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We analyze the premises of recent propositions to test local realism via the Bell inequalities using neutral
kaons from® resonance decays as entangled Einstein-Podolsky-Rosen pairs. We pay special attention to the
derivation of the Bell inequalities, or related expressions, for unstable and oscillating kaon “quasispin” states
and to the possibility of the actual identification of these states through their associated decay modes. We
discuss an indirect method to extract probabilities to find these states by combining experimental information
with theoretical input. However, we still find inconsistencies in previous derivations of the Bell inequalities.
We show that the identification of the quasispin states via their associated decay mode does not allow the free
choice to perform different tests on them, a property which is crucial to establish the validity of any Bell
inequality in the context of local realism. In view of this we propose a different kind of Bell inequality in which
the free choice or adjustability of the experimental setup is guaranteed. We also show that the proposed
inequalities are violated by quantum mechanj&0556-282(99)08219-3

PACS numbd(s): 03.65.Bz, 13.65ti

I. INTRODUCTION 1
@)= N

The quantum entanglement shown by the separate parts of 2

?e:\tcl)ﬂ];a%?rlzuzt:?ufnonr:\Z?:sr:fnisc:);Staer:Z Ii;sn ree)g;rtrl]elﬁepcicrﬁgacqirectly at thed-decay point into the °K? initial state. The
ful d ¢ devel " h y " utral kaons then fly apart allowing the definition by colli-
powerlul resource of new developments such as quantuif»iion of a left and a right hand beam. Along these two
teleportation and communicatidm]. On the other hand, ever b K tion tak | including O
since the paper by Einstein, Podolsky, and Ro&PR [2] €ams kaon propagation takes place, including
. O%CI”atIOHS anK, s weak decays.
guantum entanglement has been also a continuous source 0 o .
. . . It would certainly add to our knowledge if we could ex-

food for thought and speculation on the “spooky action at a,

dist " bett h terized locality in th | amine the nature of nonlocality using unstable, oscillating
Istance, - better characterized as nonlocality In the Correlag o5 g ch as these neutral kaons. Clearly, because of the
tions of an EPR paif3]. A useful tool to probe into this

A ' . . nontrivial time development of the states involved here, this
non-locality has been given to us by Bell in form of his Bell

) < s . P~ scenario is quite distinct from the usually considered Bohm
inequalities [4]. Related versions which a local realistic roformulation of EPR, even if the singlet-spin initial state
theory should satisfy are also known, namely, the Clauser—

. . o . 1
Hpme[S] and Wignel 6] |ne'quallt|es to which very often we 10,00=——[|+)&|—=)—|=)&|+)], 1.2
will simply and more generically refer to as Bell inequalities. J2
For a general review on this subject we refer the reader to _
Ref.[7]. is formally identical to the initiak °K° state(1.1) and, more-

The Bell inequalities have been subjected to experimentalVer, in both cases one deals with an antisymmetric system
tests with the general outcome that they are violé8gdi.e., ~ consisting of two two-dimensional components.
local realistic theories should be discarded and nature is in- However, as will be evident below, the derivation of the
deed nonlocal. However, loopholes in the tests have beeRell-like inequalities for unstable, oscillating st'ates requires
pointed ouf{9]. It is then understandable that there is a con-More care and a too close analogy to the spin case can be
tinuous interest to test Bell inequalities in different experi-m'SIead'ng'

. S Early attempts to check local realistic theories in kaonic
ments and, more importantly, in different branches of phys- . L . -
: . . ® decays used Bell inequalities involving probabilitie skt
ics. One such place which offers the opportunity to do

exactly this is the® resonance, £=—1 neutral vector and/orK® detecti(c))n define_% at different tim¢$1-13. The
meson decaying intk°K° pairs. Ane" e~ machine which is identification OfK. .versusll< IS not problemapc and can be

— performed exploiting their distinct strong interactions on
expected to produce a large amount of E_PR-entarigM nucleons. Moreover, the use of different detection times al-
pairs through the reactioa*e” —®—K°K® will be soon lows to fulfill a crucial prerequisite needed to derive Bell
operating in Frascafil0]. Because of th€=—1 nature of inequalities from local realism, namely, that different mea-
the ® meson the EPR entanglement of the neutral kaon paisurements corresponding to alternative experimental setups
can be explicitly written as could be alternatively performed over the measured system.

[1K%)®|K®)—[K®)®|KO)] (%)
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Unfortunately, it was found that this kind of firmly derived = The paper is organized as follows. In Sec. Il we discuss
Bell inequalities cannot be violated by quantum mechanicshe possible kaon-state observablesbirresonance decays.

due to the specific values of kaon parameters such as thei¥e show what condition has to be put on the kaonic qua-
masses and decays widtfsee Ref[12] for similar investi-  Sispin states in order to be able to extract the probabilities to
gations in theB-meson syste identify such states. A formula which determines such prob-

Recently, there has been a renewed interest in this subje@pilities from observable quantities is given. In Sec. Ill we

[14—21. The idea in Refs[14,15,17 has been to drop the discuss several Bell inequalities previously suggeste_d by
“different time” Bell inequalities in favor of the identifica- Other authors for entangled kaon pairs. We argue that in the
tion of what are called “quasispin” kaon states. These are?nalyses already performed reporting violations of the in-

essentially arbitrary superpositions of the twd and K° gqualities.by quantum mechanics, the exp_erimental verifica-
y y superp tion of this violation would not necessarily exclude local

basis states|K )= a;|K% +ap|K® with |a;|*+|ay?=1, realistic theories as the proposed inequalities are not a strict
defined in close analogy to the spinors in the spin case. Theonsequence of this kind of theories. In Sec. IV we derive
results look also quite encouraging in the sense that ongur new Bell inequalities which do follow from local realism
could show that these Bell inequalities for kaons are violateénd show that they are violated by quantum mechanics. Sec-
by quantum mechanics. However, as we will show in thistion V summarizes our results.

