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Evolving Einstein’s field equations with matter: The “hydro without hydro” test
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We include matter sources in Einstein’s field equations and show that our recently propaseddution
scheme can stably evolve strong-field solutions. We insert in our code known matter solutions, namely the
Oppenheimer-Volkoff solution for a static star and the Oppenheimer-Snyder solution for homogeneous dust
sphere collapse to a black hole, and evolve the gravitational field equations. We find that we can evolve stably
static, strong-field stars for arbitrarily long times and can follow dust sphere collapse accurately well past black
hole formation. These tests are useful diagnostics for fully self-consistent, stable hydrodynamical simulations
in 3+1 general relativity. Moreover, they suggest a successive approximation scheme for determining gravi-
tational waveforms from strong-field sources dominated by longitudinal fields, such as binary neutron stars:
approximate quasi-equilibrium models can serve as sources for the transverse field equations, which can be
evolved without having to re-solve the hydrodynamical equati@hgdro without hydro”).
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With the advent of gravitational-wave interferometry, thetion of gravitational wavescf. [12]). We pointed out its two
physics of compact objects is entering a particularly excitingadvantages over many recent hyperbolic formulations: it re-
phase. The new generation of gravitational-wave detectorguires far fewer equations and it does not require taking de-
including the Laser Interferometric Gravitational Wave Ob-rivatives of the original 3-1 equations. The latter may be
servatory(LIGO), VIRGO, GEO and TAMA, may soon de- particularly important for the evolution of matter sources,
tect gravitational radiation directly for the first time, opening where matter derivatives could augment numerical €see
a gravitational-wave window to the Universe and making[13] for a symmetric hyperbolic form of the Einstein-Euler
gravitational-wave astronomy a realityee, e.g.[1]). equations

To learn from such observations and to dramatically in- In this Brief Report, we put matter sources into the field
crease the likelihood of detection, one needs to predict thequations and test the evolution behavior for two known
observed signal theoretically. Among the most promisingstrong-field solutions: the Oppenheimer-Volk¢ff4] solu-
sources are gravitational waves from the coalescences ¢ibn for a static star and the Oppenheimer-Snyd&i solu-
black hole and neutron star binaries. Simulating such mergdon for collapse of a homogeneous dust sphere to a black
ers requires self-consistent numerical solutions to Einstein’sole. We do not evolve the matter, but instead insert the
field equations in three spatial dimensions plus time, whictkknown matter solutions into the numerically evolved field
is extremely challenging. While several groups, includingequations. This allows us to study hydrodynamical scenarios
two “Grand Challenge Alliances[2], have launched efforts without re-solving hydrodynamical equations: “hydro with-
to simulate compact binary coalescerisee alsd3,4]), the  out hydro.”
problem is far from solved. The purpose of this Brief Report and the hydro-without-

Many of the numerical codes, including those based orhydro approach is twofold. First, we demonstrate that our
the Arnowitt-Deser-Misne(ADM) formulation of Einstein’'s  evolution scheme can stably evolve strong-field solutions
equations(after Arnowitt, Deser and Misnef5]) develop  with matter sources. These calculations for strong longitudi-
instabilities and inevitably crash, even for small amplitudenal fields complement the tests for wave solutigtrans-
gravitational waves on a flat backgroutske, e.g.[6]). To  verse fields presented in paper |. To our knowledge, these
avoid this problem, several hyperbolic formulations haveare the first successful 3D simulations of strong gravitational
been developed7], some of which have also been imple- fields to arbitrarily late times. This may be an important di-
mented numericallysee[8,9] and references therginin a  agnostic for overcoming stability problems in relativistic hy-
recent papefl10] (hereafter paper)] we have modified a drodynamical calculation&f. [16] for results with both the
formulation of Shibata and Nakamufal], and have shown ADM or some of the recent hyperbolic formulatjoi$Second,
that our new formulation allows for stable, long-term evolu-we demonstrate that we can integrate the field equations with
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givenmatter sources reliably. Specifically, we show that fur- 0.237 FI T T T TT T LT ‘ AN |t'—:
nishing prescribed matter sources that already o%ey 0.2368 [ 0.2365 E = 3
=0 (whereT is the matter’s stress-energy tensather than 202366 | 0236 Bl i 8
self-consistently evolving the matter together with the fields 0.2364 F 0 50 100 3
does not introduce instabilities. This decouplifthydro ' E 3
without hydro”) suggests new possibilities for determining 0.236% T
gravitational waveforms emitted by, for example, inspiraling 0015 F ™ T T T T T T T T
neutron stars binaries prior to reaching the innermost stable o1 E O-0LB™3TTTTTTTY
circular orbit by a successive approximation scheme. T 0 AN
In our formulation, we evolve the conformal metr~1'¢,- , < 0.005 0 50 100 3
the conformal exponenp, the extrinsic curvature’s trade 0 e
and conformal trace-free paﬁ;j , and conformal connection -0.006H A
functionsT"'. For the sake of brevity, we refer the reader to 0 1006 2000 3000

