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Gauge invariant and infrared finite theory of nonleptonic heavy meson decays
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We show that the controversies on the gauge dependence and the infrared singularity which have emerged
in the generalized factorization approach for nonleptonic heavy meson decays within the framework of the
operator product expansion can be resolved by the perturbative QCD factorization theorem. The gauge invari-
ance of the decay amplitude is maintained under radiative corrections by assuming on-shell external quarks.
For on-shell external quarks, infrared poles in radiative corrections have to be extracted using dimensional
regularization. These poles, signifying nonperturbative dynamics of a decay process, are absorbed into bound-
state wave functions. Various large logarithms produced in radiative corrections are summed to all orders into
the Wilson and Sudakov evolution factors. The remaining finite part gives a hard subamplitude. A decay rate
is then factorized into a convolution of the hard subamplitude, the Wilson coefficient, and the Sudakov factor
with the bound-state wave functions, all of which are well defined and gauge invariant.
[S0556-282(199)06317-1

PACS numbsd(s): 13.25-k, 12.38.Bx

I. INTRODUCTION dent as the vector or axial-vector current is partially con-

The effective Hamiltonian is the standard starting poims?‘rvgd.IContshequer}tly(,jthe ag]pl't'mé“%f) tact IS ?]?t_tru:y d
for describing the nonleptonic weak decays of hadrons. conPhysical as the scale dependence ot VViison Coetlicients does

. =5 . not get compensation from the matrix elements.
sider _the decayB” D" ar _as an _example. The relevant A plausible solution to the aforementioned scale problem
effective AB=1 weak Hamiltonian is

is to extract theyx dependence from the matrix element
(O(u)), and combine it with the.-dependent Wilson coef-
Heﬁ:&Vcbe}d[Cl(M)ol(M) +e,()0x()], (D) ficients to.form/L-ind.ependenfc effective.V.\/iIscl)n coefficients.
N7 After making a physical amplitude explicitiy-independent,
the factorization hypothesis is applied to the hadronic matrix
where elements. However, the-evolution factor extracted from
(O(u)) depends on an infrared cutoff, which is originally
. (2) implicit in (O(u)). Since an off-shell external quark mo-
mentum is usually chosen as the infrared cutoff, the
o — m-evolution factor also contains a gauge dependent term ac-
with (qqu)v;AEqwﬂ(li%)qz' In or.der to ensure the companied by off-shell external quarks. Therefore, this solu-
renormalization-scale and -scheme independence for thg,, ‘though it removes the scale and scheme dependence of
physical amplitude, the matrix elements of 4-quark operatorg physical amplitude in the framework of the factorization
have to be_ evaluated_lr_1 the same renorma_\llzanon scheme A§pothesis, often introduces the infrared cutoff and gauge
that for Wilson coefficients and renormalized at the Sam&jependence.
scaleu. _ _ _ In this paper we shall show that the above controversies
Although the hadronic matrix eleme(®(x)) can be di-  ¢an pe resolved by the perturbative QUBQCD) factoriza-
rectly calculated in the lattice framework, it is conventionally i theorem. In this formalism, partons, i.e., external quarks,
evaluated under the factorization hypothesis so ¢fw))  are assumed to be on shell, and both ultraviolet and infrared
is factorized into the product of two matrix elements Of givergences in radiative corrections are isolated using the
single currents, governed by decay constants and form fagfimensional regularization. Because external quarks are on
tors. In spite of its tremendous simplicity, the naive factor-ghe|, gauge invariance of the decay amplitude is maintained
ization approach encounters two principal difficulties. First,ynder radiative corrections. The obtained ultraviolet poles
it fails to describe the color-suppressed weak decay modegre subtracted in a renormalization scheme, while the infra-
For example, the predicted decay rateDdf—K°#% by na-  red poles are absorbed into nonperturbative bound-state
ive factorization is too small by two orders of magnitude wave functions. Various large logarithms produced in radia-
compared to experiment. Second, the hadronic matrix eletive corrections are summed to all orders into the Wilson and
ment under factorization is renormalization-scaléndepen-  Sudakov evolution factors. The remaining finite piece is

