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Evolving Einstein’s field equations with matter: The ‘‘hydro without hydro’’ test
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We include matter sources in Einstein’s field equations and show that our recently proposed 311 evolution
scheme can stably evolve strong-field solutions. We insert in our code known matter solutions, namely the
Oppenheimer-Volkoff solution for a static star and the Oppenheimer-Snyder solution for homogeneous dust
sphere collapse to a black hole, and evolve the gravitational field equations. We find that we can evolve stably
static, strong-field stars for arbitrarily long times and can follow dust sphere collapse accurately well past black
hole formation. These tests are useful diagnostics for fully self-consistent, stable hydrodynamical simulations
in 311 general relativity. Moreover, they suggest a successive approximation scheme for determining gravi-
tational waveforms from strong-field sources dominated by longitudinal fields, such as binary neutron stars:
approximate quasi-equilibrium models can serve as sources for the transverse field equations, which can be
evolved without having to re-solve the hydrodynamical equations~‘‘hydro without hydro’’!.
@S0556-2821~99!03118-5#

PACS number~s!: 04.25.Dm, 02.60.Jh, 04.30.Nk
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With the advent of gravitational-wave interferometry, t
physics of compact objects is entering a particularly excit
phase. The new generation of gravitational-wave detect
including the Laser Interferometric Gravitational Wave O
servatory~LIGO!, VIRGO, GEO and TAMA, may soon de
tect gravitational radiation directly for the first time, openin
a gravitational-wave window to the Universe and maki
gravitational-wave astronomy a reality~see, e.g.,@1#!.

To learn from such observations and to dramatically
crease the likelihood of detection, one needs to predict
observed signal theoretically. Among the most promis
sources are gravitational waves from the coalescence
black hole and neutron star binaries. Simulating such me
ers requires self-consistent numerical solutions to Einste
field equations in three spatial dimensions plus time, wh
is extremely challenging. While several groups, includi
two ‘‘Grand Challenge Alliances’’@2#, have launched efforts
to simulate compact binary coalescence~see also@3,4#!, the
problem is far from solved.

Many of the numerical codes, including those based
the Arnowitt-Deser-Misner~ADM ! formulation of Einstein’s
equations~after Arnowitt, Deser and Misner,@5#! develop
instabilities and inevitably crash, even for small amplitu
gravitational waves on a flat background~see, e.g.,@6#!. To
avoid this problem, several hyperbolic formulations ha
been developed@7#, some of which have also been impl
mented numerically~see@8,9# and references therein!. In a
recent paper@10# ~hereafter paper I!, we have modified a
formulation of Shibata and Nakamura@11#, and have shown
that our new formulation allows for stable, long-term evo
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tion of gravitational waves~cf. @12#!. We pointed out its two
advantages over many recent hyperbolic formulations: it
quires far fewer equations and it does not require taking
rivatives of the original 311 equations. The latter may b
particularly important for the evolution of matter source
where matter derivatives could augment numerical error~see
@13# for a symmetric hyperbolic form of the Einstein-Eule
equations!.

In this Brief Report, we put matter sources into the fie
equations and test the evolution behavior for two kno
strong-field solutions: the Oppenheimer-Volkoff@14# solu-
tion for a static star and the Oppenheimer-Snyder@15# solu-
tion for collapse of a homogeneous dust sphere to a b
hole. We do not evolve the matter, but instead insert
known matter solutions into the numerically evolved fie
equations. This allows us to study hydrodynamical scena
without re-solving hydrodynamical equations: ‘‘hydro with
out hydro.’’

The purpose of this Brief Report and the hydro-withou
hydro approach is twofold. First, we demonstrate that
evolution scheme can stably evolve strong-field solutio
with matter sources. These calculations for strong longitu
nal fields complement the tests for wave solutions~trans-
verse fields! presented in paper I. To our knowledge, the
are the first successful 3D simulations of strong gravitatio
fields to arbitrarily late times. This may be an important d
agnostic for overcoming stability problems in relativistic h
drodynamical calculations~cf. @16# for results with both the
ADM or some of the recent hyperbolic formulation!. Second,
we demonstrate that we can integrate the field equations
©1999 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW D 60 087501
givenmatter sources reliably. Specifically, we show that f
nishing prescribed matter sources that already obey¹•T
50 ~whereT is the matter’s stress-energy tensor! rather than
self-consistently evolving the matter together with the fie
does not introduce instabilities. This decoupling~‘‘hydro
without hydro’’! suggests new possibilities for determinin
gravitational waveforms emitted by, for example, inspirali
neutron stars binaries prior to reaching the innermost st
circular orbit by a successive approximation scheme.

In our formulation, we evolve the conformal metricg̃ i j ,
the conformal exponentf, the extrinsic curvature’s traceK

and conformal trace-free partÃi j , and conformal connection

functionsG̃ i . For the sake of brevity, we refer the reader
paper I for all field equations and their numerical impleme
tation.

