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A comparison is made of théquenched light hadron spectrum and of simple matrix elements for a
hypercubic fermion actiofbased on a fixed point actipand the clover action, both using fat links, at a lattice
spacinga=0.18 fm. Renormalization constants for the naive and improved vector current and the naive axial
vector current are computed using Ward identities. The renormalization factors are very close to unity, and the
spectroscopy of light hadrons and the pseudoscalar and vector decay constants agree well with simulations at
smaller lattice spacing@nd with experiment [S0556-282(199)00519-§

PACS numbd(s): 12.38.Gc, 11.15.Ha

| INTRODUCTION both the hypercubic action and clover action | study are re-
placed by APE-blockefi14] links,

This paper is a continuation of earlier wdrk,2] studying
the properties of a particular type of improved action for V{V(x)=(1-a)V{ V(x)+al6 X [V D(x)
studies of quenched QCD, with fermion—gauge-field cou- vEm

plings parametrized by “fat links,” and a lattice anomalous ><V(n 1) (n—-1) t \s(n—1) t
. . . X+v)V; X+ +V, X—
magnetic moment “clover” term. One of the actions studied (x+¥) ( ’u) (x=¥)
- . . 1 1 ~ A
here has fermionic couplings extending over a hypercube. XVELn x— )V D(x— v+ m)], (1

The other action is the fat link clover action. Both actions are
O(a®) improved. Features related to their chiral properties
appear to be superior to those of standard discretizationgyjth Vﬁf)(x) projected back ont&U(3) after each step, and
though this does not correspond to a realization of an exao‘yﬁ))(n) U,(n) the original link variable. | takex=0.45
lattice symmetry relation. The goal of this paper is to com-and N=10 smearing steps, chosen because this fattening
pare a particular implementation of a fixed poiRP) action  produces a very small additive mass renormalization.
for quenched QCD in four dimensions to a simpler improved There are two differences between this work and Réf.
action, via the usual tests of improvement. Much more el-The first involves physics: since the completion of that work,
egant studies have been carried out in two dimensi8hs we [2] have discovered that the properties of lattice QCD
The fat link clover action turns out to be an attractive alter-(specifically the spectrum of real fermion eigenmgdes
native to the more complicated action. changes as the lattice spacing coarsens, and that above about
The hypercubic action is inspired by the fixed point actiona,=0.2 fm the would-be zero modes cannot be separated
program[4], applied to fermion actions for QCD in four from the doubler modes. Since there is a qualitative change
dimensiong5—9]. FP actions are classically perfect, which in the underlying dynamics, it does not seem to be appropri-
means that they have the following desirable properties. ate to attempt to extrapolate to the continuum physics which
First, their spectrum has no lattice spaciaglependent involves chiral symmetry from lattice spacings greater than
corrections of the forma" for any n. Second, and probably an.,. The second difference is that in this paper | study FP
more importantly, FP actions satisfy the Ginsparg-Wilsonoperators, the analogues of the familiar “rotated” operators
[10] remnant chiral symmetry condition, namely that the an-of the Symanzik program. For the action used[1], the
ticommutator of the propagator withs is a local operator. recursion relation for the FP operators is contaminated by a
As a result, they suffer no additive quark mass renormalizaredundant eigenvector. | chose to find a different renormal-
tion and no multiplicative renormalization of axial vector ization group transformatiotblocking out of the continuum
currentg 11], and satisfy the index theoregih2,13. It would ~ with a Gaussian blocking functigmnd a different hypercube
clearly be a desirable thing to have a version of such amction, the “Gaussian” hypercubic action, in order to con-
action which could be used in numerical simulations, andstruct the operators.
this paper describes a candidate action which seems to sat- The outline of the paper is as follows: After reviewing the
isfy all of the properties of a FP action very well, though not properties of FP actions, | discuss the ways that approxima-
exactly. tions to FP actions are imperfect. | summarize the physics
The particular hypercubic action | will test is one whosefeatures of fat link actions. Then | present tests of spectros-
free-field limit is constructed by blocking out of the con- copy and of vector and axial vector current matrix elements,
tinuum. It has the usual clover term, normalized to its tree-at lattice spacing@=0.18 fm. | end with some conclusions
level value as described ifl]. The gauge connections of and speculations.
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II. QUICK REVIEW OF THE FIXED-POINT Ymin(N)=Z(N—Fnp) W (ny)
ACTION FORMALISM
To find a FP action for QCD, one begins with a set of = 2 Afl(n—m)bam,FmbA(mb—nb)\If(nb).
fermionic (¢,,¢,) and gauge fieldU ,(n)] variables de- e
fined either on a fine lattice or in the continuum. The fine (8)

action is defined as A related object is the fixed-point fielf#,15], a local

_ - o average of fields which blocks into itself under a RG trans-
S, is the gauge action, j label sites, and\(U) is the fer-
mion action. Introducing a renormalization grouRRG) ¢Fp(n):2 w(n—m)g(m). 9
blocking kernel with a pure gauge pietg and a fermionic m
piece parametrized by a constdatand a blocking function Th ing f . b h . lati
atp, » Normalized byb, e averaging function obeys the recursion relation

- — 2 w(Fn,—m)Z(m—Fmy)=Aw(n,—m,) (10
T=BTo(UV)+KZ [V~ in(bay )] w o ° P
b

3 with A =1/F%? carrying the canonical dimension of a fer-
mion field. As the scale of the blocking transformatibn

one integrates out the fine degrees of freedom to construct 0es to infinity, the FP field and minimizing field coincide.

orrelators involving the FP field have no power-law cutoff

action involving coarse-grained variableB, , ¥, and  effects—they are also classically perfect. Thus they play the

