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Gauge invariant and infrared finite theory of nonleptonic heavy meson decays
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We show that the controversies on the gauge dependence and the infrared singularity which have emerged
in the generalized factorization approach for nonleptonic heavy meson decays within the framework of the
operator product expansion can be resolved by the perturbative QCD factorization theorem. The gauge invari-
ance of the decay amplitude is maintained under radiative corrections by assuming on-shell external quarks.
For on-shell external quarks, infrared poles in radiative corrections have to be extracted using dimensional
regularization. These poles, signifying nonperturbative dynamics of a decay process, are absorbed into bound-
state wave functions. Various large logarithms produced in radiative corrections are summed to all orders into
the Wilson and Sudakov evolution factors. The remaining finite part gives a hard subamplitude. A decay rate
is then factorized into a convolution of the hard subamplitude, the Wilson coefficient, and the Sudakov factor
with the bound-state wave functions, all of which are well defined and gauge invariant.
@S0556-2821~99!06317-1#

PACS number~s!: 13.25.2k, 12.38.Bx
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I. INTRODUCTION

The effective Hamiltonian is the standard starting po
for describing the nonleptonic weak decays of hadrons. C
sider the decayB̄0→D1p2 as an example. The relevan
effectiveDB51 weak Hamiltonian is

Heff5
GF

A2
VcbVud* @c1~m!O1~m!1c2~m!O2~m!#, ~1!

where

O15~ c̄b!
V2A

~ d̄u!
V2A

, O25~ d̄b!
V2A

~ c̄u!
V2A

, ~2!

with (q̄1q2)
V6A

[q̄1gm(16g5)q2 . In order to ensure the
renormalization-scale and -scheme independence for
physical amplitude, the matrix elements of 4-quark opera
have to be evaluated in the same renormalization schem
that for Wilson coefficients and renormalized at the sa
scalem.

Although the hadronic matrix element^O(m)& can be di-
rectly calculated in the lattice framework, it is conventiona
evaluated under the factorization hypothesis so that^O(m)&
is factorized into the product of two matrix elements
single currents, governed by decay constants and form
tors. In spite of its tremendous simplicity, the naive fact
ization approach encounters two principal difficulties. Fir
it fails to describe the color-suppressed weak decay mo
For example, the predicted decay rate ofD0→K̄0p0 by na-
ive factorization is too small by two orders of magnitu
compared to experiment. Second, the hadronic matrix
ment under factorization is renormalization-scalem indepen-
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dent as the vector or axial-vector current is partially co
served. Consequently, the amplitudeci(m)^O& fact is not truly
physical as the scale dependence of Wilson coefficients d
not get compensation from the matrix elements.

A plausible solution to the aforementioned scale probl
is to extract them dependence from the matrix eleme
^O(m)&, and combine it with them-dependent Wilson coef
ficients to formm-independent effective Wilson coefficient
After making a physical amplitude explicitlym-independent,
the factorization hypothesis is applied to the hadronic ma
elements. However, them-evolution factor extracted from
^O(m)& depends on an infrared cutoff, which is original
implicit in ^O(m)&. Since an off-shell external quark mo
mentum is usually chosen as the infrared cutoff, t
m-evolution factor also contains a gauge dependent term
companied by off-shell external quarks. Therefore, this so
tion, though it removes the scale and scheme dependen
a physical amplitude in the framework of the factorizati
hypothesis, often introduces the infrared cutoff and gau
dependence.

In this paper we shall show that the above controvers
can be resolved by the perturbative QCD~PQCD! factoriza-
tion theorem. In this formalism, partons, i.e., external quar
are assumed to be on shell, and both ultraviolet and infra
divergences in radiative corrections are isolated using
dimensional regularization. Because external quarks are
shell, gauge invariance of the decay amplitude is maintai
under radiative corrections. The obtained ultraviolet po
are subtracted in a renormalization scheme, while the in
red poles are absorbed into nonperturbative bound-s
wave functions. Various large logarithms produced in rad
tive corrections are summed to all orders into the Wilson a
Sudakov evolution factors. The remaining finite piece
©1999 The American Physical Society05-1
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grouped into a hard decay subamplitude. The decay ra
then factorized into the convolution of the hard subamp
tude, the Wilson coefficient, and the Sudakov factor with
bound-state wave functions, all of which are well-defin
and gauge invariant. The partition of the nonperturbative
perturbative contributions is quite arbitrary. Different par
tions correspond to different factorization schemes. Ho
ever, the decay rate, as the convolution of the above fac
is independent of factorization schemes as it should be.

