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Mersenne primes, polygonal anomalies and string theory classification
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It is pointed out that the Mersenne primds, = (2°— 1) and associated perfect numbgr,= 2F"1Mp play
a significant role in string theory; this observation may suggest a classification of consistent string theories.
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Anomalies and their avoidance have provided a guidepost In the present Brief Report, we shall associate the perfect
in constraining viable particle physics theories. From thenumbers derived from Mersenne primes with the polygonal
standard model to superstrings, the importance of findinggnomalies whose cancellation underlies the successful string
models where the cancellation of local and global anomalietheories.
that spoil local invariance properties of theories, and hence For example, heterotic and type-l superstrings in ten di-
render them inconsistent, cannot be overestimated. The fantensions are selected to have gauge gro0¥82) and
that anomalous thories can be dropped from contention has(8) <X E(8) on the basis of anomaly cancellation of the
made progress toward the true theory of elementary particldsexagon anomaly{5-8]. Equivalently, these two super-
proceed at an enormously accelerated rate. Here we take upstiings correspond to the only self-dual lattices in 16 dimen-
systematic search, informed by previous results and as ya&ions:I'g®I'g andT 15 [9]. The dimension of these two ac-
partially understood connections to number theory, for theoeeptable gauge groups id=10 is dim(G)=496=Ms;,
ries free of leading gauge anomalies in higher dimensiondndeed a perfect number of the Mersenne sequence. Further
We will find new cases and be able to place previous resultmotivation in low dimensions for consideration of the perfect

in perspective. number comes frol0] M3 the SO(8) andG, X G, super-
In number theory a very important role is played by thegravities in 6 dimensions foM; , from noting thatO(4)
Mersenne prime#/, based on the formula andSU(2) X SU(2) are anomaly free in four dimensions for
M, and from the existence of ak'=2 world sheet super-
M,=2P-1 (1)  symmetric string theory in 2 dimensio41] with gauge

groupSQ(2)~U(1) for M;.
wherep is a prime numberM , is sometimes itself a prime The appropriate polygon for spacetime dimensias the
number. The first 33 such Mersenne primes corresponftagon wherd = (d/2+1).
[1-3] to prime numbers below 1 10°: One way to discover the significance bf, and M, in
string theory is to recognize that the leadirggon anomaly
p=2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279, for a k-rank tensor ofSU(N) or O(N) is given[5,7] by a

2203,2281,3217,4253,4423,9689,9941,11213,19937, 2i?§rakl)'§ed Eulerian numbejthe Eulerian numbers  are
21701,23209,44497,86243,110503,132049,216091,

756839,859433. 2) ! ( N)
p

A(NK) =D (1% P Y(k—p)'t 3)

As a comparison to this remarkable sequence of the first 33
Mersenne primes, there are altogether 78498 primes below
1x10° so that Eq.(1), although an invaluable source of  Our purpose here is to investigate the space-time dimen-
large prime numbers, far more often generates a composit®ons corresponding to the Mersenne prinies-2p for
number than a prime. gauge group irrepresentatiofigeps with vanishing leading

On the occasion that Eql) doesgenerate a prime, an gauge anomalies. One could then cancel the nonleading
immediate derivative thereof is the perfect number which weanomalies in the Green-Schwarz mechani$2] to generate
shall designateM, given by/\/lp=2"‘1Mp. It is straight- a candidate string theory or supergravisycomplete theory
forward and pleasurable to prove in general thdf is per-  must also avoid all local gravitational and global anomalies
fect defined asM, equaling the sum of all of its divisors. Since all the primes except 2 are odd, the Mersenne prime
For example, M,=6=1+2+3 M3=28=1+2+4+7  dimensions(MPDs) are D=4n+2, wheren is an integer
+14, and so on. Thé1, are the only even perfect numbers; except for the special cagg=4. A thorough investigation
it is unknown if there is an odd perfect number but if there isof the MPDs returns the following fdD between 4 and 26
one it is known[4] that it is larger than 1%° and certain higher values:
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TABLE |. Solutions of vanishing leading polygonal gauge anomalies. Givkmmad N, we can find the
next value ofk (say k*) from (N—Kk) but the nextN value (say N*) corresponding tdk* requires a
calculation. We have been able to do this calculation up to where a “?” appgérg.is the binomial
coefficientyCy=N!/(MI(N—M)!).

Spacetime dimensio(D) N of SO(N) k of irrep dimension of irrep
4 See Ref[13] See Ref[13] See Ref[13]
62 8 2 6Co=M; "
27 6 27Cs
98 21 0eCor
363 7 36C77
1352 286 135286
? 1064 ?
8 16 2 1Co
27 3 27C3
147 14 147C14
256 24 256C14
1444 133 1448C133
? 232 ?
? 1311 ?
102 12 4 124
32 2 3Co=Ms"
32 10 3C10
N
12 N=even > NChni2
2° 2 64C2
142 128 2 1Cr=M;"
16 N=even g NChi2
27 3 27C3
28 2 256C2
486 3 48C3
18 2 2 515
N
20 N=even > NChi2
210 2 10252
22° 2t 2 2042 = Ms"
24 N=even g NChi2
22 2 40962
26° 2 2 819405 = M3"
D=4n N=even g NCniz
22n 2 Cy
D=4n+2 22+l 2 520+1C5
D =2p(p=Mersennef 2P 2 M,
34 38 62 178, 214 254 ? ? (k>40) ?
10422 ? ? k>24) ?
12142 ? ? k>15) ?
25582 ? ? k>10) ?
44062 ? ? k>8) ?
D=(2p) 2=45622 ? ? ?