X[‘Pnb_(banb,n’)wn’]a

V,(ny). same role for a FP action as the familiar “rotated operator”
The renormalization group equation does in the Symanzik improvement program.
The easiest way to find the FP field, for an action defined
- _ w —(T+S) by an RG transformation with a scale facEris to solve Eq.
e > =| dydydUe 4 . .
f vy @ (10) self-consistently fow(n). Unfortunately, for the action

2 o studied in Ref.[1], with a blocking factorF=2 RGT, \
has a pure gauge FP gt=0 (B—). In that limit the  _ 1/r32jg not the leading eigenvalue: The leading eigenvec-
gauge action dominates the integral; its RG equation is giveg,, g w(n)=A(n), with an eigenvalue of about 2.56/2
by the same steepest-descent equation as for a pure gaugg, phenomenon has been described by KunsgL@h In

model, terms of physics this does nothing(n) = A(n) just contrib-
SFP(V) = min[STP(U) + T(U, V)], (5) utes a contact term to correlation functions. However, from
Uy an engineering point of view it is a serious problem, because
it is quite difficult to determine the FP field by solving the
while the fermions sit in the gauge-field background. Therecursive equation faw, and pulling out a nonleading eigen-
fermion action remains quadratic in the field variables, and/ector.
the transformation of the fermion action is given most easily For a free field action constructed by blocking out of the
in terms of the propagator continuum E— ¢ or, equivalentlym a continuous variable
in the background of fixeay), the free FP field is readily
5 1 T constructed using the momentum-space version of (Bq.
n{)+b a(U)”bvn[A(U)]n,n’a(U)n’,nt’) Therefore, because | wanted to study FP operators, | decided
(6)  to construct a new action by following the MIT gro(id,9]
and blocking directly out of the continuum. There is a price
where{U} is the field configuration which minimizes EG)  associated with this—I can no longer solve FP equations for
for a given{V}. For a blocking factoF, it is useful to rescale the propagator in a nontrivial gauge field background, as |
banb,n= F3’2(lnb,n with the Fourier transform o!flnb,n fora  did in [1]. | will follow a hybrid approach, of constructing

free theory normalized t6)(q)=1+0(qg?). Then(again in  the free field FP action, making it gauge invariant by using

free field theory the momentum-space FP equation for theconnections made of fat links, and just tuning the fattening to
propagator becomes optimize the chiral properties of the action. The construction

of the free action is described in the Appendix.

R -
[A V)T = i Oy,

1 1 2

(@] =g+ g 2 ‘Q

q+2ml
F

q+2ml| 1t
F ' IIl. IMPERFECTION
() A. Comparison to the standard tests of imperfection

Another useful quantity is the minimizing field, the value A FP action is classically perfect, but an approximation to
of the fine field(as a function of the coarse figldvhich a FP action is not. It is thus an interesting exercise to ask
minimizes the exponential in the Gaussian fermion integralhow imperfect an approximate FP action will be.

094501-2



SIMPLE OBSERVABLES FROM FAT LINK FERMION ACTIONS PHYSICAL REVIEW 50 094501

One can approximately reconstruct the free field FP action A(m)=Ag+m, (15)
and field by blocking out of the continuum. In E) thel
=0 term in the mode sum is the most singular for sngall and consider a flavor nonsinglet chiral rotatiof(x)

and the next higher order term is th&Iterm. Keeping only  — exg[i (X)(\3/2)ys](X), E(x)—>Z(x)exr[iea(x)(>\a/2)y5].

those contributions, a few lines of algebra yields The Ward identity for this rotation is
2+ m2
—iy-q+m+q ; S(O(Xq, - .« Xpn))
Aa)= e (1 oe’(x)
q Q(q)? 2m  g*+m? ]
trazt Ka?)? =(O(Xq, - - - Xn) 3, J5 (%))
_\®
KQ
{(q)= (12

2 77 — A®
Q(Q) 1+ 2_m+ ﬂ - < O(Xl= e 1Xn)< l//(X)?{’)’g),Ao}l/l(X)) > .
KQ?  (KQ?)?
(16)
As Q~1+q?+- - -, the reader will recognize these formulas ] ) } ]
as rather baroque variations of the usual Symanzik-improvedhe last term is the lattice artifact. In a generic non-FP ac-

action and rotated field—up to an overall normalization con-ion, it will mix with lower-dimensional operators
stant. Indeed — 5

() ¥s, Ao} (X) = (1—Zp) 9,37 (X) + Amyh(X) ysi(X)
+. (13 +0O(a)+--- (17

to give a nonzero additive renormalization to the quark mass

and an overall multiplicative renormalization to the axial
+e (14)  current. It is also responsible for the mixing of opposite par-
ity operators in matrix elements appropriate to, for example,
Bk . In perturbation theory all of these mixings are due to

A=

D+ 1D2 2 12rn
v REmT(BTmmY {170

[~

14 m—vy-D 1 2m
K K

an(%l_ﬁg ;/nvgslg gg:zfgu;h?a:{\i/élsoar]rtﬂg::at? g;eerl V\Xlltllhs:ﬁl:: lzclztion one-loop graphs and a(g*).

come from its vertices. In the absence of an explicit con- The Ginsparg-Wilson refation eliminates these mixings
. > - P and renormalization§12] (or to be more precise converts

struction of a FP action in a nontrivial background gauge

field configuration, what can one say? First of all, a simplethem into local corrections to the Ward identifieby can-

expansion of the action in powers afshows that anv hv- celing the propagator connecting the operator to the current
pans . P ) Y Y= \ith the anticommutator against the action term from the
percubic action made of thin or fat links h@ga) contribu-

tions to its vertex, just like the Wilson action. These Contri_antlcommutator.