In Sec. II we review the conventional solutions to t
scale and scheme dependence present in the factorizatio
pothesis, and their problems. Gauge invariance of radia
corrections is explicitly justified to all orders in Sec. III. Th
PQCD approach is introduced in Sec. IV. Explicit calcu
tions of the evolution factorg1(m) to be defined below are
shown in Sec. V. Section VI is the conclusion.

II. GAUGE DEPENDENCE AND INFRARED
SINGULARITY

The aforementioned scale problem with naive factori
tion can be circumvented in two different approaches. In
first approach, one incorporates nonfactorizable effects
the effective coefficients@1–3#:

a1
eff5c1~m!1c2~m!S 1

Nc
1x1~m! D ,

~3!

a2
eff5c2~m!1c1~m!S 1

Nc
1x2~m! D ,

where nonfactorizable terms are characterized by the pa
etersx i . For the decayB̄0→D1p2, x1 is given by

c2~m!x1~m!5S c1~m!1
c2~m!

Nc
D «1

(BD,p)~m!

1c2~m!«8
(BD,p)~m!, ~4!

where

«1
(BD,p)5

^D1p2u~ c̄b!
V2A

~ d̄u!
V2A

uB̄0&

^D1u~ c̄b!
V2A

uB̄0&^p2u~ d̄u!
V2A

u0&
21,

~5!

«8
(BD,p)5

^D1p2u 1
2 ~ c̄lab!

V2A
~ d̄lau!

V2A
uB̄0&

^D1u~ c̄b!
V2A

uB̄0&^p2u~ d̄u!
V2A

u0&

are nonfactorizable terms originated from color-singlet a
color-octet currents, respectively, (q̄1laq2)

V2A
[q̄1lagm(1

2g5)q2 . The m dependence of Wilson coefficients is a
sumed to be exactly compensated by that ofx i(m) @4#. That
is, the correctm dependence of the matrix elements is
stored by the nonfactorized parametersx i(m). However,
there are two potential problems with this approach. Fi
the renormalized 4-quark operator by itself still depends
m, though the scale dependence of^O(m)& is lost in the
factorization approximation. Second, to the next-to-lead
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order ~NLO!, the Wilson coefficients depend on the choi
of the renormalization scheme. It is not clear ifx i(m) can
restore the scheme dependence of the matrix element.

In the second approach, it is postulated that^O(m)& is
related to the tree-level hadronic matrix element via the
lation ^O(m)&5g(m)^O& treeand thatg(m) is independent of
the external hadron states. Then schematically we can w

c~m!^O~m!&5c~m!g~m!^O& tree[ceff^O& tree. ~6!

The factorization approximation is applied afterwards to
hadronic matrix element of the operatorO at the tree level.
Since the tree-level matrix element^O& tree is
renormalization-scheme and -scale independent, so are
effective Wilson coefficientsci

eff and the effective parameter
ai

eff expressed by@5,6#

a1
eff5c1

eff1c2
effS 1

Nc
1x1D ,

~7!

a2
eff5c2

eff1c1
effS 1

Nc
1x2D .