0;=(ch),_,(du), , O,=(db) (cu)

V-A
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grouped into a hard decay subamplitude. The decay rate wrder (NLO), the Wilson coefficients depend on the choice
then factorized into the convolution of the hard subampli-of the renormalization scheme. It is not clearyif{ ) can
tude, the Wilson coefficient, and the Sudakov factor with therestore the scheme dependence of the matrix element.
bound-state wave functions, all of which are well-defined In the second approach, it is postulated th@{w)) is
and gauge invariant. The partition of the nonperturbative andelated to the tree-level hadronic matrix element via the re-
perturbative contributions is quite arbitrary. Different parti- lation (O(u))=g(u){(O)yecand thatg(u) is independent of
tions correspond to different factorization schemes. Howthe external hadron states. Then schematically we can write
ever, the decay rate, as the convolution of the above factors,
is independent of factorization schemes as it should be. c(w)(O(w))=c(1)9(1)(O)ree=C*(O)ree-  (6)

In Sec. Il we review the conventional solutions to the L L )
scale and scheme dependence present in the factorization Hy2€ factorization approximation is applied afterwards to the
pothesis, and their problems. Gauge invariance of radiativ@adronic matrix element of the operafrat the tree level.

corrections is explicitly justified to all orders in Sec. IIl. The Since  the  tree-level ~matrix  element(O)yee IS
PQCD approach is introduced in Sec. IV. Explicit calcula-€normalization-scheme and -scale independent, so are the
tions of the evolution factog,(x) to be defined below are effective Wilson coefficientt;{sff and the effective parameters

: ! . . ff
shown in Sec. V. Section VI is the conclusion. a;" expressed by5,6]
1
Il. GAUGE DEPENDENCE AND INFRARED a‘i“:g‘i“.q_cgﬁ N_+X1 ,
SINGULARITY c
. : , . (7
The aforementioned scale problem with naive factoriza- o ot e 1
tion can be circumvented in two different approaches. In the a, =C; +C; N—+X2 .
first approach, one incorporates nonfactorizable effects into ¢
the effective coefficientfl—3]: However, the problem is that we do not know how to carry

out first-principles calculations dfO(u«)) and henceg(u).

aiﬁ: Cy( )+ Co ) Ni+X1(M)>’ It is natural to agk the question: Cafu) be _calculated_a_t
c the quark level in the same way as the Wilson coefficient
1 (€©)) c(u)? One of the salient features of the operator product
as=c tc o , expansmn(Ol?E? is that the determln_atlon of the short-
2 2(m)+eap) N¢ XZ(’U“)) distancec(u) is independent of the choice of external states.

, ) Consequently, we can choose quarks as external states in
where nonfactorizable terms are characterized by the paramyqer to extract(x). For simplicity, we consider a single

etersy; . For the decayg®—D "7, x, is given by multiplicatively renormalizable 4-quark operat@r(say,O ,
() or O_) and assume massless quarks. The QCD-corrected
2 M - - . . .
ol ) xa( ) =| cq(p)+ ; )8(130, )(M) weak amplitude induced b® in full theory is
¢ 2
(BD, ) a Yy My
+Ca(um)eg (w), 4 A= 1+ﬁ —Eln _—p2+a <O>q, (8)
where
where y is an anomalous dimensiop, is an off-shell mo-
(D77 |(cb)_ (du). |B°) mentum of the external quark lines, which is introduced as
g(BDM = VoA TVEA —1, an infrared cutoff, and the nonlogarithmic constant terin

|0) general depends on the gauge chosen for the gluon propaga-
(5) tor. The subscripg in Eg. (8) emphasizes the fact that the
matrix element is evaluated between external quark states. In

(D*|(cb), ,|B)(7[(du)

V-A

(D77 |3 (cA®b), (d\?u),|B°)