butions must cancel in perturbation theory between the scalar, The ingredient of an approximate FP action most neces-
) P y . ary to reproduce this feature of a FP action is a fat link. The
vertices and an additional anomalous magnetic momen

“clover” term, which of course is absent in the free theory. ominant graphs contributing @, —1 andAm contain tad-

K

In principle, the clover term could have any coefficient, poles, whose cqntrlbutlons from Iargﬁ are suppressed by
but one fact we know is that the spectrum of a FP action i¢he softqqg vertices of a fat link actiofi2]. The presence of
classically perfect. One can consider the spectrum of a fefhe fat link in the one explicit realization of the Ginsparg-
mion with infinitesimal momenturp in an infinitesimal ex-  Wilson relation, the “overlap action{19]
ternal magnetic field, E=mq+ p%/2mx—B/mg+ - - - and ) 5T
con_stralnt=mK=m0, .by hand, if necessary. This con- A= 1—(1——A0)/ A /1——A0 , (18)
straint turns out to be identical to the requirement that the 2 K K
clover term have its usual tree level value. Now the calcula- o ) ) )
tion just paraphrases the old perturbative result of Heatlid!Sing @ thin linkA,, can be seen easily by making a hopping
etal. [17] and the result is as expected: the spectrum of darameter expansion ifiy. _ _ o
hypercubic approximation to a FP action, with the clover Finally, can one quantify the size of chiral violations ex-
term, is improved throug®(a?), and if matrix elements are pected_ for an apprmqmate FP acnqn? Imagme constructing a
measured using FP operators, they also hav®©(®) dis- _FP action by beginning with the Wilson action and pgrform—
cretization errors. ing a series of factor-of-2 RGT’s. The Wilson term violates
the Ginsparg-Wilson relation. It is a dimension-5 operator,
_ _ and so under each blocking step its size decreases by a factor
B. Chiral properties of 1/2. After N blocking steps the action will have a range
Violations of chiral symmetry in Wilson-like actions are O(N) and the size of the violating operator will be
an old story[18]: Write the fermion action as O(exp(=NIn 2)). This exponential decrease of chiral viola-
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FIG. 1. m2 and the quark mass vs bare quark mass for various FIG. 2. Smallest real eigenmode of the massless Dirac operator
fermion actions. Data are diamonds and small plusses with circlegs instanton size for various fermion actions. Diamonds and squares
at their centers fom? and the quark mass from the PCA@artial ~ show the usual thin-link Wilson and clover actions while the small
conservation of axial vector currgntelation respectively, for the plusses with circles at their centers show the fat link clover action
fat link clover action of Ref[2], with the clover term boosted by a and octagons show the hypercubic actidoth with fatteninga
factor of 1.2, and octagons and fancy crosses for the Gaussian hy=0.45 andN=10 steps
percubic action. Both actions have fat links wi=0.45, N=10.

. . . . 2 . . . .
The lines represent naive linear fits @r(;)* or amy vs the bare gy the unsurprising result that a clover coefficient close to
quark massm. the tree-level value is the optimum one.

) ] ) o Here, | take a simplefthough more tastelesapproach:
tions with range of the action seems superficially to be thejy the clover coefficient to its tree-level value and vary the

same behavior as is seen with domain wall fermiomsere  3mount of fattening until the additive mass renormalization,
N is the length of the fifth dimensiof20]). One can easily measured naively by extrapolating the squared pion mass
see this behavior in explicit calculations using free f'eldlinearly to zero, appears to be small. This is done at small
theory. quark masses, but not at masses which are so small that the
quenched approximation breaks down due to the presence of
IV. TUNING FOR CHIRAL BEHAVIOR unpaired instanton mod¢22]. The results are shown in Fig.
1. Data are diamonds and small plusses with circles at their
centers formf, and the quark mass from the PCA@artial
tonservation of axial vector currenelation respectively, for

The most visible aspect of bad chiral behavior for Wilson-
like fermions is the presence of exceptional configurations

which arise when the Dirac operathp has a real eigenmode the fat link clover action of Ref[2], with the clover term

ath =—m, a value which happens to coincide with the bareboosted by a factor of 1.2, and octagons and fancy crosses
massm at which one attempts to construct a propagator for, y - 9 y

: : for the Gaussian hypercubic action. Both actions have fat
Ao+ m [21]. We have argued in Ref2] that an action |\ o\~ 0,45 N=10. A jacknife fit of the four lightest
whose gauge connections are fat links has a narrower ran?ﬁasses ofn2 — A(Mp—my,) or my=A(my—m,) (this is the
of real eigenvalues than a thin link action does. . m T e g “WTo e
In Ref.[2] we proposed a method for tuning an action tol"’?ttlce quilrk mass from the PC’;“C reIa’uorl, see Sec. VI C
optimize its chiral behavior. This involved measuring the9VeS Me=—0.0226(15) fromm; and m.=—0.0248(7)
spread of real eigenmodes of the Dirac operator, and varyinfiom the quark mass, for the hypercubic action, angd
the amount of fattening and the size of the clover term to_ 0-0023(19) and-0.0002(18) for the fat link clover ac-
narrow the spread of real eigenmodes. This is computatiorHOn-
ally costly and, if the amount of fattening is large, produces
TABLE 1l. Best-fit masses, fat link clover actiong
TABLE |. Best-fit masses, Gaussian hypercube actigh, =3.70 @T.=1/4).
=3.70 @T,=1/4).

