l̂)52cA(r 2l̂).
The ‘‘1’’ terms in 12dmn are of the form( r ,ncA(r )@Jn(n
1r )2Jn(n1r 2n)# which vanishes ifJm is conserved, and
so Ĵm(n)5( rd(r )Jm(n1r ) for some functiond(r ). Thus
conservation of the usual current implies~all rather trivially!
conservation of the associated fat current.

In what follows, the conserved vector current is defin
using Eq.~21!. The hypercubic action has a ‘‘conventional

TABLE IV. Rr
X,Y , Gaussian hypercube action,b53.70 (aTc

51/4).

k Rr
C,I(qW 50) Rr

I ,L(qW 50) Rr
I ,L(qW 52p/8)

0.116 0.574~9! 0.933~1! 0.938~2!

0.118 0.621~13! 0.930~1! 0.931~2!

0.120 0.669~4! 0.925~1! 0.925~3!

0.122 0.732~7! 0.920~1! 0.921~4!
1-6
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TABLE V. Rp,0
X,Y , fat link clover action,b53.70 (aTc51/4).

k Rp,0
C,L(qW 50) Rp,0

C,L(qW 52p/8) Rp,0
C,I(qW 50) Rp,0

C,I(qW 52p/8) Rp,0
I ,L (qW 50) Rp,0

I ,L (qW 52p/8)

0.116 1.308~17! 1.349~4! 1.136~2! 1.026~4! 1.2383~1! 1.301~1!

0.118 1.227~3! 1.449~3!! 1.009~2! 1.254~4! 1.216~1! 1.26~1!

0.120 1.116~3! 1.262~12! 1.003~3! 1.43~5! 1.149~2! 1.15~1!

0.122 1.080~6! 0.995~5! 1.084~1!
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normalizationS5mc̄c1•••, in contrast to the ‘‘kappa’’
normalization of the clover actionS5c̄c2kc̄Dc. In either
case, the local current isc̄gmc and the improved current i
( z̄c)gm(zc).

Now recall the classification of definitions of the curre
@27#:

^ f uJmu i &cont5ZJX^ f uJm
Xu i & latt1O~a!1O~g2a!1•••

~22!

whereZJX5F(m)(11c1g21•••) ~introducing the field re-
scaling of the usual Wilson or clover actions!. If the current
is conserved~C!, its Z51. If it is improved ~I!, the O(a)
term is zero. The conserved current of either action is
improved. The ‘‘rotated’’ or FP currents are improved b
not conserved. It is conventional to rescale the results of
clover action so thatF(m50)51. This amounts to rescalin
the clover fieldc→A2kc. I will present all results that way
even though it is unnecessary for this method of find
renormalization factors.

I measured three kinds of matrix elements:

Rp
X5

^p~T!up~0!&

^p~T!uJ0~ t !Xup~0!&
, ~23!

Rp,qW
X,Y

5
^p~T,0!uJ0~ t,qW !Xup~0,2qW !&

^p~T,0!uJ0~ t,qW !Yup~0,qW !&
, ~24!

and the ratio

Rr
X,Y~qW !5

^0uJi
XuV~qW !&

^0uJi
YuV~qW !&

. ~25!

Note that^0uJi uV)&5 ê imV
2/ f V gives the vector meson deca

constant f V . Naively speaking, Rp
X5ZVX and RX,Y

5ZVY /ZVX.
Equation ~24! is measured for 0,t,T with T510 on

83324 lattices~20 for the hypercube and 40 for the clov
action!, on a subset of the bare quark mass values, and
~25! is a by-product of spectroscopy. The source att50 is a
Gaussian shell source centered on the origin; the sink atT is
a point sink projected onto zero momentum, and momen
was injected at the current. I was able to get a signal foqW

5(2p/8)(1,0,0) in addition toqW 50. Fits ofRp,qW 50
X,Y are done

by a correlated fit to the two three-point functions, fits
09450
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Rp,qW Þ0
X,Y are done by single-elimination jacknife and fits

Rr
X,Y by a correlated fit to the two two-point functions.
The renormalization factors are determined sequentiall

begin with a forward matrix elementRp
X of the conserved

current: current conservation demands that this ratio be e
to unity, orZJC51. Confirming that measurement, I can u
Eq. ~23! or ~24! ~at qW 50) to determineZV’s for the other
currents. Self-consistency for lattice perturbation theory
mands that theZ’s should be process independent, but
general that will not be true: theO(a) corrections to Eq.~22!
will make the ratios process dependent. The absence of
cess dependence in the ratios ofZ’s is a measure of improve
ment.

