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Hadronic spectral functions in lattice QCD
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QCD spectral functions of hadrons in the pseudoscalar and vector channels are extracted from lattice Monte
Carlo data of the imaginary time Green’s functions. The maximum entropy method works well for this
purpose, and the resonance and continuum structures in the spectra are obtained in addition to the ground state
peaks.@S0556-2821~99!50119-7#

PACS number~s!: 12.38.Gc, 12.38.Aw
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Among various dynamical quantities in quantum chrom
dynamics~QCD!, the spectral functions~SPFs! of hadrons
play a special role in physical observables~see, e.g.@1,2#!. A
well-known example is the cross section of thee1e2 anni-
hilation into hadrons, which can be expressed by SPF in
vector channel. SPF at finite temperature~T! and/or baryon
density is also a key concept to understand the med
modification of hadrons@3#. The enhancement in low-mas
dileptons observed in relativistic heavy ion collisions at t
CERN Super Proton Synchrotron~SPS! @4# is a typical ex-
ample which may indicate a spectral shift in the medium@5#.

However, the Monte Carlo simulations of QCD on th
lattice, which have been successful in measuring static
servables@6#, have difficulties in accessing the dynamic
quantities in the Minkowski space such as SPFs and the
time correlation functions. This is because measurement
the lattice can only be carried out for discrete points
imaginary time. The analytic continuation from the imag
nary time to the real time using the finite number of latti
data with noise is highly nontrivial and is even classified
an ill-posed problem.

In this paper, we make a first serious attempt to extr
SPFs of hadrons from lattice QCD data without makinga
priori assumptions on the spectral shape. For this purp
we use the maximum entropy method~MEM!, which has
been successfully applied for similar problems in quant
Monte Carlo simulations in condensed matter physics, im
reconstruction in crystallography and astrophysics, and
forth @7,8#. Due to the limitation of space, we present on
the results for the pseudoscalar~PS! and vector~V! channels
at T50. The results for other channels will be given in@9#.

The Euclidean correlation functionD(t) of an operator
O(t,xW ) and its spectral decomposition at zero thre
momentum read

D~t!5E ^O †~t,xW !O~0,0W !&d3x5E
0

`

K~t,v!A~v!dv,

~1!

where t.0, v is a real frequency, andA(v) is SPF ~or
sometimes called theimagein this paper!, which is positive
semidefinite by definition. The kernelK(t,v) is proportional
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to the Fourier transform of a free boson propagator w
massv: At T50, K(t,v)5exp(2tv).

Monte Carlo simulation providesD(t i) for the discrete
set of points 0<t i /a<Nt , whereNt is the temporal lattice
size anda is the lattice spacing. In the actual analysis, we u
data points fortmin<t i<tmax. From this data set with
noise, we need to reconstruct the continuous functionA(v)
on the right-hand side of~1!, or to make the inverse Laplac
transform. This is a typical ill-posed problem, where t
number of data is much smaller than the number of degr
of freedom to be reconstructed. This makes the standard
lihood analysis and its variants inapplicable@10# unless
strong assumptions on the spectral shape are made. ME
a method to circumvent this difficulty by making a statistic
inference of the most probableimageas well as its reliability
@7#.

The theoretical basis of MEM is the Bayes’ theorem
probability theory: P@XuY#5P@YuX#P@X#/P@Y#, where
P@XuY# is the conditional probability ofX given Y. Let D
stand for Monte Carlo data with errors for a specific chan
on the lattice andH summarize all the definitions and prio
knowledge such asA(v)>0. The most probable imag
A(v) for given lattice data is obtained by maximizing th
conditional probability P@AuDH#, which, by the Bayes’
theorem, is rewritten as

P@AuDH#}P@DuAH#P@AuH#, ~2!

whereP@DuAH#(P@AuH#) is called the likelihood function
~the prior probability!.