paper | for all field equations and their numerical implemen- t/M

tation. i . o . FIG. 1. Evolution of the conformal exponedgtand the trace of
We first study the evolution of the gravitational fields for ye extrinsic curvatur at the center for an OV static staee text

the Oppenheimer-VolkoftOV) [14] solution of a relativis-  for detaily.

tic, static star. We examine polytropic stellar models with

equation of stateP=Kp(1)+1/”, focusing on polytropic index

n=1. HereP is the pressure and, the rest-mass density;

henceforth we se&=1=c, and we choose non-dimensional

units in which k=1. We present results for a model with

central densityp=0.2, for which the star has madd

=0.157 and Schwarzschild radiBs=0.866. The small com-

paction,R/M =5.5, indicates that the star is highly relativis- . " otects from the surface of the star. Note that the local
tic. The isotropic radius of this star B=0.7. For compari-  gpeed of light at the center ér/dt~ a/e?~0.36<1. This
son, the maximum mass configuration has a central densiye|ays signals from the surface, which otherwise would ar-

p5=0.319 and a maskl :0.'16.4' . . rive att=R=0.7. The code still converges, but no longer to
We only evolve the gravitational fields, holding the matterge.ong order. This effect is well known and appears in other
sources to their OV values. We choose zero shift<(0) . simulations (compare, e.g.[16]). Second-order spatial de-
and set initial data for the lapse from the “Schwarzschild” jatives are not smooth at the star's surface, so the finite-
lapse, agy. We evolve the lapse us'gg harmonic slicing, gitference convergence breaks down. We have run other
which, for zero shift, reduces @ a=0;e°” (see, e.9., paper cases with different stellar modefand radij to show that

). We found that fixing the lapse to the exact soluti@n  his hreakdown of second order convergence is due to errors
= agy Introduced instabilities, while integrating with har- originating at the star’s surface.

monic slicing allowed stable evolutions while achieving the
same lapse numerically. Note that the only non-vanishing
matter sources appear in the evolution equatiorkfpef. Eq.
(15) of paper I: the conformal splitting explicitly decouples
transverse fields from static matter sources. L

In Fig. 1, we showK and¢ for a long-term evolution. We -
used a (32) grid and imposed the outer boundaries at r
X,¥,z=2. We terminated the calculation &&512 (corre-
sponding ta/M ~3255), and found no evidence of an insta-
bility. For a neutron star of 1M, this corresponds to
~20 ms. Numerical noise develops during the early part of
the evolution, but this noise propagates off the grid, and the
evolution settles down into a numerical equilibrium solution.

The numerical noise originates frotihree sources: finite-
difference error, noise from the surface of the star, and error
due to imposing outer boundaries at finite distance. We now 0 1 2 3
discuss these three sources in detail. t

To check the local finite difference error, we perform a g, 2. Convergence test fdt at the center. Note that the
convergence test and evolve the same initial data on grids @falytic solution isK=0. The convergence of the scaled errors up
(16)%, (32), (64)° and (128§ gridpoints, all with the outer o t~1 indicates second order convergence of the code. The break-
boundary ak,y,z=3. In Fig. 2 we show results fd{ at the  down of second order convergence at later times is caused by ef-
center from these runs. Note that the analytic solutioK is fects of the surface of the star.