By itself, the ratioRp
X is contaminated by wraparound i

time. The wraparound mostly affects the two point functi
and it can be corrected for, by fitting the two-point functio
to a hyperbolic cosine„.A$exp(2mt)1exp@2m(Nt2t)#%…
and the three-point function to a forward-going exponen
.A/Z exp(2mT).

Tables III and IV show the results for measurements
Eqs. ~25! and ~24! for the hypercube action, and the sam
results for the fat link clover action are in Tables V and V
Figures 6 and 7 illustrate the results. All the fat linkZ factors
are close to unity. In contrast,ZV

I .0.78 for the nonperturba
tively improved thin link clover action atb56.0–6.2@28#.

Tables III and V show that the ratio of the conserv
current to either the local or improved currents is quite d
ferent atqW 50 andqW Þ0. This is an artifact of the imperfec
tion of the conserved current. Although the ratio of the loc
current to the improved current is alsoO(a), its momentum
dependence is much smaller. The conserved current
does not respond well to being folded over into^0uJi ur&. In
Tables IV and VI, I show only theqW 50 ratio with the im-
proved current: it is quite different from the ratio of forwar
matrix elements.

Figure 7 shows a comparison of different measureme
of ZVL /ZVI from two point and three point functions. Th
scatter of the points for the hypercubic action is small a

TABLE VI. Rr,0
X,Y , fat link clover action,b53.70 (aTc51/4).

k Rr
C,I(qW 50) Rr

I ,L(qW 50) Rr
I ,L(qW 52p/8)

0.116 0.732~22! 0.978~1! 0.973~1!

0.118 0.725~35! 0.986~1! 0.982~1!

0.120 0.714~18! 0.993~1! 0.989~1!

0.122 0.722~26! 0.997~1! 0.994~1!
1-7
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T. DeGRAND PHYSICAL REVIEW D 60 094501
appears to be mass independent. In contrast, theZ factors of
the fat link clover action two-point and three-point functio
are quite different, especially at higher mass, although t
appear to extrapolate into each other at zero quark mass.
could argue that since the local current hasO(a) errors, and
the improved current isO(a2), we are just seeing anO(a)
effect and the improved current is the one to use. Howe
the same argument should apply to the hypercubic act
and there the effects are much smaller. If it is anO(a) effect,
one will need more than a factor of 2 reduction in the latt
spacing~or in m0a) to make the fat link clover action a
consistent as the hypercubic action.

Finally, I can compare 1/f V to the observed vector meso
decay widths, by multiplying the lattice value~given in
Table VII or VIII ! by the appropriateZ factor ~extracted
from theqW 50 Rp,0

C,X correlator—the first or third column o
Table III or V!. The result is shown in Fig. 8~a!. All the
currents bracket thef meson decay constant quite nicel
although there is considerable uncertainty in the fat link c
ver result due to the different renormalization factors. Vec
decay constants have also been computed using the thin
clover action, with a nonperturbatively tuned clover term,
smaller lattice spacings~Wilson gauge action,b56.0 and
6.2!, in Ref. @25#. I plot a comparison between those valu
and the results of this simulation~showing only the improved
operator, to avoid clutter! in Fig. 8~b!. There does not seem
to be much to be gained for this matrix element by going
the smaller lattice spacings.

FIG. 6. Ratios of three-point functions atpW 50 from ~a! the
hypercubic action and~b! the fat link clover action. Octagons labe
RC,L, squaresRC,I , and diamondsRI ,L.