However, the problem is that we do not know how to ca
out first-principles calculations of̂O(m)& and henceg(m).
It is natural to ask the question: Cang(m) be calculated at
the quark level in the same way as the Wilson coeffici
c(m)? One of the salient features of the operator prod
expansion~OPE! is that the determination of the shor
distancec(m) is independent of the choice of external stat
Consequently, we can choose quarks as external state
order to extractc(m). For simplicity, we consider a single
multiplicatively renormalizable 4-quark operatorO ~say,O1

or O2) and assume massless quarks. The QCD-corre
weak amplitude induced byO in full theory is

Afull5F11
as

4p S 2
g

2
ln

MW
2

2p2
1aD G ^O&q , ~8!

whereg is an anomalous dimension,p is an off-shell mo-
mentum of the external quark lines, which is introduced
an infrared cutoff, and the nonlogarithmic constant terma in
general depends on the gauge chosen for the gluon prop
tor. The subscriptq in Eq. ~8! emphasizes the fact that th
matrix element is evaluated between external quark state
effective theory, the renormalized̂O(m)&q is related to
^O&q in full theory via

^O~m!&q5F11
as

4p S 2
g

2
ln

m2

2p2
1r D G ^O&q

[g8~m,2p2,l!^O&q , ~9!

whereg8 indicates the perturbative corrections to the 4-qu
operator renormalized at the scalem. The constant termr is
in general renormalization-scheme, gauge and external
mentum dependent, which has the general expression@7#:

r 5r NDR,HV1lr l, ~10!
5-2
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where NDR and HV stand for the naive dimension regul
ization and ’t Hooft–Veltman renormalization schemes,
spectively, andl is a gauge parameter withl50 corre-
sponding to Landau gauge. Matching the effective the
with full theory, Afull5Aeff5c(m)^O(m)&q , leads to

c~m!5 11
as

4p S 2
g

2
ln

MW
2

m2
1dD , ~11!

where d5a2r . Evidently, the Wilson coefficient is inde
pendent of the infrared cutoff and it is gauge invariant as
gauge dependence is compensated betweena and r . Of
course,c(m) is still renormalization-scheme and -scale d
pendent.

SinceAeff in full theory @Eq. ~8!# is m and scheme inde
pendent, it is obvious that

c8eff5c~m!g8~m,2p2,l! ~12!

is also independent of the choice of the scheme and sc
Unfortunately,c8eff is subject to the ambiguities of the infra
red cutoff and gauge dependence, which come along withg8
extracted from̂ O(m)&q . As stressed in@7#, the gauge and
infrared dependence always appears as long as the m
elements of operators are calculated between quark st
Therefore, it is unreliable to define the effective Wilson c
efficients by applying the existing calculations in the liter
ture. The reason has been implicitly pointed out in@8# that
‘‘off-shell renormalized vertices of gauge-invariant operato
are in general gauge dependent.’’

The existing problems associated with the off-shell re
larization scheme are as follows:

~1! When working with off-shell fermions, there exists th
so-calledP operator@8#, e.g., p” (12g5) ^ p” (12g5) which
cannot be removed by the equation of motion.

~2! The finite terms are external momentum depend
~see Fig. 3 of@9#! and they are obtained in some speci
condition. For example, two incoming fermion legs 1,2 a
two outgoing legs 3,4 with external momentump are chosen
in Figs. 3a and 3c of@9,10#, while legs 1,3 incoming and 2,4
outgoing withp in Fig. 3b.

Hence we cannot avoid the gauge problems if adop
off-shell fermions and the finite parts ofc8eff are not well-
defined. To circumvent this difficulty, we should work in
physical on-shell scheme and employ the dimensional re
larization for infrared divergences. Gauge invariance of
decay amplitude is maintained under radiative correctio
and the infrared poles are absorbed into the hadronic ma
element as stated in the Introduction. Consequently, the
fective coefficientceff5c(m)g(m) does not suffer from the
gauge ambiguity.

III. GAUGE INVARIANCE IN ON-SHELL
REGULARIZATION

In this section we show that gluon exchanges among
on-shell quarks involved in heavy meson decays, includ
the spectator quarks, indeed give gauge-invariant contr
tions. We present the proof in the covariant gauge]•A50,
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in which the gluon propagator is given by (2 i / l 2)Nmn( l )
with

Nmn~ l !5gmn2~12l!
l ml n

l 2
, ~13!

where l is the gauge parameter. We shall show that
quark amplitudeAfull with the spectator quarks included
independent ofl to all orders, namely,

l
dAfull

dl
50. ~14!

