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Bell inequalities for K0K̄0 pairs from F-resonance decays

B. Ancochea and A. Bramon
Grup de Fı´sica Teo`rica, Universitat Auto`noma de Barcelona, 08193 Bellaterra, Barcelona, Spain

M. Nowakowski
Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 Sa˜o Paulo, Brazil

~Received 2 December 1998; published 4 October 1999!

We analyze the premises of recent propositions to test local realism via the Bell inequalities using neutral
kaons fromF resonance decays as entangled Einstein-Podolsky-Rosen pairs. We pay special attention to the
derivation of the Bell inequalities, or related expressions, for unstable and oscillating kaon ‘‘quasispin’’ states
and to the possibility of the actual identification of these states through their associated decay modes. We
discuss an indirect method to extract probabilities to find these states by combining experimental information
with theoretical input. However, we still find inconsistencies in previous derivations of the Bell inequalities.
We show that the identification of the quasispin states via their associated decay mode does not allow the free
choice to perform different tests on them, a property which is crucial to establish the validity of any Bell
inequality in the context of local realism. In view of this we propose a different kind of Bell inequality in which
the free choice or adjustability of the experimental setup is guaranteed. We also show that the proposed
inequalities are violated by quantum mechanics.@S0556-2821~99!08219-3#

PACS number~s!: 03.65.Bz, 13.65.1i
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I. INTRODUCTION

The quantum entanglement shown by the separate par
a nonfactorizable composite system is an extremely pecu
feature of quantum mechanics and has recently becom
powerful resource of new developments such as quan
teleportation and communication@1#. On the other hand, eve
since the paper by Einstein, Podolsky, and Rosen~EPR! @2#
quantum entanglement has been also a continuous sour
food for thought and speculation on the ‘‘spooky action a
distance,’’ better characterized as nonlocality in the corre
tions of an EPR pair@3#. A useful tool to probe into this
non-locality has been given to us by Bell in form of his Be
inequalities @4#. Related versions which a local realist
theory should satisfy are also known, namely, the Claus
Horne@5# and Wigner@6# inequalities to which very often we
will simply and more generically refer to as Bell inequalitie
For a general review on this subject we refer the reade
Ref. @7#.

The Bell inequalities have been subjected to experime
tests with the general outcome that they are violated@8#, i.e.,
local realistic theories should be discarded and nature is
deed nonlocal. However, loopholes in the tests have b
pointed out@9#. It is then understandable that there is a co
tinuous interest to test Bell inequalities in different expe
ments and, more importantly, in different branches of ph
ics. One such place which offers the opportunity to
exactly this is theF resonance, aC521 neutral vector

meson decaying intoK0K̄0 pairs. Ane1e2 machine which is

expected to produce a large amount of EPR-entangledK0K̄0

pairs through the reactione1e2→F→K0K̄0 will be soon
operating in Frascati@10#. Because of theC521 nature of
the F meson the EPR entanglement of the neutral kaon
can be explicitly written as
0556-2821/99/60~9!/094008~12!/$15.00 60 0940
of
ar

a
m

of
a
-

–

.
to

al

n-
en
-
-
-

ir

uF&5
1

A2
@ uK0& ^ uK̄0&2uK̄0& ^ uK0&] ~1.1!

directly at theF-decay point into theK0K̄0 initial state. The
neutral kaons then fly apart allowing the definition by col
mation of a left and a right hand beam. Along these t
beams kaon propagation takes place, including bothK0-K̄0

oscillations andKL,S weak decays.
It would certainly add to our knowledge if we could ex

amine the nature of nonlocality using unstable, oscillat
states such as these neutral kaons. Clearly, because o
nontrivial time development of the states involved here, t
scenario is quite distinct from the usually considered Bo
reformulation of EPR, even if the singlet-spin initial state

u0,0&5
1

A2
@ u1& ^ u2&2u2& ^ u1&], ~1.2!

is formally identical to the initialK0K̄0 state~1.1! and, more-
over, in both cases one deals with an antisymmetric sys
consisting of two two-dimensional components.

However, as will be evident below, the derivation of th
Bell-like inequalities for unstable, oscillating states requir
more care and a too close analogy to the spin case ca
misleading.

Early attempts to check local realistic theories in kao
F decays used Bell inequalities involving probabilities ofK0

and/orK̄0 detection defined at different times@11–13#. The
identification ofK0 versusK̄0 is not problematic and can b
performed exploiting their distinct strong interactions
nucleons. Moreover, the use of different detection times
lows to fulfill a crucial prerequisite needed to derive Be
inequalities from local realism, namely, that different me
surements corresponding to alternative experimental se
could be alternatively performed over the measured syst
©1999 The American Physical Society08-1
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Unfortunately, it was found that this kind of firmly derive
Bell inequalities cannot be violated by quantum mechan
due to the specific values of kaon parameters such as
masses and decays widths~see Ref.@12# for similar investi-
gations in theB-meson system!.

Recently, there has been a renewed interest in this sub
@14–21#. The idea in Refs.@14,15,17# has been to drop the
‘‘different time’’ Bell inequalities in favor of the identifica-
tion of what are called ‘‘quasispin’’ kaon states. These

essentially arbitrary superpositions of the twoK0 and K̄0

basis states,uKa&5a1uK0&1a2uK̄0& with ua1u21ua2u251,
defined in close analogy to the spinors in the spin case.
results look also quite encouraging in the sense that
could show that these Bell inequalities for kaons are viola
by quantum mechanics. However, as we will show in t
paper, there are several drawbacks in using this quasi
analogy. First of all the identification of such quasispin ka
states is problematic~except forK0 vs K̄0, as just mentioned!
and has not been addressed in full satisfaction so far. Ind
it is not possible to observe such states directly. An indir
method, using a theoretical input and direct observable
perimental information, seems to be the only way to extr
the probabilities to find specific quasispin states. We beli
that we have found such a method, which is an interes
result in its own respect. However, this is still not sufficie
to derive Bell inequalities for these states in the context
local realistic theories. The reason is that the indirect ide
fication method mentioned above is only possible by a p
identification~this is the experimental information! of decay
products of the unstable kaons. As previously stated, the
oretical derivation of any Bell inequality requires, as starti
assumption, that the experimentalist has thefree choice
among several different tests~such as adjusting the differen
directions of spin analyzers in the case of spin or the co
spondingly different detection times ofK0 and/orK̄0 in Refs.
@11–13#!, the other inherent properties of the states be
fixed by the assumptions of local realism. This is crucial
derive Bell inequalities and is often forgotten in the form
ism. This possibility of experimentalinterventionis not guar-
anteed if the quasispin is determined by identifying the
cays products. We have no possibilities of choice
intervention in this situation neither on the decay time nor
the decay channel. Therefore several of the suggested
inequalities for neutral kaon pairs fail in their derivatio
from local realism which they are supposed to test ver
quantum mechanics.

