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Hadronic spectral functions in lattice QCD
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QCD spectral functions of hadrons in the pseudoscalar and vector channels are extracted from lattice Monte
Carlo data of the imaginary time Green’s functions. The maximum entropy method works well for this
purpose, and the resonance and continuum structures in the spectra are obtained in addition to the ground state
peaks[S0556-282(99)50119-7

PACS numbd(s): 12.38.Gc, 12.38.Aw

Among various dynamical quantities in quantum chromo-to the Fourier transform of a free boson propagator with
dynamics(QCD), the spectral function§SPF$ of hadrons massw: At T=0, K(7,0)=exp(—7w).
play a special role in physical observablisse, e.g[1,2]). A Monte Carlo simulation provideB () for the discrete
well-known example is the cross section of thee™ anni-  set of points 6=, /a<N_, whereN, is the temporal lattice
hilation into hadrons, which can be expressed by SPF in theize anda is the lattice spacing. In the actual analysis, we use
vector channel. SPF at finite temperat(f@ and/or baryon data points for7,i,<7<7nhax. From this data set with
density is also a key concept to understand the mediumoise, we need to reconstruct the continuous funcfi¢n)
modification of hadron$3]. The enhancement in low-mass on the right-hand side dfl), or to make the inverse Laplace
dileptons observed in relativistic heavy ion collisions at thetransform. This is a typical ill-posed problem, where the
CERN Super Proton SynchrotrdSPS [4] is a typical ex- number of data is much smaller than the number of degrees
ample which may indicate a spectral shift in the med[@h  of freedom to be reconstructed. This makes the standard like-
However, the Monte Carlo simulations of QCD on the lihood analysis and its variants inapplicabl&0] unless
lattice, which have been successful in measuring static obstrong assumptions on the spectral shape are made. MEM is
servableg[6], have difficulties in accessing the dynamical a method to circumvent this difficulty by making a statistical
quantities in the Minkowski space such as SPFs and the reaiference of the most probabimageas well as its reliability
time correlation functions. This is because measurements di7].
the lattice can only be carried out for discrete points in The theoretical basis of MEM is the Bayes’ theorem in
imaginary time. The analytic continuation from the imagi- probability theory: P[X|Y]=P[Y|X]P[X]/P[Y], where
nary time to the real time using the finite number of lattice P[ X|Y] is the conditional probability oX given Y. Let D
data with noise is highly nontrivial and is even classified asstand for Monte Carlo data with errors for a specific channel
an ill-posed problem. on the lattice andH summarize all the definitions and prior
In this paper, we make a first serious attempt to extracknowledge such as\(w)=0. The most probable image
SPFs of hadrons from lattice QCD data without makang A(w) for given lattice data is obtained by maximizing the
priori assumptions on the spectral shape. For this purposeonditional probability PfA|DH], which, by the Bayes’
we use the maximum entropy meth¢®EM), which has theorem, is rewritten as
been successfully applied for similar problems in quantum
Monte Carlo simulations in condensed matter physics, image P[A|DH]<P[D|AH]P[A[H], (2
reconstruction in crystallography and astrophysics, and so ) o )
forth [7,8]. Due to the limitation of space, we present only WhereP[D|AH](P[A|H]) is called the likelihood function
the results for the pseudoscal®3 and vector(VV) channels ~ (the prior probability. _ o
at T=0. The results for other channels will be given[8]. For the likelihood function, the central limiting theorem
The Euclidean correlation functioB(r) of an operator leads toP[D|AH]=Z "exp(~L) with

O(r,)?) and its spectral decomposition at zero three-

1
momentum read L=5 2 [D(7)-DA7)IC;'D(r) - DA7)L, (3
B
D :f 0 T(7,X)0(0,0))d3 = me 0)A(w)dw, wherei andj run from 7;,/a through ., /a. Z, is a
(1= | (0(rx)0(0.0)) 0 (r)A() normalization factor given by, =(27)V?\/detC with N
(1) =r,.da—Ttmin/at+l. D(7) is the lattice data averaged