paper, there are several drawbacks in using this quasispin

analogy. First of all the identification_of such quasispin kaon II. QUASISPIN OBSERVABLES IN NEUTRAL-KAON

states is problemati@xcept fork® vs K, as just mentioned DECAYS

and has not been addressed in full satisfaction so far. Indeed,

it is not possible to observe such states directly. An indirect We start our discussion by quoting some elementary defi-
method, using a theoretical input and direct observable exditions regarding neutral kaons and the properties and time
perimental information, seems to be the only way to extracevolution of K°-K® pairs from ®-resonance decays. The
the probabilities to find specific quasispin states. We believ€ P= =1 eigenstate& ,,, are defined by

that we have found such a method, which is an interesting

result in its own respect. However, this is still not sufficient 1 _

to derive Bell inequalities for these states in the context of K12y = E[|K0>i|KO>] 21

local realistic theories. The reason is that the indirect identi-

flcatlc_m m_ethod_ m_entloned ab_ove IS o_nly poss_,lble by a PMO%nd the mass eigenstatf§g, ) in terms of Ky, and the
identification(this is the experimental informatipof decay CP-violation parametek are

products of the unstable kaons. As previously stated, the the-
oretical derivation of any Bell inequality requires, as starting

assumption, that the experimentalist has free choice Kg)= ;HKl)"_ €|K)]
among several different testsuch as adjusting the different V1+]€l? ’

directions of spin analyzers in the case of spin or the corre-

spondingly different detection times &P and/ork® in Refs. 1

[11-13), the other inherent properties of the states being |KL) = =—==5[IK2)+ €e[K)]. 2.2
fixed by the assumptions of local realism. This is crucial to 1+]e]

derive Bell inequalities and is often forgotten in the formal-
ism. This possibility of experimentaiterventionis not guar-
anteed if the quasispin is determined by identifying the de
cays products. We have no possibilities of choice or
intervention in this situation neither on the decay time nor on
the decay channel. Therefore several of the suggested Bell .

inequalities for neutral kaon pairs fail in their derivation )\S/L:msn__l_rs“_, (2.3
from local realism which they are supposed to test versus 2

guantum mechanics.

In view of this unsatisfactory situation we propose a newWith mg, andI's, being the mass and width &fs andK,,
type of Bell inequalities for entangled kaons produced inrespectively. This reverts into the corresponding time evolu-
®-resonance decays where the free choice is indeed guarafien for the initial two-component kaonic systefh.1)
teed in terms of the possibility of installing different “regen-
erator” slabs along the kaon flight paths. These thin slabs— N
which are essentially those used in neutral-kaon regeneration [®(0)) = [®(ry,72))= EHKS( 7))@ |K(72))
experiments—are characterized by adjustable parameters
(such as their thickness and nucleonic dengtys mimick- —KL())®|Kg(72))], (2.9
ing the different orientations of the analyzer in the analogous
spin case. Using such an experimental setup, we can themith |N|=(1+]|e|?)/|1—€?|=1. The arguments; and 7,
show that quantum mechanics predicts a violation of theseefer to the proper times of the time evolution on the left and
Bell inequalities. right hand sides, respectively. For simplicity we restrict our-

The proper-time £) development of these nonoscillating
mass eigenstates is given by

[KgL(m))=e" s Kgy ),

094008-2
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selves to theCPT-conserving case as the arguments we pund betweerk ; and K. It is a well-defined probability

forward are independent of aryP T violation. which can be computed exactly in the same way as the cor-
Using Eq.(2.4) one can immediately construct a double responding one in the spin-singlet case. Indeed, this latter too
decay amplitude for weak kaon decays of the f¢@2| is obtained by simply projecting E¢L.2) on the basis states
defined by the spin-analyzer orientation. There are however
i three important differencesi) our P(K,,7,;Kg,7)’s are

A(fy,m:f5,7m)= \/§[<f1|T|Ks( T))(F2 TIKL(72)) not constant butdoubly) time-dependentjii) because of the

kaon instability, the probability normalizations are also dif-
—(F4| TIKL(m) ) f2| TIKs(72)) ], ferent and a unifying “renormalization prescription” will be
(2.5) proposed at the end of this section, and, more importantly,
(iii) in the spin case the probabilities are directly measurable
whereT is the transition operator arfg denotes the various Wwhereas in our kaon quasispin case they are(extept for
Ks andK, decay modes. The normalization of this doubly K°—K?9), the directly measurable quantities being the joint
time dependent decay amplitude is such that decay rateg2.8).
The convenience of working with these just defined joint
- - . 2_ probabilitiesP(K ,,7;;K 4, 7,) has already been noticed by
fo dleo def%:z Aty mifa )"=1, (26 other authorg14,17,. Benatti and Floreaninf17], for in-
stance, based their recent analysis on what they call “the
where the summatioX¢ ¢, includes also the phase space ‘double decay probabilitiesP(fy,7;;f,,7,) , i.e., the prob-
integralsfdph(f,),/dph(f,) which we define by abilities that one kaon decays into a final sthieat proper
time 71, while the other kaon decays into the final sthfeat

roper timer,.” In their formalism (see below, Refd.17
PKer—h)= [ dphDKITIRgO @7 Brengiimers b ( 117)

Note thatA in Eq. (2.5 has different dimensions for differ- P(fy,71:f0,7)=TH(O;. @O )pe(711,72)], (2.10
entn-body final states. It is then certainly useful to construct ! 2

the joint decay raté'(fy,1;f2,7,) given by[22] wherepq(71,7,) is the density operator corresponding to the

2 two-kaon state in Eq(2.4) and Oy, and Oy, are projector
F(flyTl;f2772)EW(flyTl;fz,Tg) matrices describing each single kaon decay ihtand f,
T872 normalized by TO; =TrO; =1. The same authors cor-
] rectly stress that theiP(f,,71;f,,7) are not decay rates
Ef dph(fl)f dph(f2)| A(f1, 7132, 7). and, in spite of calling thleml“dzoul:z)le decay probabilities,”
2.9 one can easily convince onesfite also our analysis below
: leading to Eq(2.17)] that theP(f,,71;f,,7,)’s in Ref.[17]
This is a doubly time-dependent decay rate into both thélefined by Eq(2.10 coincide with ourP(Ky , 71 ;K 72)’s
specific decay modg; on the left beam at the timg andf,  defined by Eq(2.9) once the kaon quasispin stat€s and
on the right one at the time,. The way this joint decay K, are associated to the specific decay mofiesand f,,
rate—or joint decay probability densityin two timeg—is  respectively. The essential problem—a problem which is too
constructed makes it independent of the momenta of the dexaively addressed in Refl17] and not satisfactorily solved
cay products and, much more important for our discussion,24]—is then that these theoretically well-defined probabili-
I'(f,,71;f,,m) is a standard, fully measurable quantity at aties P(Kfl,rl;Kf2,72)= P(f,,71;f,,7p) are not directly
o factory. measurable, as we have already discussed. A relation be-
Had we asked, at least formally at this stage, for an obtween the latter probabilities and the truly measurable decay
servable to find a given kaon quasispin statg)=a1|K®)  ratesI'(f,,7;;f,,7,) defined in Eq(2.8) is therefore highly
+a,|K®) on the left andK z) (defined correspondinglyon  desirable. A first attempt along this direction has been pro-

the right, we would have to calculate tf@nt probability posed and briefly discussed by Di Domenico working in a
similar context[14]. However, some improvements are re-
1 quired to definitely establish such a relation as we proceed to
P(K,,71:Kg, 1) =] E[<Ka|Ks( )N KglKi(72)) discuss in the following paragraphs.
Our first step is to define the orthogonal basis containing a
_<Ka|KL(Tl)><KB|KS( 72)>]|2, specific kaon state associated to the physdicel, really oc-

curring f-decay mode
2.9 9 y
More preciselyP(K, ,71;Kg,7,) is the probability of find- IK,)= 1
ing both anundecayed K on the left atr; and anundecayed f [lag|>+|bs|?
K on the right atr, in a hypothetical experiment being also
able to distinguish betweeli, and its orthogonal staté,  and its orthogonal counterpart