In view of this unsatisfactory situation we propose a n
type of Bell inequalities for entangled kaons produced
F-resonance decays where the free choice is indeed gua
teed in terms of the possibility of installing different ‘‘regen
erator’’ slabs along the kaon flight paths. These thin slab
which are essentially those used in neutral-kaon regenera
experiments—are characterized by adjustable parame
~such as their thickness and nucleonic density! thus mimick-
ing the different orientations of the analyzer in the analog
spin case. Using such an experimental setup, we can
show that quantum mechanics predicts a violation of th
Bell inequalities.
09400
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The paper is organized as follows. In Sec. II we discu
the possible kaon-state observables inF-resonance decays
We show what condition has to be put on the kaonic q
sispin states in order to be able to extract the probabilitie
identify such states. A formula which determines such pr
abilities from observable quantities is given. In Sec. III w
discuss several Bell inequalities previously suggested
other authors for entangled kaon pairs. We argue that in
analyses already performed reporting violations of the
equalities by quantum mechanics, the experimental verifi
tion of this violation would not necessarily exclude loc
realistic theories as the proposed inequalities are not a s
consequence of this kind of theories. In Sec. IV we der
our new Bell inequalities which do follow from local realism
and show that they are violated by quantum mechanics. S
tion V summarizes our results.

II. QUASISPIN OBSERVABLES IN NEUTRAL-KAON
DECAYS

We start our discussion by quoting some elementary d
nitions regarding neutral kaons and the properties and t
evolution of K0-K̄0 pairs from F-resonance decays. Th
CP561 eigenstatesK1/2 are defined by

uK1/2&5
1

A2
@ uK0&6uK̄0&] ~2.1!

and the mass eigenstatesuKS/L& in terms of K1/2 and the
CP-violation parametere are

uKS&5
1

A11ueu2
@ uK1&1euK2&],

uKL&5
1

A11ueu2
@ uK2&1euK1&]. ~2.2!

The proper-time (t) development of these nonoscillatin
mass eigenstates is given by

uKS/L~t!&5e2 ilS/LtuKS/L&,

lS/L5mS/L2
i

2
GS/L , ~2.3!

with mS/L andGS/L being the mass and width ofKS andKL ,
respectively. This reverts into the corresponding time evo
tion for the initial two-component kaonic system~1.1!

uF~0!&→uF~t1 ,t2!&5
N

A2
@ uKS~t1!& ^ uKL~t2!&

2uKL~t1!& ^ uKS~t2!&], ~2.4!

with uNu5(11ueu2)/u12e2u.1. The argumentst1 and t2
refer to the proper times of the time evolution on the left a
right hand sides, respectively. For simplicity we restrict o
8-2
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selves to theCPT-conserving case as the arguments we
forward are independent of anyCPT violation.

Using Eq.~2.4! one can immediately construct a doub
decay amplitude for weak kaon decays of the form@22#

A~ f 1 ,t1 ; f 2 ,t2!5
1

A2
@^ f 1uTuKS~t1!&^ f 2uTuKL~t2!&

2^ f 1uTuKL~t1!&^ f 2uTuKS~t2!&#,

~2.5!

whereT is the transition operator andf i denotes the various
KS and KL decay modes. The normalization of this doub
time dependent decay amplitude is such that

E
0

`

dt1E
0

`

dt2(
f 1f 2

uA~ f 1 ,t1 ; f 2 ,t2!u251, ~2.6!

where the summation( f 1f 2
includes also the phase spa

integrals*dph( f 1),*dph( f 2) which we define by

G~KS/L→ f !5E dph~ f !u^ f uTuKS/L&u2. ~2.7!

Note thatA in Eq. ~2.5! has different dimensions for differ
entn-body final states. It is then certainly useful to constru
the joint decay rateG( f 1 ,t1 ; f 2 ,t2) given by @22#

G~ f 1 ,t1 ; f 2 ,t2![
d2P

dt1dt2
~ f 1 ,t1 ; f 2 ,t2!

[E dph~ f 1!E dph~ f 2!uA~ f 1 ,t1 ; f 2 ,t2!u2.

~2.8!

This is a doubly time-dependent decay rate into both
specific decay modef 1 on the left beam at the timet1 and f 2
on the right one at the timet2. The way this joint decay
rate—or joint decay probability density~in two times!—is
constructed makes it independent of the momenta of the
cay products and, much more important for our discuss
G( f 1 ,t1 ; f 2 ,t2) is a standard, fully measurable quantity a
F factory.

Had we asked, at least formally at this stage, for an
servable to find a given kaon quasispin stateuKa&[a1uK0&
1a2uK̄0& on the left anduKb& ~defined correspondingly! on
the right, we would have to calculate thejoint probability

P~Ka ,t1 ;Kb ,t2![u
1

A2
@^KauKS~t1!&^KbuKL~t2!&

2^KauKL~t1!&^KbuKS~t2!&#u2.

~2.9!

More precisely,P(Ka ,t1 ;Kb ,t2) is the probability of find-
ing both anundecayed Ka on the left att1 and anundecayed
Kb on the right att2 in a hypothetical experiment being als
able to distinguish betweenKa and its orthogonal stateK̃a
09400
t

t

e

e-
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-

and betweenKb and K̃b . It is a well-defined probability
which can be computed exactly in the same way as the
responding one in the spin-singlet case. Indeed, this latter
is obtained by simply projecting Eq.~1.2! on the basis state
defined by the spin-analyzer orientation. There are howe
three important differences:~i! our P(Ka ,t1 ;Kb ,t2)’s are
not constant but~doubly! time-dependent,~ii ! because of the
kaon instability, the probability normalizations are also d
ferent and a unifying ‘‘renormalization prescription’’ will be
proposed at the end of this section, and, more importan
~iii ! in the spin case the probabilities are directly measura
whereas in our kaon quasispin case they are not~except for
K02K̄0), the directly measurable quantities being the jo
decay rates~2.8!.