®D=2p wherep is a Mersenne prim&/, [cf. Eq. (2)].
"The perfect numbet,=2P"*M,,.
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D=4 is well studied in the literature, to which we refer dimensions, but do irD=4n+2; therefore anomaly free-
the readef13]. dom for[1]¥ irreps is trivial inD=4n for SO groups, but
D=6(p=23): Expressing antisymmetric tensor irreps by not for SU groups) _
[1]% we again find anomaly freedom for the second rank D=8: We find the usuak=2 andk=N/2 solutions, plus
antisymmetric tensok=2 when N=8 for gauge groups WO more sequences, one starting whtk 2,D =16, and the
SU(8) or SO(8). ForSU(N) one expects the conjugate so- Other withk=3,D=27 (see Table .
lution [1]N—k:[1]8—2:[1]6, which is nothing new, but as D=12 has 0n|yk=2 andk=N/2 SO|Ut|0nS..
a result of its low order, the anomaly polynomial factorizes, D =16 has the usuat=2 andk=N/2 solutions, plus at
at[1]® to (n—6)(N—27), implying a nonvanishing anomaly K=3 With N=27 and also ak=3 with N=486.
of [1]° for SU(27) [and forSOQ(27)]. This in turn implies a D= 18,20,22 and 24 have nothing new bgyond the usual
[1]ka:[1]2776:[1]21 solution, which one finds atN solutions, ofk=2 andk=N—2 for SU(Np) with p:D/Z,
=08. This sequence continuésee Table)l (We remind the and for D=4n the trivial case of the real representatikn
reader that forSU(N),[1]N ¥ and[1]% are complex irreps  — /2 for anySU(N).

except wherk=N/2 andN is even wherd 1]V is a real This cqmpletei the class;ﬁ_cation.
irrep. For SO(N),[1]% is real for k<N/2. When k Returning toD =8, the[1]°= 2925 ofSU(27) orSQ(27)

=N/2, [1]¥ splits. The components are realNfi2 is even is anomaly free, but also tHe ]® of Eg is a 2925 under the
and they are a complex conjuate paiNif2 is odd. There are decpmposmo_rS_ U_(27)f’ Ee, where 27-27. Since the gen-
added subtlities foSO(8) because of triality13].) eralized Casimir invariants dgg are of rank 2,5,6,8,9, and

D=10. As withD=6 we find a[1]? solution whenN 12, leading anomalies are expectedat 2,8,20,14,16, and

—2p=232. There are two further solutions, up to conjugationzz' [18]._However, t.he 2925 is an exception since it is real.
k=4 with N=12, andk=10 with N=32, and no others with In D=6 no leadingE, anomalies are expected, and we

. _ _ . 6
k=<40. (In what follows we do a study of all cases outko 1nd that thek=6N=27 result corresponding to thé]
— 40, unless noted otherwige. =296010 irrep ofSU(27) or SO(27) is reducible irEg.

D =14: The only solution i&=2 for N=128. In D=16 for k=3 andN=27, leadingEg anomalies are

The case wherep=13 deserves special consideration, V0ided by the 2925 . . o
since it corresponds to 26 dimensions, and a 26D theory with | "€ higherN exotic solutions have no obvious origins in
SO(21%)=50(8192) has indeed already been considered iffXcePtional groups. o
the literature[14—14. In [14], the single dilaton emission Qur findings are also.summa'nz.e_d in Takle I.‘
amplitude from a disk world sheet was calculated and used G|v_en the_ well-established 5|gn|f|canc_e M?’ N space-
in a proof that the total dilaton emission amplitude®m the time dimensiorD = 10 for the two heterotic stnr']gSO(C'%Z)
projective plane plus the digi7]) at this order vanishes in aNdEsXEg we are led to observe that far=2 (dimension-
26D for SO(8192). Furthermore, it has been shojgs] that &Ity Mp) of SO(2°) in spacetime dimensiond =2p for
the one-loop divergences are avoided $@(8192) open any of t_he M_ersenne primes, as_well as the other particular
strings in 26D. A general understanding has been provide§@Ses listed in Table |, the leading polygonal anonigly
[16] of the Chan-Paton factors f@0(2°7?) in terms of D +1)-agon is cancelled. With the possibility that the non-

added fermionic variables at the ends of open strings, anlf2ding anomalies are also cancelled, we are naturally led to
this is useful input into developing the partition function for SPeculate that there exist consistent string theories, beyond
the SO(8192) open string16]. those presently established, in the space-time dimensions and

Likewise, the only solution i&=2 for N=2P, with D involving the particular gauge groups to which we have been

—2p=234,38,62,178,214,254,1042,1214,2558 and 4406Y:

where we have searched through-40 except for D This speculation, if verified., will provide one more Ijnk
— 1042, wherek=24D = 2558 wherek<10, andD = 4406 between number theory, particularly the Mersenne primes,

wherek=8 and string theory.

For the sake of completeness, we have also studied the We thank John Schwarz for drawing our attention to Ref.
remaining even dimensions beldw= 26, with no Mersenne [15]. T.W.K. thanks PHF and the Department of Physics and
prime correspondence. As befole=2 with N=2P is al-  Astronomy at UNC Chapel Hill for their hospitality while
ways a solution, and whed =4n (n integey, this work was in progress. This work was supported in part

k=N/2 is also a solution as expected since it is réRe- by the U.S. Department of Energy under Grants Nos. DE-
call that real representations have no anomalie® in4n FG02-97ER41036 and DE-FG-5-85ER40226
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