£(BD.7) _ effective theory, the renormalizedO(u))q is related to
<D+|(Eb)V—A|§O><777|(EU)V—A|O> (O)q in full theory via
2
are nonfactorizable terms originaﬂed from colgr—singlet and (O(u))q=| 1+ ﬁ( B Zln 2 - (0)q
color-octet currents, respectivelyql(}\aqz)v_AEql)\ayﬁ(l 4m 27 —p
—1v5)0,. The u dependence of Wilson coefficients is as- Eg'(,u,—pz,h)(O)q, 9)

sumed to be exactly compensated by thay@fu) [4]. That

is, the correctu dependence of the matrix elements is re-whereg’ indicates the perturbative corrections to the 4-quark
stored by the nonfactorized parameteygu). However,  operator renormalized at the scale The constant term is
there are two potential problems with this approach. Firstin general renormalization-scheme, gauge and external mo-
the renormalized 4-quark operator by itself still depends ofimentum dependent, which has the general expre$gion

w, though the scale dependence (@(w)) is lost in the

factorization approximation. Second, to the next-to-leading r=rNORHVL )\ PN (10)
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ization and 't Hooft—Veltman renormalization schemes, re- dn
spectively, and\ is a gauge parameter with=0 corre-

sponding to Landau gauge. Matching the effective theory

with full theory, Ag=Aer=Cc(u)(O(1))q. leads to

B P) M‘2’V+d
=t T2 2

where NDR and HV stand for the naive dimension regular- d N
= |

: 11

whered=a—r. Evidently, the Wilson coefficient is inde- -
pendent of the infrared cutoff and it is gauge invariant as the
gauge dependence is compensated betwaeend r. Of

course,c(u) is still renormalization-scheme and -scale de- + N
pendent. ﬁ]

SinceAg in full theory [Eq. (8)] is u and scheme inde-
pendent, it is obvious that FIG. 1. Graphical representation for the proof of Etg).

A A =

c'®f=c(u)g’ (u,—p3\) (12 in which the gluon propagator is given by-{/I2)N#*(l)
with
is also independent of the choice of the scheme and scale.
Unfortunately,c’ ™ is subject to the ambiguities of the infra- , , [~17
red cutoff and gauge dependence, which come alonggvith N# (1) =g*"=(1=N) 2 (13
extracted from{O(u))q. As stressed if7], the gauge and
infrared dependence always appears as long as the matihere \ is the gauge parameter. We shall show that the

elements of operators are calculated between quark statefuark amplitudeAs,; with the spectator quarks included is
Therefore, it is unreliable to define the effective Wilson co-independent of to all orders, namely,

efficients by applying the existing calculations in the litera-
ture. The reason has been implicitly pointed ouf&h that dAs
“off-shell renormalized vertices of gauge-invariant operators A aNn (14)
are in general gauge dependent.”
The existing problems associated with the off-shell regu-The differential operator applies only to gluon propagators,

larization scheme are as follows: leading to
(1) When working with off-shell fermions, there exists the
so-calledP operator[8], e.g., p(1— ys)®P(1— ys) which d 1 o e
cannot be removed by the equation of motion. N NN S VRl INTH TN, (15

(2) The finite terms are external momentum dependent
(see Fig. 3 of[9]) and they are obtained in some specific with the special vertex,=1,/(21%). The loop momentum
condition. For example, two incoming fermion legs 1,2 and|~ (%) carried by the differentiated gluon contracts with a
two outgoing legs 3,4 with external momentynare chosen vertex inAy,, , which is then replaced by the special vertex
in Figs. 3a and 3c df9,10], while legs 1,3 incoming and 2,4 y . Equation(15) is graphically described by the first ex-

outgoing withp in Fig. 3b. _ ~ pression in Fig. 1, where the arrow represdrttg1”) con-
Hence we cannot avoid the gauge problems if adoptingracting with the gluon vertex, and the square represenpts
off-shell fermions and the finite parts of *" are not well- The contraction of“ (1”) leads to the Ward identity11]