The convenience of working with these just defined jo
probabilitiesP(Ka ,t1 ;Kb ,t2) has already been noticed b
other authors@14,17#. Benatti and Floreanini@17#, for in-
stance, based their recent analysis on what they call ‘
‘double decay probabilities’P( f 1 ,t1 ; f 2 ,t2) , i.e., the prob-
abilities that one kaon decays into a final statef 1 at proper
time t1, while the other kaon decays into the final statef 2 at
proper timet2.’’ In their formalism ~see below, Refs.@17#
and @23#! one has

P~ f 1 ,t1 ; f 2 ,t2!5Tr@~Of 1
^ Of 2

!rF~t1 ,t2!#, ~2.10!

whererF(t1 ,t2) is the density operator corresponding to t
two-kaon state in Eq.~2.4! and Of 1

and Of 2
are projector

matrices describing each single kaon decay intof 1 and f 2
normalized by TrOf 1

5Tr Of 2
51. The same authors cor

rectly stress that theirP( f 1 ,t1 ; f 2 ,t2) are not decay rates
and, in spite of calling them ‘‘double decay probabilities
one can easily convince oneself@see also our analysis below
leading to Eq.~2.17!# that theP( f 1 ,t1 ; f 2 ,t2)’s in Ref. @17#
defined by Eq.~2.10! coincide with ourP(K f 1

,t1 ;K f 2
,t2)’s

defined by Eq.~2.9! once the kaon quasispin statesKa and
Kb are associated to the specific decay modesf 1 and f 2,
respectively. The essential problem—a problem which is
naively addressed in Ref.@17# and not satisfactorily solved
@24#—is then that these theoretically well-defined probab
ties P(K f 1

,t1 ;K f 2
,t2)5P( f 1 ,t1 ; f 2 ,t2) are not directly

measurable, as we have already discussed. A relation
tween the latter probabilities and the truly measurable de
ratesG( f 1 ,t1 ; f 2 ,t2) defined in Eq.~2.8! is therefore highly
desirable. A first attempt along this direction has been p
posed and briefly discussed by Di Domenico working in
similar context@14#. However, some improvements are r
quired to definitely establish such a relation as we procee
discuss in the following paragraphs.

Our first step is to define the orthogonal basis containin
specific kaon state associated to the physical~i.e., really oc-
curring! f-decay mode

uK f&[
1

Auaf u21ubf u2
@af uK1&1bf uK2&] ~2.11!

and its orthogonal counterpart
8-3
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uK̃ f&[
1

Auãf u21ub̃f u2
@ ãf uK1&1b̃f uK2&], ~2.12!

with ^K f uK̃ f&50. We fix the coefficientsãf and b̃f by de-
manding@25#

^ f uTuK̃ f&50. ~2.13!

The unique solution~up to a phase! reads

uK̃ f&5
b̃f

ub̃f u

1

A11u r̃ f u2
@ r̃ f uK1&1uK2&],

uK f&5
af

uaf u

1

A11u r̃ f u2
@ uK1&2 r̃ f* uK2&], ~2.14!

with

r̃ f5
ãf

b̃f

52
^ f uTuK2&

^ f uTuK1&
. ~2.15!

It is now easy to check the following identities:

uK f&^K f u5rK f
5Of ,

uK̃ f&^K̃ f u5r K̃ f
5O f̃ ,

uK f&^K f u1uK̃ f&^K̃ f u5Of1O f̃51. ~2.16!

From these equations and Eqs.~2.9! and~2.10! one immedi-
ately obtains

P~ f 1 ,t1 ; f 2 ,t2!5Tr@Of 1
^ Of 2

!rF~t1 ,t2!]

5P~K f 1
,t1 ;K f 2

,t2!, ~2.17!

thus justifying the previously announced identification
P( f 1 ,t1 ; f 2 ,t2) from Ref. @17# with our P(K f 1

,t1 ;K f 2
,t2)

in Eq. ~2.9!. Note also that the last equation in Eq.~2.16! is
the correct unitarity sum for undecayed kaon states.

Our second step consists in expanding the physically
cayingKS andKL states in two of the orthogonal bases ju
introduced:K f i

and K̃ f i
with f i5 f 1 and f 2. One then has

uKS/L&5
1

AuaS1/L1u21uãS1/L1u2
@aS1/L1uK f 1

&1ãS1/L1uK̃ f 1
&],

uKS/L&5
1

AuaS2/L2u21uãS2/L2u2
@aS2/L2uK f 2

&1ãS2/L2uK̃ f 2
&].

~2.18!

Using Eq.~2.13!, we can now rewrite the double decay am
plitude ~2.5! as follows:
09400
f

e-
t

A~ f 1 ,t1 ; f 2 ,t2!5
1

A2
@aS1aL2e2 ilSt1e2 ilLt2^ f 1uTuK f 1

&

3^ f 2uTuK f 2
&

2aL1aS2e2 ilLt1e2 ilSt2^ f 1uTuK f 1
&

3^ f 2uTuK f 2
&#. ~2.19!

Then, using Eqs.~2.8!, ~2.9!, and~2.19! one can easily con-
clude that

G~ f 1 ,t1 ; f 2 ,t2!5
1

2
uaS1aL2e2 ilSt1e2 ilLt2

2aL1aS2e2 ilLt1e2 ilSt2u2G~K f 1
→ f 1!

3G~K f 2
→ f 2!

5P~K f 1
,t1 ;K f 2

,t2!G~K f 1
→ f 1!

3G~K f 2
→ f 2!, ~2.20!

where

G~K f 1
→ f 1!5E dph~ f 1!u^K f 1

uTu f 1&u2

5E dph~ f 1!uaS1* ^KSuTu f 1&

1aL1* ^KLuTu f 1&u2 ~2.21!

and the smallness of the mass differenceDm5mS2mL
makes possible the use of the same phase-space factor fo
two terms in the integrand of the latter expression.

As a result of the algebraic manipulations in the last t
paragraphs, we can now take the joint decay r
G( f 1 ,t1 ; f 2 ,t2) from experiment and, quite independentl
we can also calculateG(K f 1/2

→ f 1/2) via Eq. ~2.21!. As an-
nounced before, one thus obtains thejoint probability

P~K f 1
,t1 ;K f 2

,t2!5
G~ f 1 ,t1 ; f 2 ,t2!

G~K f 1
→ f 1!G~K f 2

→ f 2!
. ~2.22!