over gauge configurations aidf\(,) is the correlation func-
where 7>0, o is a real frequency, ané\(w) is SPF(or  tion defined by the right-hand side ¢f). C is an NXN
sometimes called thienagein this papey, which is positive ~ covariance — matrix  defined by Cj;=[N¢onf(Ncont
semidefinite by definition. The kernkl( 7, ») is proportional —1)]7'= Nfgf[Dm( 7)—D(7)J[D™(7;) —D(7))1: Here

m
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Ncont iS the total number of gauge configurations &1t ;) 0.15
is the data for thenth gauge configuration. The lattice data )
have generally strong correlations among differgat and it = 0.1 y
is essential to take into account the off-diagonal components o
of C. 3 005 ]
It can be generally shown on an axiomatic ba&is that, g
for positive distributions such as SPF, the prior probability e 0 ‘

can be written with parameters and m as P[A|Ham]
=Z§1exp(a8). HereSis the Shannon-Jaynes entropy, 0 [GeV]

y; =

m(w)
Zs is a normalization factorZs= [e*>DA. « is a real and
positive parameter anth(w) is a real function called the
default model.
In this paper, we adopt a state-of-art MEWM|, where the
output imageA,; is given by a weighted average oveand
a:

FIG. 1. The solid line ispj,(w). The dashed line and dash-
do. 4 dotted line are p,(w) obtained with parameter sefl) a
=0.0847 fm, k17/a<12, b=0.001 and setll) a=0.0847 fm,
1<17/a<36, b=0.0001, respectively.

A(w)—m(w)—A(w)ln(

In Fig. 1, we showp;,(w), and py,u(w) for two sets of
parameters(l) and (Il). As for m, we choose a fornm(w)
=mew? with my=0.027, which is motivated by the
asymptotic behavior ofA in perturbative QCD, A(w
>1 GeV)=(1/47%)(1+ as/7)w?. The final result is, how-

ever, insensitive to the variation ofi; even by factor 5 or
Aout(w):f A(w)P[A[DHam]P[a|DHmM]DAdw 1/5. The calculation oA\, (®) has been done by discretiz-
ing thew space with an equal separation of 10 MeV between
adjacent points. This number is chosen for the reason we
=f A, (@)P[a|DHmM]da. (5 shall discuss below. The comparison of the dashed[teé
()] and the dash-dotted lirfeset (I1)] shows that increasing
Here A, (w) is obtained by maximizinfQ=aS—L for a  7mnacand reducing the noise leviellead to better SPFs closer
givena, and we assume th& A|DHam] is sharply peaked to the input SPF.
aroundA (w). « dictates the relative weight of the entropy =~ We have also checked that MEM can nicely reproduce
S (which tends to fitA to the default modem) and the other forms of the mock SPFs. In particular, MEM works
likelihood functionL (which tends to fitA to the lattice data ~ very well to reproduce not only the broad structure but also
Note, however, thatr appears only in the intermediate step the sharp peaks close to the delta function as far as the noise
and is integrated out in the final result. We found that theevel is sufficiently small.
weight factorP[ | DHm], which is calculable usin® [7], We have then applied MEM to actual lattice data. For this
is highly peaked around its maximum=a in our lattice ~ PUrPOse, quenched lattice QCD simulations have been done
data. One can also study the stability of g, (w) against with the plagquette gluon action and the Wilson quark action

a reasonable variation ofi(w). by the open MILC code with minor modificatiof$3]. The
The nontrivial part of the MEM analysis is to find the lattice size is 26_X124 with 8=6.0, which corresponds @
global maximum ofQ in the functional space oA(w), —0-0847 fm @ °=2.33 GeV), «.=0.1571[14], and the

which has typically 750 degrees of freedom in our case. WéPatial size of the lattice a=1.69 fm. Gauge configura-
have utilized the singular value decomposition method tdionS are generated by the heat-bath and over-relaxation al-
define the search direction in this functional space. Théorithms with aratidl:4.Each configuration is separated by
method works successfully to find the global maximum1000 sweeps. Hopping parameters are chosen toxbe
within reasonable iteration steps. The technical details will= 0-153, 0.1545, and 0.1557 witR;,n=161 for eachx.
be given in[9]. For th_e qyark propagator, the D|r|chléner_|od|<_j bo.undary