[ag|Ky)+b¢Ky)] (2.11)
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- 1 - - 1 . i
[Kp)=——=——=lardKp) +beK3)], (212 A(fy,715f5,70)= E[a&aue Ms7ieT M T(f|TIK )
|ag|?+[by|?
. = . o~ ~ X(f2|TIK+,)
with (K{|K;)=0. We fix the coefficient®; andb; by de- _ _
manding[25] —a jage Mre T hs(f | T| Kf1>
(fITIK)=0. (2.13 X(f2 TIK )] (2.19
The unique solutiorfup to a phasereads Then, using Eqs(2.8), (2.9), and(2.19 one can easily con-
_ clude that
R — KK
Ki)= — ——[T{|K)+ K], 1 e
by V1+[r¢? ' F(f1,71;f2,72)25|351a|_29 Msmig™ A T2
ay 1 —apjagpe” Me s T (K —fy)
Kp=r————=IIK)-T{IK], (214
|af| ,/1+|’Ff|2 XF(KfZ_)fZ)
with =P(Ky,,71;Ky,, 72)[(Ky, — 1)
N XT(Ks.—fy), (2.20
= _a_ (fTKy) 215 fa 772
T (fITIKY ' where

It is now easy to check the following identities:

DK== [ dpht (K, TI)
KoKl =pk,= O,

:f dph(fy)|a&(KgT|f)

+af (K TIf)]? (2.2

[Ke)(Ki|=pr,= 0%,

|K(Ke|+ [Ke) (K| = 0+ 05=1. (2.16 .
and the smallness of the mass differenten=mg—m_
From these equations and E¢8.9) and(2.10 one immedi- makes possible the use of the same phase-space factor for the

ately obtains two terms in the integrand of the latter expression.
As a result of the algebraic manipulations in the last two
P(fy, 712, ) =T O, ® Or ) pa(71,72)] paragraphs, we can now take the joint decay rate
I'(fy,m;fy,m) from experiment and, quite independently,
=P(Ks, 715K+, 72), (217 we can also calculate (K¢ —f1/) via Eq.(2.21). As an-

thus justifying the previously announced identification of nounced before, one thus obtains jbit probability

P(fy,71:f2,m) from Ref.[17] with our P(K; ,71;K¢ , 75) [(fy,71:f0,7)
in Eq. (2.9). Note also that the last equation in E8.16 is P(Kt, 713K, m2) = T(K; )L (Ky —1,)" (2.22
the correct unitarity sum for undecayed kaon states. ! 2

Our second step consists in expanding the physically deryis equation is the desired connection between the simple
cayingKs andK states in two of the orthogonal bases just ;4 easily interpretablint probability P(Kfl:Tl;Kfszz)

introduced Ky, andKy, with f;=f, andf,. One thenhas 5. the measurabjeint decay ratel'(f,,7;:f5,7,). A for-
mally identical equation can be found in the analysis on the
same topic performed by Di Domeni¢4], but our expres-

|Kg)= \/ S~ 2[a81/L1|Kf1>+a31/L1|Kf1>]’ sions(2.21) for F(Kfl—>f1) and the corresponding ones in
|asia|*+ |2l [14] are, unfortunately, not the same. Notice also that our
procedure to extract the probability(Ky ,71;Ky,,72)
IKgi)= [aszlL2|Kf2>+552/L2|Rf2>]- strongly relies on a theoretical input in form of the condition

(2.13), wheref refers exclusively to physical, realisti€g,
(2.19 decay modes. In other words, the same pro_cedure would not
work for anarbitrary superposition oK° andK®, because a
Using Eq.(2.13, we can now rewrite the double decay am- relation, as established in E@®.22), between Eqs(2.8) and
plitude (2.5 as follows: (2.9 does not hold in general.

\/| ason 2|2+ [ason 2|
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Strictly speaking, this means also that probabilities such P(—, 71—, ) =P(K% 7 ;KC, 7,) + P(K® Tl.go )
asP(Ky 71Ky, m2) or P(K ,71;Ky,,75), involving one or

two kaon state&;, cannot be extracted by the same method. +P(K, 715K, 1) + P(KY, 71K, 75)
However, we can do that in a different way using a certain (2.2
approximation. Let us first introduce the notion of “any,” ) o )

i.e., the probability to detect any of the two basis states oS &n obvious generalization of E(.23. Equation(2.24

one of the two sides and a specific state on the other. Wi€ans that we have “renormalized” the probabilities not to
have the total number of decay events, but to the restricted set of

decays happening at the timeg and =, and covering the
~ four possible outcomes associated to any given pair of
P(—, 71Ky, 72) =P(Ky , 71Ky, 72) + P(Ky , 71Ky, 72) dimension—2 orthogonal bases, as exemplified in(E@5.
_ From Eq.(2.295 one can easily compute
=P(K®71;Ks,,72) + P(K?, 711Ky, 75),

(2.23

P(=, 7= mp)=e V2ILITImT)

1
where the bar denotes that we have summed over the two XCOS*{Z(FL Toln=r)),
possible orthogonal outcomes on the left hand side. Similar (2.26
definitions hold of course for the right hand side and for both ’
sides, i.e.P(—,71;— 7). It should be clear that Eq2.23  \here small terms of ordée|? and higher have been safely
does not depend on the choice fafon the left hand beam neglected. This allows us to cancel the spurious time evolu-
and therefore we can replagg, by K°, as done in the sec- tion induced by decays in the(K; , 71;Ky,,m2)’s defined by

ond line of Eq.(2.23. In the excellent approximation of the Eq. (2.9) and the newp(Ky,,71;Kr,,7)’s turn out to be
AQ:AS _rule, we have <7T+| _V|T|KO>:0 and S|mp|y normalized by

(771" v|T|K® =0 thus fulfilling in both cases a condition B

like that in Eq.(2.13. Thanks to this, both probabilities in  p(—,71;—,72) =p(K¢,71;—,72) +p(K¢, 71, —,72) =1

the second line in Eq2.23 can be extracted via E§R.22).