This equation is the desired connection between the sim
and easily interpretablejoint probability P(K f 1

,t1 ;K f 2
,t2)

and the measurablejoint decay rateG( f 1 ,t1 ; f 2 ,t2). A for-
mally identical equation can be found in the analysis on
same topic performed by Di Domenico@14#, but our expres-
sions ~2.21! for G(K f 1

→ f 1) and the corresponding ones
@14# are, unfortunately, not the same. Notice also that
procedure to extract the probabilityP(K f 1

,t1 ;K f 2
,t2)

strongly relies on a theoretical input in form of the conditio
~2.13!, wheref refers exclusively to physical, realisticKS/L
decay modes. In other words, the same procedure would
work for anarbitrary superposition ofK0 andK̄0, because a
relation, as established in Eq.~2.22!, between Eqs.~2.8! and
~2.9! does not hold in general.
8-4
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Strictly speaking, this means also that probabilities su
asP(K̃ f 1

,t1 ;K f 2
,t2) or P(K̃ f 1

,t1 ;K̃ f 2
,t2), involving one or

two kaon statesK̃ f , cannot be extracted by the same meth
However, we can do that in a different way using a cert
approximation. Let us first introduce the notion of ‘‘any,
i.e., the probability to detect any of the two basis states
one of the two sides and a specific state on the other.
have

P~2,t1 ;K f 2
;t2![P~K f 1

,t1 ;K f 2
,t2!1P~K̃ f 1

,t1 ;K f 2
,t2!

5P~K0,t1 ;K f 2
,t2!1P~K̄0,t1 ;K f 2

,t2!,

~2.23!

where the bar denotes that we have summed over the
possible orthogonal outcomes on the left hand side. Sim
definitions hold of course for the right hand side and for b
sides, i.e.,P(2,t1 ;2t2). It should be clear that Eq.~2.23!
does not depend on the choice off 1 on the left hand beam
and therefore we can replaceK f 1

by K0, as done in the sec
ond line of Eq.~2.23!. In the excellent approximation of th
DQ5DS rule, we have ^p1l 2n̄uTuK0&50 and

^p2l 1nuTuK̄0&50 thus fulfilling in both cases a conditio
like that in Eq.~2.13!. Thanks to this, both probabilities i
the second line in Eq.~2.23! can be extracted via Eq.~2.22!.
This obviously allows the subsequent computation
P(K̃ f 1

,t1 ;K f 2
,t2) through Eq.~2.23!. In other words, the

basis consisting of the two strangeness eigenstatesK0 and
K̄0 is exceptional not only in that these two states can
unambiguously detected using their distinct strong inter
tions in nucleonic matter but also in that Eq.~2.22! can be
used to measure theK0- or K̄0-detection probabilities
through their associated semileptonic decay modesp2l 1n

or p1l 2n̄, respectively. For another basis, such as that c
sisting of K f and K̃ f associated to thef-decay mode, prob-
abilities involving K f detection can be similarly measure
via Eq. ~2.22! but those forK̃ f-detection require the use o
Eq. ~2.23!. Finally, for bases consisting of ‘‘quasispin
states not linked to an specific, realistic decay mode non
the probabilities seems to be measurable.

Let us also mention that in order to formulate Bell i
equalities for unstable two-component systems such as
ons, P(K f 1

,t1 ;K f 2
,t2) is not, strictly speaking, the mos

suitable quantity. The reason is exactly the instability of
components under consideration which superimposes a
relevant time evolution~due to weak decays! to the relevant
one ~due to quasispin oscillations!. The suitable observabl
for unstable and oscillating states is notP(K f 1

,t1 ;K f 2
,t2),

but rather

p~K f 1
,t1 ;K f 2

,t2![P~K f 1
,t1 ;K f 2

,t2!/P~2,t1 ;2,t2!,
~2.24!

where
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P~2,t1 ;2,t2!5P~K0,t1 ;K0,t2!1P~K0,t1 ;K̄0,t2!

1P~K̄0,t1 ;K0,t2!1P~K̄0,t1 ;K̄0,t2!

~2.25!

is an obvious generalization of Eq.~2.23!. Equation~2.24!
means that we have ‘‘renormalized’’ the probabilities not
the total number of decay events, but to the restricted se
decays happening at the timest1 and t2 and covering the
four possible outcomes associated to any given pair
dimension–2 orthogonal bases, as exemplified in Eq.~2.25!.
From Eq.~2.25! one can easily compute

P~2,t1 ;2,t2!.e2 1/2(GL1GS)(t11t2)

3coshF1

2
~GL2GS!~t12t2!G ,

~2.26!

where small terms of orderueu2 and higher have been safe
neglected. This allows us to cancel the spurious time evo
tion induced by decays in theP(K f 1

,t1 ;K f 2
,t2)’s defined by

Eq. ~2.9! and the newp(K f 1
,t1 ;K f 2

,t2)’s turn out to be
simply normalized by

p~2,t1 ;2,t2!5p~K f 1
,t1 ;2,t2!1p~K̃ f 1

,t1 ;2,t2!51

in such a way that the similarities between the
p(K f 1

,t1 ;K f 2
,t2)’s and the corresponding ones in the co

ventional spin case cannot be increased any further. T
renormalization is not an essential point in most applicatio
of Bell inequalities for unstable systems@26#, but exceptions,
which without insisting on this point lead to contradiction
can be shown to exist.

III. BELL INEQUALITIES FOR K0-K̄0 SYSTEMS
IN F DECAYS

In the last section we derived a formula@Eq. ~2.22!# and a
‘‘renormalization prescription’’ which yields the probabilit
p(K f 1

,t1 ;K f 2
,t2) provided we have experimental informa

tion on the direct measurable quantityG( f 1 ,t1 ; f 2 ,t2) de-
fined in Eq. ~2.8! and we impose on the kaon states t
crucial condition~2.13! for the physicalf 1,2 decay modes. It
should be noted that quite a lot of a theoretical input is
quired to arrive at the probabilitiesp(K f 1

,t1 ;K f 2
,t2). But,

apart from that, it might appear that these probabilities—
close to those appearing in the spin case—could be suffic
to establish well-defined Bell inequalities forF-resonance
decays into neutral kaons. This is, unfortunately, not
case. To understand this point, we best compare the
inequalities for the usually considered singlet-spin state w
the ones suggested in Refs.@14# and@17# for entangled kaon
pairs.

Let A5a,a8, . . . (B5b,b8, . . . ) be the set of thevari-
ous directions among which we canchooseto measure the
polarization of the spin one-half subsystem coming from
initial spin-singlet state~1.2! and propagating along the le
8-5
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~right! hand beam. Let si , with si56 and i
5a,a8,b,b8 . . . , be thevarious possible outcomes of the
measurements in units of\/2. Following Redhead@27#, any
~i.e., deterministic or nondeterministic! local realistic theory
can be shown to satisfy the following equation

p~sa ,sb ,l!a,b5p~saul!ap~sbul!br~l!, ~3.1!

where p(sa ,sb ,l)a,b refers to the joint probability for the
singlet~1.2! to be emitted in a given state fully characteriz
by the set of hidden variablesl @28# and to produce the
outcomessa and sb when measuring the spin one-half pr
jections along a and b. Obviously one also has
p(sa ,sb ,l)a,b5p(sa ;sbul)a,br(l). Here and in the right
hand side of Eq.~3.1!, the notationp(XuY) is reserved for
conditional probabilities, the first and second argumentssa
and sb refer to the left and right hand beams, respective
and r(l) is the probability distribution for the two
component system being emitted in the statel with the ob-
vious normalization*dlr(l)51. Equation~3.1!—often re-
ferred to as the ‘‘factorizability’’ rather than ‘‘locality’’
condition, as discussed in detail in Refs.@27# and @29#—is
also equivalent to the locality condition used by Clauser a
Horne in Ref.@5# to derive their general class of Bell in
equalities.