We first study the evolution of the gravitational fields f
the Oppenheimer-Volkoff~OV! @14# solution of a relativis-
tic, static star. We examine polytropic stellar models w
equation of stateP5kr0

111/n , focusing on polytropic index
n51. HereP is the pressure andr0 the rest-mass density
henceforth we setG515c, and we choose non-dimension
units in which k51. We present results for a model wit
central densityr0

c50.2, for which the star has massM
50.157 and Schwarzschild radiusR50.866. The small com-
paction,R/M55.5, indicates that the star is highly relativi
tic. The isotropic radius of this star isR̄50.7. For compari-
son, the maximum mass configuration has a central den
r0

c50.319 and a massM50.164.
We only evolve the gravitational fields, holding the mat

sources to their OV values. We choose zero shift (b i50)
and set initial data for the lapse from the ‘‘Schwarzschil
lapse,aOV . We evolve the lapse using harmonic slicin
which, for zero shift, reduces to] ta5] te

6f ~see, e.g., pape
I!. We found that fixing the lapse to the exact solutiona
5aOV introduced instabilities, while integrating with ha
monic slicing allowed stable evolutions while achieving t
same lapse numerically. Note that the only non-vanish
matter sources appear in the evolution equation forK @cf. Eq.
~15! of paper I#: the conformal splitting explicitly decouple
transverse fields from static matter sources.

In Fig. 1, we showK andf for a long-term evolution. We
used a (32)3 grid and imposed the outer boundaries
x,y,z52. We terminated the calculation att5512 ~corre-
sponding tot/M;3255), and found no evidence of an inst
bility. For a neutron star of 1.4M ( , this corresponds tot
;20 ms. Numerical noise develops during the early par
the evolution, but this noise propagates off the grid, and
evolution settles down into a numerical equilibrium solutio

The numerical noise originates fromthreesources: finite-
difference error, noise from the surface of the star, and e
due to imposing outer boundaries at finite distance. We n
discuss these three sources in detail.

To check the local finite difference error, we perform
convergence test and evolve the same initial data on grid
(16)3, (32)3, (64)3 and (128)3 gridpoints, all with the outer
boundary atx,y,z53. In Fig. 2 we show results forK at the
center from these runs. Note that the analytic solution isK
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50. We use second order accurate finite difference eq
tions, and so expect the error to decrease by a factor
when doubling the grid resolution. This behavior is seen
early times (t&1) in Fig. 2. There are deviations due
higher order error terms, but these decrease, and the sc
values ofK converge to the second order error term.

At later times (t*1), second order convergence is spoil
by effects from the surface of the star. Note that the lo
speed of light at the center isdr/dt;a/e2f;0.36,1. This
delays signals from the surface, which otherwise would
rive at t5R̄50.7. The code still converges, but no longer
second order. This effect is well known and appears in ot
simulations~compare, e.g.,@16#!. Second-order spatial de
rivatives are not smooth at the star’s surface, so the fin
difference convergence breaks down. We have run o
cases with different stellar models~and radii! to show that
this breakdown of second order convergence is due to er
originating at the star’s surface.

FIG. 1. Evolution of the conformal exponentf and the trace of
the extrinsic curvatureK at the center for an OV static star~see text
for details!.

FIG. 2. Convergence test forK at the center. Note that the
analytic solution isK50. The convergence of the scaled errors
to t;1 indicates second order convergence of the code. The br
down of second order convergence at later times is caused b
fects of the surface of the star.
1-2
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BRIEF REPORTS PHYSICAL REVIEW D 60 087501
Next we analyze the effect of the outer boundary~OB!.
We place the OB atx,y,z51, 2 and 4, and run the code o
grids of (16)3, (32)3 and (64)3 gridpoints, so that the reso
lution of the star is constant. The results forK at the center
are shown in Fig. 3. As expected, all graphs agree until
center reaches the domain of dependence of the differen
locations. The run with the OB at 1 starts to deviate from
other two runs att*1. At t*2 the run with OB at 2 starts to
deviate from the run with OB at 4. The slight delay is aga
caused by the smaller value of the local speed of light tow
the center of the star. The maximum error due to the
~marked by dots in Fig. 3! quickly decreases with larger OB
location. Since our boundary conditions take into account
first order (1/r ) falloff of the fields~see paper I!, one would
expect the error to scale with the square of the OB ratios a
hence, with factors of at least 4 in our simulations. We fi
that the errors decrease by even slightly larger factors~5.4
and 7.2!. For our resolution, the error is dominated by t
local finite-differencing error even when the outer bound
is imposed at only a few stellar radii.

Going back to Fig. 1, we can now identify the differe
sources of error in the early part of the evolution. The fi
peak inK aroundt;0.4;2.4M ~see the panel in Fig. 1! is
caused by the local finite difference error. The next featur
t;2;12M , with oscillations at a higher frequency, orig
nates from the surface of the star. The largest peak, att;4
;24M , is caused by the outer boundary. Reflections of th
errors off the OB reappear at later times, but ultimat
propagate off the grid and leave behind a stable numer
equilibrium solution.