K PS v N A
amy PS v N A 0.114 1.0083) 12264) 1.88710) 1.984 9)
0.32 1.1163) 12465 193511  2.04012) 0.116 0.9773) 113715  1.7419)  1.86712)
0.24 09595  1.1176) 1726100 1.86416 0118  0.8565 1048 6) 159510)  1.74016)
0.16 07896) 09948 151713 173517 0120 07185 0960 9) 144912  1.61625)
0.10 06496) 090413  1.37015 162423 0122  05517) 086618  1.28019  1.55825)
0.06 05417) 085119  1.26421) 154329 0123 04377 080728  1.19G30)  1.48432)
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FIG. 3. Edinburgh plot showingg=6.15 staggered fermions 0’8;_ B
from Ref.[25] (crossey the fat link clover actior(diamond$ and o6 L 1
the Gaussian hypercube actitoctagons P

To make a controlled comparison of the zero mode spec- m/T,
tra of these actions, | show in Fig. 2 the real eigenmode
spectrum of several of these actions on a family of singl
instanton configurations. The construction of the instanton
is described in Ref23]. They areSU(2) instantons in sin-
gular gauge centered atlLR+1/21/2+1/2)/2+1/2)/2

*+1/2) in a periodic lattice of size=8. The vertical line .at shrink, the smallest real eigenmode becomes more positive,

’;;0'95 marlifs thefsl;nayesé_r adius dvisiblg o the appt:OX|rtr1hat%nd then, when the instanton disappears, it collides with an-
gﬁﬁ.e ?.C ILOHWQI ef ].d |a|mon S "in squa_rlesti OWth € other real eigenmod@ double) to produce a complex con-
usual thin-lin ilson and clover actions while the o erjugate pair of eigenvalues.

plotting symbols show fat link actions. As the instantons For future reference, recall that an action obeying the

Ginsparg-Wilson relation would have a zero eigenmode on a
topologically nontrivial configuration, but when the instanton
“falls through the lattice” the eigenmode should jump dis-
continuously to some positive value. Presumably the more
improved an action is, the sharper the rise of the real eigen-
mode as the instanton size shrinks. All fat link actions, both
hypercube and clover, satisfy that criterion. Based on our
studies with fat link clover actiong2], we believe that this
feature, like the small mass renormalization, is caused by the
fat link, not by features of the fermion action which could be
seen in the free-field limit.

FIG. 5. c? for the fat link clover actior{diamond$ and Gaussian
ypercubic actiorfoctagony for (a) pseudoscalaib) vector andc)
nucleon correlators. Hadron masses are shown in units of the de-
confinement temperature.= 1/(4a).

1.6 T 18 7+

S R B V. NUMERICAL TESTS
A. Spectroscopy
< 5L i | carried out quenched spectroscopy on a set of 80
= 3 8%x 24 background gauge field configurations with a lattice
[ :E ] spacinga=0.18 fm using the approximate FP gauge action
I I ] of Ref.[1], at 8=3.70. As a fiducial test of a simpler action
s = =TS I recomputed the spectrum of the fat link clover action of
0.0 0.5 1.0

2 Ref. [2] on the same set of background configuratidims

order to remove all effects of the gauge fields from compari-
FIG. 4. N/p mass ratio interpolated te/p=0.80(a), 0.70(b), §0n3. Th|§ action also ha§=0-45’ N=10 APE-smeared fat

0.65(c). Shown are the nonperturbatively improvghin-link) clo- links and its clover term is r_escal_ed by a fac@s,=1.2.

ver action(bursts, cs,=1.2 fat link clover action(squares on3 The cost of the hypercubic action compared to the clover

=5.7 Wilson gauge actions, diamonds on FP gauge configurationsaction is a factor of about 17 per multiplicatiop= (A

hypercubic action of Ref.1] (fancy crosses and Gaussian hyper- +m)y during the iterative construction of the propagators.

cubic action(crosses Octagons arg=6.15 staggered simulations. Both the fat link clover action and hypercubic actions appear

(a m,)
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TABLE Illl. R}, Gaussian hypercube actiof=3.70 @T.=1/4).

amy  RS5(q=0) RSH(q=2m/8) RSHq=0) RENg=27/8) R;(d=0) R}y(q=27/8)

0.32 0.9701) 1.012) 1.0741) 1.191) 0.9062) 0.872)
0.24 0.9711) 1.1%2) 1.081(1) 1.241) 0.8992) 0.91(1)
0.16 0.9711) 1.033) 1.0881) 1.241) 0.8923) 0.861)
0.10 0.9711) 1.428) 1.0941) 1.352) 0.8683) 0.993)

to require about half the number of iterations as the usuatonstantc?—1=0.025. To achieve the same mismatch of
thin link clover action to converge to the same residyie c?—1 as the hypercubic action, at the saméT., one
—(A+m)x|?|x|? presumably because their high Fourier would have to decrease the lattice spacing by about a factor
modes decouple from the gauge fields. Neither of these a®f roughly 2[assumingc®—1=0(a?)].

tions developed any exceptional configurations over the stud-

ied range @r/p=0.54 and 0.6} In Ref.[2] we did a scan of B. Vector currents

808%x24 B=5.7 Wilson gauge action configurations with
the fat link clover action and the thin link clover action with
nonperturbativeCg,=2.25 and found no exceptional con-
figurations for the fat link action fom,/m,=0.4 (@am,

There are many definitions of conserved currents. The
simplest one is constructed by writi{d0,12 U ,(n)=1
+igA,(n)+--- and defining