defined. To circumvent this dlfflCUlty, we should work in a shown in the second expression of F|g 1, where the solid
physical on-shell scheme and employ the dimensional regumes may represent quarks or gluons. Summing all the dia-
larization for infrared divergences. Gauge invariance of thfgrams with various differentiated gluons, those embedding
decay amplitude is maintained under radiative Correctionst,he Specia' vertices cancel by pairs_ For examp|e, the pair
and the infrared poles are absorbed into the hadronic matrixancellation occurs between the first and last diagrams in the
element as stated in the Introduction. Consequently, the ekecond expression of Fig. 1. Only the diagram, in which the
fective coefficientc®=c(u)g(n) does not suffer from the gpecial vertex moves to the outer end of the quark line, is
gauge ambiguity. left. This diagram comes from the second term in the follow-
ing expression,
Ill. GAUGE INVARIANCE IN ON-SHELL

REGULARIZATION i(k+J+M) .
————(=ihu(k)
In this section we show that gluon exchanges among the (k+1)*=M
on-shell quarks involved in heavy meson decays, including
the spectator quarks, indeed give gauge-invariant contribu- =u(k)— kK+I+M (k—Mu(k), (16)
tions. We present the proof in the covariant gaugé& =0, (k+1)2—M?2
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whereu is the fermion spinor associated with an external { Wﬂ

quark. The first term is canceled by the term from the con- — | —(1-X\) , 17
traction of I with the adjacent vertex. If all the external

guarks are on shell, the second term vanishes because of the

equation of motion K—M)u(k)=0. Then we arrive at the

desired resul{14). ) )

the above proof. We consider only the gauge-dependent paighes after summing all the diagrams. The gauge-dependent
of the gluon propagatdisee Eq(13)], part of Fig. 2a) reads

dPk  ust?y,(1— ¥s)(Py+ K+ M Kususty“(1— ys) (po— K+ Mp)Ku,

G

L TZVCKM(l_Mgg“EJ (2m)P K[ (k+pp)? = M3 (k—p2)?~ M3] -

whereVky is the relevant Cabibbo-Kobayashi-Maskawa matrix elements.

To proceed, we replace thkewhich is adjacent ta; as
k=p;+Kk=M1—(p1—My), (19
and thek adjacent tau, as

k=—p,+Kk+My+(p—My). (20

Applying Eq. (16) and the equation of motionp(~ M)u=0, Eq.(18) becomes
|gauge_j % V(1 A)gﬁ,ﬁJ’ (S;I)(D Ust?y,(1- 75)u|1:]taw(l— ¥s)Uz 21)

Likewise, one can apply the same trick to the calculations of Figs)-2(f) and obtain|p®'9%= —9349%= —gauge
=19249¢ and

Gr d°k 1— _
Igaugezlgauge:i_v 1_)\ 2 EC f —Uu 1_ u. u M 1— u
e f 2 ckm( )9suCe (2mP K 3Vu(1— y5)Uup Ugy*(1—ys)Uz
V(1= 22 Col 2 = 2] Uy (1= yo Ustiay (1= 7o) 22
=—— —\N)— ———u — y5)UqU —¥s5)Uy,
\/5 CKM 47 =F € €n 3Yu Ys)UUgy Ys)U2
where e =4-D is the ultraviolet(infrared pole, andCF=(N§—1)/(2NC) with N, being the number of colors. After

UV(IR)
lengthy but straightforward calculation, the renormalization constant of a fermion with vhasgound to be

21— 2oc| 2 ayeracam M C A o B[ 22 23
2=1=7—Ce —3yet4-3In—— - — [+ (=N Crl | (23)

€ 47 €r IR

We see that, contrary to the gauge-independent par,efl, the gauge-dependent contribution due to the fermion wave
function renormalization

