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Irrotational binary neutron stars in quasiequilibrium
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We report on numerical results from an independent formalism to describe the quasiequilibrium structure of
nonsynchronous binary neutron stars in general relativity. This is an important independent test of controver-
sial numerical hydrodynamic simulations which suggested that nonsynchronous neutron stars in a close binary
can experience compression prior to the last stable circular orbit. We show that, for compact enough stars, the
interior density increases slightly as irrotational binary neutron stars approach their last orbits. The magnitude
of the effect, however, is much smaller than that reported in previous hydrodynamic simulations.
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PACS number~s!: 97.80.Fk, 04.25.Dm, 04.40.Dg, 97.60.Jd
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I. INTRODUCTION

The physical processes occurring during the last orbits
a neutron-star binary are a subject of intense current de
@1–11#. In part, this recent surge in interest stems from re
tivistic numerical hydrodynamic simulations in which it ha
been noted@1–3# that as the stars approach each other th
interior density increases. Indeed, for an appropriate m
and equation of state, previous numerical simulations in
cated that binary neutron stars might collapse individua
toward black holes seconds prior to merger. This comp
sion effect would have a significant impact on the anticipa
gravity-wave signal from merging neutron stars and m
also provide an energy source for cosmological gamma
bursts@3#.

In view of the unexpected nature of this neutron star co
pression effect, and its possible repercussions, as well a
extreme complexity of strong field general relativistic hydr
dynamics, it is of course imperative that there be an indep
dent confirmation of the existence of neutron star comp
sion before one can be convinced of its operation in bin
systems. This is particularly important since many auth
@5–10# have searched for but not observed this effect
Newtonian tidal forces@5#, first post-Newtonian~1PN! dy-
namics@6,10#, tidal expansions@7,8#, or in binaries in which
rigid corotation has been imposed@9,12#. In Ref. @4# it has
been argued that none of the above works could or sho
have observed the effect, since the compression only do
nates over tidal forces for stars with a realistic compact
ratio @(MG /R)`# that are in a nearly irrotational hydrody
namic state~i.e. little spin relative to a distant observer!.
Indeed, irrotational stars may be a likely configuration n
the final orbits as corotation would demand an unrealistic
large viscosity in neutron stars@13#. In hydrodynamic relax-
ation calculations@4# the stars even seem to prefer a nea
irrotational state. Rasio and Shapiro@14# provide a recent
review of the state of the aforementioned controversy.

With this in mind it is of particular interest that a ne
formalism @15–19# has been proposed in which the hydr
static quasiequilibrium of irrotational stars in a binary can
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solved independently of the complexities of (311) numeri-
cal relativistic hydrodynamics. Thus, this provides an opp
tunity to independently test the hydrodynamics result. Pre
ous results using this formalism have been presented
Bonazzolaet al. @11#. They show that for an irrotational bi
nary system composed of neutron stars with (MG /R)` of
0.14 there is almost no evidence of the compression ef
~although they did note that the central density for irro
tional stars remains much higher than for corotating stars
the orbit decays!. In this paper we report results for tw
different systems involving stars with (MG /R)` of 0.14 and
0.19. We show that, while the former sequence shows alm
no compression in agreement with@11#, stars with a higher
compaction ratio seem to experience a slight central co
pression as the stars approach.

We also note that these sequences have an importan
trinsic value beyond the controversy about the compress
effect. They provide realistic solutions to the initial valu
problem for neutron-star binary systems that can be use
starting points of fully dynamical relativistic hydrodynamic
simulations. The fact that they are valid in the strong fie
regime makes them more attractive than post-Newton
counterparts, since the simulations can be initiated at sta
very close to the final merger of the stars.

II. METHOD

The method we use to determine the internal structure
stars in irrotational quasiequilibrium configurations is ess
tially that originally proposed by Bonazzola, Gourgoulho
and Marck@15# and as simplified by Teukolsky@16#. The
derivation of the relevant equations can be found in th
papers. The essential ingredient of this approach is tha
the fluid vorticity is zero~e.g. as in irrotational stars!, the
specific momentum density per baryon can be written as
gradient of a scalar potential,

hum5¹mc, ~1!

whereum is the covariant four velocity andh is the relativ-
istic enthalpy,h511e1P/r0, wheree is the internal en-
©1999 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW D 60 087301
ergy per unit of baryon rest mass,P is the pressure, andr0
5mBnB is the proper baryon rest mass density, withnB the
baryon number density. The potentialc can be obtained
from the solution of a Poisson-like equation:

DiDic5Di

lBi

a2 2S Dic2
l

a2 Bi DDi lnS anB

h D , ~2!

whereDi are spatial covariant derivatives, and

l5C1BjD jc5a@h21~Dic!2#1/2, ~3!

whereC is a constant. The quantitiesa andBi are obtained
from the usual Arnowitt-Deser-Misner~ADM ! (311) met-
ric

ds252~a22b ib
i !dt212b idxidt1g i j dxidxj , ~4!

such that theBi is the shift vector in the rotating frame,Bi

5b i1(v3r ) i , where v is the angular velocity of orbita
motion.