=0.3) while 11 configurations were exceptional for the thin 5S
link action. J,(n)=—i 5A—) (19
The spectrum analysis is completely standgtfl Both u(n

actions reproduce the results of spectroscopy calculations 9f, these actions | have replaced the thin links by fat links,
more conventional actions at smaller lattice spacings. Th — 1 i imafti

s . > p g Q/#(n)—1+|gB#(n)+~--, which in linear approximation
pectroscopy is tabulated in Tables | and Il corresponds to

To show the data graphically, | begin with an Edinburgh
plot, Fig. 3, containing3=6.15 staggered fermion dafa4|
and data from the two actions shown here, the fat link clover B.(n)= ;; Cun(MALN) (20
action and the Gaussian hypercubic action. | compare scaling '

violations in hyperfine splittings by interpolating the data t0for some smearing functioe,,,(r). It is more convenient to

fixed 7T/p mass ratios and plottlng thN/p mass ratio vs rep'ace Eq_(lg) W|th a “fat Conserved current”
m,a. | do this at threer/p mass ratios, 0.80, 0.70, and 0.65,

in Fig. 4. The bursts are from the nonperturbatively im- A . 0SS
proved (thin link) clover action of Refs[25] and[26]. The Ju(n)=—i=5 n)" (21)
octagons show data from staggered fermion8-a6.15. The a
other plotting symbols show our test actions: They are theye 4
hypercubic action of Ref{1] (fancy crossgsand of this g5 C,, has two parts. The first is a term proportional to
work (crosseys and the cg,=1.2 fat link clover action P which is parity ever{s, c<(r)A,(r) with c (r+X)
(squares orB=5.7 Wilson gauge action®], diamonds on  "#** " panty pr=SU S
FP gauge configurationsThe data indicate that the im- =Cs(r —A)], and a term which is proportional to (1
proved kinetic properties of the hypercubic action do not—6,,), (1—35,,)Ca(r)A,(r) with ca(r+N)=—ca(r—»).
affect hyperfine splittings very strongly. The two outer The “1” terms in 1-6,, are of the form=, ,ca(r)[J,(n
straight lines in the figure are linear fits imify)? to the ~ +r)—J,(n+r—v)] which vanishes i), is conserved, and
staggered and nonperturbatively improved clover data. Theo ju(n):zrd(r)\]ﬂ(njL r) for some functiond(r). Thus
inner straight line is a constant at the value of the extrapoconservation of the usual current impliggl rather trivially)
lateda=0 value of the staggered data. conservation of the associated fat current.

The fat link clover action on Wilson gauge configurations  |n what follows, the conserved vector current is defined

has a slightly larger hyperfine splitting than the other actionsusing Eq.(21). The hypercubic action has a “conventional”
Could this be an effect of the gauge action on the spectrum?

Could it be due to the fact that the Wilson gauge action TABLE IV. R, Gaussian hypercube actiof=3.70 (T,

overproduces small instantons compared to the FP gauge ae-1/4).

tion?
Differences appear when one compares the dispersion re- « R$!(q=0) RI“(q=0) R,-(q=2m/8)

lations (Fig. 5). The squared speed of light?=[E(p)?

wJ(N)=0 andd,J,(n)=0 consistent? Yes. In gen-

- . . 0.116 0.5749) 0.9331) 0.9382)

— 2 =
m?]/p?, for- p=2m/8(1,0,0), is computed by performlrjg a 5118 0.62113) 0.9301) 0.9312)
correlated fit to the two propagators, one at the nonggro (199 0.6604) 0.9251) 0.9253)
the other af):o. At larger mass the clover actione$ falls 0.122 0.73%7) 0.9201) 0.921(4)

away from unity while the hypercubic action shows a fairly
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TABLE V. R{, fat link clover action,3=3.70 @T.=1/4).

«  RGH(q=0) RSs(q=2m/8) REYA=0) RSHq=2m/8) R;Y(d=0) R.'(q=2m/8)

0.116 1.308L7) 1.3494) 1.1362) 1.0264) 1.23831) 1.3011)
0.118 1.22703) 1.4493)) 1.0092) 1.2544) 1.2161) 1.261)
0.120 1.113) 1.26212) 1.0033) 1.435) 1.1492) 1.151)
0.122 1.0806) 0.9955) 1.0841)
normalization S=my+ - - -, in contrast to the “kappa” R©Y age0 are done by single-elimination jacknife and fits of

normalization of the clover actioBi= sy~ xyD . In either R>p< Y by a correlated fit to the two two-point functions.
case, the local current iy, ¢ and the improved current is The renormalization factors are determined sequentially. |

(élﬁ))’ (Zy). begin with a forward matrix elemerftX of the conserved
Novl\; recall the classification of definitions of the current Current: current conservation demands that this ratio be equal
[27]: to unity, orZ;c=1. Confirming that measurement, | can use
Eqg. (23) or (24) (at E]=0) to determinez,,’s for the other
(13,11 cont=Zyx(f|I%5|i)iare+ O(a) + O(g%a) + - - - currents. Self-consistency for lattice perturbation theory de-

(220  mands that theZ’s should be process independent, but in
general that will not be true: th@(a) corrections to Eq(22)

whereZ;x=F(m)(1+c,g%+ - - -) (introducing the field re- will make the ratios process dependent. The absence of pro-
scaling of the usual Wilson or clover action#f the current  cess dependence in the ratiosZés is a measure of improve-
is conservedC), its Z=1. If it is improved (l), the O(a) ment.
term is zero. The conserved current of either action is not By itself, the ratioRf, is contaminated by wraparound in
improved. The “rotated” or FP currents are improved buttime. The wraparound mostly affects the two point function
not conserved. It is conventional to rescale the results of thand it can be corrected for, by fitting the two-point function
clover action so thaf(m=0)=1. This amounts to rescaling to a hyperbolic cosine(=A{exp(—ut)+exd —u(N.—t)1})
the clover fieldy— 2k . | will present all results that way and the three-point function to a forward-going exponential
even though it is unnecessary for this method of finding=A/Z exp(—uT).