The differential operator applies only to gluon propagato
leading to

l
d

dl
Nmn5l

l ml n

l 2
5va@ l mNan1 l nNam#, ~15!

with the special vertexva5 l a /(2l 2). The loop momentum
l m ( l n) carried by the differentiated gluon contracts with
vertex inAfull , which is then replaced by the special vert
va . Equation~15! is graphically described by the first ex
pression in Fig. 1, where the arrow representsl m ( l n) con-
tracting with the gluon vertex, and the square representsva .

The contraction ofl m ( l n) leads to the Ward identity@11#
shown in the second expression of Fig. 1, where the s
lines may represent quarks or gluons. Summing all the d
grams with various differentiated gluons, those embedd
the special vertices cancel by pairs. For example, the
cancellation occurs between the first and last diagrams in
second expression of Fig. 1. Only the diagram, in which
special vertex moves to the outer end of the quark line
left. This diagram comes from the second term in the follo
ing expression,

i ~k”1 l”1M !

~k1 l !22M2
~2 i l”!u~k!

5u~k!2
k”1 l”1M

~k1 l !22M2
~k”2M !u~k!, ~16!

FIG. 1. Graphical representation for the proof of Eq.~14!.
5-3
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where u is the fermion spinor associated with an extern
quark. The first term is canceled by the term from the c
traction of l with the adjacent vertex. If all the externa
quarks are on shell, the second term vanishes because o
equation of motion (k”2M )u(k)50. Then we arrive at the
desired result~14!.

We take one-loop corrections as an example to elucid
the above proof. We consider only the gauge-dependent
of the gluon propagator@see Eq.~13!#,
09400
l
-

the

te
art

2 i

l 2 F2~12l!
l ml n

l 2 G , ~17!

in the loop calculations and demonstrate that the result v
ishes after summing all the diagrams. The gauge-depen
part of Fig. 2~a! reads
r

ave
I a
gauge5 i

GF

A2
VCKM~12l!gs

2meE dDk

~2p!D

ū3tagm~12g5!~p” 11k”1M1!k”u1ū4tagm~12g5!~p” 22k”1M2!k”u2

k4@~k1p1!22M1
2#@~k2p2!22M2

2#
, ~18!

whereVCKM is the relevant Cabibbo-Kobayashi-Maskawa matrix elements.
To proceed, we replace thek” which is adjacent tou1 as

k”5p” 11k”2M12~p” 12M1!, ~19!

and thek” adjacent tou2 as

k”52p” 21k”1M21~p” 22M2!. ~20!

Applying Eq. ~16! and the equation of motion, (p”2M )u50, Eq. ~18! becomes

I a
gauge5 i

GF

A2
VCKM~12l!gs

2meE dDk

~2p!D

ū3tagm~12g5!u1ū4tagm~12g5!u2

k4
. ~21!

Likewise, one can apply the same trick to the calculations of Figs. 2~b!–2~f! and obtain I b
gauge52I c

gauge52I d
gauge

5I a
gauge, and

I e
gauge5I f

gauge5 i
GF

A2
VCKM~12l!gs

2meCFE dDk

~2p!D

1

k4
ū3gm~12g5!u1 ū4gm~12g5!u2

52
GF

A2
VCKM~12l!

as

4p
CFS 2

e
UV

2
2

e
IR
D ū3gm~12g5!u1ū4gm~12g5!u2 , ~22!

wheree
UV(IR)

542D is the ultraviolet~infrared! pole, andCF5(Nc
221)/(2Nc) with Nc being the number of colors. Afte

lengthy but straightforward calculation, the renormalization constant of a fermion with massM is found to be

Z2512
as

4p
CFS 2

e
UV

23gE1423 ln
M2

4p2m2
2

4

e
IR

D 1~12l!
as

4p
CFS 2

e
UV

2
2

e
IR
D . ~23!

We see that, contrary to the gauge-independent part ofZ221, the gauge-dependent contribution due to the fermion w
function renormalization

GF

A2
VCKM~12l!

as

4p
CFS 2

e
UV

2
2

e
IR
D ū3gm~12g5!u1ū4gm~12g5!u2 ~24!
5-4
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is free of mass singularity. Summing over all the contrib
tions, it is obvious that the final result indeed vanishes a
should be.