For the likelihood function, the central limiting theorem
leads toP@DuAH#5ZL

21exp(2L) with

L5
1

2 (
i , j

@D~t i !2DA~t i !#Ci j
21@D~t j !2DA~t j !#, ~3!

where i and j run from tmin /a through tmax/a. ZL is a
normalization factor given byZL5(2p)N/2AdetC with N
5tmax/a2tmin /a11. D(t i) is the lattice data average
over gauge configurations andDA(t i) is the correlation func-
tion defined by the right-hand side of~1!. C is an N3N
covariance matrix defined by Ci j 5@Ncon f(Ncon f

21)#21(m51
Ncon f@Dm(t i)2D(t i)#@Dm(t j )2D(t j )#: Here
©1999 The American Physical Society03-1
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Ncon f is the total number of gauge configurations andDm(t i)
is the data for themth gauge configuration. The lattice da
have generally strong correlations among differentt ’s, and it
is essential to take into account the off-diagonal compone
of C.

It can be generally shown on an axiomatic basis@11# that,
for positive distributions such as SPF, the prior probabi
can be written with parametersa and m as P@AuHam#
5ZS

21 exp(aS). HereS is the Shannon-Jaynes entropy,

S5E
0

`FA~v!2m~v!2A~v!lnS A~v!

m~v! D Gdv. ~4!

ZS is a normalization factor:ZS[*eaSDA. a is a real and
positive parameter andm(v) is a real function called the
default model.

In this paper, we adopt a state-of-art MEM@7#, where the
output imageAout is given by a weighted average overA and
a:

Aout~v!5E A~v!P@AuDHam#P@auDHm#DAda

.E Aa~v!P@auDHm#da. ~5!

Here Aa(v) is obtained by maximizingQ[aS2L for a
givena, and we assume thatP@AuDHam# is sharply peaked
aroundAa(v). a dictates the relative weight of the entrop
S ~which tends to fitA to the default modelm) and the
likelihood functionL ~which tends to fitA to the lattice data!.
Note, however, thata appears only in the intermediate ste
and is integrated out in the final result. We found that
weight factorP@auDHm#, which is calculable usingQ @7#,
is highly peaked around its maximuma5â in our lattice
data. One can also study the stability of theAout(v) against
a reasonable variation ofm(v).

The nontrivial part of the MEM analysis is to find th
global maximum ofQ in the functional space ofA(v),
which has typically 750 degrees of freedom in our case.
have utilized the singular value decomposition method
define the search direction in this functional space. T
method works successfully to find the global maximu
within reasonable iteration steps. The technical details
be given in@9#.

To check the feasibility of the MEM procedure and to s
the dependence of the MEM image on the quality of the d
we made the following test using mock data.~i! We start
with an input imageAin(v)[v2r in(v) in the r-meson
channel which simulates the experimentale1e2 cross sec-
tion. Then we calculateDin(t) from Ain(v) using Eq.~1!.
~ii ! By taking Din(t i) at N discrete points and adding
Gaussian noise, we create a mock dataDmock(t i). The vari-
ance of the noises(t i) is given by s(t i)5b3Din(t i)
3t i /a with a parameterb, which controls the noise leve
@12#. ~iii ! We construct the output imageAout(v)
[v2rout(v) using MEM with Dmock(tmin<t i<tmax) and
compare the result withAin(v). In this test, we have as
sumed thatC is diagonal for simplicity.
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In Fig. 1, we showr in(v), androut(v) for two sets of
parameters,~I! and ~II !. As for m, we choose a formm(v)
5m0v2 with m050.027, which is motivated by the
asymptotic behavior ofA in perturbative QCD, A(v
@1 GeV)5(1/4p2)(11as /p)v2. The final result is, how-
ever, insensitive to the variation ofm0 even by factor 5 or
1/5. The calculation ofAout(v) has been done by discretiz
ing thev space with an equal separation of 10 MeV betwe
adjacent points. This number is chosen for the reason
shall discuss below. The comparison of the dashed line@set
~I!# and the dash-dotted line@set ~II !# shows that increasing
tmax and reducing the noise levelb lead to better SPFs close
to the input SPF.

We have also checked that MEM can nicely reprodu
other forms of the mock SPFs. In particular, MEM wor
very well to reproduce not only the broad structure but a
the sharp peaks close to the delta function as far as the n
level is sufficiently small.