The derivation of these Bell inequalities proceeds by
quiring that the observed probabilities correspond to an
erage of thel-dependent probabilities via

p~sa ;sb!a,b5E dlr~l!p~saul!ap~sbul!b ,

p~sa!a5E dlr~l!p~saul!a ,

p~sb!b5E dlr~l!p~sbul!b . ~3.2!

A general Bell-type inequality follows then from the simp
mathematical theorem stating that

x1x22x1x41x2x31x3x4<x31x2 , ~3.3!

provided that 0<xi<1 @5#. Translatingxixj into product of
probabilitiesp(saul)ap(sbul)b , using then the factorizabil
ity condition ~3.1! and finally integrating overl one gets

p~sa ;sb!a,b2p~sa ;sd!a,d1p~sc ;sb!c,b1p~sc ;sd!c,d

<p~sc!c1p~sb!b , ~3.4!

which is the well-known Clauser Horne version of Bell i
equalities.

Alternative versions of Bell–type inequalities can also
obtained. Possibly the most simple and best known is du
Wigner @6#:

p~sa ;sb!a,b<p~sa ;sc!a,c1p~sc ;sb!c,b , ~3.5!

which follows from identifying two of the four orientation
in Eq. ~3.4! and requiring the perfect anticorrelatio
09400
,
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-
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to

p(sa ;sa)a,a50, for the singlet state which is not only th
obvious quantum mechanical prediction but also a w
tested experimental fact. This requirement, however, restr
the derivability of Wigner inequalities@6# only to determin-
istic theories; indeed, if perfect anticorrelation is imposed
expressions analogous to the first one in Eq.~3.2! the various
conditional probabilitiesp(saul)a and p(sbul)b turn out to
be either zero or one and, therefore, any stochastic loca
alistic theory collapses into a deterministic one~see Ref.@27#
for details!.

There exists a more general derivation of the inequali
~3.4! and ~3.5! which fully takes into account ‘‘new’’ pos-
sible hidden variables associated, in principle, with the m
suring apparatus@30#. We note here that this general situ
tion leads to the same Bell inequalities~3.4! and~3.5!. Since
later we will use Bell inequalities with kaons traveling
absorbers, we will in Sec. IV give a derivation similar to th
in Ref. @30# considering the general possibility of extra hi
den variables in connection with these absorbers.

Let us also note here that a more detailed notation
p(sa)a @and, similarly, for p(sb)b] would be p(sa ,•)a,b
where the center dots denotes, as the bar in Sec. II did,
the two possible outcomessb on the right hand side hav
been integrated out. We can then writep(sa ,•)a,b[p(sa ,
1)a,b1p(sa ,2)a,b . This makes then contact with the not
tion of Sec. II which we will also continue to use. The loca
ity condition establishes thatp(sa)a5p(sa ,•)a,b5p(sa ,
•)a,b8 is independent from the distant orientationb,b8•••.

In purely formalanalogy to Eqs.~3.4! and ~3.5! we can
now derive Bell inequalities involving our previously dis
cussed kaon identification probabilitiesp(K f 1

,t1 ;K f 2
,t2)

~2.24!. Each probabilityp(sa ;sb)a,b in expressions~3.4! and
~3.5! can be substituted by a correspondi
p(kf 1

;kf 2
)K f 1

,t1 ;K f 2
,t2

, where the two dichotomic argumen

kf i
are assumed to take the valueskf i

51 or 2 according to

the identification of the ‘‘quasispin’’ state asK f i
or its or-

thogonal stateK̃ f i
. Reverting to the notation introduced i

Sec. II, one thus has p(K f 1
,t1 ;K f 2

,t2)[p(1;

1)K f 1
,t1 ;K f 2

,t2
, p(K f 1

,t1 ;K̃ f 2
,t2)[p(1;2)K f 1

,t1 ;K f 2
,t2

,

•••. Using the shortest notation~quite in line with that in
Refs.@14# and @17#!, the Clauser-Horne inequality~3.4! can
be rewritten as

p~K f 1
,t1 ;K f 2

,t2!2p~K f 1
,t1 ;K f 4

,t2!1p~K f 3
,t1 ;K f 2

,t2!

1p~K f 3
,t1 ;K f 4

,t2!

<p~K f 3
,t1 ;2,t2!1p~2,t1 ;K f 2

,t2!.
~3.6!

and a series of equivalent expressions obtained by repla
one or severalK f i

by K̃ f i
consistently everywhere. Th

Wigner version of Bell inequalities corresponding to E
~3.5! restricts now to the equal time case,t15t1[t, and can
be immediately written as

p~K f 3
,t;K f 2

,t!<p~K f 3
,t;K f 1

,t!1p~K f 1
,t;K f 2

,t!.
~3.7!
8-6
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As discussed in Eq.@17#, this simple expression follows als
from the most general one~3.6! by making the replacemen
K f 1

→K̃ f 1
after having identifiedf 15 f 4 , t15t1[t and im-

posingp(K f 1
,t;K f 4

,t)50. But the previous consideration
concerning this last requirement of perfect anticorrelation
duce the derivability of Eq.~3.7! only to deterministic local
realistic theories@27#.

One could argue that thepurely formalanalogy between
the singlet-spin and the kaonicF-decay cases discussed
the previous paragraph is broken by the different role pla
by the time parameter~s!. This is only partially true. In both
cases time plays a fundamental role because the real ridd
the ‘‘spooky action at a distance’’ in quantum mechani
entanglement is the apparent possibility of causally conn
ing spacelikeseparated events. To make sure that kaon de
events on the left are causally disconnected from the ev
on the right we have to impose the conditionx11x2 /ut2
2t1u>1, wherex1 and x2 are the distances traveled alon
the left and right sides, respectively. Using the semiclass
relation x5bct, which makes full sense to use for kao
from F decays@31# whereb.0.2, we get

12b

11b
<

t1

t2
<

11b

12b
~3.8!

which is symmetric int1 /t2. For t1 andt2 obeying Eq.~3.8!
and, in particular, fort15t2 there cannot be any classic
communication between the two events. Equal times are
the most convenient choice and the two Wigner inequali
~3.5!, where equal times are tacitly assumed, and Eq.~3.7!,
where equal times are explicitly stated, are in perfect an
ogy. The situation is different for the Clauser-Horne i
equalities~3.4! and~3.6!, where the explicit time dependenc
of the latter allows for thea priori interesting possibilities
first explored in Refs.@11–13# ~see, however, our commen
below!.