IV. PQCD FACTORIZATION THEOREM

We have shown that radiative corrections to a decay
plitude of on-shell external quarks are gauge invariant to
orders. The one-loop diagrams have been evaluated ex
itly, whose results confirm our proof. Next we shall expla
how to treat the infrared poles in the PQCD factorizati
theorem. The one-loop contributions in full theory are ult
violet finite because of the current conservation stated ab
The existence of the infrared poles simply signifies the n
perturbative dynamics, which demands the inclusion
bound-state effects into the formalism of heavy meson
cays. The standard treatment of infrared poles is to abs
them into a universal meson wave function. To absorb
infrared poles associated with theb quark, such as thos
from the self-energy corrections, it is necessary to introd
a B meson wave function. That is, we must take into acco
the spectator quark of theB meson in order to develop
complete theory of heavy meson decays.

Accordingly, the decay amplitudeAfull to one-loop in full
theory can be rewritten as

Afull511
as

4p S c

e IR
1g ln

MW

Mb
1g8 ln

Mb

m f
1aD

5F11
as

4p S g ln
MW

Mb
1g8 ln

Mb

m f
1aD G

3S 11
as

4p

c

e
IR
D 1O~as

2!, ~25!

where the factorization scalem f arises from the dimensiona
regularization of infrared divergences, and the factorizat
of the infrared pole is performed in the minimal subtracti
scheme. The anomalous dimensions of the logarith
ln(MW/Mb) and ln(Mb /mf), g and g8, respectively, are dif-
ferent, since the latter involves an extra contribution rela
to the spectator quark. The factor containing the infra
pole can be formulated as a matrix element of a nonlo
operator, which is the definition of a meson wave functi
f(m f). A wave function, describing the amplitude that
parton carries a fraction of the meson momentum, canno
derived in perturbation theory. It must be parametrized a
function of parton momentum fraction.

We further factorize the infrared finite part into

Afull5F11
as

4p S g ln
MW

m
1a8D G

3F11
as

4p S g ln
m

Mb
1g8 ln

Mb

m f
1a2a8D G

3S 11
as

4p

c

e
IR
D 1O~as

2!. ~26!
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The first factor, characterized by the matching scaleMW , is
identified as the Wilson coefficientc(m) after summing
ln(MW/m) to all orders using renormalization group~RG!
equations. The second factor, characterized by theb quark
massMb , is the hard subamplitude which will be denoted
H(Mb ,m,m f) below. Extending the above procedures to
orders, we obtain the factorization formula forB meson~not
b quark! decays,

Afull5c~m!H~Mb ,m,m f !f~m f !, ~27!

which is exactly the three-scale factorization formula for e
clusive nonleptonic decays derived in@12#. Note that Eq.
~27! in fact denotes a convolution relation, because the m
mentum fractions should be integrated out.

Compared to Eq.~6!, the matrix element̂O(m)& corre-
sponds to

^O~m!&5H~Mb ,m,m f !f~m f !. ~28!

Summing ln(m/Mb) in H to all orders using renormalizatio
group~RG! equations, we obtain an evolution factorg1(m),
whose behavior fromm to Mb is governed by the sam
anomalous dimension as that ofc(m). Summing ln(Mb /mf)
in H to all orders, we obtain another factorg2(m f) describ-
ing the evolution fromMb to m f , whose anomalous dimen
sion differs from that ofc(m) because of the inclusion of th
dynamics associated with spectator quarks. Note thatg2 is
part of the Sudakov evolution obtained in@12#. Hence, them
dependence ofH is extracted as

H~Mb ,m,m f !5g1~m!g2~m f !H~Mb ,Mb ,Mb!. ~29!

The combination ofc, g1 , and g2 leads to the effective
coefficient

ceff5c~m!g1~m!g2~m f !, ~30!

which is not onlym and scheme independent but also gau
invariant. The factorg(m) in Eq. ~6! can be identified as
g1(m)g2(m f), which describes the evolution down to th
factorization scale. However,g1(m)g2(m f) contains a
matching condition at the scaleMb between the Wilson and
Sudakov evolutions with different anomalous dimensio
Therefore, there is an ambiguity of the matching conditio
the two evolutions can also match atrM b with r a constant
of order unity. Obviously, Eq.~30! is subtler than the naive
definition of ceff in Eq. ~6!.

