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Mersenne primes, polygonal anomalies and string theory classification
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It is pointed out that the Mersenne primesM p5(2p21) and associated perfect numbersMp52p21M p play
a significant role in string theory; this observation may suggest a classification of consistent string theories.
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Anomalies and their avoidance have provided a guidep
in constraining viable particle physics theories. From
standard model to superstrings, the importance of find
models where the cancellation of local and global anoma
that spoil local invariance properties of theories, and he
render them inconsistent, cannot be overestimated. The
that anomalous thories can be dropped from contention
made progress toward the true theory of elementary parti
proceed at an enormously accelerated rate. Here we take
systematic search, informed by previous results and as
partially understood connections to number theory, for th
ries free of leading gauge anomalies in higher dimensio
We will find new cases and be able to place previous res
in perspective.

In number theory a very important role is played by t
Mersenne primesM p based on the formula

M p52p21 ~1!

wherep is a prime number.M p is sometimes itself a prime
number. The first 33 such Mersenne primes corresp
@1–3# to prime numbers below 13106:

p52,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,

2203,2281,3217,4253,4423,9689,9941,11213,1993

21701,23209,44497,86243,110503,132049,216091

756839,859433. ~2!

As a comparison to this remarkable sequence of the firs
Mersenne primes, there are altogether 78498 primes be
13106 so that Eq.~1!, although an invaluable source o
large prime numbers, far more often generates a compo
number than a prime.

On the occasion that Eq.~1! doesgenerate a prime, an
immediate derivative thereof is the perfect number which
shall designateMp given by Mp52p21M p . It is straight-
forward and pleasurable to prove in general thatMp is per-
fect, defined asMp equaling the sum of all of its divisors
For example, M256511213,M352851121417
114, and so on. TheMp are the only even perfect number
it is unknown if there is an odd perfect number but if there
one it is known@4# that it is larger than 10300.
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In the present Brief Report, we shall associate the per
numbers derived from Mersenne primes with the polygo
anomalies whose cancellation underlies the successful s
theories.

For example, heterotic and type-I superstrings in ten
mensions are selected to have gauge groupsO(32) and
E(8)3E(8) on the basis of anomaly cancellation of th
hexagon anomaly@5–8#. Equivalently, these two super
strings correspond to the only self-dual lattices in 16 dim
sions:G8% G8 andG16 @9#. The dimension of these two ac
ceptable gauge groups ind510 is dim(G)54965M5,
indeed a perfect number of the Mersenne sequence. Fu
motivation in low dimensions for consideration of the perfe
number comes from@10# M3 theSO(8) andG23G2 super-
gravities in 6 dimensions forM3 , from noting thatO(4)
andSU(2)3SU(2) are anomaly free in four dimensions fo
M2 and from the existence of anN52 world sheet super-
symmetric string theory in 2 dimensions@11# with gauge
groupSO(2);U(1) for M1.

The appropriate polygon for spacetime dimensiond is the
l-agon wherel 5(d/211).

One way to discover the significance ofM p and Mp in
string theory is to recognize that the leadingl-agon anomaly
for a k-rank tensor ofSU(N) or O(N) is given @5,7# by a
generalized Eulerian number@the Eulerian numbers ar
AN(N,k)#

Al~N,k!5 (
p51

k21

~21!k2p21~k2p! l 21S N

p D . ~3!

Our purpose here is to investigate the space-time dim
sions corresponding to the Mersenne primesD52p for
gauge group irrepresentations~irreps! with vanishing leading
gauge anomalies. One could then cancel the nonlea
anomalies in the Green-Schwarz mechanism@12# to generate
a candidate string theory or supergravity~a complete theory
must also avoid all local gravitational and global anomalie!.

Since all the primes except 2 are odd, the Mersenne pr
dimensions~MPDs! are D54n12, wheren is an integer
except for the special caseD54. A thorough investigation
of the MPDs returns the following forD between 4 and 26
and certain higher values:
©1999 The American Physical Society01-1
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TABLE I. Solutions of vanishing leading polygonal gauge anomalies. Given ak andN, we can find the
next value ofk ~say k* ! from (N2k) but the nextN value ~say N* ! corresponding tok* requires a
calculation. We have been able to do this calculation up to where a ‘‘?’’ appears.NCM is the binomial
coefficient NCM5N!/( M !(N2M )!).

Spacetime dimension~D! N of SO~N! k of irrep dimension of irrep

4 See Ref.@13# See Ref.@13# See Ref.@13#

6 a 8 2 8C25M3
b

27 6 27C6

98 21 98C21

363 77 363C77

1352 286 1352C286

? 1064 ?
8 16 2 16C2

27 3 27C3

147 14 147C14

256 24 256C14

1444 133 1444C133

? 232 ?
? 1311 ?