This obviously allows the subsequent computation ofin such a way that the similarities between these
P(Ki,,71:K¢,,m2) through Eq.(2.23. In other words, the P(Kr,,71:Ky,,72)'s and the corresponding ones in the con-
basis consisting of the two strangeness eigenstéfeand  ventional spin case cannot be increased any further. This
KO is exceptional not only in that these two states can be(enormalization is not an essential point in most applications
unambiguously detected using their distinct strong interacQ'c I_3e|| |n_equaI|.t|e§ fqr unstab!e systerf@ﬁ], but exceptions,
tions in nucleonic matter but also in that B@.22 can be which without insisting on this point lead to contradictions,

— . . can be shown to exist.
used to measure th&° or K°-detection probabilities
through their associated semileptonic decay moses* v

or wtl v, respectively. For another basis, such as that con-

sisting of K; and K associated to thédecay mode, prob-
abilities involving K; detection can be similarly measured  In the last section we derived a formilaq. (2.22] and a
via Eq. (2.22 but those foer—detection require the use of “renormalization prespnptmn” which yleld§ the prqbablllty
Eq. (2.23. Finally, for bases consisting of “quasispin” P(Ki, 71:K+,,72) provided we have experimental informa-
states not linked to an specific, realistic decay mode none dfon on the direct measurable quantify(f,,r;f,,7,) de-
the probabilities seems to be measurable. fined in Eq.(2.8) and we impose on the kaon states the
Let us also mention that in order to formulate Bell in- crucial condition(2.13) for the physicalf; , decay modes. It
equalities for unstable two-component systems such as k&hould be noted that quite a lot of a theoretical input is re-
ons, P(K¢ ,71;Ky,,7m5) is not, strictly speaking, the most quired to arrive at the probabilitigs(K; ,71;K¢,, 7). But,
suitable quantity. The reason is exactly the instability of theapart from that, it might appear that these probabilities—so
components under consideration which superimposes an iglose to those appearing in the spin case—could be sufficient
relevant time evolutioridue to weak decaydo the relevant to establish well-defined Bell inequalities fdr-resonance
one (due to quasispin oscillationsThe suitable observable decays into neutral kaons. This is, unfortunately, not the

lIl. BELL INEQUALITIES FOR  K%K° SYSTEMS
IN ® DECAYS

for unstable and oscillating states is Ky ,71;K¢,, ),  case. To understand this point, we best compare the Bell

but rather inequalities for the usually considered singlet-spin state with
the ones suggested in Ref$4] and[17] for entangled kaon
pairs.

P(Kt, 71K, ) =P Ky, 713Ky, ) [P(=, 71—, m2), Let A=aa’,... (B=b,b’,...) be the set of theari-
(2.24 ous directions among which we cahooseto measure the
polarization of the spin one-half subsystem coming from the
where initial spin-singlet staté1.2) and propagating along the left

094008-5
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(righty hand beam. Lets;, with s== and i p(s,;s,)..=0, for the singlet state which is not only the
=a,a’,b,b’ ..., be thevarious possible outcomes of these obvious quantum mechanical prediction but also a well-
measurements in units @f/2. Following Redheadl27], any  tested experimental fact. This requirement, however, restricts
(i.e., deterministic or nondeterministitocal realistic theory the derivability of Wigner inequalitieg6] only to determin-

can be shown to satisfy the following equation istic theories; indeed, if perfect anticorrelation is imposed in
expressions analogous to the first one in BR) the various
P(Sa,Sb . N)ab=P(SalN)aP(Sp|N)pp(N), (3.2 conditional probabilitiegp(sa/\), and p(sp|\)p turn out to

be either zero or one and, therefore, any stochastic local re-
where p(s,,Sp,\)ap refers to the joint probability for the alistic theory collapses into a deterministic disee Ref[27]
singlet(1.2) to be emitted in a given state fully characterizedfor details.
by the set of hidden variables [28] and to produce the There exists a more general derivation of the inequalities
outcomess, ands, when measuring the spin one-half pro- (3.4) and (3.5 which fully takes into account “new” pos-
jections along a and b. Obviously one also has sible hidden variables associated, in principle, with the mea-
P(Sa+Sp.N)ap=P(Sa;SplN)app(N). Here and in the right s_uring apparatug30]. We note here_z _that this genera_l situa-
hand side of Eq(3.1), the notationp(X|Y) is reserved for tion leads to the same Bell inequaliti€®4) and(3.5). Since
conditional probabilities, the first and second argumesyts later we will use Bell inequalities with kaons traveling in
ands, refer to the left and right hand beams, respectively,@bsorbers* we W!|| m_Sec. IV give a derlva_\tl_o_n similar to that
and p(\) is the probability distribution for the two- I Ref. [_30] consudermg the ge.neral possibility of extra hid-
component system being emitted in the stataith the ob- den variables in connection with these absorbers.

vious normalization/ d\ p(\)=1. Equation(3.1—often re- Let us also note here that a more detailed notation for
ferred to as the “factorizability” rather than “locality” P(Sa)a [and, similarly, for p(sy),] would be p(s,.-)ap
condition, as discussed in detail in Ref&7] and [29]—is where the center dots denotes, as the bar in Sec. Il did, that

also equivalent to the locality condition used by Clauser an he two possible outcomes, on the right hand side have

Horne in Ref.[5] to derive their general class of Bell in- een integrated out. We can then eri]esa")"":bE P(Sa.
equalities. +)apt P(Sa,—)ap- This makes then contact with the nota-

The derivation of these Bell inequalities proceeds by relion of Sec. Il which we will also continue to use. The local-

quiring that the observed probabilities correspond to an ayly condition establishes thap(sa)a=P(Sa.")ap=P(Sa.
erage of thex-dependent probabilities via )ap is independent from the distant orientatiof’ - - - .
In purely formalanalogy to Eqs(3.4) and (3.5 we can

now derive Bell inequalities involving our previously dis-
p(sa;sb)a,b:fd)\P()\)p(SaD\)ap(sz\)bu cussed kaon identification probabilitigs(K; ,71;Kr,,72)

(2.24). Each probabilityp(s,;Sp)ap in €xpression$3.4) and

(3.5 can be substituted by a corresponding
P(Sa)a= | dNp(N)P(SalN)a, p(Ks.:K k. + k. -, where the two dichotomic arguments
EARRIA FEEE RN P
kfi are assumed to take the vaqu;r— + or — according to
D(Sb)bzf dAp(N)p(Sp\)p- (3.2 the identification of the “quasispin” state asfi or its or-
thogonal stater(fi. Reverting to the notation introduced in
A generaI_BeII-type inequa!ity follows then from the simple Sec. 11, one thus has p(Kfl,Tl;Kfz,Tz)EpH;
mathematical theorem stating that = )
+)Kf1,71;Kf2,72, p(Kfl’Tllez’Tz)Ep(_I—'_)Kfl,’rl;Kfz,Tz’
X1X2 ™ X1XgqF XXz X3Xg < X3+ X2, (3.3  .... Using the shortest notatiofmuite in line with that in

