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Irrotational binary neutron stars in quasiequilibrium
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We report on numerical results from an independent formalism to describe the quasiequilibrium structure of
nonsynchronous binary neutron stars in general relativity. This is an important independent test of controver-
sial numerical hydrodynamic simulations which suggested that nonsynchronous neutron stars in a close binary
can experience compression prior to the last stable circular orbit. We show that, for compact enough stars, the
interior density increases slightly as irrotational binary neutron stars approach their last orbits. The magnitude
of the effect, however, is much smaller than that reported in previous hydrodynamic simulations.
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PACS numbegps): 97.80.Fk, 04.25.Dm, 04.40.Dg, 97.60.Jd

I. INTRODUCTION solved independently of the complexities of{3) numeri-
cal relativistic hydrodynamics. Thus, this provides an oppor-

The physical processes occurring during the last orbits ofunity to independently test the hydrodynamics result. Previ-
a neutron-star binary are a subject of intense current deba@!s results using this formalism have been presented by
[1-11]. In part, this recent surge in interest stems from relaBonazzolaet al. [11]. They show that for an irrotational bi-
tivistic numerical hydrodynamic simulations in which it has hary system composed of neutron stars wiMg(/R).. of
been notec[l_3] that as the stars approach each other theip.l4 there is almost no evidence of the compression effect
interior density increases. Indeed, for an appropriate mas@lthough they did note that the central density for irrota-
and equation of state, previous numerical simulations indifional stars remains much higher than for corotating stars as
cated that binary neutron stars might collapse individuallythe orbit decays In this paper we report results for two
toward black holes seconds prior to merger. This compresdifferent systems involving stars wittM /R).. of 0.14 and
sion effect would have a significant impact on the anticipated.19. We show that, while the former sequence shows almost
gravity-wave signal from merging neutron stars and mayno compression in agreement withl], stars with a higher
also provide an energy source for cosmological gamma-ragompaction ratio seem to experience a slight central com-
bursts[3]. pression as the stars approach.

In view of the unexpected nature of this neutron star com- We also note that these sequences have an important in-
pression effect, and its possible repercussions, as well as tf@nsic value beyond the controversy about the compression
extreme complexity of strong field general relativistic hydro-€effect. They provide realistic solutions to the initial value
dynamics, it is of course imperative that there be an indeperiProblem for neutron-star binary systems that can be used as
dent confirmation of the existence of neutron star compresstarting points of fully dynamical relativistic hydrodynamical
sion before one can be convinced of its operation in binangimulations. The fact that they are valid in the strong field
systems. This is particularly important since many authorgegime makes them more attractive than post-Newtonian
[5-10] have searched for but not observed this effect incounterparts, since the simulations can be initiated at stages
Newtonian tidal forceg5], first post-Newtoniar(1PN) dy-  Very close to the final merger of the stars.
namics[6,10], tidal expansion§7,8], or in binaries in which
rigid corotation has been impos¢d,12]. In Ref.[4] it has Il. METHOD
been argued that none of the above works could or should

have observed the effect, since the compression only domi- The method we use to determine the internal structure of

nates over tidal forces for stars with a realistic compactiorfi:l‘lrS ;E;;rgtr?t'i%gﬁl qur?fggglbgluré]ocnoaljlz%l:;atggﬁrlsoiTr?g:-
ratio [(Mg/R)..] that are in a nearly irrotational hydrody- y ginally prop Y ' 9

namic state(i.e. little spin relative to a distant obseryer and Marck[15] and as simplified by Teukolsk}16]. The

Indeed, irrotational stars may be a likely configuration nealderlvat|o_r|1_hof the reI_e\lla_mt eggatmnfs ﬁ?‘” be founhd_m ;\hosgf

the final orbits as corotation would demand an unrealisticallfhapilrs.' € .e.sse'ntla Ingredient o .t IS qpprtalac 'Sr;[ at, |

large viscosity in neutron staf43]. In hydrodynamic relax- the _u_|d vorticity s zero(_e.g. as In irrotationa st_a},st €

ation calculationg4] the stars even seem to prefer a nearlys’pec.IfIC momentum densﬂy per baryon can be written as the

irrotational state. Rasio and Shapifrb4] provide a recent gradient of a scalar potential,

review of the state of the aforementioned controversy. hu,=V i, (1)
With this in mind it is of particular interest that a new Bk

formalism[15-19 has been proposed in which the hydro- whereu,, is the covariant four velocity antl is the relativ-

static quasiequilibrium of irrotational stars in a binary can beistic enthalpy,h=1+ ¢+ P/py, where e is the internal en-
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ergy per unit of baryon rest masB,is the pressure, angy,  sented by a position dependent conformal fagtbtimes the
=mgNg iS the proper baryon rest mass density, withthe  Kronecker delta, yij=¢45ij . This is a common metric
baryon number density. The potentigl can be obtained choice for solving the initial value problem in numerical
from the solution of a Poisson-like equation: relativity. It is consistent with the approximation of quasi-
equilibrium circular orbitd4,16] which we wish to evaluate