renormalization factors. Tables Il and IV show the results for measurements of
| measured three kinds of matrix elements: Egs. (25) and (24) for the hypercube action, and the same
results for the fat link clover action are in Tables V and VI.
. (m(T)|m(0)) Figures 6 and 7 illustrate the results. All the fat lifKactors
Rw:<7T(T)|JO(t)X| 7(0))"’ (23 are close to unity. In contrast),~0.78 for the nonperturba-

tively improved thin link clover action g8=6.0—6.2[28].
Tables Il and V show that the ratio of the conserved

-~ -
X,\(:<7T(T'O)|J0(t*q> |7(0,~q)) (24) current to either the local or improved currents is quite dif-
4 {(m(T,0[30(t,q) Y[ 7(0,)) ferent atg=0 andq#0. This is an artifact of the imperfec-
tion of the conserved current. Although the ratio of the local
and the ratio current to the improved current is al€xa), its momentum
dependence is much smaller. The conserved current also
(0|IX|V(q)) does not respond well to being folded over i§@J;|p). In
X, Y _ ! -> . . .
R, (q)= V@) (25 Tables IV and VI, | show only thg=0 ratio with the im-
P V()

proved current: it is quite different from the ratio of forward

R matrix elements.

Note that(0|J;|V)) = &md/fy gives the vector meson decay  Figure 7 shows a comparison of different measurements

constant f,. Naively speaking, R*=Z,x and R*Y  of Z,./Z, from two point and three point functions. The

=ZyvlZyx. scatter of the points for the hypercubic action is small and

Equation (24) is measured for &t<T with T=10 on

83x 24 lattices(20 for the hypercube and 40 for the clover TABLE VI. RXy, fat link clover action,8=3.70 (aT,=1/4).

action, on a subset of the bare quark mass values, and E€x

(25) is a by-product of spectroscopy. The source=a0 is a K R$'(q=0) R,5(q=0) R,“(q=2m/8)

Gaussian shell source centered on the origin; the sifkisit

a point sink projected onto zero momentum, and momentum 0.116 0.73%22) 0.9781) 0.9731)
0.118 0.72835) 0.9841) 0.9821)

was injected at the current. | was able to get a signaﬁfor 0120 0.71418) 0.9931) 0.9891)
= (27T/8)(1 0 0) in addition t(lq 0. Fits OfR are done 0.122 0.7226) 09911) 0.9941)
by a correlated fit to the two three-point funct|0ns fits of
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F T T T i T | o 4 TABLE VII. Lattice 1/f, for the hypercubic action.
1.2 :— (a) — 1.2 - db) —
t 8B o o < Mass Local Improved
1OF 5 0 o0 o 1o @ @ 0O O 4
2 e e o o 1 2 0.32 0.1882) 0.1772)
0.8 7 0.8 7 0.24 0.2083) 0.1913)
C ] 0.16 0.2263) 0.21Q3)
S T e T I 0.10 0.2394) 0.2223)
00 01 02 03 04 00 01 02 03 04
myg my

C. Axial vector current

FIG. 6. Ratios of three-point functions at=0 from (a) the | have performed a nonperturbative determination of the
hypercubic action an¢b) the fat link clover action. Octagons label axial vector current renormalization factor following the

C,L C,l H L
R™", square™, and diamond&’ . classical approach of Martinelli and Maidr@9]. This begins

appears to be mass independent. In contrastZ ttaetors of W'thb the Ward identity, E&(16), with the operatl?ro
the fat link clover action two-point and three-point functions =Au(Y)V,(2) whereVi(z) = y(z)(\°/2)y,¥(z) andA}(y)
are quite different, especially at higher mass, although they= (z)(\?/2)y,ys#(y). Standard manipulations lead to the
appear to extrapolate into each other at zero quark mass. Oidentity
could argue that since the Izocal current I&x@) errors, and
the improved current i©(a“), we are just seeing a@(a) a b/ c
effect and the improved current is the one to use. However, 2mqEn: Ey: (P (n)AV(y’yO)V”(O’O)>
the same argument should apply to the hypercubic action,
and there the effects are much smaller. If it is&(a) effect, .+ abd g .
one will need more than a factor of 2 reduction in the lattice = —jfardy (V5(Y,Y0)V,(0,0))
spacing(or in mga) to make the fat link clover action as y
consistent as the hypercubic action. - acd by q

Finally, | can compare £/, to the observed vector meson —if2°9> (AX(Y.,Y0)AY(0,0). (26)
decay widths, by multiplying the lattice valu@iven in y

Table VII or VIII) by the appropriateZ factor (extracted [P3(n) is the pseudoscalar curreﬁ(n)(xaIZ)yyp(n).] To

i C,X . .
from theq=0 R;j correlator—the first or third column of yaqq 't 4 lattice description, all currents are rescaled

Table Il or V). The result is shown in Fig.(8). All the "7 3 and the quark mass is replaced by the unnormalized
currents bracke_t thep meson decay constant quite nlcely, quark mass from the lattice PCAC relatiom,—p
although there is considerable uncertainty in the fat link clo-_ MyZp/Z with

ver result due to the different renormalization factors. Vector

decay constants have also been computed using the thin link .