The matrix element̂O& tree in Eq. ~6! is then identified as

^O& tree5H tree~Mb ,Mb ,Mb!f~m f !, ~31!

where the hard subamplitude is evaluated to lowest or
with one hard gluon exchange, since all large logarith
have been organized by RG equations. We emphasize
the factorization hypothesis for̂O& tree in the conventional
approach is not necessary in the PQCD formalism. The p
pose of the factorization hypothesis is to simplify the dec
amplitude into products of decay constants and form fact
which are then parametrized as various models. To hav
better fit to experimental data, nonfactorizable contributio
5-5
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parametrized asx @see Eq.~7!#, are included. Note thatH tree

in the PQCD approach includes both factorizable contri
tions ~form factors!, when the hard gluon attaches to the tw
quarks in a meson, and nonfactorizable contributions~octet
amplitudes!, when the hard gluon attaches to the quarks
different mesons. Therefore, we may compute all poss
diagrams forH tree @15# and convolute them with the sam
meson wave functionsf. That is, we use the single param
etrization, i.e., the meson wave functions, for both factor
able and nonfactorizable contributions based on Eq.~31!. In
this sense the PQCD formalism is more systematic.

At last, we explain how to handle the nonperturbati
meson wave functions with the dependence of the factor
tion scalem f . It can be shown that these wave functions a
universal for all decay processes involving the same mes
For example, theB meson wave function for the nonlepton
decaysB→D (* )p(r) and for the radiative decayB→K* g
is the same. This universality can be easily understood, s
a wave function collects long-distance~infrared! dynamics,
which should be insensitive to short-distance dynamics
volved in the decay of theb quark into light quarks with
large energy release. Based on the universality of wave fu
tions, the application of factorization formulas is as follow
@13#. We evaluate the Wilson and Sudakov evolutions do
to a factorization scalem f and the hard subamplitude for
decay mode, say,B→K* g, in perturbation theory. Thes
calculations are simply performed at the quark level w
infrared poles dropped~in the minimal subtraction scheme!.
Adjust theB meson wave function such that the predictio
from the relevant factorization formula match the experim
tal data. At this stage, we determine theB meson wave func-
tion defined at the scalem f . Then evaluate the Wilson an
Sudakov evolutions down to the same scalem f and the hard
subamplitude for another decay, say,B→Dp. Convolute
them with the sameB meson wave function and make pr
dictions. At this stage, there are no free parameters in
formalism. With the above strategy, the PQCD factorizat
theorem possesses predictive power.

The main uncertainties in the PQCD factorization the
rem come from higher-order corrections to the hard sub
plitude and higher-twist corrections from the Fock sta
other than the leading one with only valence quarks wh
we are considering here. According to Eq.~29!, the argument
of the running coupling constant in the hard subamplitu
H(Mb ,Mb ,Mb) should be set to theb quark massMb ,
implying that the next-to-leading-order diagrams give ab
as(Mb)/p;10% corrections. SinceH is characterized by
Mb , the next-to-leading-twist correction from the Fock sta
with one more parton entering the hard subamplitude
about m f /Mb;10%. Note that meson wave functions a
usually defined at the factorization scalem f;0.5 GeV@14#.
We believe that other nonperturbative corrections, such
final-state interactions, should play a minor role because
the large energy release involved in two-bodyB meson de-
cays. If the hadronic matrix elements are evaluated using
factorization approximation~i.e., vacuum insertion approxi
mation!, the related uncertainties have been discussed
length in @17#.
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In conclusion, all the factors in the PQCD formalism a
well-defined ~including the nonperturbative meson wav
functions! and gauge invariant. Physical quantities obtain
in this formalism are scale and scheme independent.
have applied this approach to exclusive semileptonic, n
leptonic, and radiativeB meson decays and the results a
very successful. Nonfactorizable contributions have be
calculated, and found to play an important role in the dec
B→J/cK (* ) @15#. The opposite signs ofa2 /a1 in bottom
and charm decays have been explained by the effects o
Wilson evolution@15#. The mechanism for the sign chang
of the nonfactorizable contributions in bottom and cha
decays has also been explored@16#, which is closely related
to the success and failure of the large-Nc limit in charm and
bottom decays, respectively.