We have then applied MEM to actual lattice data. For t
purpose, quenched lattice QCD simulations have been d
with the plaquette gluon action and the Wilson quark act
by the open MILC code with minor modifications@13#. The
lattice size is 203324 with b56.0, which corresponds toa
50.0847 fm (a2152.33 GeV), kc50.1571@14#, and the
spatial size of the latticeLsa51.69 fm. Gauge configura
tions are generated by the heat-bath and over-relaxation
gorithms with a ratio1:4.Each configuration is separated b
1000 sweeps. Hopping parameters are chosen to bk
50.153, 0.1545, and 0.1557 withNcon f5161 for eachk.
For the quark propagator, the Dirichlet~periodic! boundary
condition is employed for the temporal~spatial! direction. To
calculate the two-point correlation functions, we adopt
point-source atxW50 and a point-sink averaged over the sp
tial lattice-points to extract physical states with vanishi
three-momentum. For the PS and V channels, the opera
d̄g5u and d̄gmu (m51,2,3) are chosen, respectively. W
use data at 1<t i /a<12 to remove the noise at the Dirichle
boundary. To avoid the known pathological behavior of t
eigenvalues ofC @7#, we takeNcon f@N.

We define SPFs for the PS and V channels as

A~v!5v2rPS,V~v!, ~6!

so thatrPS,V(v→ large) approaches a finite constant as p

FIG. 1. The solid line isr in(v). The dashed line and dash
dotted line are rout(v) obtained with parameter set~I! a
50.0847 fm, 1<t/a<12, b50.001 and set~II ! a50.0847 fm,
1<t/a<36, b50.0001, respectively.
3-2
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dicted by perturbative QCD. For the MEM analysis, we ne
to discretize thev integration in~1!. SinceDv ~the mesh
size! !1/tmax should be satisfied to suppress the discreti
tion error, we takeDv510 MeV. vmax ~the upper limit for
the v integration! should be comparable to the maximu
available momentum on the lattice:vmax;p/a;7.3 GeV.
We have checked that larger values ofvmax do not change
the result ofA(v) substantially, while smaller values o
vmax distort the high energy end of the spectrum. The
mension of the image to be reconstructed isNv[vmax/Dv
;750, which is in fact much larger than the maximum nu
ber of Monte Carlo dataN525. In the MEM analysis pre-
sented in this paper, the continuum kernelK5exp(2tv) is
used. We have also carried out analysis based on the la
kernelKlat. A comparison of the two cases will be given
@9# in detail.

In Figs. 2~a! and 2~b!, we show the reconstructed imag
for eachk. In these figures, we have usedm5m0v2 with
m052.0(0.86) for PS~V! channel motivated by the pertu
bative estimate ofm0 @see Eq.~7! and the text below#. We
have checked that the result is not sensitive, within the
tistical significance of the image, to the variation ofm0 by
factor 5 or 1/5. The obtained images have a common st
ture: the low-energy peaks corresponding top andr, and the
broad structure in the high-energy region. From the posit
of the pion peaks in Fig. 2~a!, we extractkc50.1570(3),
which is consistent with 0.1571@14# determined from the
asymptotic behavior ofD(t). The mass of ther meson in
the chiral limit extracted from the peaks in Fig. 2~b! reads
mra50.348(15). This is also consistent withmra
50.331(22)@14# determined by the asymptotic behavior. A
though our maximum value of the fitting rangetmax/a512
marginally covers the asymptotic limit int, we can extract
reasonable masses forp andr. The width ofp andr in Fig.
2 is an artifact due to the statistical errors of the lattice da
In fact, in the quenched approximation, there is no room

FIG. 2. Reconstructed imagerout(v) for the PS~a! and V ~b!
channels. The solid, dashed, and dash-dotted lines are fok
50.1557, 0.1545, and 0.153, respectively. For the PS~V! channel,
m0 is taken to be 2.0~0.86!. vmax is 7.5 GeV in this figure and Fig
3.
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the r meson to decay into two pions.
As for the second peaks in the PS and V channels,

error analysis discussed in Fig. 3 shows that their spec
‘‘shape’’ does not have much statistical significance,
though the existence of the nonvanishing spectral streng
significant. Under this reservation, we fit the position of t
second peaks and made linear extrapolation to the ch
limit with the results,m2nd/mr51.88(8)„2.44(11)… for the
PS~V! channel. These numbers should be compared with
experimental values:mp(1300)/mr51.68, andmr(1450)/mr