FIG. 7. RI ,L from ratios of three point functions@octagonsqW

50, diamondsqW 5(2p/8,0,0), small plusses with circles at the

centers,qW 5(2p/8,2p/8,0)# and two-point functions@fancy crosses

qW 50, crossesqW 5(2p/8,0,0)#. ~a! Hypercubic action,~b! fat link
clover action.
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C. Axial vector current

I have performed a nonperturbative determination of
axial vector current renormalization factor following th
classical approach of Martinelli and Maiani@29#. This begins
with the Ward identity, Eq.~16!, with the operatorO
5An

b(y)Vr
c(z) whereVr

c(z)5c̄(z)(lc/2)grc(z) andAn
b(y)

5c̄(z)(lb/2)gng5c(y). Standard manipulations lead to th
identity

2mq(
n

(
yW

^Pa~n!An
b~yW ,y0!Vr

c~0,0!&

52 i f abd(
yW

^Vn
d~yW ,y0!Vr

c~0,0!&

2 i f acd(
yW

^An
b~yW ,y0!Ar

d~0,0!&. ~26!

@Pa(n) is the pseudoscalar currentc̄(n)(la/2)g5c(n).# To
pass to a lattice description, all currents are rescaleJ
→ZLJL and the quark mass is replaced by the unnormali
quark mass from the lattice PCAC relation,mq→r
5mqZP /ZA with

2r5

(
yW

^]0A0~yW ,y0!C~0,0!&

(
yW

^P~yW ,y0!C~0,0!&

~27!

computed through a~correlated! fit to two two-point func-
tions. The lattice Ward identity then becomes

22r^PAV&5
ZV

ZA
^VV&2

1

ZV
^AA&. ~28!

~I computedZA for the local axial vector current; the War
identity for the improved current involves additional conta
terms.! As for the vector current, I evaluated the two poi

TABLE VII. Lattice 1/f V for the hypercubic action.

Mass Local Improved

0.32 0.188~2! 0.177~2!

0.24 0.203~3! 0.191~3!

0.16 0.226~3! 0.210~3!

0.10 0.239~4! 0.222~3!

TABLE VIII. Lattice 1/f V for the fat link clover action.

k Local Improved

0.116 0.162~2! 0.159~2!

0.118 0.181~2! 0.179~2!

0.120 0.203~4! 0.201~3!

0.122 0.236~4! 0.235~4!
1-8



-

n

X
e

e
w
m

ce
e

tra

e
et
re
b

oth
tion

ube
ive
or
-
ps

l
nd

per-
vy

an

a
on

he
ac-
not

ode
not

per-
uch

be

r

re
tio
th

r
t

SIMPLE OBSERVABLES FROM FAT LINK FERMION ACTIONS PHYSICAL REVIEW D60 094501
functions and the three point function with a source ont
50 and a sink ont5y0510. I used 40 hypercubic propaga
tors and 80 fat link clover propagators, taking the localZV
from the forward current matrix element~rightmost data col-
umn of Tables III and V!. I only looked at three lighter quark
masses. Correlated fits to the appropriate two point fu
tions, Eqs.~27! and a correlated fit extractinĝ0uA0uPS&
5 f PSmPS, produced the results shown in Tables IX and
The two errors onZA are from the jacknife and from th
variation ofr andZV . I useaAs50.4049(37) from Ref.@1#
to connect the lattice spacinga and string tensions. In the
last column, I quote a physical number using a nominalAs
5440 MeV. A linear extrapolation to the chiral limit in th
quark mass produces the bottom line. The agreement
experiment from the hypercube action for the pion see
acceptable. Notice thatZA shows a mild mass dependen
and that, in the chiral limit, it is also quite close to unity. Th
clover action shows a smaller mass dependence. In con
the nonperturbatively tuned thin link clover actionZA from
the rotated operator is 0.79 at Wilson gauge actionb56.0
@28#.