V. EFFECTIVE WILSON COEFFICIENTS

In this section we present the results for the evolut
factorg1(m) which describes the evolution from the scalem
to Mb for the current-current operators1 O1 andO2 . Setting
m f5Mb , the effective Wilson coefficients obtained from th
one-loop vertex diagrams Figs. 2~a!–2~f! for the operatorsOi
have the form

c1
effum f5Mb

5c1~m!1
as

4p S g (0)T ln
Mb

m
1r TD

1i

ci~m!,

~32!

1The complete results ofg1(m) for DB51 transition current-
current operatorsO1 ,O2 , QCD-penguin operatorsO3 ,...,O6 and
electroweak penguin operatorsO7 ,...,O10 are given in@17#.

FIG. 2. Vertex corrections to the 4-quark operatorsO1 andO2 .
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c2
effum f5Mb

5c2~m!1
as

4p S g (0)T ln
Mb

m
1r TD

2i

ci~m!,

where the superscriptT denotes a transpose of the matr
and the anomalous dimension matrixg (0) due to the one-
loop vertex corrections has the well-known expression

g (0)5S 22 6

6 22D . ~33!

The matrix r gives momentum-independent constant ter
which depend on the treatment ofg5 . Working in the~mass-
less! on-shell scheme and assuming zero momentum tran
squared between color-singlet currents, i.e., (p12p3)250 as
well as (p11p2)25(2p21p3)2'mb

2 for O1 operators and
(p12p4)250, (p11p2)25(2p21p4)2'mb

2 for O2 opera-
tors ~see Fig. 2 for momentum notation!, we obtain

r NDR5S 3 29

29 3 D , r HV5S 7

3
27

27
7

3

D ~34!

in NDR and HV schemes, respectively. It should be acc
tuated that, contrary to the previous work@5#

r NDR
l50 5S 7

3
27

27
7

3

D , r HV
l505S 7 25

25 7 D , ~35!
ul
l-

09400
s

fer

-

obtained in Landau gauge and off-shell regularization,
matrix r given in Eq.~34! is gauge invariant.

Two remarks are in order. First, there are infrared dou
poles, i.e., 1/e

IR

2 , in the amplitudes of Figs. 2~a!–2~d!, but
they are canceled out when adding all amplitudes toget
Second, care must be taken when applying the projec
method to reduce the tensor products of Dirac matrices to
form G ^ G with G5gm(12g5). For example, a direc
evaluation of the tensor productgap” 1G ^ Gp” 2ga yields (e
542D)

gap” 1G ^ Gp” 2ga52e~p1•p2!G ^ G ~36!

in the NDR scheme with the on-shell condition being appl
first to the massless quarks followed by Fierz transformati
whereas the projection method of@18,19,9# leads to

gap” 1G ^ Gp” 2ga5~p1•p2!G ^ G1E, ~37!

whereE stands for the evanescent operator~EO!. This means
that it is incorrect to take the coefficient ofG ^ G in Eq. ~37!
directly without taking into account the effect of EOs. No
that we have applied Eq.~36! to show the absence of infrare
double poles in the total amplitude.

In order to check the scheme and scale independenc
ci

eff , it is convenient to work in the diagonal basis in whic
the operatorsO65 1

2 (O16O2) do not mix under renormal-
ization. Then@see, e.g.,@20# for the general expression o
c(m)]
c6
effum f5Mb

5c6~m!g1
6~m!5F11

as~m!

4p
~r 6

T 1J6!GF11
as~MW!