To check the feasibility of the MEM procedure and to seecondition is employed for the tempor@patia) direction. To
the dependence of the MEM image on the quality of the datecalculate the 'Ewo-pomt correlation functions, we adopt a
we made the following test using mock datd. We start  point-source ak=0 and a point-sink averaged over the spa-
with an input imageA;,(w)=w?p;,(w) in the p-meson tial lattice-points to extract physical states with vanishing
channel which simulates the experimengdle” cross sec- three-momentum. For the PS and V channels, the operators
tion. Then we calculat®;,(7) from A;,(w) using Eq.(1). dysu anddy,u (u=1,2,3) are chosen, respectively. We
(i) By taking Di,(7;) at N discrete points and adding a use data at % 7;/a<12 to remove the noise at the Dirichlet
Gaussian noise, we create a mock dafg,.{ 7;). The vari-  boundary. To avoid the known pathological behavior of the
ance of the noises(7;) is given by o(7)=bXD;,(7) eigenvalues o€ [7], we takeN.,,=N.
X 7;/a with a parameteb, which controls the noise level We define SPFs for the PS and V channels as
[12]. (ii) We construct the output imageA,,(w)

E“’Zpout(w) using MEM with D ocl 7min= i< Tmax and A(w)=w2ppsv(w), (6)
compare the result witl;,(w). In this test, we have as-
sumed thatC is diagonal for simplicity. so thatppsy(w—large) approaches a finite constant as pre-
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0 D s T the p meson to decay into two pions.
0 2 4 6 As for the second peaks in the PS and V channels, the
® [GeV] error analysis discussed in Fig. 3 shows that their spectral

“shape” does not have much statistical significance, al-
FIG. 2. Reconstructed image, () for the PS(a) and V(b)  though the existence of the nonvanishing spectral strength is
channels. The solid, dashed, and dash-dotted lines arexfor sjgnificant. Under this reservation, we fit the position of the
=0.1557, 0.1545, and 0.153, respectively. For th&WEchannel,  second peaks and made linear extrapolation to the chiral
my is taken to be 2.00.86. wmaxis 7.5 GeV in this figure and Fig.  |imit with the results,mznd/mp= 1.88(8)2.44(11) for the
3. PS(V) channel. These numbers should be compared with the
_ _ _ experimental valuesm, 13q0/M,=1.68, andm,1450/m,
dicted by perturbative QCD. For the MEM analysis, we need=1.90 Orm,(1700)/M, = 2.20.
to discretize thew integration in(1). SinceAw (the mesh One should remark here that, in the standard two-mass fit
size <1/7ya should be satisfied to suppress the discretizaof D(7), the mass of the second resonance is highly sensitive
tion error, we takdw =10 MeV. wmay (the upper limitfor  to the lower limit of the fitting range, e.g.m?"%m,
the o integration should be comparable to the maximum =2 21(27Y1.58(26) for 7,,/a=8(9) in the V channel
available momentum on the latticei,,x~m/a~7.3 GeV. with g=6.0[14]. This is because the contamination from the
We have checked that larger values@f,x do not change short distance contributions from< ;, is not under con-
the result of A(w) substantially, while smaller values of trol in such an approach. On the other hand, MEM does not
wmax distort the high energy end of the spectrum. The di-suffer from this difficulty and can utilize the full information
mension of the image to be reconstructetNis=wma/A®  down to 7,,,/a=1. Therefore, MEM opens a possibility of
~ 750, which is in fact much larger than the maximum num-systematic study of higher resonances with lattice QCD data.
ber of Monte Carlo datd&N=25. In the MEM analysis pre- As for the third bumps in Fig. 2, the spectral “shape” is
sented in this paper, the continuum kerKekexp(—7w) is  statistically not significant as is discussed in Fig. 3, and they
used. We have also carried out analysis based on the lattiegould rather be considered a part of the perturbative con-
kernelK'2. A comparison of the two cases will be given in tinuum instead of a single resonance. Figure 2 also shows
[9] in detall. that SPF decreases substantially above 6 GeV; MEM auto-
In Figs. 2a) and 2b), we show the reconstructed images matically detects the existence of the momentum cutoff on
for eachx. In these figures, we have uset=myw? with  the lattice~ /a. It is expected that MEM with the data on
my=2.0(0.86) for PSV) channel motivated by the pertur- finer lattices leads to larger ultraviolet cutoffs in the spectra.
bative estimate ofng [see Eq.(7) and the text belolv We  The height of the asymptotic form of the spectrum at high
have checked that the result is not sensitive, within the staenergy is estimated as
tistical significance of the image, to the variationraf by
factor 5 or 1/5. The obtained images have a common struc- 1 @,
ture: the low-energy peaks correspondingrtandp, and the pv(w: 6 GeV)= F( 1+ —
broad structure in the high-energy region. From the position 4 ™
of the pion peaks in Fig. (3), we extractx,=0.157(3), -
which is consistent with 0.157114] determined from the The first two factors are thgq continuum expected from
asymptotic behavior oD (7). The mass of they meson in  perturbative QCD. The third factor contains the nonperturba-
the chiral limit extracted from the peaks in Figb2 reads tive renormalization constant for the lattice composite opera-
m,a=0.348(15). This is also consistent withm,a tor. We adop®,=0.57 determined from the two-point func-
=0.331(22)[14] determined by the asymptotic behavior. Al- tions at3=6.0[15] together withas=0.21 and«x=0.1557.
though our maximum value of the fitting rangg,,/a=12  Our estimate in Eq(7) is consistent with the high energy
marginally covers the asymptotic limit in, we can extract part of the spectrum in Fig.(B) after averaging ovew®. We
reasonable masses farandp. The width ofm andp in Fig.  made a similar estimate for the PS channel usig
2 is an artifact due to the statistical errors of the lattice data=0.49[16] and obtaineghpg(w=6 GeV)=2.0. This is also
In fact, in the quenched approximation, there is no room forconsistent with Fig. @). We note here that an independent