- AB! - A ang (see Ref[4] for a detailed discussion
I — | I
DDi=Di~ 7~ |Dy= 2B D"”(T)’ @) The advantage of this method is that the determination of
the metric coefficients reduces to the solution of flat-space
whereD; are spatial covariant derivatives, and Poisson-like equationg2]. For example, using the Hamil-
B J. B ) 911/ tonian constrainf20] in combination with the maximal slic-
A=C+B/Djy=alh™+ (D) 1™, 3 ing condition tr) =0, the equation fokp becomes
whereC is a constant. The quantities andB' are obtained @° 1 -
from the usual Arnowitt-Deser-MisnéADM) (3+1) met- V2= —4m— pohW2— P+ EK”—K” : (7)

rc

whereW= au®. A similar equation can be writte2] for the
lapse function. _ o
The shift vectorg' is further decomposef?1], g'=G'

ds?= —(a?— ;) dt*+2,dX dt+ y,;dXdx,  (4)

such that theB' is the shift vector in the rotating fram@) i _ _
=B+ (wXr)!, wherew is the angular velocity of orbital —(1/4)V'y, and introduced into the ADM momentum con-
motion. straint equation to obtain two elliptic equations

Equation(2) must be solved by imposing a boundary con- V2y=V,G (®)
dition at the stellar surface, e

V2G'=2V In(a¢ *)K' - 16mas’s. ©

) N
D'yy— —B'|D; =0. 5 . . .
L ) iNelsurt © These equations have been solved with boundary conditions

) _ o provided by the first terms in a multipole expansion of the
For irrotational stars the Bernoulli integral for the matter fields as described if12]. An equation for the extrinsic cur-

distribution then becomes vatureK'l follows [2] from the ADM momentum constraint
\2 equation with the maximal slicing condition.
h2=—(D'y)D;y+ = (6) _Th|s sgt of _equatlon$2), (6)—(9) is solved ngmencall_y
a using an iterative algorithm based upon a specially designed

) . ] o elliptic solver. This method consists of a combination of
Equation(6) uniquely determines the equilibrium structure myltigrid algorithms and domain decomposition techniques

of the stars. _ _ ~ [12,23 and utilizes a code which was developed indepen-
We also compute stars in constant corotation. In this casgently of the hydrodynamics code f,2].

theorelatlwsnc Bernoulli equation can be writte9,12] Solutions are obtained for specific values of the coordi-

h/u”= const. nate distance between stars and the total baryonic mass. In

In the present work we consider a polytropic equation ofthjs way we can construct a constant baryonic-mass sequence
state,P=Kpg, with '=2 andK=1.13x10° erg cn g 2. of orbits with a minimum number of code runs. This se-
This gives a maximum neutron-star gravitational mass ofuence is a collection of semistable orbits that are connected
1.46 My . In these simulations we consider two equal-massy the inspiral motion of the stars.
neutron stars in two different sequences of stable orbits. The The problem consists essentially in the numerical solution
first corresponds to stars with baryon mass Bfz  of a set of elliptic equations. The cases of corotating and
=1.2M, gravitational mass in isolation ofMg. irrotational systems share the same set of equations for the
=1.2IMy, and compaction ratio ofM g/R)..=0.14. This  metric fields. The irrotational systems, however, demand the
sequence is comparable to the one studied by Bonazzobkvlution of an extra elliptic equatidi2) for the description of
et al. [11]. The second sequence corresponds to a system dfie stellar internal structure. This poses a very special prob-
more compact stars, with baryon mass Mg=1.59Mg, lem since the boundary conditi@B) is to be satisfied on the
gravitational mass in isolation dfl g..=1.41M 5, and com-  stellar surface and not on the grid boundaries as for the rest
paction ratio of 0.19. For the grid resolution of this study of the elliptic equations. This is challenging to implement
(~40 zones across the stave obtain a proper central den- numerically on a fixed Eulerian grid, since the stellar surface
sity in isolation of p,,=0.96x 10** g cm 2 for the first se- is a spheroid embedded in a Cartesian grid. We refer the
quence anch,.=1.83x 10'* g cm 2 for the second one. As reader tq23] for the details of our approach to this calcula-
pointed out in[4] it is important to study realistically com- tion. Note, however, that this is a completely different nu-
pact neutron stars. Otherwise Newtonian tidal forces camerical approach from that of Bonazzatal. who utilized
dominate over the relativistic effects one desires to probe. spectral methods to solve the elliptic equations.