4p
~B62J6!G S Fas~MW!

as~m! Gg6
(0)/(2b0)

1
as

4p

g6
(0)

2
ln

Mb
2

m2 D ,

~38!
(
e.
ent
en-

ell.
-

a-
wherec65c16c2 , b05112
2
3

nf with nf being the number

of flavors betweenMW andm scales,B6 specifies the initial
condition ofc(mW): c(mW)511 @as(mW)/4p# B6 and it is
g5-scheme dependent, and J65g6

(0)b1 /(2b0
2)

2g̃6
(1)/(2b0), with b15102238nf /3. The scheme-

dependent anomalous dimensionsg̃6
(1) are given by@20,7#

g̃6
(1)5g6

(1)22gJ5
371

6
~2216 4

3 nf22b0k6! , ~39!

whereg6
(1) are the two-loop anomalous dimensions ofO6 ,

gJ is the anomalous dimension of the weak current in f
theory, and the parameterk6 distinguishes various renorma
ization schemes:k650 in the NDR scheme andk6574 in
the HV scheme. As shown in@20#, B62J6 is g5-scheme
l

independent. Therefore, the effective Wilson coefficientsc6
eff

are scheme independent if we are able to show thatr T

1J) is independent of the choice of renormalization schem
Since the short-distance Wilson coefficients are independ
of the choice of external states, one can show the indep
dence ofg6

(1)22gJ from external states@20#. In the on-shell
scheme,gJ vanishes up to the two-loop level. It follows from
Eq. ~34! thatr 1526, 2717/3 andr 2512, 717/3 in NDR
and HV schemes, respectively, with fermions being on-sh
Then it is easily seen thatr T1J is indeed renormalization
scheme independent. To the leading logarithmic approxim
tion,

S as~MW!

as~m! D g6
(0)/(2b0)

'12
as

4p

g6
(0)

2
ln

MW
2

m2
. ~40!
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Hence, the scale independence of the effective Wilson c
ficients follows.

Since the weak current is partially conserved, its anom
lous dimensiongJ is zero. However, if fermions are off
shell, gJ is nonvanishing at the two-loop level in the H
scheme. To maintain the requirement thatgJ50, one can
force a vanishinggJ in this case by applying a finite reno
malization term to the weak current.~Note that in this new

choice,g6
(1)85g6

(1) , B68 5B62gJ /b0 , andB68 2J68 is still
scheme independent.! Using the identity g (1)~on-shell!
5g (1)~off-shell!22gJ , we find thatg (1) in the off-shell fer-
mion scheme is given by@19#:

gNDR
(1) 5S 2

21

2
2

2

9
nf

7

2
1

2

3
nf

7

2
1

2

3
nf 2

21

2
2

2

9
nf

D ,

~41!

gHV
(1)5S 553

6
2

58

9
nf

95

2
22nf

95

2
22nf

553

6
2

58

9
nf

D .

From Eqs.~35! and ~41!, it is straightforward to show tha
r 61J6 is g5-scheme independent in the off-shell regulariz
tion. As a result,ceff is renormalization-scheme independe
irrespective of the fermion state, on-shell or off-shell.
,

l.

l.

i,

09400
f-

-

-
,

VI. CONCLUSION

In this paper we have shown how to construct a gau
invariant and infrared finite theory of exclusive nonlepton
B meson decays based on the PQCD factorization theor
Gauge invariance is maintained under radiative correcti
by working in the physical on-shell scheme. The infrar
divergences in radiative corrections should be then isola
using the dimensional regularization. The resultant infra
poles are absorbed into the universal meson wave functi
which can be determined once for all from experimen
data. The absorption of the poles associated with theb quark
requires the inclusion of the spectator quark into the theo
The remaining finite contributions form a hard subamplitud
Applying RG analyses to sum various large logarithms in
above factorization formula, the scale and scheme dep
dences are removed. Hence, in the PQCD formalism ph
cal quantities are guaranteed to be gauge invariant, infra
finite, scale and scheme independent. By working out
evolution factor g1(m) explicitly, we have constructed
gauge-invariant, scale and scheme independent effec
Wilson coefficientsc(m)g1(m) at the factorization scalem f
5Mb . We have shown explicitly that ceff are
renormalization-scheme and -scale independent.

We shall take one of the exclusive nonleptonicB meson
decay modes as an example to demonstrate how to cons
a factorization formula explicitly. This work will be pub
lished elsewhere.
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