51.90 ormr(1700)/mr52.20.
One should remark here that, in the standard two-mas

of D(t), the mass of the second resonance is highly sens
to the lower limit of the fitting range, e.g.,m2nd/mr

52.21(27)„1.58(26)… for tmin /a58(9) in the V channel
with b56.0 @14#. This is because the contamination from t
short distance contributions fromt,tmin is not under con-
trol in such an approach. On the other hand, MEM does
suffer from this difficulty and can utilize the full information
down totmin /a51. Therefore, MEM opens a possibility o
systematic study of higher resonances with lattice QCD d

As for the third bumps in Fig. 2, the spectral ‘‘shape’’
statistically not significant as is discussed in Fig. 3, and th
should rather be considered a part of the perturbative c
tinuum instead of a single resonance. Figure 2 also sh
that SPF decreases substantially above 6 GeV; MEM a
matically detects the existence of the momentum cutoff
the lattice;p/a. It is expected that MEM with the data o
finer lattices leads to larger ultraviolet cutoffs in the spect
The height of the asymptotic form of the spectrum at hi
energy is estimated as

r
V
~v.6 GeV!5

1

4p2 S 11
as

p D S 1

2kZV
D 2

.0.86. ~7!

The first two factors are theqq̄ continuum expected from
perturbative QCD. The third factor contains the nonpertur
tive renormalization constant for the lattice composite ope
tor. We adoptZV50.57 determined from the two-point func
tions atb56.0 @15# together withas50.21 andk50.1557.
Our estimate in Eq.~7! is consistent with the high energ
part of the spectrum in Fig. 2~b! after averaging overv. We
made a similar estimate for the PS channel usingZPS
50.49@16# and obtainedrPS(v.6 GeV).2.0. This is also
consistent with Fig. 2~a!. We note here that an independe

FIG. 3. rout(v) in the V channel fork50.1557 with error at-
tached.
3-3
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analysis of the imaginary time correlation functions@2# also
shows that the lattice data at short distance is dominate
the perturbative continuum.

Within the MEM analysis, one can study the statistic
significance of the reconstructed image by the following p
cedure@7#. Assuming thatP@AuDHam# has a Gaussian dis
tribution around the most probable imageÂ, we estimate the
error by the covariance of the image,2^(dAdAQ)21&A5Â ,
where dA is a functional derivative and̂•& is an average
over a given energy interval. The final error forAout is ob-
tained by averaging the covariance overa with a weight
factor P@auDHm#. Shown in Fig. 3 is the MEM image in
the V channel fork50.1557 with errors obtained in th
above procedure. The height of each horizontal bar
^rout(v)& in eachv interval. The vertical bar indicates th
error of ^rout(v)&. The small error for the lowest peak i
Fig. 3 supports our identification of the peak withr. Al-
though the existence of the nonvanishing spectral strengt
the second peak and third bump is statistically significa
their spectral ‘‘shape’’ is either marginal or insignifican
Lattice data with better quality are called for to obtain bet
SPFs.

In summary, we have made a first serious attempt to
construct SPFs of hadrons from lattice QCD data. We h
ys

G

er

09150
by

l
-

is

of
t,

r

e-
e

used MEM, which allows us to study SPFs without makinga
priori assumption on the spectral shape. The method wo
well for the mock data. Even for the lattice data, the meth
produces resonance and continuumlike structures in add
to the ground state peaks. The statistical significance of
image has been also analyzed. Better data with finer
larger lattice will produce better images with smaller erro
and our study should be considered a first attempt towa
this goal. We have not made the chiral extrapolation of SP
in this paper, since we have found that neither the dir
extrapolation of the MEM imageAout(v) nor the extrapola-
tion of D(t) andC works in a straightforward manner. W
leave this as an open problem. From the physics poin
view, the spectral change at finite temperature is by far
important problem. This is currently under investigation.
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