10 a 12 4 124

32 2 32C25M5
b

32 10 32C10

12 N5even
N

2
NCN/2

26 2 64C2

14 a 128 2 128C25M7
b

16 N5even
N

2
NCN/2

27 3 27C3

28 2 256C2

486 3 486C3

18 29 2 512C2

20 N5even
N

2
NCN/2

210 2 1024C2

22 a 211 2 2048C25M11
b

24 N5even
N

2
NCN/2

212 2 4096C2

26 a 213 2 8192C25M13
b

D54n N5even
N

2
NCN/2

22n 2 4nC2

D54n12 22n11 2 22n11C2

D52p(p5Mersenne)a 2p 2 Mp
b

34a, 38a, 62a, 178a, 214a, 254a ? ? (k.40) ?
1042a ? ? (k.24) ?
1214a ? ? (k.15) ?
2558a ? ? (k.10) ?
4406a ? ? (k.8) ?
D5(2p) a >4562a ? ? ?

aD52p wherep is a Mersenne primeM p @cf. Eq. ~2!#.
bThe perfect numberMp52p21M p .
087901-2



r

by
n

o-

es
y

on

n
i
i

se

de

an
or

0

t

-

ual

al.
e

in

ular

-
d to
ond
and
en

k
es,

ef.
nd

art
E-

BRIEF REPORTS PHYSICAL REVIEW D 60 087901
D54 is well studied in the literature, to which we refe
the reader@13#.

D56(p53): Expressing antisymmetric tensor irreps
@1#k we again find anomaly freedom for the second ra
antisymmetric tensork52 when N58 for gauge groups
SU(8) or SO(8). ForSU(N) one expects the conjugate s
lution @1#N2k5@1#8225@1#6, which is nothing new, but as
a result of its low order, the anomaly polynomial factoriz
at @1#6 to (n26)(N227), implying a nonvanishing anomal
of @1#6 for SU(27) @and forSO(27)#. This in turn implies a
@1#N2k5@1#27265@1#21 solution, which one finds atN
598. This sequence continues~see Table I! „We remind the
reader that forSU(N),@1#N2k and @1#k are complex irreps
except whenk5N/2 and N is even where@1#N/2 is a real
irrep. For SO(N),@1#k is real for k,N/2. When k
5N/2, @1#k splits. The components are real ifN/2 is even
and they are a complex conjuate pair ifN/2 is odd. There are
added subtlities forSO(8) because of triality@13#.…

D510. As with D56 we find a@1#2 solution whenN
52p532. There are two further solutions, up to conjugati
k54 with N512, andk510 with N532, and no others with
k<40. ~In what follows we do a study of all cases out tok
540, unless noted otherwise.!

D514: The only solution isk52 for N5128.
The case wherep513 deserves special consideratio

since it corresponds to 26 dimensions, and a 26D theory w
SO(213)5SO(8192) has indeed already been considered
the literature@14–16#. In @14#, the single dilaton emission
amplitude from a disk world sheet was calculated and u
in a proof that the total dilaton emission amplitude~from the
projective plane plus the disk@17#! at this order vanishes in
26D for SO(8192). Furthermore, it has been shown@15# that
the one-loop divergences are avoided bySO(8192) open
strings in 26D. A general understanding has been provi
@16# of the Chan-Paton factors forSO(2D/2) in terms ofD
added fermionic variables at the ends of open strings,
this is useful input into developing the partition function f
the SO(8192) open string@16#.

Likewise, the only solution isk52 for N52p, with D
52p534,38,62,178,214,254,1042,1214,2558 and 44
where we have searched throughk540 except for D
51042, wherek<24,D52558 wherek<10, andD54406
wherek<8.

For the sake of completeness, we have also studied
remaining even dimensions belowD526, with no Mersenne
prime correspondence. As before,k52 with N52p is al-
ways a solution, and whenD54n (n integer!,

k5N/2 is also a solution as expected since it is real.~Re-
call that real representations have no anomalies inD54n
f

a

08790
k

,
th
n

d

d

d

6,

he

dimensions, but do inD54n12; therefore anomaly free
dom for @1#k irreps is trivial in D54n for SO groups, but
not for SU groups.!

D58: We find the usualk52 andk5N/2 solutions, plus
two more sequences, one starting withk52,D516, and the
other withk53,D527 ~see Table I!.

D512 has onlyk52 andk5N/2 solutions.
D516 has the usualk52 andk5N/2 solutions, plus at

k53 with N527 and also atk53 with N5486.
D518,20,22 and 24 have nothing new beyond the us

solutions, ofk52 andk5N22 for SU(Np) with p5D/2,
and for D54n the trivial case of the real representationk
5N/2 for anySU(N).

This completes the classification.
Returning toD58, the@1#352925 ofSU(27) orSO(27)

is anomaly free, but also the@1#3 of E6 is a 2925 under the
decompositionSU(27)→E6, where 27→27. Since the gen-
eralized Casimir invariants ofE6 are of rank 2,5,6,8,9, and
12, leading anomalies are expected atD52,8,20,14,16, and
22. @18#. However, the 2925 is an exception since it is re

In D56 no leadingE6 anomalies are expected, and w
find that thek56,N527 result corresponding to the@1#6

5296010 irrep ofSU(27) or SO(27) is reducible inE6.
In D516 for k53 andN527, leadingE6 anomalies are

voided by the 2925.
The higherN exotic solutions have no obvious origins

exceptional groups.
Our findings are also summarized in Table I.
Given the well-established significance ofM5 in space-

time dimensionD510 for the two heterotic stringsSO(32)
andE83E8 we are led to observe that fork52 ~dimension-
ality Mp) of SO(2p) in spacetime dimensionsD52p for
any of the Mersenne primes, as well as the other partic
cases listed in Table I, the leading polygonal anomaly@(p
11)-agon# is cancelled. With the possibility that the non
leading anomalies are also cancelled, we are naturally le
speculate that there exist consistent string theories, bey
those presently established, in the space-time dimensions
involving the particular gauge groups to which we have be
led.

This speculation, if verified, will provide one more lin
between number theory, particularly the Mersenne prim
and string theory.
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