VI. CONCLUSIONS

Few of the results shown here are surprising. The hyp
cube action is designed to show improved chiral and kin
properties, and it does. The fat link clover action has poo
kinetic properties, but in the small mass limit they can

TABLE IX. Lattice axial vector parameters for the hypercu
action.

Mass a fPS ZA
L f ps /As f ps ~MeV!

0.24 0.170~2! 0.865~1!~1! 0.3632~55! 160~3!

0.16 0.156~2! 0.902~2!~2! 0.3475~60! 153~3!

0.10 0.147~2! 0.916~2!~2! 0.3326~55! 146~3!

0 0.966~3! 134~6!

FIG. 8. ~a! Vector meson decay constants ata50.18 fm from
the hypercubic and fat link clover actions. Diamonds and squa
are the local and improved operator with the hypercubic ac
while the crosses and fancy crosses are the same operators wi
fat link clover action.~b! A comparison of 1/f V using improved
operators with the hypercubic action~crosses!, the fat link clover
action ~squares!, and the nonperturbatively tuned thin link clove
action atb56.0 ~diamonds! and 6.2~small crosses with circles a
their centers! from Ref. @26#.
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compensated for by going to a smaller lattice spacing. B
actions have vector and axial vector current renormaliza
factors which are very close to unity.

It is an open question to me as to whether the hyperc
action is a practical improvement over the simpler alternat
of the fat link clover action. The cost of the action is a fact
of 17 per computation ofc5Dx compared to the usual clo
ver action, with a gain that typically only half as many ste
of the inversion algorithm are required to constructD21. The
fat link clover action@2# has all the gain with no additiona
cost. Of course, its kinetic properties are not improved, a
so one must reduce the lattice spacing to improve the dis
sion relation and scaling behavior of matrix elements. Hea
quark physics with the fat link clover action will suffer from
the same kinetic artifacts as the standard clover action.

A potential use for the hypercube action is to construct
action which realizes the Ginsparg-Wilson~GW! action ex-
actly. That is an active area of research@30#, with most at-
tempts involving an iteration using the Wilson action as
zeroth-order action. The eigenmodes of a GW action lie
or close to a circle. The thin link Wilson action and even t
clover action seem to be poor choices for a zeroth-order
tion, because their free-field eigenvalue spectrum does
look anything like a circle, and because their real eigenm
spectrum in background instanton configurations does
look anything like a step function~recall Fig. 2!. The fat link
stiffens the real eigenmode spectrum on instantons. A hy
cube action like the one described here looks like a m

TABLE X. Lattice axial vector parameters for the fat link clove
action.

k a fPS ZA
L f ps /As f ps ~MeV!

0.118 0.135~2! 0.851~33!~4! 0.283~13! 124~7!

0.120 0.134~2! 0.870~79!~4! 0.288~30! 127~13!

0.122 0.130~3! 0.872~28!~4! 0.280~12! 123~5!

0 0.89~5! 122~10!

s
n
the

FIG. 9. OptimumK defining the RT of the massive action.
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T. DeGRAND PHYSICAL REVIEW D 60 094501
better choice, provided of course the cost of its use is
than the gain in number of iteration steps.

Finally, dynamical fermion simulations with fat link ac
tions still appear@31# to require smaller levels of fattenin
than are needed to substantially improve the chiral prope
of Wilson-type actions. But for quenched calculations eith
action seems to me to be superior to a thin link action.
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TABLE XI. Couplings of the hypercubic action used in th
work. The free action is parametrized asD5l(r )1 igmrm(r ).

l(r )
Offset

1 0 0 0 20.0725 exp(20.7092m20.0149m2)
1 1 0 0 20.0319 exp(21.007m20.0421m2)
1 1 1 0 20.0156 exp(21.123m20.0803m2)
1 1 1 1 20.0080 exp(21.180m20.1169m2)

r0(r )
Offset

1 0 0 0 20.1819 exp(20.9475m10.0031m2)
1 1 0 0 20.0318 exp(21.031m20.0502m2)
1 1 1 0 20.00897 exp(21.017m20.1047m2)
1 1 1 1 20.00295 exp(20.9307m20.1633m2)