Refs.[14] and[17]), the Clauser-Horne inequalif.4) can

provided that B=x;<1 [5]. Translatingx;x; into product of be rewritten as

probabilitiesp(sy/\) 4p(Sp|\)p, Using then the factorizabil-

ity condition (3.1) and finally integrating ovek one gets p(Kfl,rl;Kfz,Tz)— p(Kfl,rl;Kf4,7-2)+ p(ng,’Tl;Kfz,’Tz)
P(Sa;Sh)ab— P(Sa;Sa)adt P(Sc;Sh)cb™ P(Sc;Sd)cd +p(Ky, 71Ky, 72)
<p(S.) e+ P(SHp, 3.4
p( C)C p( b)b ( ) Sp(KfSaTl;_17'2)+p(_,7'1;Kf2|7'2)-
which is the well-known Clauser Horne version of Bell in- (3.6
equalities.

. . . . and a series of equivalent expressions obtained by replacin
Alternative versions of Bell-type inequalities can also be q P y rep g

obtained. Possibly the most simple and best known is due tgN€ Of severalK; by K consistently everywhere. The
Wigner [6]: Wigner version of Bell inequalities corresponding to Eq.

(3.5 restricts now to the equal time casg= 7=, and can
P(Sa:Sh)ab=P(Sa;Sc)act P(Sc:Sp)ch: (3.5  be immediately written as

which follows from identifying two of the four orientations P(Kr, 7 Ke, 1) <p(Ky,, 7 K¢, 1)+ p(Ke 7K, 7).
in Eqg. (3.4 and requiring the perfect anticorrelation, (3.7
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As discussed in E417], this simple expression follows also of the experimentalist, as happens when dealing with decay
from the most general on@.6) by making the replacement modes and decay times of freely propagating unstable par-
Kfl_>Rf1 after having identified ,=f,, 7,=r,=7 and im-  ticles. In other words, a particular kaon decay mode or decay

posing p(Kfl,r;Kf4,7)=O. But the previous considerations instant is “contained” already in the “set of instructions”

concerning this last requirement of perfect anticorrelation reparametnzed by and, in general, there is no possibility for

duce the derivability of Eq(3.7) only to deterministic local 2 '¢@l choice allowing to establish Bell inequalities.
realistic theorie$27]. We are now in the position to pursue our discussion on

One could argue that theurely formalanalogy between the aqalyses rgcently .p_erformed by several authors trying to
the singlet-spin and the kaonib-decay cases discussed in establish Bell mgquahtles for entangled neutral-kaon pairs.
the previous paragraph is broken by the different role playedVe have reconsidered most of the arguments put forward by
by the time parametés). This is only partially true. In both Benatti and Floreanir{i1 7] and, formally speaking, we have
cases time plays a fundamental role because the real riddle #ached their same generic Bell inequalitids}) and(3.5).
the “spooky action at a distance” in quantum mechanicalThese authors then concentrate on the Wigner inequalities
entanglement is the apparent possibility of causally connect3.5 written also at equal times and specified to kaon qua-
ing spacelikeseparated events. To make sure that kaon decasispin states associated to thé =—, #%#°, and= | * v (or
events on the left are causally disconnected from the events*| =, in a second inequalilydecay modes. Since the dif-
on the right we have to impose the conditian+Xx,/|t,  ference between the charged and neutral two-pion decay am-
—t;/=1, wherex; andx, are the distances traveled along plitudes is proportional to the phenomenological parameter
the left and right sides, respectively. Using the semiclassica’ (which is a measure for dire€@P violation), one obtains
relation x=Bct, which makes full sense to use for kaonsthe Bell inequality |[Re(e’)|<3|e’|2. This inequality can

from ® decaydq31] where=0.2, we get clearly be violated by smaibut not vanishingvalues ofe’,
which are quite compatible with present day experimental
1-8 t; 1+pB data. Formally, we fully agree with all these results found in
1+'3$ gg 1-8 (38  Ref.[17] (see also Ref[33]). In our opinion, however, the

inequalities in Ref[17] do not follow strictly from local
realistic theories: the required possibility of intervention by
the experimentalist allowing a choice among different mea-
eyurements is not there if one simply detects decay events, as
§i|scussed in the previous paragraph. The same remark ap-
plies to the detailed paper by Di Domenicst], where simi-

where equal times are explicitly stated, are in perfect anall-ar W:gne(; 'n.qual_';'ﬁirt'r?t nect:)(_assarllyltat eqt_ual times h)erg :
ogy. The situation is different for the Clauser-Hore in- '€ @IS0 CErived. The three binary aternatives proposed in

equalities(3.4) and(3.6), where the explicit time dependence this case, consist in identifying® vs K° (assuming theAS
of the latter allows for thea priori interesting possibilites =AQ rule for semileptonic decaysK; vs K, (via two-pion
first explored in Refs[11-13 (see, however, our comments decays in the limite’ =0) and a third quasispin staf’es VS
below). its orthogonal counterpart. The latter identification is
Having noticed somepurely formal analogies we now achieved through a clever trick based on regeneration phe-
turn to analyze a profound difference between the two casesomena which has inspired our present treatment of the sub-
we are considering. Whereas in the singlet-spin case the dject (see next sectionbut the required possibility of choice
rections of the spin—analyzers can be adjustddeatwill by  is not contemplated.
the experimentalist who can choose amohga,a’, ... To further convince the reader that there is real trouble in
andB=b,b’, ..., thedecay mode in the kaonic case is not the Bell inequalities proposed in these two papers let us also
an observable we have any freedom to choose or adjust. It guote a previous analysis by Bidi6] in which the necessity
important to insist that this freedom to choose among differ-of active choice or intervention by the experimenter is ex-
ent tests to be eventually performed on the physical system @licitly emphasized. Indeed, the inequality proposed in Ref.
crucial in the context of local realistic theoriésee, e.g., [16]involving also three binary alternatives is essentially the
Refs.[16,27,33, and our discussion aboken these theo- same as in the previous two analyses. However, the possibil-
ries, the behavior of the physical system is contained in théty of identifying the “third” quasispin direction, a possibil-
set of its hidden variables. Whatever onechooses(pro- ity attempted only latter by Di Domenidd 4] and improved
vided a choice exisjsto measure produces an outcomein the present paper, is simply not contemplated. Because of
which was somehow “inherent” in these hidden variablesthis, rather pessimistic conclusions were reached in Ref.
“instructions” telling the state how to react under each pos-[16]. Similar comments apply to the recent analysis by
sible choice. If alternative experimental measurements on Bchiyama[15]. Again, the requirement of intervention by
single system are admissible, the corresponding probabilitiehe experimentefchoosing two measurements among three
for these alternative choices with their different possible out{ossible optionsis stressed, but a new problem appears: the
comes are assumed to exist and a Bell-like inequality can imeed to discriminate between the two mass eigenstaies
principle be established in terms of these probabilities. HowK . From the theoretical point of view, it is not obvious how
ever, this is not possible if there is no free choice on the sidéo compute the correspondig; andK, detection probabili-