2
(ZKZV> =0.86. (7)
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analysis of the imaginary time correlation functid2§ also  used MEM, which allows us to study SPFs without making
shows that the lattice data at short distance is dominated hgriori assumption on the spectral shape. The method works
the perturbative continuum. well for the mock data. Even for the lattice data, the method
Within the MEM analysis, one can study the statisticalproduces resonance and continuumlike structures in addition
significance of the reconstructed image by the following pro0 the ground state peaks. The statistical significance of the
cedure[7]. Assuming thaP[A|DHam] has a Gaussian dis- image has been also analyzed. Better data with finer and

tribution around the most probable imafjewe estimate the larger lattice will produce better images with smaller errors,
error by the covariance of the image,((S,0,Q) ) a-a and our study should be considered a first attempt towards

where 6, is a functional derivative and-) is an average this goal. We have not made the chiral extrapolation of SPFs
over a given energy interval. The final error g, is ob- in this paper, since we have found that neither the direct
tained by averaging the covariance owerwith a weight extrapolaﬂon of the MEM_|magé\oqt(w) nor the extrapola-
factor P[«|DHm]. Shown in Fig. 3 is the MEM image in tion of D_(T) and C works in a straightforward manner. We
the V channel fork=0.1557 with errors obtained in the Ie_ave this as an open pmblem: From the physlcs point of
above procedure. The height of each horizontal bar view, the spectral change at finite temperature is by far the

(poul®)) in eachw interval. The vertical bar indicates the important problem. This is currently under investigation.
error of (pou(w)). The small error for the lowest peak in  We appreciate the MILC Collaboration for their open
Fig. 3 supports our identification of the peak wigh Al- codes for lattice QCD simulations, which enabled us to do
though the existence of the nonvanishing spectral strength a@his research. Our simulation was carried out on a Hitachi
the second peak and third bump is statistically significantSR2201 parallel computer at Japan Atomic Energy Research
their spectral “shape” is either marginal or insignificant. Institute. M.A. (T.H.) was partly supported by Grant-in-Aid
Lattice data with better quality are called for to obtain betterfor Scientific Research No. 1074010%0. 10874042 of the
SPFs. Japanese Ministry of Education, Science, and Culture. T.H.

In summary, we have made a first serious attempt to rewas also supported by Sumitomo Foundati@rant No.
construct SPFs of hadrons from lattice QCD data. We hav®70248.
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