clover action, with a nonperturbatively tuned clover term, at > (doAo(¥.Y0)C(0,0))

smaller lattice spacingéWilson gauge actionf=6.0 and 2,— y 27)
6.2), in Ref.[25]. | plot a comparison between those values P -
and the results of this simulatidgehowing only the improved > (P(Y,¥0)C(0,0))
operator, to avoid cluttein Fig. 8b). There does not seem y

to be much to be gained for this matrix element by going tocomputed through #correlated fit to two two-point func-

the smaller lattice spacings. tions. The lattice Ward identity then becomes
1.2
[ T | T ] LT T T ] Zy 1
r (a) ] (®) o —2p(PAV)= Z—(VV)—Z—<AA). (28
11p . 2k 5 & 3 A v
r o] ] .
ﬂf 1o % . n? o % x x x (I computedZ, for the local axial vector current; the Ward
C o x ] 3 ] identity for the improved current involves additional contact
osF 5 6 8 g = 08 E terms) As for the vector current, | evaluated the two point
- LS ] ]
. ] 0.6 =
0.8 bbb L S — TABLE VIII. Lattice 1/f, for the fat link clover action.
00 01 02 03 04 00 01 02 03 04
o o K Local Improved
FIG. 7. R"t from ratios of three point functionfoctagonsq 0.116 0.1622) 0.1592)
=0, diamondsq=(2/8,0,0), small plusses with circles at their 0.118 0.1812) 0.1792)
centersq=(2/8,27/8,0)] and two-point functiongfancy crosses 0.120 0.2089) 0.2013)
q=0, crosseq]=(2/8,0,0)]. () Hypercubic action(b) fat link 0.122 0.2364) 0.2354)

clover action.
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0.3
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T T T T 0.3 T T T T TABLE X. Lattice axial vector parameters for the fat link clover
©p (a) ©p (b) action.
Ow X Oow +
¢s%£x . ¢’%u<1 K afps zk fos/No  fps (MeV)
> <
Soer %x 1o &E&% 7 0118 0.138) 0851334 028313  1247)
® 04 0.120 0.1342) 0.87079(4)  0.28830 12713
vo ¥o 0.122  0.138) 0.87228)(4) 0.28012 1235)
0 0.895) 12210
0.1 ! ! L L o1 ! ! L L
00 02 04 06 08 1.0 00 02 04 06 08 1.0
(m,/m,)? (m,/m,)?

compensated for by going to a smaller lattice spacing. Both
FIG. 8. (a)_Vector meson decay constantsaat 0.18 fm from actions have vector and axial vector current renormalization
the hypercubic and fat link clover actions. Diamonds and Square?actors which are very close to unity

are the local and improved operator with the hypercubic action It is an n tion to m fo whether the h rcub
while the crosses and fancy crosses are the same operators with the S an opén question 1o me as 1o ether the hypercube

fat link clover action.(b) A comparison of 1, using improved action is a practical improvement over the simpler alternative
operators with the hypercubic actidorossej the fat link clover of the fat link cIover. action. The cost of the action is a factor
action (squarel and the nonperturbatively tuned thin link clover Of 17 per computation o= Ay compared to the usual clo-

action at=6.0 (diamond3 and 6.2(small crosses with circles at Ver action, with a gain that typically only half as many steps
their centersfrom Ref.[26]. of the inversion algorithm are required to constri¢ct'. The

fat link clover action[2] has all the gain with no additional
functions and the three point function with a sourceton cost. Of course, its kinetic properties are not improved, and
=0 and a sink on=y,=10. | used 40 hypercubic propaga- SO one must reduce the lattice spacing to improve the disper-
tors and 80 fat link clover propagators, taking the logal ~ Sion relation and scaling behavior of matrix elements. Heavy
from the forward current matrix elemefrightmost data col- — quark physics with the fat link clover action will suffer from
umn of Tables il and V. | only looked at three lighter quark the same kinetic artifacts as the standard clover action.
masses. Correlated fits to the appropriate two point func- A potential use for the hypercube action is to construct an
tions, Eqgs.(27) and a correlated fit extractingd|Ao|PS) ~ action which realizes the Ginsparg-Wils¢8W) action ex-
= fPSrnPSI produced the results shown in Tables IX and XaCtly That is an active area of resea{ﬁﬁ)], with most at-
The two errors orZ, are from the jacknife and from the tempts involving an iteration using the Wilson action as a
variation ofp andZy . | usea\/o=0.4049(37) from Reff1]  Zeroth-order action. The eigenmodes of a GW action lie on
to connect the lattice spacirgand string tensiow. In the ~ OF close to a circle. The thin link Wilson action and even the
last column, | quote a physical number using a nomifial qlover action seem to be poor 9h0|ces for a zeroth-order ac-
—440 MeV. A linear extrapolation to the chiral limit in the tion, because their free-field eigenvalue spectrum does not

quark mass produces the bottom line. The agreement witlp©k anything like a circle, and because their real eigenmode
experiment from the hypercube action for the pion seem pectrum in background instanton configurations does not

acceptable. Notice thai, shows a mild mass dependence °9k anything Iike_a step functiofrecall Fig_. 3. The fat link
and that, in the chiral limit, it is also quite close to unity. The Stifféns the real eigenmode spectrum on instantons. A hyper-

clover action shows a smaller mass dependence. In contra§tPe action like the one described here looks like a much

the nonperturbatively tuned thin link clover actidp from
the rotated operator is 0.79 at Wilson gauge aciion6.0
[28].

q

VI. CONCLUSIONS 2o

Few of the results shown here are surprising. The hyper- L o i
cube action is designed to show improved chiral and kinetic

properties, and it does. The fat link clover action has poorer v
kinetic properties, but in the small mass limit they can be

TABLE IX. Lattice axial vector parameters for the hypercube L -
action.