which is symmetric irt; /t,. Fort, andt, obeying Eq.(3.9
and, in particular, fort;=t, there cannot be any classical
communication between the two events. Equal times are th
the most convenient choice and the two Wigner inequalitie
(3.5, where equal times are tacitly assumed, and (Bd),
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ties since these two states are not orthogoftey K, )#0,  nating test is not possible. Suggestions such as those in Refs.
due to CP violation [34-3§. Indeed, naively computing [14] and[17] have, in principle, two drawbacks. One is the
these probabilities by the usual quantum mechanical projeextraction from experiment of the probabilities entering the
tions overKs or K states can lead to paradof@—37 and  inequalities, the second one is the impossibility of having the
to curious effectd38]. Experimentally, discriminatin&Ks  required free choice to perform different tests aiming to iden-
from K seems also not feasible and the possibility of decid+ify the different quasispin statés; . Although the first point

ing that we have a purk beam by waiting long enough has already been clarified in Sec. Il and found that the rel-
until the “short” component died ouf14,18 would not  eyant probabilities can be extracted in an indirect way, the
work either in our case. Indeed, comparably large times, iMgecong criticism still remains a defect of the suggested tests.
posed by the spacelike separation condit8i®), should be  her related suggestions use in their computations of the

used also on the other side beam thus producing an almogf,antym mechanical probabilities the projection method

complete depletion of coincident counts. ; :
. over Kg, states which, on account ¢Kg/K,)#0, is not
We have repeatedly argued above that the experimental St K |K,)

L ) ) L without ambiguities[36]. An asymmetric ® factory is
violation of a Bell inequality would not necessarily signal a )
breakdown of local realistic theories unless the possibility Oineeded for other tests, as proposed.m RHﬂ but unfortu-
active intervention in the corresponding experimental setulf)1atGIy such a factory will not be available in thﬁ near future.
is guaranteed. However, as explicitly indicated by the argu- It is worth noting in this context that thik®-K°® system
ments of Eq.(3.6), each side of our neutral kaon EPR con- from ® decays is one of the most interesting entangled sys-
figuration is characterized ky) a kaon quasispin staté; (or  tems presently available to test quantum mechanics. We have
its associated decay produidt and (i) a time variablet (or  here unstable and oscillating states. In addition, this system
proper timer). Therefore the observables entering these inis up to now the only system to displ&/P violation; indeed,
equalities can be varied in another way. Indeed, in Refsthe results in Refd.15] and[17] are seemingly related to the
[11-13 differenttimesinstead of different states were used. C P-violating parameters ande’. It is therefore an interest-
Note that now the freedom of choice, quite independent froming challenge to search for a Bell-type inequality which on
the hidden variables themselves, is indeed given in terms ahe one hand is a clear consequence of local realism and on
the possibility of having differenk® vs K° detection times. the other hand could be violated by quantum mechanical
The Clauser-Horne inequalities following from the locality predictions. Below we will present such an inequality.
condition can be derived in the same way we reached at Eq. Instead of using different quasispin statesin the prob-
(3.4). For instance, and with an obvious and simplified nota-apilities, as in Eqs(3.6) and (3.7), or different times, as in
tion, they read11] Eq. (3.9, we propose to exploit the possibilities that one has
to modify by free choice the propagation conditions along
one (or both kaon flight patlis). This can be done by intro-
ducing appropriate kaon ‘“regenerators” or ‘“absorbers,”
i.e., thin slabs of nucleonic matter with adjustable character-
_ istics, which produce “quasispin rotations” in the state of
<p(—,71;K% 1) +p(K®, 75—, 7)) (3.9  the neutral kaons passing through. Such an “active rotation”
) ) ) — — of the states has the same effects as changing the spin-
and remain valid when replacinig®—K®, or K%—K®, or analyzer orientation from, saw to a’ or countingf rather
both K°—K® [see also Refl12] for a generalization of Eq. than f’ decay modes. Over these modified states we then
(3.9)]. It is worth pointing out again that the stat¢%/K® are  need to detect kaon eigenstates only isiagle quasispin
directly detectable through their different strong interactiongdirection, the most convenient one being obviously that dis-
on nucleonic matter too. High-density detectors could theRjnguishing K° from K°. Indeed, these strangeness eigen-
be placed at conveniently choséme-of-flight) distances  giates can be identified both by their distinct decay modes, as
from the production point. Unfortunately it is then found in eypiained in Sec. II, or by their different strong interactions
Refs.[11] and[12] that quantum mechanics does not violate oy nycleons in a detector, as indicated above and explicitly

these firmly established inequaliti€3.9) involving directly emphasized in Ref13]. As we can guarantee now a clearly

p(KOI T ;KO, 72) - p(K01 T ;KO, 74) + p(K01 T2 ;KO, 73)

+ p(KO! T2 ;EO, 7-4)

measurable probabilities of finding’-K® states. free intervention of the experimentalist—who can adjust the
parameters for different propagation conditions translating
IV. NEW BELL INEQUALITIES FOR KO%-K° SYSTEMS into different “quasispin rotations”—the resulting Bell in-
IN ® DECAYS equalities reflect clearly the requirements and consequences

of local realistic theories. However, the question whether
In view of the discussions in Secs. Il and IIl, the situation guantum mechanics violates these inequalities remains to be

of testing quantum mechanics versus local realistic theOfieFﬁvestigated.
using K°-K° pairs fromd®-resonance decays is quite unsat- In order to do this, we will restrict ourselves to the equal
isfying. The inequality(3.9) is a correct derivation of local time situation7,=7,=7 which ensures that the spacelike
realism, but as shown in Refsl1-13, quantum mechanics separation of events is automatically fulfilled. We can estab-
will not violate this inequality due to the specific values of lish a complete analogy to the singlet-spin case in form of
the neutral kaon parameters. Hence, performing a discrimithe inequality(3.4—or, equivalently, Eq(3.6)—by writing
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; v v - ; 14 14 + ; 12 v
P12y 2™ P KE) 0y DK K2, p(xl.xznl,yfj dxme dxlpmlx)pul,vl,x,xﬂ}