Having noticed somepurely formal analogies we now
turn to analyze a profound difference between the two ca
we are considering. Whereas in the singlet-spin case the
rections of the spin–analyzers can be adjusted atfree will by
the experimentalist who can choose amongA5a,a8, . . .
andB5b,b8, . . . , thedecay mode in the kaonic case is n
an observable we have any freedom to choose or adjust.
important to insist that this freedom to choose among diff
ent tests to be eventually performed on the physical syste
crucial in the context of local realistic theories~see, e.g.,
Refs. @16,27,32#, and our discussion above!. In these theo-
ries, the behavior of the physical system is contained in
set of its hidden variablesl. Whatever onechooses~pro-
vided a choice exists! to measure produces an outcom
which was somehow ‘‘inherent’’ in these hidden variabl
‘‘instructions’’ telling the state how to react under each po
sible choice. If alternative experimental measurements o
single system are admissible, the corresponding probabil
for these alternative choices with their different possible o
comes are assumed to exist and a Bell-like inequality ca
principle be established in terms of these probabilities. Ho
ever, this is not possible if there is no free choice on the s
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of the experimentalist, as happens when dealing with de
modes and decay times of freely propagating unstable
ticles. In other words, a particular kaon decay mode or de
instant is ‘‘contained’’ already in the ‘‘set of instructions
parametrized byl and, in general, there is no possibility fo
a real choice allowing to establish Bell inequalities.

We are now in the position to pursue our discussion
the analyses recently performed by several authors tryin
establish Bell inequalities for entangled neutral-kaon pa
We have reconsidered most of the arguments put forward
Benatti and Floreanini@17# and, formally speaking, we hav
reached their same generic Bell inequalities~3.4! and ~3.5!.
These authors then concentrate on the Wigner inequal
~3.5! written also at equal times and specified to kaon q
sispin states associated to thep1p2, p0p0, andp2l 1n ~or
p1l 2n̄, in a second inequality! decay modes. Since the dif
ference between the charged and neutral two-pion decay
plitudes is proportional to the phenomenological parame
e8 ~which is a measure for directCP violation!, one obtains
the Bell inequality uRe(e8)u<3ue8u2. This inequality can
clearly be violated by small~but not vanishing! values ofe8,
which are quite compatible with present day experimen
data. Formally, we fully agree with all these results found
Ref. @17# ~see also Ref.@33#!. In our opinion, however, the
inequalities in Ref.@17# do not follow strictly from local
realistic theories: the required possibility of intervention
the experimentalist allowing a choice among different m
surements is not there if one simply detects decay event
discussed in the previous paragraph. The same remark
plies to the detailed paper by Di Domenico@14#, where simi-
lar Wigner inequalities~not necessarily at equal times her!
are also derived. The three binary alternatives propose
this case, consist in identifyingK0 vs K̄0 ~assuming theDS
5DQ rule for semileptonic decays!, K1 vs K2 ~via two-pion
decays in the limite850) and a third quasispin stateK̃S vs
its orthogonal counterpart. The latter identification
achieved through a clever trick based on regeneration p
nomena which has inspired our present treatment of the
ject ~see next section!, but the required possibility of choice
is not contemplated.

To further convince the reader that there is real trouble
the Bell inequalities proposed in these two papers let us
quote a previous analysis by Bigi@16# in which the necessity
of active choice or intervention by the experimenter is e
plicitly emphasized. Indeed, the inequality proposed in R
@16# involving also three binary alternatives is essentially t
same as in the previous two analyses. However, the poss
ity of identifying the ‘‘third’’ quasispin direction, a possibil-
ity attempted only latter by Di Domenico@14# and improved
in the present paper, is simply not contemplated. Becaus
this, rather pessimistic conclusions were reached in R
@16#. Similar comments apply to the recent analysis
Uchiyama @15#. Again, the requirement of intervention b
the experimenter~choosing two measurements among thr
possible options! is stressed, but a new problem appears:
need to discriminate between the two mass eigenstatesKS vs
KL . From the theoretical point of view, it is not obvious ho
to compute the correspondingKS andKL detection probabili-
8-7
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ties since these two states are not orthogonal,^KSuKL&Þ0,
due to CP violation @34–36#. Indeed, naively computing
these probabilities by the usual quantum mechanical pro
tions overKS or KL states can lead to paradoxa@35–37# and
to curious effects@38#. Experimentally, discriminatingKS
from KL seems also not feasible and the possibility of dec
ing that we have a pureKL beam by waiting long enough
until the ‘‘short’’ component died out@14,18# would not
work either in our case. Indeed, comparably large times,
posed by the spacelike separation condition~3.8!, should be
used also on the other side beam thus producing an alm
complete depletion of coincident counts.

We have repeatedly argued above that the experime
violation of a Bell inequality would not necessarily signal
breakdown of local realistic theories unless the possibility
active intervention in the corresponding experimental se
is guaranteed. However, as explicitly indicated by the ar
ments of Eq.~3.6!, each side of our neutral kaon EPR co
figuration is characterized by~i! a kaon quasispin stateK f ~or
its associated decay productf ) and ~ii ! a time variablet ~or
proper timet). Therefore the observables entering these
equalities can be varied in another way. Indeed, in R
@11–13# different timesinstead of different states were use
Note that now the freedom of choice, quite independent fr
the hidden variables themselves, is indeed given in term
the possibility of having differentK0 vs K̄0 detection times.
The Clauser-Horne inequalities following from the locali
condition can be derived in the same way we reached at
~3.4!. For instance, and with an obvious and simplified no
tion, they read@11#

p~K0,t1 ;K̄0,t2!2p~K0,t1 ;K̄0,t4!1p~K0,t2 ;K̄0,t3!

1p~K0,t2 ;K̄0,t4!