=0. We use second order accurate finite difference equa-
tions, and so expect the error to decrease by a factor of 4
when doubling the grid resolution. This behavior is seen at
early times {<1) in Fig. 2. There are deviations due to
higher order error terms, but these decrease, and the scaled
values ofK converge to the second order error term.

At later times (= 1), second order convergence is spoiled

0.05 —

~0.05 |- —— 4%(32)%
T - 16%(64)3
| —— 64%(128)°

087501-2



BRIEF REPORTS PHYSICAL REVIEW D 60 087501

C T 1 ‘nl T T T T T 1'4 jl T T T L T T T T \/—t
i I i r ]
0.04 - H — .
i I i ]
L [ . 3 .
- I q I e ]
0.02 - ’l ll - I e E ]
I Il a ] Losos = 1 4
or LAY i ]
L l 1\’ v B 0.6 — Analytic: _
- | [\/ ——— OB at 1 A - 64% grid: — —- 4
—0.02 - || | B 32% grid: ———-- ]
L oo OB at 2 0.4 | 16° grid: v —
i ' —— 0B at4 ] C 1
_| oo b ey ey [ n
02 e S T T N I U N N SO MO NN N N SO

0 € t4 6 0 5 10 15

t/M

FIG. 3. Evolution ofK at the center for different locations of the . . . )
outer boundary. We double the number of gridpoints when doubling FIG. 4. Evolution of¢ at the center for different grid resolutions
the distance to the outer boundary of the grid, so that the gridor OS dust collapse to a black hole. We hold the outer boundary

resolution remained constant. The dots mark the maximum errofixed atx=y=z=4M for each case. The dot indicates the time by
caused by the outer boundary. which all the matter has passed inside the event horizon; the inset is

a blowup of the curve at that time. The numerical evolution follows
Next we analyze the effect of the outer boundé®B). the dynamical collapse well beyond black hole formation.
We place the OB a%,y,z=1, 2 and 4, and run the code on
. 3 . .
grids of (16}, (32)° and (64} gridpoints, so that the reso- o eyolution code at each time step. The analytic solution
lution of the star is constant. The results forat the center ¢, Oppenheimer-Snydei5] collapse is transformed into
are shown in Fig. 3. As gxpected, all graphs agree until th‘?naximal slicing and isotropic coordinates followirig7].
center reaches the dpmam of dependence of th? different Ofpjs transformation involves only ordinary differential equa-
locations. The run with the OB at 1 starts to deviate from the;, s \which can be solved numerically. The lapse and shift

other two runs at=1. At t=2 the run with OB at 2 starts to . rregponding to maximal slicing and isotropic coordinates
deviate from the run with OB at 4. The slight delay is againare 4150 obtained from this transformation and are inserted

caused by the smaller value of the local speed of light towardh, the evolution code at each time step. Given the matter
the center of the star. The maximum error due to the OBy, rces and the coordinate conditions, we independently

(marked by dots in Fig.)3quickly decreases with larger OB ~ o~ =i ]
location. Since our boundary conditions take into account th&volved, i, Ajj, andI™ with our 3+1 code. Having cho-
sen maximal slicing, we can either $€£0 or else evolv&K

first order (1f) falloff of the fields(see paper)| one would . o
expect the error to scale with the square of the OB ratios andlynamically and check that it indeed converges to zero.

hence, with factors of at least 4 in our simulations. We find We present results for a star that collapses from an initial
that the errors decrease by even slightly larger factoré ~ Schwarzschild radiuRRg,=4M (or isotropic radiusRgt,
and 7.3. For our resolution, the error is dominated by the =2.94M). The star collapses to a black hole and all of the
local finite-differencing error even when the outer boundarymatter has passed inside the event horizort$y.2.31M.
is imposed at only a few stellar radii. We terminate the evolution at=17.39M, the time up to