The Einstein field equations are solved by imposing a To quantify the numerical accuracy, the code was tested
conformally flat condition(CFC) on the three-metri¢1,2]. against the Newtonian irrotational sequences obtained by
That is, the spatial three-metric is constrained to be repretryu and Eriguch{24] in two different ways. In one test, the
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FIG. 1. Change in central density relative to a single isolated FIG- 2. Binding energy defined ads—Mc.)/Mg.., where
star (Ap/p) as a function of the coordinate distance. The blackMe is half the ADM mass of the system, vs coordinate distance.
(white) circles represent our calculations for sequences WithThe black(white) circles correspond to the sequence of stable o_rblts
(Mg/R),.=0.19 (0.14). The squares show the result obtained bleth (Mg /R),.=0.19 (0.14). The squares show the result obtained

Bonazzolaet al. for a sequence composed of stars wiM{/R).. by Bonazzolaet al. for a sequence composed of stars with
=0.14. (Mg /R).,=0.14.

code was stripped of all relativistic terms to reduce it toquences with Ms/R)..=0.19 (0.14). The numerical error
Newtonian physics. In a second test, orbits for low mass stari§ Ap/p for our irrotational points is conservatively esti-
(Mg=0.10M ) were calculated using the relativistic code to mated to be~*0.005 based upon the code tests here de-
approach the Newtonian regimél¢/R~0.01). Compari- scribed as well as various convergence tests.

sons were done for orbits with fixed separation distances Note that both the result of Bonazzaaal. and ours for

between stellar centersi n the units of24]). Most impor- ~ (Mg/R).=0.14 show only a very slight increase in the cen-
tantly, both of these tests exhibit the Newtonian expectatiorral density before the tidal effects begin to dominate at short
of no discernible change in central density relative to that off€parations. The difference between the two curves is prob-
isolated stars, withXp/p=0.1%). The resulting valugsnd ably attributable to differences in the numerical algorithms
percentage difference from results [@4]) for total energy, applied (i.e. coordinate mesh, boundary conditions, elliptic

total angular momentum, and orbital angular frequency Wer@olv_er,letc).. Nevert\?veless, tr:]eY_ arehconsisten_t to within EU'
as follows: For the first testi=3.53, andE——1.142 Merical accuracy. We emphasize that our point is not about

~ ~ quantitative details at the level d¢f0.005 inAp/p, but about
(0.1%),J=1.278(4%), and(1=0.241(3%). In thesec- ¢ qualitative trend of increasing central density as the com-
ond test,d=3.88, andE=—1.082(4%), J=1.413(1%), paction ratio increases.
and 0 =0.203(6%). These results are consistent with the  The sequence withM/R)..=0.19, clearly, rises above
expected numerical accuracy of this comparison. The codthe zero line, ending in a maximum value-efL..5% increase
was also tested simulating corotating binary orfsese[12]).  in the central density for the last stable orbit found. This
Finally, Flanagar22] pointed out an inconsistency in the result agrees with a similar trend of increasing compression
definition of momentum density in the original hydrodynam- with increasing compaction ratio, presented recently by Bon-
ics calculationg1-3]. This problem is not present in these azzolaet al. [25]. This trend derives from the fact that the
calculations. compression effect competes with the tidal deformation and
the latter is stronger for more extendg@. smaller compac-
tion ratio) stars.
In both cases the central density approaches the isolated-
For the present study we have found solutions to the inistar limit at large orbital separations. We have checked that
tial value equations described above for semistable circulathe same trend emerges in a plot of the average density, so
orbits for a binary system of identical neutron stars extendinghis effect could not be an artifact of the stellar center being
from the post-Newtonian regime to the innermost orbit fora special point.
which we obtain a stable solution. As a final point, Fig. 2 shows the relative binding energy
Figure 1 shows the fractional change/p in the proper of the system defined asv(c—Mg..)/Mg.., WhereMg is
central rest-mass density relative to the central densitpf half the ADM mass of the system. We note that the relative
an isolated star of the same resolution. Results are plotted &inding energy does not depend strongly on the compaction
a function of the normalized coordinate distance, i.eratio within the numerical accuracy of our results. Another
d/M{,=d/(Mg/1.4My). feature of these curves is that they lack a turning point in the
The squares show the orbits obtained by Bonazebkl.  sequence. This is in qualitative agreement with the Newton-
[11] for a system composed of stars withl§/R)..=0.14. ian irrotational sequences for polytropic index 1 obtained
The black(white) circles represent our calculations for se- by Uryu and Eriguchi[24].

Ill. RESULTS
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In summary, the present independent study has obtainetbmparable to the possible uncertainty introduced by this
the qualitative result of increasing central density as an irroapproximation(cf. [4]). The ultimate test of whether the ef-
tational binary orbit decays, for neutron stars with compac{ect is real will therefore require an accurate fully dynamical
tion ratio of 0.19. The magnitude of the effect, however, isrelativistic treatment. Such a test is hopefully coming from
significantly less than that of the previously reported hydro-the neutron-star Grand Challenge Collaboration.
dynamic result§1-3]. Preliminary recent resulf6] indi-
cate that such a reduction in the compression effect is con-
sistent with the effect of a correction proposed by Flanagan
[22] when applied to the hydrodynamic simulations. The work at University of Notre Dame was supported by

Although it is evident that some compression effect ex-NSF grant PHY-97-22086. The work at the Lawrence Liver-
ists, it is not yet clear whether this remaining effect is real ormore National Laboratory was performed in part under the
a consequence of the conformally flat metric approximationauspices of the U.S. Department of Energy under contract
The magnitude of the apparent effect noted here is roughlyv-7405-ENG-48 and NSF grant PHY-9401636.
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