OV (1-0) 22 C ( 2 2)_ (1— ve)UyUgy (1 — y2) (24)
——=Vekm(L=AN) 77— Cpgl — = — | Ugy, (L= ¥5)U Uy y" (1= y5)Us
\/E 477 GUV ElR .
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is free of mass singularity. Summing over all the contribu-The first factor, characterized by the matching sddlg, is
tions, it is obvious that the final result indeed vanishes as iidentified as the Wilson coefficient(u) after summing

should be. In(M\/w) to all orders using renormalization grolRG)
equations. The second factor, characterized bybtlgpiark
IV. PQCD FACTORIZATION THEOREM massM,,, is the hard subamplitude which will be denoted by

H(My,u, ) below. Extending the above procedures to all

We have shown that radiative corrections to a decay amerders, we obtain the factorization formula ®meson(not
plitude of on-shell external quarks are gauge invariant to alb quark decays,
orders. The one-loop diagrams have been evaluated explic-
itly, whose results confirm our proof. Next we shall explain Arr=c(w)H(My, ) p(ae), 27
how to treat the infrared poles in the PQCD factorization
theorem. The one-loop contributions in full theory are ultra- . X .
violet finite because of the current conservation stated abov&!USiVe nonleptonic decays derived jé2]. Note that Eq.
The existence of the infrared poles simply signifies the non{27) in fact denotes a convolution relation, because the mo-
perturbative dynamics, which demands the inclusion off€ntum fractions should be integrated out.
bound-state effects into the formalism of heavy meson de- Compared to Eq(6), the matrix elemen{O(y)) corre-
cays. The standard treatment of infrared poles is to absorBPONds to
them into a universal meson wave function. To absorb the
infrared poles associated with the quark, such as those (O(u))=H(Mp o, ) lpar). 28
from the self-energy corrections, it is necessary to introduc&umming Ing/My) in H to all orders using renormalization
aB meson wave function. That is, we must take into accounyroup (RG) equations, we obtain an evolution factp( ),
the spectator quark of thB meson in order to develop a whose behavior fromu to M, is governed by the same

which is exactly the three-scale factorization formula for ex-

complete theory of heavy meson decays. ' anomalous dimension as that ©fx). Summing InW, /)
Accordingly, the decay amplitud&,, to one-loop in full in H to all orders, we obtain another factgs(u) describ-
theory can be rewritten as ing the evolution fromM, to u;, whose anomalous dimen-

sion differs from that ot(u«) because of the inclusion of the
dynamics associated with spectator quarks. Note ghas
part of the Sudakov evolution obtained[it2]. Hence, theu
dependence adfl is extracted as

H(Mp,u,p1) =091(0)92( ) H(Mp , M, ,Mp). (29

) The combination ofc, g,, and g, leads to the effective
+0(ag), (29 coefficient

A1t (S M Mo
full = 47\ e Van Y an a

Ag
Y

M M
yln—W+y’ In— +a
My Mot

023

X
41

Cc
1+-—=—
€

IR
o _ S c®=c(u)g1(m) g2 1y), (30)
where the factorization scaje; arises from the dimensional

regularization of infrared divergences, and the factorizatiorwhich is not onlyx and scheme independent but also gauge
of the infrared pole is performed in the minimal subtractioninvariant. The factorg(w) in Eq. (6) can be identified as
scheme. The anomalous dimensions of the logarithmgi(x)d,(ws), which describes the evolution down to the
In(My/M,) and InMy/wy), v and y', respectively, are dif- factorization scale. Howeverg,(u)g,(u¢) contains a
ferent, since the latter involves an extra contribution relatednatching condition at the scal, between the Wilson and
to the spectator quark. The factor containing the infraredsudakov evolutions with different anomalous dimensions.
pole can be formulated as a matrix element of a nonlocalherefore, there is an ambiguity of the matching condition:
operator, which is the definition of a meson wave functionthe two evolutions can also matchrad ,, with r a constant
¢(ms). A wave function, describing the amplitude that a of order unity. Obviously, Eq(30) is subtler than the naive
parton carries a fraction of the meson momentum, cannot beefinition of c®™ in Eq. (6).

derived in perturbation theory. It must be parametrized as a The matrix elemen¢O)¢cin Eq. (6) is then identified as
function of parton momentum fraction.