Going back to Fig. 1, we can now identify the different which we have constructed exact data. The matter is so com-
sources of error in the early part of the evolution. The firstpact at the end R, e/~0.14M) that it is very poorly re-
peak inK aroundt~0.4~2.4M (see the panel in Fig.)lis  solved on our 3D grid. We impose the outer boundary con-
caused by the local finite difference error. The next feature adlitions atx=y=z=4M (in isotropic coordinatgs so that
t~2~12M, with oscillations at a higher frequency, origi- initially it is quite close to the star’s surface.
nates from the surface of the star. The largest peaik;-dt In Fig. 4, we show the evolution of the conformal expo-
~24M, is caused by the outer boundary. Reflections of theseent ¢ at the origin with (16§, (32)%, and (64¥ gridpoints
errors off the OB reappear at later times, but ultimatelyand compare it with the exact solution. For this run, we
propagate off the grid and leave behind a stable numericadvolvedK. Figure 4 shows that the numerical evolution can
equilibrium solution. follow the collapse well past black hole formation. The nu-

Turn now to an analysis of the gravitational fields associ-merical solution converges to the exact solutisee espe-
ated with the collapse of a sphere of dust, Oppenheimereially the inner panel of Fig. 4 At very late times, the grid
Snyder collapsgl5]. This configuration is highly dynamical resolution becomes increasingly poor, and ultimately conver-
— the matter very rapidly collapses to form a black hole.gence is spoiled by higher order finite difference errors. Up
This case tests our ability to evolve into a very strong-fieldto these late times, the ADM and total rest mass are reliably
regime. conserved.

Again, we do not evolve the matter sources, but instead As with Oppenheimer-Volkoff stars, we find that non-

insert the exact solution for the mattes, (S, andS;) into
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smoothness of the gravitational fields at the surface spoils thepurces obeyin§ - T=0, rather than self-consistently evolv-
second-order convergence of quantities in the domain of dang the matter and fields together. This hydro-without-hydro
p_endence of the surfa}ce.. Here the effect is much strongegpproach suggests a possible successive approximation
since the matter density is non-zero all the way to the surscheme for calculating the gravitational-wave signal emitted
face. However, we can lessen this effect and improve thgy for example, binary neutron stars. Outside the innermost
behavior of the evolution by imposing the maximal slicing siap|e circular orbit, such binaries are dominated by longitu-
conditionK =0. This decouples the evolution equation ér  ging| fields and change their radial separation on a radiative
[cf. Eq. (14) of paper ] from the transverse fields and from me scale which is much longer than the orbital time scale.
the Ricci tensor, which contains second derivatives of thel’hey therefore may be considered in quasi-equilibrisee,
fields. This reduces errors in the longitudinal fields that arisee_g_,[ls])_ Instead of evolving the matter hydrodynamically,
from the discontinuous surface, highlighting the advantagege can insert the known quasi-equilibrium binary configura-
of a conformal splitting. _ tion into the field evolution code to get the transverse wave
In summary, we find that the system _Of equations de'components approximately. Decreasing the orbital separation
scrl_bed in paper | accurately evolves grawtatlonal_flelds aS{and increasing the binding enejgt the rate found for the
sociated Wlth matter sources. We can evolve_ the f|e!ds of agtflow of gravitational-wave energy would generate an ap-
Oppenheimer-Volkoff star to extremely late times with har'proximate strong-field wave inspiral pattern. Such a hydro-

monic slicing, and we can follow Oppenheimer-Snyder col-yithout-hydro calculation may yield an approximate gravita-
lapse well beyond black hole formation into the very strong-tional waveform from inspiraling neutron stars without
field regime. We used predetermined matter sources, arl‘i’aving to couple the matter and field integrations.

have decoupled the field evolution from hydrodynamic evo-

lution — hydro without hydro.

Our findings have two important consequences. First, the We thank L. Rezzolla, M. Shibata, and S. Teukolsky for
ability to stably evolve the gravitational fields in the presenceuseful discussions. Calculations were performed on SGI
of strong-field matter sources is an important step toward€RAY Origin2000 computer systems at the National Center
constructing fully self-consistent, relativistic hydrodynamical for Supercomputing Applications, University of lllinois at
codes. Second, our tests demonstrate that there are no fund#bana-Champaign. This work was supported by NSF Grant
mental difficulties evolving the fields with prescribed matter AST 96-18524 and NASA Grant NAG 5-7152 at lllinois.
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