Equation~2! must be solved by imposing a boundary co
dition at the stellar surface,

S Dic2
l

a2 Bi DDinBusur f50. ~5!

For irrotational stars the Bernoulli integral for the matt
distribution then becomes

h252~Dic!Dic1
l2

a2 . ~6!

Equation~6! uniquely determines the equilibrium structu
of the stars.

We also compute stars in constant corotation. In this c
the relativistic Bernoulli equation can be written@9,12#
h/u05const.

In the present work we consider a polytropic equation
state,P5Kr0

G , with G52 andK51.133105 erg cm3 g22.
This gives a maximum neutron-star gravitational mass
1.46 M ( . In these simulations we consider two equal-ma
neutron stars in two different sequences of stable orbits.
first corresponds to stars with baryon mass ofMB
51.29M ( , gravitational mass in isolation ofMG`

51.21M ( , and compaction ratio of (MG /R)`50.14. This
sequence is comparable to the one studied by Bonaz
et al. @11#. The second sequence corresponds to a syste
more compact stars, with baryon mass ofMB51.55M ( ,
gravitational mass in isolation ofMG`51.41M ( , and com-
paction ratio of 0.19. For the grid resolution of this stud
(;40 zones across the star! we obtain a proper central den
sity in isolation ofr`50.9631014 g cm23 for the first se-
quence andr`51.8331014 g cm23 for the second one. As
pointed out in@4# it is important to study realistically com
pact neutron stars. Otherwise Newtonian tidal forces
dominate over the relativistic effects one desires to prob

The Einstein field equations are solved by imposing
conformally flat condition~CFC! on the three-metric@1,2#.
That is, the spatial three-metric is constrained to be rep
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sented by a position dependent conformal factorf4 times the
Kronecker delta,g i j 5f4d i j . This is a common metric
choice for solving the initial value problem in numeric
relativity. It is consistent with the approximation of quas
equilibrium circular orbits@4,16# which we wish to evaluate
~see Ref.@4# for a detailed discussion!.

The advantage of this method is that the determination
the metric coefficients reduces to the solution of flat-sp
Poisson-like equations@2#. For example, using the Hamil
tonian constraint@20# in combination with the maximal slic-
ing condition tr(K)50, the equation forf becomes

¹2f524p
f5

2 Fr0hW22P1
1

16p
Ki j K

i j G , ~7!

whereW[au0. A similar equation can be written@2# for the
lapse function.

The shift vectorb i is further decomposed@21#, b i5Gi

2(1/4)¹ ix, and introduced into the ADM momentum con
straint equation to obtain two elliptic equations

¹2x5¹ iG
i , ~8!

¹2Gi52¹ j ln~af26!Ki j 216paf4Si . ~9!

These equations have been solved with boundary condit
provided by the first terms in a multipole expansion of t
fields as described in@12#. An equation for the extrinsic cur
vatureKi j follows @2# from the ADM momentum constrain
equation with the maximal slicing condition.

This set of equations~2!, ~6!–~9! is solved numerically
using an iterative algorithm based upon a specially desig
elliptic solver. This method consists of a combination
multigrid algorithms and domain decomposition techniqu
@12,23# and utilizes a code which was developed indep
dently of the hydrodynamics code of@1,2#.

Solutions are obtained for specific values of the coor
nate distance between stars and the total baryonic mas
this way we can construct a constant baryonic-mass sequ
of orbits with a minimum number of code runs. This s
quence is a collection of semistable orbits that are conne
by the inspiral motion of the stars.

The problem consists essentially in the numerical solut
of a set of elliptic equations. The cases of corotating a
irrotational systems share the same set of equations for
metric fields. The irrotational systems, however, demand
solution of an extra elliptic equation~2! for the description of
the stellar internal structure. This poses a very special pr
lem since the boundary condition~5! is to be satisfied on the
stellar surface and not on the grid boundaries as for the
of the elliptic equations. This is challenging to impleme
numerically on a fixed Eulerian grid, since the stellar surfa
is a spheroid embedded in a Cartesian grid. We refer
reader to@23# for the details of our approach to this calcul
tion. Note, however, that this is a completely different n
merical approach from that of Bonazzolaet al. who utilized
spectral methods to solve the elliptic equations.

