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Triangular textures for quark mass matrices
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Hierarchical quark masses and small mixing angles are shown to lead to a simple triangular forrarfidr
D-type quark mass matrices. In the basis where one of the matrices is diagonal, each matrix element of the
other is, to a good approximation, the product of a quark mass and a CKM matrix element. The physical
content of a general mass matrix can be easily deciphered in its triangular form. This parametrization could
serve as a useful starting point for model building. Examples of mass textures are analyzed using this method.
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PACS numbsefs): 12.15.Ff, 11.30.Hv, 12.15.Hh

One of the most puzzling problems confronting the stan-into the triangular form enables one to read off the physical
dard modelSM) concerns the family structure of quarks and parameters immediately. Conversely, all viable mass matri-
leptons. To date there is very little understanding of the pheees can be obtained therefrom by a suitable rotation. Before
nomena of hierarchical fermion masses and their mixingve proceed to study specific triangular textures, it is worth
angles. A common approach to the problem is to postulatenentioning that there are four types of triangular textures
phenomenological mass matrices with certain simple texwith the three zeros in the upper-left, upper-right, lower-left,
tures. Usually these matrices are assumed to be Hermitizamd lower-right corners of the mass matrix. All these can be
[1,2] for simplicity, although non-Nermitian mass matrices transformed into each other by exchanging rows and col-
have also been studi¢d,4]. In practice, non-Hermitian mass umns, which amounts to a change of basis for the left-handed
matrices arise naturally in many modéfs. and right-handed quarks, respectively. The first two types do

In this paper, we suggest a new parametrization of fernot yield simple relations in terms of the quark masses and
mion mass matrices which is non-Hermitian and, more spemixing angles[4]. The latter two are simply related by ex-
cifically, triangular in form. It should be emphasized that anychanging the first and third family right-handed quarks. We
mass matrix can be easily brought into a triangular form by are naturally led to choose the texture with zeros in the
right-handed rotation, whereas it is non-trivial to make itlower-left corner of the mass matrix, as will become evident
Hermitian. Also, the condition of minimal parametrization later.

[4,6,7 can be satisfied for this type of texture. In fact, we Let us now start by writing both thg- and D-type quark
believe that in the minimal parameter basis the triangulamass matrices in the upper-triangular form:
form is the simplest to study with all unphysical features _ _
eliminated from the start. If one considers the case when, a; axe'Pr agze'’s
say, theU-quark mass matrix is diagonal, but tRequark T.=| 0 b b.e %2

I Lo . : = 1 2 , ((B)]
mass matrix is triangulaiwhich in general contains six real
numbers and a phasethere will be only ten parameters in 0 0 c
the two mass matrices. These account for the six quark
masses, three mixing angles and a phase in the Cabibb¥there the phases are explicitly showa,( b;, andc are
Kobayashi-MaskawdCKM) matrix. Furthermore, we will chosen to be positive using phase rotations of the right-
show that when the matrix is “upper triangular,” with zeros handed quarksWe have suppressed the indexU,D from
in the lower-left part, each of the matrix elements is approxi-the mass parameters in Ed). As stated before, any mass
mate|y equa| to the product of a quark mass and a CKMnatriX, M, can be rotated by a series of right-handed rota-
matrix element. Note also that one can always choose a badi§ns into this upper-triangular form. For example, an appro-
where one type is diagonal and the other triangular. priate rotationU=R33Rz3R1, with T=MU, can make the

Thus the triangular mass matrix offers not only the most(3,1, (3,2, and(2,1) elements vanish in succession.
economical, but also the most physical parametrization. We turn to the diagonalization of the matrit;=T;T]
Starting from any proposed mass matrix, a transformatiorFMfM;r which is given explicitly by

as+as+aj ab e 1+ azh,e (%3792 cagelts
Hi=| ab,e 1+ azh,e!(¥27¢3) b3+ b3 chye'?2 | (2)
cage '3 chye ¢ c?
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In the basis whereM, is diagonal andM is of the tri-  where®y= ¢+ ¢d,— ¢3. CP-violating effects depend only
angular form(1), we can solve foiMp in terms of quark on the combinationby . In general, one can put the phase
masses, mixing angles and t@P-violating phase. Recall ®p in Eq. (1) at any of the(1,2), (2,2), (2,3, or (1,3) posi-
that in this basis\/zjKMHDVCKMzDE,, whereVexm is the  tions. Qp j[OO(.)\4) correction,®p is equal to they angle of
CKM matrix and Dj=diag(mj,m2,m?). Denoting x; the unitarity triangle®p=y=ard — V4V i/ VcaVep]-