We further factorize the infrared finite part into (O)tree=Hired Mp .My, Mp) (1), (32)

o M where the hard subamplitude is evaluated to lowest order

Ag=| 1+ — yln—W+a’ with one hard gluon exchange, since all large logarithms
4 2 have been organized by RG equations. We emphasize that

o " M the factorization hypothesis fqiO).c in the conventional

X| 1+ — yin—+1v' In—b+a—a' approach is not necessary in the PQCD formalism. The pur-

4m My i pose of the factorization hypothesis is to simplify the decay

a. C amplitude into products of decay constants and form factors,
X[ 1+ -——|+0(a?). (26)  which are then parametrized as various models. To have a

a7 €, better fit to experimental data, nonfactorizable contributions,
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parametrized ag [see Eq(7)], are included. Note thafl;ee Py yoan Ps \/
in the PQCD approach includes both factorizable contribu-
tions (form factorg, when the hard gluon attaches to the two ® 4
quarks in a meson, and nonfactorizable contributimttet V-A
amplitude$, when the hard gluon attaches to the quarks in P Pa
different mesons. Therefore, we may compute all possible (a) (b)
diagrams forH e [15] and convolute them with the same
meson wave functiong. That is, we use the single param-
etrization, i.e., the meson wave functions, for both factoriz-
able and nonfactorizable contributions based on(Bd). In
this sense the PQCD formalism is more systematic. o}
At last, we explain how to handle the nonperturbative
meson wave functions with the dependence of the factoriza-
tion scalew; . It can be shown that these wave functions are (c) (d)

universal for all decay processes involving the same mesons.

For example, th& meson wave function for the nonleptonic

decaysB—D®)x(p) and for the radiative decaB—K* y

is the same. This universality can be easily understood, since

a wave function collects long-distan¢mfrared dynamics, \"7/ \/

which should be insensitive to short-distance dynamics in- X X

volved in the decay of thé quark into light quarks with /\ /@

large energy release. Based on the universality of wave func-

tions, the application of factorization formulas is as follows

[13]. We evaluate the Wilson and Sudakov evolutions down FIG. 2. Vertex corrections to the 4-quark operatGrsandO,.

to a factorization scale; and the hard subamplitude for a

decay mode, sayB—K™* v, in perturbation theory. These In conclusion, all the factors in the PQCD formalism are

calculations are simply performed at the quark level withwell-defined (including the nonperturbative meson wave

infrared poles droppe(in the minimal subtraction scheme functiong and gauge invariant. Physical quantities obtained

Adjust theB meson wave function such that the predictionsin this formalism are scale and scheme independent. We

from the relevant factorization formula match the experimen-have applied this approach to exclusive semileptonic, non-

tal data. At this stage, we determine Beneson wave func- leptonic, and radiativd8 meson decays and the results are

tion defined at the scalg;. Then evaluate the Wilson and very successful. Nonfactorizable contributions have been

Sudakov evolutions down to the same sgaleand the hard calculated, and found to play an important role in the decays

subamplitude for another decay, s&—D. Convolute B—J/¢K®*) [15]. The opposite signs o,/a; in bottom

them with the sam® meson wave function and make pre- and charm decays have been explained by the effects of the

dictions. At this stage, there are no free parameters in th&/ilson evolution[15]. The mechanism for the sign change

formalism. With the above strategy, the PQCD factorizationof the nonfactorizable contributions in bottom and charm

theorem possesses predictive power. decays has also been explofdd], which is closely related
The main uncertainties in the PQCD factorization theo-to the success and failure of the lafygdimit in charm and

rem come from higher-order corrections to the hard subambottom decays, respectively.

plitude and higher-twist corrections from the Fock states

other than the Igading one with_only valence quarks which V. EFFECTIVE WILSON COEFFICIENTS

we are considering here. According to E29), the argument

of the running coupling constant in the hard subamplitude In this section we present the results for the evolution