+p(K3;K4)I/3,V4
X

f d\op(No|N)p(Kp, 2, N Np) | (4.5
Sp(K3;_)1/3—‘r_p(_;K2)1/21 (41)
The two “bracketed” factorg fdX\;- - - ] in the second equa-
where p is again a\ averaged probability as befora; tion in Eq. (4.5 and the single one from the firsF line in Eq.
stands for eitheik® or K° detection andy, refers to the (4.5 play the role of the two and singbefactors in the left

physical characteristics of the different absorbers that the ex@d right hand side of the usuainequality (3.3) from Sec.

perimentalist can introduc@r not, »;=0) along the patfs).  !Il- One then multiplies byp(A) and integrates oved\ to
The Wigner version of Bell inequalities can be obtained a®Ptain Eq.(4.1). Equation(4.2) follows by simply restricting
before(see also Ref[39]) to equal times and perfect anticorrelations. Hence we arrive

at the very same inequality as in the standard treatrfsest
Ref. [28]) with Bell inequalities in form of Egs(4.1) and
(4.2) arising in the context of very general local realistic
L . theories.

which IS simpler and _Ie;s general than E4.1), as previ- Before exploiting the inequalit{4.2), we have to examine
ously discussed, but it is also the most convenient for Ou[)riefly the regeneration of neutral kaons in homogeneous
elementary present purposes. nucleonic media. We follow here Refdl4], [34], and[35],

We have me_nt|oned_|n Sec. Il tha’? possible extra hIOIOIerlivhere further details can be found. The eigenstates of the
variables associated with the measuring apparatus do not %ass matrix inside nucleonic matter are

ter the form of the Bell inequalitig80]. To be complete we

should pose a similar question here with regards to the re- IKY=|Ke)—o|KL)

generators which, in principle, could also introduce this kind S S L/

of extra hidden variables. Let us therefore consider the situ- ,

ation where the probabilities depend not only)otthe usual K=K+ elKs), (4.6)
hidden variable values specifying the kaon systémt also , 5
On\;=\1, (the extra hidden variable values associated withVhere we have neglectédmal) corrections of ordep” and
the two regenerators=1,2). In this case Eq$3.2) from the higher. This crucial regeneration parametey,s defined as
spin paradigm generalize to

p( K1, KZ) Vl,V2$ p(Kl ; K3) Vl,V3+ p(K3 ; KZ)VB,VZ! (42)

v f—f
Q_m_K)\s_M’

@)
P, = | ONONP NPk AN, =12

wheremyg=(mg+m,)/2, f(f_) is the forward scattering am-

plitude for K°(K®) on nucleons and is the nucleonic den-
sity (for numerical values and a detailed discussion, see Ref.
[14]). The latter is probably the easiest parameter to adjust in
an experimental setup, hence its explicit appearance in our
notation for the inequalitie&4.1) and(4.2). The time evolu-
tion inside matter for the eigenstatésy, ) follows the stan-
dard exponential and nonoscillating form

P(K1 k2) 1, 0, | NGOG )
Xp(KllVl!)\v)\l)p(KZ!VZ!)\l)\Z)- (43)

The joint probabilityp(\,\1,\5) in the second equation in
Eq. (4.3) can be expressed as

NN A)=p(N)P(N1, A N)=p(N)P(N1|N)P(No[N), N
PN A2)=p(N)P(A g, N2 N)=p(N)P(N1|N)p(Ay] (11.4) Ky () =e MaUlKy,), 4.9

where the first equality is obvious and the second one come&here

from locality or \1,\, independence due to their spacelike

separation; this is indeed the same argument used in Egs. NG =AgL—AN+0O(e?),
(4.3 to expresp(kq,v1,N,N1) andp(x,,vo,N,N5) with no

dependence omn, and \,, respectively. Similarly one has 7 —
p(M ) =p(N)p(Ai|N) in the first equation in Eg(4.9). In Ar= (). (4.9
our local realistic context, Eq$4.3) can therefore be rewrit-
ten as This allows us to compute the net effect of a thin absorber
over the enteringKg, ) states in three stepsi) using Eq.
D(Ki)y.:f dhp(k)“ A\ pOSIOP(k; v AN | (4.’6) the e_ntermg |KS,L> states are projected |nto_ th_e
i |Kg )—basis which is the appropriate to account for inside

matter propagation(ii) the inside matter time evolution of
i=1,2, the latter is then taken into account as dictated by (B
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and, finally,(iii ) one reverts to the origingK g, ) basis using
again Eq.(4.6). One thus find¢see, for instance, Refgl4]
and[34])

|Kg)—e A ([Kg) +io(Na—A)ATK,))
=|Kg)+ n(0)|KL),

K )—e MAT(K ) +ie(As—N))ATKS))
=|Kp)+n(0)|Ks), (4.10

whereA 7 is the time-of-flight inside mattgishort enough to
justify the use of first order approximationand 7(o)
=ipo(mg—m A7+ (12)o(I's— T )AT.

To calculate the probabilities appearing in E4.2) we

need also the time development of the initial entangled pai

in Eq. (1.1 or, more precisely, in Eq2.4) referring to the

|KgL) free-propagating states. Let us consider a symmetr

PHYSICAL REVIEW D 60 094008

2 Re7[0,0(v)]}=0, (4.14
whereas the second one gives
0<4Rg7[0,0(v)]}. (4.1

Clearly we have achieved our objectives, at least at the most
simple level. The Bell inequalitie&t.2) follow from deter-
ministic local realism and one of their two possible versions
is predicted to be violated by quantum mechanics. Note that
this eventual violation should be there for any absorber and,
less importantly, also independent of the sn@R-violating
Barameters. Of course, it remains to analyze how such a tiny
iolation of Eq.(4.2) can be increased to a finite, observable

level and to check whether it is confirmed by the experiment

r not.

situation in which the kaons move in vacuum up to a proper
time 7, on both sides. At this time, one kaon enters the
absorber we put on the left hand sidee parameters of this
absorber will be distinguished by a primand simulta-
neously the other kaon enters a right hand side absorber In this paper we have investigated possible tests of local
(with parameters denoted by a double primié we follow  realism through Bell inequalities usin resonance decays
now the time evolution of the entangled kaon pair up to theinto entangled neutral kaon pairs. For previously suggested
total exit time,7= 7, + A7, we get in our usual thin absorber Bell inequalities, one finds that either they are not violated

V. CONCLUSIONS

approximation

|<I>(T,e’W.Q”)F%[IKQ@le%IKs>®|KL>
+n(e",e") (K@K )~ [Ks)@[Ks))]
-2k KO- K%< )
+7(e".e") (K&K +[K%)e[KO)],
(4.11
where, apart from a global phase|N(7)|=(1

+|el?)e V2Tst V71— 2| and

n(e’,e")=—i(e"—e")(A\L—Ng)AT. (4.12

by quantum mechanicsvhich renders any test impossiple
or the inequality itself could not be considered as a strict
consequence of local realism.