TABLE XII. The hypercubic approximation to the FP field fo
the hypercubic action used in this work. The field is parametrize
z5l(r )1 igmrm(r ).

l(r )
Offset

0 0 0 0 0.104710.3287m20.0639m2

1 0 0 0 exp(23.407020.6776m20.0639m2)
1 1 0 0 exp(24.230320.9708m20.07609m2)
1 1 1 0 exp(24.949521.0860m20.1147m2)
1 1 1 1 exp(25.612021.1437m20.1509m2)

r0(r )
Offset

1 0 0 0 exp(22.474620.9150m20.09179m2)
1 1 0 0 exp(24.238320.9947m20.0846m2)
1 1 1 0 exp(25.506120.9809m20.1388m2)
1 1 1 1 exp(26.621820.8943m20.1969m2)
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APPENDIX: BLOCKING OUT OF THE CONTINUUM

A particularly interesting choice of blocking kernel fo
blocking out of the continuum is the overlapping transform
tion

V~q!5expS 2
1

2
c2q2D . ~A1!

In my work, blocking out of the continuum was approx
mated by beginning with free Dirac fermions on a fine la
tice, making one RG step with a blocking factorF58, and
blocking onto a coarse lattice of size 54 sites.

Truncating the action to a hypercube and requiring gos

FIG. 10. Dispersion relation for the ‘‘Gaussian’’ hypercubic a
tion, at bare mass~a! zero,~b! 0.3, ~c! 1.0, ~d! 3.0. The line is the
continuum expectation.

FIG. 11. Eigenmode spectrum of the ‘‘Gaussian’’ hypercub
action.
1-10
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SIMPLE OBSERVABLES FROM FAT LINK FERMION ACTIONS PHYSICAL REVIEW D60 094501
behavior for the resulting free hypercubic action leads to
parameter choicec50.2 andK52.05. By beginning with a
bare massm/F on the fine scale I constructed a renormaliz
trajectory ~RT! of free massive fermions. The parametriz
tion and dispersion relation was well behaved out to v
large mass (am.3.0). The optimumK fell smoothly with
increasingm, to a value of 1.0 atm53. This is shown in Fig.
9. In the actual simulations, the hypercubic parameters w

FIG. 12. b(r ), the scalar part of the free propagator, for the fr
massless ‘‘Gaussian’’ hypercubic action~crosses! and for the Wil-
son action~octagons!.
.K

in

F

.
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fit to the formsr j (m), l j (m)5a exp(2bm2cm2) and the
on-site coupling was fixed using the functional relation b
tween ther ’s, l ’s, and bare massm. If negative bare masse
are needed, I extrapolated exactly as described in Ref.@1#.
The action is listed in Table XI. This is of course not
unique~or probably even an optimal! parametrization.

The free FP field was constructed by summing Eq.~8!, in
parallel with the FP action. Again, I truncated the FP field
a hypercube and parametrized the ‘‘offset’’ terms exactly
for the hypercubic action. These couplings are shown
Table XII. Both the action and FP field are made gau
invariant by averaging the gauge connections over all
shortest paths, exactly as in Ref.@1#.

I show a few properties of the free field action: Figure
shows dispersion relations of the hypercubic action on
large lattice, for several values of the bare mass. In Fig. 1
show the eigenmode spectrum of the hypercubic Gaus
action~with only the positive imaginary part of the comple
eigenmodes!. The eigenmodes of the FP action lie on a circ
of radiusK/2 centered at the point (K/2,0), and the approxi-
mate action tracks the circle closely. Finally, in Fig. 12
display the scalar part of the free fermion propagat
D(r )215b(r )1 igmam(r ). The Ginsparg-Wilson relation
for the propagator probes 1/2$g5 ,D(r )21%5g5b(r ). This is
shown for massless fermions on an 114 lattice with antiperi-
odic boundary conditions. For the real FP action,b(r )
should be proportional to a delta function at the origin. F
the hypercubic action it lies about 1–2 orders of magnitu
below the value of the Wilson action at all nonzeror.
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