<p~2,t1 ;K̄0,t2!1p~K0,t1 ;2,t2! ~3.9!

and remain valid when replacingK0→K̄0, or K̄0→K0, or
both K0↔K̄0 @see also Ref.@12# for a generalization of Eq
~3.9!#. It is worth pointing out again that the statesK0/K̄0 are
directly detectable through their different strong interactio
on nucleonic matter too. High-density detectors could th
be placed at conveniently chosen~time-of-flight! distances
from the production point. Unfortunately it is then found
Refs.@11# and@12# that quantum mechanics does not viola
these firmly established inequalities~3.9! involving directly
measurable probabilities of findingK0-K̄0 states.

IV. NEW BELL INEQUALITIES FOR K0-K̄0 SYSTEMS
IN F DECAYS

In view of the discussions in Secs. II and III, the situati
of testing quantum mechanics versus local realistic theo
usingK0-K̄0 pairs fromF-resonance decays is quite uns
isfying. The inequality~3.9! is a correct derivation of loca
realism, but as shown in Refs.@11–13#, quantum mechanics
will not violate this inequality due to the specific values
the neutral kaon parameters. Hence, performing a discr
09400
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nating test is not possible. Suggestions such as those in R
@14# and @17# have, in principle, two drawbacks. One is th
extraction from experiment of the probabilities entering t
inequalities, the second one is the impossibility of having
required free choice to perform different tests aiming to ide
tify the different quasispin statesK f . Although the first point
has already been clarified in Sec. II and found that the
evant probabilities can be extracted in an indirect way,
second criticism still remains a defect of the suggested te
Other related suggestions use in their computations of
quantum mechanical probabilities the projection meth
over KS/L states which, on account of^KSuKL&Þ0, is not
without ambiguities @36#. An asymmetric F factory is
needed for other tests, as proposed in Ref.@18#, but unfortu-
nately such a factory will not be available in the near futu

It is worth noting in this context that theK0-K̄0 system
from F decays is one of the most interesting entangled s
tems presently available to test quantum mechanics. We h
here unstable and oscillating states. In addition, this sys
is up to now the only system to displayCP violation; indeed,
the results in Refs.@15# and@17# are seemingly related to th
CP-violating parameterse ande8. It is therefore an interest
ing challenge to search for a Bell-type inequality which
the one hand is a clear consequence of local realism an
the other hand could be violated by quantum mechan
predictions. Below we will present such an inequality.

Instead of using different quasispin statesK f in the prob-
abilities, as in Eqs.~3.6! and ~3.7!, or different times, as in
Eq. ~3.9!, we propose to exploit the possibilities that one h
to modify by free choice the propagation conditions alo
one~or both! kaon flight path~s!. This can be done by intro
ducing appropriate kaon ‘‘regenerators’’ or ‘‘absorbers
i.e., thin slabs of nucleonic matter with adjustable charac
istics, which produce ‘‘quasispin rotations’’ in the state
the neutral kaons passing through. Such an ‘‘active rotatio
of the states has the same effects as changing the s
analyzer orientation from, say,a to a8 or countingf rather
than f 8 decay modes. Over these modified states we t
need to detect kaon eigenstates only in asingle quasispin
direction, the most convenient one being obviously that d

tinguishing K0 from K̄0. Indeed, these strangeness eige
states can be identified both by their distinct decay modes
explained in Sec. II, or by their different strong interactio
on nucleons in a detector, as indicated above and explic
emphasized in Ref.@13#. As we can guarantee now a clear
free intervention of the experimentalist—who can adjust
parameters for different propagation conditions translat
into different ‘‘quasispin rotations’’—the resulting Bell in
equalities reflect clearly the requirements and conseque
of local realistic theories. However, the question wheth
quantum mechanics violates these inequalities remains t
investigated.

In order to do this, we will restrict ourselves to the equ
time situationt15t2[t which ensures that the spacelik
separation of events is automatically fulfilled. We can est
lish a complete analogy to the singlet-spin case in form
the inequality~3.4!—or, equivalently, Eq.~3.6!—by writing
8-8
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p~k1 ;k2!n1 ,n2
2p~k1 ;k4!n1 ,n4

1p~k3 ;k2!n3 ,n2

1p~k3 ;k4!n3 ,n4

<p~k3 ;2 !n3
1p~2;k2!n2

, ~4.1!

where p is again al averaged probability as before,k i

stands for eitherK0 or K̄0 detection andn i refers to the
physical characteristics of the different absorbers that the
perimentalist can introduce~or not,n i50) along the path~s!.
The Wigner version of Bell inequalities can be obtained
before~see also Ref.@39#!

p~k1 ;k2!n1 ,n2
<p~k1 ;k3!n1 ,n3

1p~k3 ;k2!n3,n2
, ~4.2!

which is simpler and less general than Eq.~4.1!, as previ-
ously discussed, but it is also the most convenient for
elementary present purposes.

We have mentioned in Sec. III that possible extra hidd
variables associated with the measuring apparatus do no
ter the form of the Bell inequalities@30#. To be complete we
should pose a similar question here with regards to the
generators which, in principle, could also introduce this k
of extra hidden variables. Let us therefore consider the s
ation where the probabilities depend not only onl ~theusual
hidden variable values specifying the kaon system! but also
on l i5l1,2 ~the extra hidden variable values associated w
the two regenerators,i 51,2). In this case Eqs.~3.2! from the
spin paradigm generalize to

p~k i !n i
5E dldl ir~l,l i !p~k i ,n i ,l,l i !, i 51,2,

p~k1 ,k2!n1 ,n2
5E dldl1dl2r~l,l1 ,l2!

3p~k1 ,n1 ,l,l1!p~k2 ,n2 ,l,l2!. ~4.3!

The joint probabilityr(l,l1 ,l2) in the second equation in
Eq. ~4.3! can be expressed as

r~l,l1 ,l2!5r~l!p~l1 ,l2ul!5r~l!p~l1ul!p~l2ul!,
~4.4!

where the first equality is obvious and the second one co
from locality or l1 ,l2 independence due to their spaceli
separation; this is indeed the same argument used in
~4.3! to expressp(k1 ,n1 ,l,l1) andp(k2 ,n2 ,l,l2) with no
dependence onl2 and l1, respectively. Similarly one ha
r(l,l i)5r(l)p(l i ul) in the first equation in Eq.~4.3!. In
our local realistic context, Eqs.~4.3! can therefore be rewrit
ten as

p~k i !n i
5E dlr~l!F E dl i p~l i ul!p~k i ,n i ,l,l i !G ,

i 51,2,
09400
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p~k1 ,k2!n1 ,n2
5E dlr~l!F E dl1p~l1ul!p~k1 ,n1 ,l,l1!G

3F E dl2p~l2ul!p~k2 ,n2 ,l,l2!G . ~4.5!