As far as the latter is concerned, we could clarify how to
extract the probabilities entering these inequalities from ex-
periments performable witlb-resonance decays. It turned
out that this is not possible for arbitrary quasispin kaon
states, but only for specially definéd associated to physi-
cally occurring decay modefs This in its own right is an
interesting observation which might have some conse-
quences in considering future test usibkgdecays into two
kaons. However, the impossibility of submitting the kaon
states to different identification tests and the necessity of
having to identify the kaonic staté&s by its associate decays
mode (on which one has no possibility of intervention or
choice excludes these inequalities to be considered a “true”
Bell inequality in the local realistic sense.

To improve this situation, we therefore suggest a new

The cases with only one absorber on one of the two sides cagkperimental configuration based on the possibility of install-

be recovered from Ed4.11) by letting one of thep’ or ¢”
go to zero.

ing different and adjustable regenerator slabs along the kaon
flight paths. Bell inequalities can then be obtained having

Let us now concentrate on two specific versions of theyirtues such asi) being strictly derived from local realism

inequality (4.2), namely,
P(K%K®)o,<p(K%KO)g 5+ p(K%KD),, .,

P(K%K®) o, <p(K%K®) g4+ p(K%KO),, ,, (4.13

and(ii) being violated by quantum mechanics regardless the
parameters of the system.
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(2.10 as a sort of double decay branching ratio is however
untenable. Indeed, the obviously analog interpretation of
Tr{O¢pg ] as the probability thaKg, decays intof would
then hold for a single kaon beam K§ or K, . The easiest way

to check the inconsistency of this point is to go to the
CP-conserving limit and keep the exa&tS=AQ rule. One
obtains then, for instance, [1@,.ps]=1 and TfO e+ ,ps]
=Tr O ,e-,ps]=1/2 thus violating the correct normalization
of the probabilities(2.10. Stated otherwise, the proposal to
measure probabilities involvind<;’s by counting f decay
events does not define a one-to-one mapping betWeemdf

to be used automatically in a quantitative way. Counting, for
instance, ther decay events in an initidkg beam will not
yield a probability equal to one. The point is of course that
there are other decay modes such as the semileptonic one into
which the same kaon can decay. Obviously, these comments
do not exclude groportionality relation between therob-
abilities (2.10 and thejoint decay ratg(2.8) as we will give in

Eq. (2.22.

[25] we have found that a similar definition & have been used
in H. Lipkin, Phys. Rev176, 1715(1968.

[26] For instance, when inserting quantum mechanical predictions
in the Bell inequalities of the next sectioR(—,7,;— 7,) be-
comes a common denominator and can be dropped.

[27] M. Redhead,Incompleteness, Nonlocality and Reali$®x-
ford University Press, Oxford, 1990

[28] To clarify the notion ofA we quote here from Ref7] p. 1888:
“We denote this state by the single symhbaqlalthough it may
well have many dimensions, discrete and/or continuous parts,
anddifferent parts of it interacting with either apparatustc.”

[29] Redhead discusses these issues in the context of general hid-

den variable theories using a more detailed notation for the

different probabilities. In his notatiop(sa|)\)§ refers, for in-
stance, to the conditional probability thsf is the value pos-
sessed by the observahiea for a state fully specified by.

The superindexA=a,a’, ..., reninds us that different

choices are possible. The central point in a realistic approach is

the assumption that joint probabilities suchS, s, \)4E

are defined for allA=a,a’, ..., andB=b,b’, ... . If one

chooses to measure along the directiarandb, the probabili-

ties will be simply denoted as in the main text by

p(sa.Sh,\)ap @and correspond to a given, feasible experiment.

If, instead, any other choice is considered, the corresponding

probabilities cannot be immediately translated into experimen-

tal results but their values are assumed to exist as well. The
locality condition can be then most conveniently expressed in
this notation by writingp(s./\)5E=p(sa\)5, P(SsIN)p®
=p(sp/\)E andp(A)AB=p(\), which explicitly establish the
independence of the various probabilities from the alternative
settings of distant experimental setups. In the context of local
realistic theories one obviously hasp(s,,Sy,\)ar
=p(sa\)aBp(spIN)pBp(N)AB from which one can deduce

Eq. (3.1) by specifying to the measurable probabilities associ-

ated to the choicea andb among those offered by the sets

andB. See also M. Ardehali, Phys. Rev. 3V, 114 (1998.

P(fy,71;f,,72) can be experimentally obtained as the ratio of [30] See the lucid discussions by M. Ferrero, T. W. Marshall, and
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E. Santos, Am. J. Phy&8, 683(1990; J. S. Bell in Ref[4], every measure o€’ is a test of local realism and quantum

Chap. 7. mechanics. It is known otherwise also that the quantum me-
[31] B. Ancochea, A. Bramon, R. Munoz-Tapia, and M. Nowa- chanical predictions violate the Bell inequalities. This does not

kowski, Phys. Lett. B389, 149(1996. spare us the experiment to confirm or reject this result. At the
[32] A. Peres, quant-ph/9807017. end Bell inequalities and related expressions for kaons address
[33] Although the following is only of minor importance for our the question, hoventangledkaons behave.

present analysis, we would also like to point out that Bell [34] P. K. Kabir, The CP PuzzléAcademic, London, 1968
inequalities are meant to tesixperimentallylocal realistic [35] B. Ancochea and A. Bramon, Phys. Lett.387, 419 (1995.
theories versus quantum mechanics. A gedanken experimefa%] C. P. Enz and R. R. Lewis, Helv. Phys. AG8, 860 (1965.
[15], [17] cannot decide this issue. In R¢l.7] it was found [37] A. Datta, D. Home, and A. Raychaudhuri, Phys. Lett128 4
that quantum mechanical predictions for the probability (1987 1’3(1 187 (1‘988 '

P(Ky,, 7Ky, 7) violates Eq.(3.7) provided the parameter’  roq| \haifin, Found. Phys27, 1549(1997); C. B. Chiu and E. C.
which signals direcC P violation in theK%-K® system is non- G. Sudarshan, Phys. Rev.42, 3712(1990: M. Nowakowski
zero (see Ref[10] for a definition ofe’). It was then con- Int. J. Mod Pllwys Al4 589 (’1999 ’ '

gludeq that any measure e_)h&o is a test of the.BeII inequali- [39] A. Bramon and M. Nowakowski, Phys. Rev. Le83, 1
ties with no need of a direct check. There is, however, no (1999

automatism ‘€’ #0, then local realism is ruled out.” Or, not
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