To quantify the numerical accuracy, the code was tes
against the Newtonian irrotational sequences obtained
Uryū and Eriguchi@24# in two different ways. In one test, th
1-2
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BRIEF REPORTS PHYSICAL REVIEW D 60 087301
code was stripped of all relativistic terms to reduce it
Newtonian physics. In a second test, orbits for low mass s
(MB50.10M () were calculated using the relativistic code
approach the Newtonian regime (MG /R'0.01). Compari-
sons were done for orbits with fixed separation distan
between stellar centers (d̃ in the units of@24#!. Most impor-
tantly, both of these tests exhibit the Newtonian expecta
of no discernible change in central density relative to tha
isolated stars, with (Dr/r&0.1%). The resulting values~and
percentage difference from results of@24#! for total energy,
total angular momentum, and orbital angular frequency w
as follows: For the first test,d̃53.53, and Ẽ521.142
(0.1%), J̃51.278(4%), andṼ50.241(3%). In the sec-
ond test,d̃53.88, andẼ521.082(4%), J̃51.413(1%),
and Ṽ50.203(6%). These results are consistent with t
expected numerical accuracy of this comparison. The c
was also tested simulating corotating binary orbits~see@12#!.

Finally, Flanagan@22# pointed out an inconsistency in th
definition of momentum density in the original hydrodynam
ics calculations@1–3#. This problem is not present in thes
calculations.

III. RESULTS

For the present study we have found solutions to the
tial value equations described above for semistable circ
orbits for a binary system of identical neutron stars extend
from the post-Newtonian regime to the innermost orbit
which we obtain a stable solution.

Figure 1 shows the fractional changeDr/r in the proper
central rest-mass density relative to the central densityr` of
an isolated star of the same resolution. Results are plotte
a function of the normalized coordinate distance,
d/M1.4[d/(MG/1.4M ().

The squares show the orbits obtained by Bonazzolaet al.
@11# for a system composed of stars with (MG /R)`50.14.
The black~white! circles represent our calculations for s

FIG. 1. Change in central density relative to a single isola
star (Dr/r) as a function of the coordinate distance. The bla
~white! circles represent our calculations for sequences w
(MG /R)`50.19 (0.14). The squares show the result obtained
Bonazzolaet al. for a sequence composed of stars with (MG /R)`

50.14.
08730
rs

s

n
f

re

e

i-
ar
g
r

as
.

quences with (MG /R)`50.19 (0.14). The numerical erro
in Dr/r for our irrotational points is conservatively est
mated to be;60.005 based upon the code tests here
scribed as well as various convergence tests.

Note that both the result of Bonazzolaet al. and ours for
(MG /R)`50.14 show only a very slight increase in the ce
tral density before the tidal effects begin to dominate at sh
separations. The difference between the two curves is p
ably attributable to differences in the numerical algorithm
applied ~i.e. coordinate mesh, boundary conditions, ellip
solver, etc.!. Nevertheless, they are consistent to within n
merical accuracy. We emphasize that our point is not ab
quantitative details at the level of60.005 inDr/r, but about
the qualitative trend of increasing central density as the co
paction ratio increases.

The sequence with (MG /R)`50.19, clearly, rises above
the zero line, ending in a maximum value of;1.5% increase
in the central density for the last stable orbit found. Th
result agrees with a similar trend of increasing compress
with increasing compaction ratio, presented recently by B
azzolaet al. @25#. This trend derives from the fact that th
compression effect competes with the tidal deformation a
the latter is stronger for more extended~i.e. smaller compac-
tion ratio! stars.

In both cases the central density approaches the isola
star limit at large orbital separations. We have checked
the same trend emerges in a plot of the average density
this effect could not be an artifact of the stellar center be
a special point.

As a final point, Fig. 2 shows the relative binding ener
of the system defined as (MG2MG`)/MG` , whereMG is
half the ADM mass of the system. We note that the relat
binding energy does not depend strongly on the compac
ratio within the numerical accuracy of our results. Anoth
feature of these curves is that they lack a turning point in
sequence. This is in qualitative agreement with the Newt
ian irrotational sequences for polytropic indexn51 obtained
by Uryū and Eriguchi@24#.

d

h
y

FIG. 2. Binding energy defined as (MG2MG`)/MG` , where
MG is half the ADM mass of the system, vs coordinate distan
The black~white! circles correspond to the sequence of stable or
with (MG /R)`50.19 (0.14). The squares show the result obtain
by Bonazzola et al. for a sequence composed of stars w
(MG /R)`50.14.
1-3
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In summary, the present independent study has obta
the qualitative result of increasing central density as an i
tational binary orbit decays, for neutron stars with comp
tion ratio of 0.19. The magnitude of the effect, however,
significantly less than that of the previously reported hyd
dynamic results@1–3#. Preliminary recent results@26# indi-
cate that such a reduction in the compression effect is c
sistent with the effect of a correction proposed by Flana
@22# when applied to the hydrodynamic simulations.

Although it is evident that some compression effect e
ists, it is not yet clear whether this remaining effect is real
a consequence of the conformally flat metric approximati
The magnitude of the apparent effect noted here is roug
. D
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comparable to the possible uncertainty introduced by
approximation~cf. @4#!. The ultimate test of whether the e
fect is real will therefore require an accurate fully dynamic
relativistic treatment. Such a test is hopefully coming fro
the neutron-star Grand Challenge Collaboration.
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