The two ‘‘bracketed’’ factors@*dl i•••# in the second equa
tion in Eq. ~4.5! and the single one from the first line in Eq
~4.5! play the role of the two and singlex factors in the left
and right hand side of the usualx inequality~3.3! from Sec.
III. One then multiplies byr(l) and integrates overdl to
obtain Eq.~4.1!. Equation~4.2! follows by simply restricting
to equal times and perfect anticorrelations. Hence we ar
at the very same inequality as in the standard treatment~see
Ref. @28#! with Bell inequalities in form of Eqs.~4.1! and
~4.2! arising in the context of very general local realist
theories.

Before exploiting the inequality~4.2!, we have to examine
briefly the regeneration of neutral kaons in homogene
nucleonic media. We follow here Refs.@14#, @34#, and@35#,
where further details can be found. The eigenstates of
mass matrix inside nucleonic matter are

uKS8&.uKS&2%uKL&,

uKL8&.uKL&1%uKS&, ~4.6!

where we have neglected~small! corrections of order%2 and
higher. This crucial regeneration parameter,%, is defined as

%5
pn

mK

f 2 f̄

lS2lL
, ~4.7!

wheremK5(mS1mL)/2, f ( f̄ ) is the forward scattering am
plitude for K0(K̄0) on nucleons andn is the nucleonic den-
sity ~for numerical values and a detailed discussion, see R
@14#!. The latter is probably the easiest parameter to adjus
an experimental setup, hence its explicit appearance in
notation for the inequalities~4.1! and~4.2!. The time evolu-
tion inside matter for the eigenstatesuKS/L8 & follows the stan-
dard exponential and nonoscillating form

uKS/L8 ~t!&5e2 ilS/L8 tuKS/L8 &, ~4.8!

where

lS/L8 .lS/L2Dl1O~%2!,

Dl5
pn

mK
~ f 1 f̄ !. ~4.9!

This allows us to compute the net effect of a thin absor
over the enteringuKS/L& states in three steps:~i! using Eq.
~4.6! the entering uKS/L& states are projected into th
uKS/L8 &—basis which is the appropriate to account for insi
matter propagation,~ii ! the inside matter time evolution o
the latter is then taken into account as dictated by Eq.~4.8!
8-9
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and, finally,~iii ! one reverts to the originaluKS/L& basis using
again Eq.~4.6!. One thus finds~see, for instance, Refs.@14#
and @34#!

uKS&→e2 ilS8Dt~ uKS&1 i%~lS82lL8 !DtuKL&)

.uKS&1h~% !uKL&,

uKL&→e2 ilL8Dt~ uKL&1 i%~lS82lL8 !DtuKS&)

.uKL&1h~% !uKS&, ~4.10!

whereDt is the time-of-flight inside matter~short enough to
justify the use of first order approximations! and h(%)
[ i%(mS2mL)Dt1(1/2)%(GS2GL)Dt.

To calculate the probabilities appearing in Eq.~4.2! we
need also the time development of the initial entangled p
in Eq. ~1.1! or, more precisely, in Eq.~2.4! referring to the
uKS/L& free-propagating states. Let us consider a symme
situation in which the kaons move in vacuum up to a pro
time t1 on both sides. At this timet1, one kaon enters the
absorber we put on the left hand side~the parameters of this
absorber will be distinguished by a prime! and simulta-
neously the other kaon enters a right hand side abso
~with parameters denoted by a double prime!. If we follow
now the time evolution of the entangled kaon pair up to
total exit time,t5t11Dt, we get in our usual thin absorbe
approximation

uF~t,%8;t,%9!&.
N~t!

A2
@ uKL& ^ uKS&2uKS& ^ uKL&

1h~%8,%9!~ uKL& ^ uKL&2uKS& ^ uKS&)]

.
N~t!

A2
@ uK̄0& ^ uK0&2uK0& ^ uK̄0&

1h~%8,%9!~ uK0& ^ uK̄0&1uK̄0& ^ uK0&)],

~4.11!

where, apart from a global phase,uN(t)u[(1
1ueu2)e2 1/2(GS1GL)t/u12e2u and

h~%8,%9![2 i ~%92%8!~lL2lS!Dt. ~4.12!

The cases with only one absorber on one of the two sides
be recovered from Eq.~4.11! by letting one of the%8 or %9
go to zero.

Let us now concentrate on two specific versions of
inequality ~4.2!, namely,

p~K0;K̄0!0,n<p~K0;K̄0!0,2n1p~K̄0;K̄0!2n,n ,

p~K0;K̄0!0,n<p~K0;K0!0,2n1p~K0;K̄0!2n,n , ~4.13!

where the two arguments refer to the particles detected
the subindices correspond to the absence of an absorben i
50), to its presence (n i5n) and to the presence of a doub
density absorber (n i52n). Using Eq. ~4.11!, the first in-
equality in Eq.~4.13!, leads to
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2 Re$h@0,%~n!#%<0, ~4.14!

whereas the second one gives

0<4 Re$h@0,%~n!#%. ~4.15!

Clearly we have achieved our objectives, at least at the m
simple level. The Bell inequalities~4.2! follow from deter-
ministic local realism and one of their two possible versio
is predicted to be violated by quantum mechanics. Note
this eventual violation should be there for any absorber a
less importantly, also independent of the smallCP-violating
parameters. Of course, it remains to analyze how such a
violation of Eq.~4.2! can be increased to a finite, observab
level and to check whether it is confirmed by the experim
or not.

V. CONCLUSIONS

In this paper we have investigated possible tests of lo
realism through Bell inequalities usingF resonance decay
into entangled neutral kaon pairs. For previously sugges
Bell inequalities, one finds that either they are not violat
by quantum mechanics~which renders any test impossible!
or the inequality itself could not be considered as a st
consequence of local realism.

As far as the latter is concerned, we could clarify how
extract the probabilities entering these inequalities from
periments performable withF-resonance decays. It turne
out that this is not possible for arbitrary quasispin ka
states, but only for specially definedK f associated to physi
cally occurring decay modesf. This in its own right is an
interesting observation which might have some con
quences in considering future test usingF decays into two
kaons. However, the impossibility of submitting the ka
states to different identification tests and the necessity
having to identify the kaonic statesK f by its associate decay
mode ~on which one has no possibility of intervention o
choice! excludes these inequalities to be considered a ‘‘tru
Bell inequality in the local realistic sense.

To improve this situation, we therefore suggest a n
experimental configuration based on the possibility of inst
ing different and adjustable regenerator slabs along the k
flight paths. Bell inequalities can then be obtained hav
virtues such as~i! being strictly derived from local realism
and~ii ! being violated by quantum mechanics regardless
parameters of the system.
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