H(My,M,,My) should be set to théd quark massM,,, factorg,(x) which describes the evolution from the scale

implying that the next-to-leading-order diagrams give abouto M, for the current-current operatdr®, andO,. Setting

as(Mp)/m~10% corrections. Sincél is characterized by u;=M,, the effective Wilson coefficients obtained from the

My, the next-to-leading-twist correction from the Fock stateone-loop vertex diagrams Fig9.a@@—2(f) for the operator®;

with one more parton entering the hard subamplitude ihave the form

about u; /M,~10%. Note that meson wave functions are

usually defined at the factorization scale~0.5 GeV[14]. off as | o7 . Mb . ;

We believe that other nonperturbative corrections, such as €1 |M,:Mb201(ﬂ)+ yp. ¥ In7+r Ci(u),

final-state interactions, should play a minor role because of L

the large energy release involved in two-bdglyneson de-

cays. If the hadronic matrix elements are evaluated using the

factorization approximatioiti.e., vacuum insertion approxi-  The complete results ofj,(x) for AB=1 transition current-

mation, the related uncertainties have been discussed a&urrent operator®,,0,, QCD-penguin operator®s;,...,0¢ and

length in[17]. electroweak penguin operatd®,...,04, are given in[17].

(32
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- obtained in Landau gauge and off-shell regularization, the
YOTIn—+r ) Ci(m), matrix r given in Eq.(34) is gauge invariant.
H 2i Two remarks are in order. First, there are infrared double
. 2 . . -
where the superscripf denotes a transpose of the matrix, Poles. i.€., ¢, in the amplitudes of Figs.(@-2(d), but
and the anomalous dimension mat§4®) due to the one- they are canceled out when adding all amplitudes together.

loop vertex corrections has the well-known expression ~ Second, care must be taken when applying the projection
method to reduce the tensor products of Dirac matrices to the

©0)_ -2 6 form I'eI' with I'=vy,(1—vys). For example, a direct
Yl e -2/ (33 evaluation of the tensor produgt,p I ® ' p,y* yields (e
=4-D)
The matrixr gives momentum-independent constant terms
which depend on the treatment #f. Working in the(mass-
les9 on-shell scheme and assuming zero momentum transfer
squared between color-singlet currents, i.p;, p3)?=0 as
well as (p;+p,)?=(—p,o+p3)2~ mg for O, operators and in the NDR scheme with the on-shell condition being applied
(P1—P2)?=0, (p1+P2)2=(—po+ps)’~ mﬁ for O, opera- first to the massless quarks followed by Fierz transformation,

f‘f
|/.Lf—Mb CZ(M)+ _77

YD1l @ poy*=—€(py-p)I'@T (36)

tors (see Fig. 2 for momentum notatiprwe obtain whereas the projection method [df8,19,9 leads to
7 a
3 -9 3 ! YabaT @ B2y"=(pr p)T®T +E, (37)
rNDR:(_g 3 ), Mv= 7 (39
-7 3 whereE stands for the evanescent operdt0). This means

that it is incorrect to take the coefficient B I" in Eq. (37)
directly without taking into account the effect of EOs. Note
that we have applied E¢36) to show the absence of infrared
double poles in the total amplitude.

in NDR and HV schemes, respectively. It should be accen-
tuated that, contrary to the previous wdtK

7 In order to check the scheme and scale independence of
3 =7 7 _5 fff, itis Convenlent to work in the diagonal basis in which
rNDR= , rﬁvo—< ) (35)  the operator©. =3 3 (0,+0,) do not mix under renormal-
_7 Z -5 7 ization. Then[see, e.g.[20] for the general expression of
3 c(u)]

1+ s(/-L)( ++J .)