Mass afps zZh

0.1702)

fps/\/;

0.363255)
0.347560)
0.332655)

fos (MeV)

1603) 0
1539) 0 1 2 3
146(3)
134(6)

0.24 0.8651)(1)
0.16 0.1562)  0.9022)(2)
0.10 0.1472)  0.9162)(2)

0 0.9663)

FIG. 9. OptimumK defining the RT of the massive action.
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TABLE XI. Couplings of the hypercubic action used in this 6
work. The free action is parametrized As=\(r)+ivy,p,(r).

PHYSICAL REVIEW D 60 094501

A(r)

E(p)

Pl

Offset

1000 —0.0725 exp{-0.7092n— 0.0149n°)
1100 —0.0319 expt-1.007—0.0421n?)
1110 —0.0156 exp-1.123n—0.0803n?)
1111 —0.0080 exp-1.180m—0.1169n?)

po(r)

Offset

1000 —0.1819 exp{-0.9475n+0.0031m?)
1100 —0.0318 exp{-1.03Im— 0.0502n?)
1110 —0.00897 expf-1.017—0.1047m?)
1111 —0.00295 exp0.9307— 0.1633n?)

better choice, provided of course the cost of its use is less 0(;

than the gain in number of iteration steps.
Finally, dynamical fermion simulations with fat link ac-

tions still appeaf31] to require smaller levels of fattening

P P

FIG. 10. Dispersion relation for the “Gaussian™ hypercubic ac-

than are needed to substantially improve the chiral propertietion, at bare masg) zero, (b) 0.3, (¢) 1.0, (d) 3.0. The line is the
of Wilson-type actions. But for quenched calculations eithercontinuum expectation.
action seems to me to be superior to a thin link action.
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APPENDIX: BLOCKING OUT OF THE CONTINUUM

A particularly interesting choice of blocking kernel for

) blocking out of the continuum is the overlapping transforma-
| would like to thank Anna Hasenfratz, Tamas Kovacs,tjgn

and the members of the MILC Collaboration for useful con-
versations and C. Sachrajda and J. Skullerud for instructive
correspondence. This work was supported by the U.S. De-
partment of Energy, with some computations done on the
T3E at Pittsburgh Supercomputing Center through resources
awarded to the MILC Collaboration, and on the Origin 2000In my work, blocking out of the continuum was approxi-
mated by beginning with free Dirac fermions on a fine lat-
tice, making one RG step with a blocking factér8, and
TABLE XII. The hypercubic approximation to the FP field for blocking onto a coarse lattice of sizé Sites.
the hypercubic action used in this work. The field is parametrized as Truncating the action to a hypercube and requiring good

Offset

()

0000
1000
1100
1110
1111

Offset

0.1047+0.3287m—0.0639n°
exp(—3.4070- 0.6776n—0.0639n7)
exp(—4.2303-0.9708n—0.07609n°)
exp(—4.9495- 1.0860n— 0.1147?)
exp(—5.6120- 1.143—0.1509n?)

po(r)

1000
1100
1110
1111

exp(—2.4746-0.9156n— 0.09179n?)
exp(—4.2383- 0.994— 0.0846n°)
exp(—5.5061-0.9809n— 0.1388n?)
exp(—6.6218-0.8943n—0.1969n7)

FIG.

action.
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fit to the formsp;(m), )\j(m)=aexp(—bm—cmz) and the
on-site coupling was fixed using the functional relation be-
tween thep’s, \’s, and bare mass. If negative bare masses
are needed, | extrapolated exactly as described in [Réf.
The action is listed in Table XI. This is of course not a
unique(or probably even an optimaparametrization.

The free FP field was constructed by summing @, in
parallel with the FP action. Again, | truncated the FP field to
a hypercube and parametrized the “offset” terms exactly as
for the hypercubic action. These couplings are shown in
Table XIl. Both the action and FP field are made gauge
invariant by averaging the gauge connections over all the
shortest paths, exactly as in REf).

| show a few properties of the free field action: Figure 10
shows dispersion relations of the hypercubic action on a
large lattice, for several values of the bare mass. In Fig. 11, |

FIG. 12. 5(r), the scalar part of the free propagator, for the freeghow the eigenmode spectrum of the hypercubic Gaussian

massless “Gaussian” hypercubic actiGcrossesand for the Wil-
son action(octagons

action (with only the positive imaginary part of the complex
eigenmodes The eigenmodes of the FP action lie on a circle
of radiusK/2 centered at the poinK(2,0), and the approxi-

mate action tracks the circle closely. Finally, in Fig. 12, |

behavior for the resulting free hypercubic action leads to thelisplay the scalar part of the free fermion propagator,

parameter choice=0.2 andK =2.05. By beginning with a

A(r)*lzﬂ(r)+imaﬂ(r). The Ginsparg-Wilson relation

bare massn/F on the fine scale | constructed a renormalizedfor the propagator probes 1/2s,A(r) "1} =ysB(r). This is

trajectory (RT) of free massive fermions. The parametriza-

shown for massless fermions on arf 14ttice with antiperi-

tion and dispersion relation was well behaved out to veryodic boundary conditions. For the real FP actigB(r)

large mass ¢m=3.0). The optimunK fell smoothly with
increasingm, to a value of 1.0 atn= 3. This is shown in Fig.

should be proportional to a delta function at the origin. For
the hypercubic action it lies about 1-2 orders of magnitude

9. In the actual simulations, the hypercubic parameters werbelow the value of the Wilson action at all nonzero
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