=(VekmD3Viww)ij » the following relations between the tri-  If we take Mp to be diagonal whileMy is assumed to
angular mass matrix parameters and the physical parametdtgve an upper-triangular form as in Hd), the correspond-
can be derived: ing relations between th®l, parameters and the physical
parameters can be derived in the same way as before. The
C=X33=MyVy [ 1+ O(A®)], (3 approximate form foM; [to O(A%)] is found to be
be'#2=xp3/c=myVco[ 1+O(\Y)], my/Vig mMVE, miVE
a3ei ¢3=X13/C= My Ve[ 1+ 0(7\4)], My= 0 m:Ves mtVfS (Mp diagona).
. 0 0 mVy
by = VXz—b3=mV {1+ 0(\)], (6)
ape' 1= (X, agh,e' (%™ #2) /b =myV, { 1+ O(\*)], Again, hereV,q, V.s, andVy, are chosen to be positive. The

Jarlskog invariant is now given by

a;=\Xq1— azz— agz mgmsmy, /(b4C)
ayazh;b,c?

My 4 J=- sin®
= — =+ S U
Tual 17O (8= 02) (o = (mé— )

where the last relation is derived by using the determinant of arash,

the mass matrixa;b;c=mymsm,, and A=0.22 as in the = b, c2 sin®y, @)
Wolfenstein parametrizatiof8]. To be consistent with Eq. !

(1), Vud» Ves, andV,, are all chosen to be positive. In a
nutshell, M has the simple expressi¢to O(\*%)]

where® = ¢+ ¢,— @3 and all variables refer tM . The
CP phased is related to theB angle of the unitarity
MolVug Vs Vo e v o o,
. . = ~ VedVeb' VitdVib s™ ~ VisVip! VesVebl-
Mp= 0 MsVes MpVeo | (My diagona). Note that for mass matrices with hierarchical eigenvalues
0 0 My Vip and small mixings, it is always possible to rotate them into
(4)  the upper-triangular form with the largest element at the

It is the hi hical f th dth CKI\ﬁB) position. This is the main difference between triangular
tis the hierarchical structure of the masses and the CKM4ices with zeros in the lower left and upper right; the
matrix which entails this simple form for the mass matrix.

. X T X latter does not have this simple hierarchical strucfdile
One can easily verify thaVcyMp=~diag(mg,ms,m). If one starts with the case when neitHdr, nor Mp is
Also, under phase transformations of the quark fieMs,is  giagonal, one can convert both into hierarchical triangular
invariant in form if we make the replacememty/Viq  forms through right-handed rotations. It may be first neces-
—my/V{4. Given any mass matrii, after a rotation into  sary to extract a large, common left-handed rotation from
the upper-triangular fornfl), one can read off directly the pothM; andMp, which cancels out iV ¢y , to ensure that
approximate mass eigenvalues and mixings. Of course, exaghly the (3,3) element is large. This is illustrated in the first
solutions can also be obtained from Eg). We have com-  example below. Furthermore, the diagonal elements are sim-
pared numerical solutions with E¢4) and found them to ply the mass eigenvalues 4, ,<b;. The CKM matrix can

agree very well. o _ ~ then be obtained directly:
The relationg3) can be easily inverted to give the physi-
cal quantities in terms of the triangular matrix parameters. Vern=ViVp @)
U 1

Up to O(\* corrections, my=c,ms=b;(1+i\?),
mg=a;(1-3\?), [Vypl=aslc,|Vepl=bylc, [Vyd=ay/

b,(1— 5\?). Also, we can compute the Jarlskog invarifgit whereV, andVp, are obtained fronM andMp, as in Eq.

(6) and Eq.(4). BothV andVp are given approximately by

—i defHy ,Hp] a,a3b,b,C? R3(b,e'?2/c) Ry 5(aze' 3/ c) Rlz(aZei({)llbl)- o
= S o 5 ExamplesWe now show that triangularization is a very
IT (m2—m?) (mj —mg) (mi —mg) (Mg — m) useful tool to study the physical content of any mass matrix.