S(Mw)(B

+ 7 J+
4 -

(0) 0 2
M e (gt ()= ozs<wlw>rr’<2ﬁ°>+ as ¥ Mg
=lpg=m = =)y ()=

ag(u)

2 . . independent. Therefore, the effective Wilson coefficiexifs
herec.=c,*c,, Bo=11- 5n; with n; being the number " Lo 5
w ==C1%C2, Bo 3N with n being ! are scheme independent if we are able to show that (
of flavors betweerMy and . scalesB.. specifies the initial  +J) is independent of the choice of renormalization scheme.
condition ofc(my): c(my) =1+ [as(my)/47]B. anditis  Since the short-distance Wilson coefficients are independent

ys-scheme  dependent, and J.=+98,/(282)  of the choice of external states, one can show the indepen-
-51(2By), with B;=102-38n¢/3. The scheme- dence ofy'))—2y, from external statef20]. In the on-shell
dependent anomalous dimensi&yﬁ;é) are given by[20,7] scheme;y; vanishes up to the two-loop level. It follows from

Eq.(34) thatr , =—6, —7+7/3 andr _=12, 7+7/3 in NDR
1 and HV schemes, respectively, with fermions being on-shell.
(—21t 3 nf—2ﬂoxi), (39 Then it is easily seen that'+J is indeed renormalization-
scheme independent. To the leading logarithmic approxima-
tion,

(1) — 7(11)_

Vi 2v,=

where y}) are the two-loop anomalous dimensions®f ,

v, is the anomalous dimension of the weak current in full
theory, and the parameter. distinguishes various renormal-
ization schemest. =0 in the NDR scheme and.. =4 in (
the HV scheme. As shown if20], B.—J. is ys-scheme

(0) 0) 2
ag(Myy)\ 7= /(250 as 7(+ M
s ) w 40

o) Az e
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Hence, the scale independence of the effective Wilson coef- VI. CONCLUSION

ficients follows. In this paper we have shown how to construct a gauge-

Slnqe the_weak current is partially (_:onser\_/ed, IS aNOMay, 4 riant and infrared finite theory of exclusive nonleptonic
lous dlmgn5|onyj Is zero. However, if ferm|on§ are off- g meson decays based on the PQCD factorization theorem.
shell, v, is nonvanishing at the two-loop level in the HV' G5,,9e invariance is maintained under radiative corrections
scheme. To maintain the requirement that=0, one can  py working in the physical on-shell scheme. The infrared
force a vanishingy, in this case by applying a finite renor- gjvergences in radiative corrections should be then isolated
malization term to the weak curreriNote that in this new ysing the dimensional regularization. The resultant infrared
choice,y" =y, B.=B.—y,/8,, andB’. —J’. is still  poles are absorbed into the universal meson wave functions,
scheme independeht.Using the identity y(!(on-shel) ~ Which can be determined once for all from experimental
=yW(off-shell)— 2y;, we find thaty() in the off-shell fer- ~ data. The absorption of the poles associated wittbthaark
mion scheme is given by19]: requires the inclusion of the spectator quark into the theory.
The remaining finite contributions form a hard subamplitude.
Applying RG analyses to sum various large logarithms in the
above factorization formula, the scale and scheme depen-

_ 2_1_ Enf Z+ Enf dences are removed. Hence, in the PQCD_form_aIism physi-
a _ 2 9 2 3 cal quantities are guaranteed to be gauge invariant, infrared
YNDR™ 7 2 21 2 ' finite, scale and scheme independent. By working out the
§+ gnf -5 §nf evolution factor g;(w«) explicitly, we have constructed
gauge-invariant, scale and scheme independent effective
(4D Wilson coefficientsc(x)gq1(u) at the factorization scalg¢
=M,. We have shown explicity thatc®" are
553 58 95 renormalization-scheme and -scale independent.
B gnf 7—2nf We shall take one of the exclusive nonleptoBianeson
y(Hl\}: . decay modes as an example to demonstrate how to construct
9—5—2n EJ’_ @ a factorization formula explicitly. This work will be pub-
f N¢ :
2 6 9 lished elsewhere.
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