Turn now to an analysis of the gravitational fields asso
ated with the collapse of a sphere of dust, Oppenheim
Snyder collapse@15#. This configuration is highly dynamica
— the matter very rapidly collapses to form a black ho
This case tests our ability to evolve into a very strong-fi
regime.

Again, we do not evolve the matter sources, but inst

FIG. 3. Evolution ofK at the center for different locations of th
outer boundary. We double the number of gridpoints when doub
the distance to the outer boundary of the grid, so that the
resolution remained constant. The dots mark the maximum e
caused by the outer boundary.
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insert the exact solution for the matter (r, Si , andSi j ) into
the evolution code at each time step. The analytic solut
for Oppenheimer-Snyder@15# collapse is transformed into
maximal slicing and isotropic coordinates following@17#.
This transformation involves only ordinary differential equ
tions, which can be solved numerically. The lapse and s
corresponding to maximal slicing and isotropic coordina
are also obtained from this transformation and are inse
into the evolution code at each time step. Given the ma
sources and the coordinate conditions, we independe

evolvef, g̃ i j , Ãi j , andG̃ i with our 311 code. Having cho-
sen maximal slicing, we can either setK50 or else evolveK
dynamically and check that it indeed converges to zero.

We present results for a star that collapses from an in
Schwarzschild radiusRstar54M ~or isotropic radiusR̄star
52.94M ). The star collapses to a black hole and all of t
matter has passed inside the event horizon byt512.31M .
We terminate the evolution att517.39M , the time up to
which we have constructed exact data. The matter is so c
pact at the end (R̄matter.0.14M ) that it is very poorly re-
solved on our 3D grid. We impose the outer boundary c
ditions at x5y5z54M ~in isotropic coordinates!, so that
initially it is quite close to the star’s surface.

In Fig. 4, we show the evolution of the conformal exp
nentf at the origin with (16)3, (32)3, and (64)3 gridpoints
and compare it with the exact solution. For this run, w
evolvedK. Figure 4 shows that the numerical evolution c
follow the collapse well past black hole formation. The n
merical solution converges to the exact solution~see espe-
cially the inner panel of Fig. 4!. At very late times, the grid
resolution becomes increasingly poor, and ultimately conv
gence is spoiled by higher order finite difference errors.
to these late times, the ADM and total rest mass are relia
conserved.

As with Oppenheimer-Volkoff stars, we find that non

g
id
or

FIG. 4. Evolution off at the center for different grid resolution
for OS dust collapse to a black hole. We hold the outer bound
fixed atx5y5z54M for each case. The dot indicates the time
which all the matter has passed inside the event horizon; the ins
a blowup of the curve at that time. The numerical evolution follo
the dynamical collapse well beyond black hole formation.
1-3
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BRIEF REPORTS PHYSICAL REVIEW D 60 087501
smoothness of the gravitational fields at the surface spoils
second-order convergence of quantities in the domain of
pendence of the surface. Here the effect is much stron
since the matter density is non-zero all the way to the s
face. However, we can lessen this effect and improve
behavior of the evolution by imposing the maximal slicin
conditionK50. This decouples the evolution equation forf
@cf. Eq. ~14! of paper I# from the transverse fields and from
the Ricci tensor, which contains second derivatives of
fields. This reduces errors in the longitudinal fields that ar
from the discontinuous surface, highlighting the advanta
of a conformal splitting.

In summary, we find that the system of equations
scribed in paper I accurately evolves gravitational fields
sociated with matter sources. We can evolve the fields o
Oppenheimer-Volkoff star to extremely late times with ha
monic slicing, and we can follow Oppenheimer-Snyder c
lapse well beyond black hole formation into the very stron
field regime. We used predetermined matter sources,
have decoupled the field evolution from hydrodynamic e
lution — hydro without hydro.

Our findings have two important consequences. First,
ability to stably evolve the gravitational fields in the presen
of strong-field matter sources is an important step towa
constructing fully self-consistent, relativistic hydrodynamic
codes. Second, our tests demonstrate that there are no fu
mental difficulties evolving the fields with prescribed mat
p
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sources obeying¹•T50, rather than self-consistently evolv
ing the matter and fields together. This hydro-without-hyd
approach suggests a possible successive approxim
scheme for calculating the gravitational-wave signal emit
by, for example, binary neutron stars. Outside the innerm
stable circular orbit, such binaries are dominated by long
dinal fields and change their radial separation on a radia
time scale which is much longer than the orbital time sca
They therefore may be considered in quasi-equilibrium~see,
e.g.,@18#!. Instead of evolving the matter hydrodynamicall
we can insert the known quasi-equilibrium binary configu
tion into the field evolution code to get the transverse wa
components approximately. Decreasing the orbital separa
~and increasing the binding energy! at the rate found for the
outflow of gravitational-wave energy would generate an
proximate strong-field wave inspiral pattern. Such a hyd
without-hydro calculation may yield an approximate gravi
tional waveform from inspiraling neutron stars witho
having to couple the matter and field integrations.
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