Three examples are given: the first is based on the demo-
b cratic mass texturgl0]; the second deals with a realization
233 25in<I>D (5) of the Fritzsch texture. The last example is a new texture that
2 1

XSinq)Dz .
bic we found based oS U, (3) horizontal symmetry.
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TRIANGULAR TEXTURES FOR QUARK MASS MATRICES

(i) Democratic mass textur&he quark mass matrices are
taken to be democrati@ll the Yukawa couplings are the
same for each quark sectoFor example, thé&J-quark mass
matrix given in[11] is

(e —e 0 &
MU:?U 11 1|+ 0 € &||, 9
111 -5 -8 0

PHYSICAL REVIEW 50 093004

Ty= 2 (11)
31 o 3% 25
0 0 3
The mass eigenvalues  m(=— e?K/66%, m,

=25%°K,, m=Ky) can be easily read off from the diago-

where the second term expresses small effects which violateal elements and tHg-quark mixing angles are simply given

the democratic texturee5<1). In the limit when é,e
—0, this matrix (also Mp) is diagonalized by the unitary
matrix

1 -1
V2 2
1 1 -2
N NN (10
1 1 1
B GG

We may then rotateAM A1 into the following triangular
form:

2m,

TD,U’—“

Note the appearance afi; at the(1,1) position. The CKM
matrix which follows agrees with the results [df2].

(i) New SU(3) motivated textureConsider the follow-
ing texture:

a a ad®d
Mp=my| b b+2a 2b+2a (14
0 0 1

The U-type mass matrix is taken to be diagonal and real. To

examine whether this form dfl; is viable, we first convert
it into the triangular form

PR aei¢d
B B

To=Mp| B obt2a | 1O
0 0 1

by 052=(—\3/2)el 8%, 63=(\2/3)5, and 6=
(—2/3\6)e, in agreement with the results jal]. A similar
analysis can be done for th&-quark mass matrix.

(i) Fritzsch mass textureThe quark mass matrices stud-
ied in[12] are given by

0 Jymym,e' 1 0

—ié id.

Mpy=| Vmimye ' m, Ym;mge' %2
0 ymimge %2 ms

(12

wherem; (i=1,2,3) are the quark masses for tHeand D
sectors. The corresponding triangular form after performing
right-handed rotations is given by

my | /m,
1— —L |eid1 my —26i(61+8)
2m, ms

13

Vmymg

my
1+ —=
ms

ms

whereB= \2b%+ 4ab+ 4a?. Comparing Eq(15) to Eq.(4),

we obtain the following relationfup to O(\%) correctiong:

(16)

MyMg
a= ,
2mg

b s (1_./%_@)
\/Emb ms mg)’
ms r’nd
Veol=2(a+0)=\2 [ 1- 9]

/mdms
|Vle|za'2 2m2 ’

m,
_d(l_

|Vus|2 m.
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Moreover, we have the prediction
Vusvcb
Vub

~2. (17)

Numerically, using the central values of tHe-quark
masses ab ; [13] and y=60° [14], we obtain

ap=4.93<10"3, bp=1.60x10"2, ¢py=—60°.
(18)
The CKM matrix is
0.976  0.219 0.004
0.219 0.975 0.041 (19

|VCKM| = )
0.00792 0.0414 0.999
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masses and the CKM mixing from the mass matrices. The
one independent phase therein corresponds to the amgles
and B in the unitarity triangle, respectively. If botd , and

Mp are triangular, the CKM matrix is a simple product of
two unitary matrices. This result is very useful for model
building. Given any model mass matrix, triangularization of-
fers an immediate criterion for its viability. We have illus-
trated this with several examples, where in each case the
result was obtained quickly and simply. Clearly, one could
also reverse the process by rotating the triangular form to
generate viable model mass matrices. We hope that this pa-
rametrization can help suggest models which are both phe-
nomenologically correct and theoretically justifiable. The ap-
plication of triangular mass matrices to the charged lepton
sector is immediate, whereas for the neutrino sector, the in-
terpretation of the triangular mass texture may not be as

in good agreement with the experimental values. The Jar'éimple due to the large mixings and the possibility of nearly

skog parameter calculated froM is given byJ=—4.4
X 10" °sin¢by.

We close with a few concluding remarks. The known hi-

degenerate neutrino masses. Work along this direction is in
progress.
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