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We discuss cosmological solutions of tdua-Witten theory describing the strongly coupled heterotic string.
At energies below the grand-unified scale, the effective theory is five, not four, dimensional, where the
additional coordinate parametrizes &vZ, orbifold. Furthermore, it admits no homogeneous solutions.
Rather, the static vacuum state, appropriate for a reduction to four-dimenkierfalsupersymmetric models,
is a BPS domain wall pair. Relevant cosmological solutions are those associated with this BPS state. In
particular, such solutions must be inhomogeneous, depending on the orbifold coordinate as well as on time. We
present two examples of this new type of cosmological solution, obtained by separation of variables rather than
by exchange of the time and radius coordinates of a brane solution, as in previous work. The first example
represents the analogue of a rolling radii solution with the radii specifying the geometry of the domain wall
pair. This is generalized in the second example to include a nontrivial “Ramond-Ramond” scalar.
[S0556-282(199)04818-3

PACS numbgs): 11.25.Mj, 11.27+d, 98.80.Cq

[. INTRODUCTION reduction from 11 to 5 dimensions requires the inclusion of

non-zero values of the four-form field strength in the internal

Horava and Witten have shown that the strongly coupledCalabi-Yau directions. This non-zero form field arises be-
EgXEg heterotic string can be identified as the 11-cause, even for the standard embedding, gauge field and

dimensional limit of M theory compactified on 81/, or-  gravitational sources in the form field Bianchi identity do not
bifold with a set ofEg gauge fields at each ten-dimensional .5ncel. As a result one obtains a gauged version of five-

orbifold fixed plane[1,2]. Furthermore, Witten has demon- i angignal supergravity with a potential term that had not
strated that there exists a consistent compactification of th'Brevioust been constructed. In addition, the theory has

M-theory limit on a defqrm_ed Calabi-Yau threefold, lead- boundary potentials for the projection of the bulk scalar field
ing to a supersymmetriN=1 theory in four dimensions .
onto the orbifold planes.

[3,5]. Matching at the tree level to the phenomenological These potentials lead to a particularly interesting effect:

gravitational and grand-unified-theoryGUT) couplings .
[3,4], one finds the orbifold must be larger than the Calabjthe boundary sources mean that the theory has no solutions

Yau radius, by a factor of 10 or so. Since the GUT scaldiomogeneous in the orbifold direction. In particular, flat
(about 16° GeV) is set by the size of the Calabi-Yau three- SPace is not a squFion. Instead_, the ‘_‘vacuum” which leads
fold, this implies that at energies below the unification scald® @ supersymmetric flat four-dimensional space is a three-
there is a regime Where the universe appears five dimerb.rane domaln Wa” SO|utI0n. The thl’ee—brane COUp|es to the
sional. This five-dimensional regime represents a new settingulk potential and is supported by the sources provided by
for early universe cosmology, which has been traditionallythe two boundary potentials. More precisely, it is a double
studied in the framework of the four-dimensional effectivedomain wall solution with the two (3 1)-dimensional
action. world volumes each covering an orbifold plane and the or-
In a previous papef6], the effective five-dimensional bifold itself as the transverse coordinate. It is Bogomol'nyi-
Horava-Witten theory was derived for the universal fields,Prasad-Sommerfiel(BPS), preserving half of thel=5 su-
which are independent of the particular form of the Calabi-persymmetries, and so is the appropriate background for a
Yau manifold. In this derivation the standard embedding offurther reduction to four-dimensional=1 supergravity
the spin connection in one of th&; gauge groups has been theories. In such a reduction, four-dimensional space-time
used. This five-dimensional theory has a number of interestsecomes identified with the three-brane world volume.
ing and unusual features. The theory resides in a five- Thus we have the interesting possibility of a five-
dimensional space which is a product of a smooth fourdimensional early universe in Fava-Witten theory. Fur-
dimensional manifold times the orbifot/Z,. As a result, it  thermore, as a result of the presence of boundary potentials,
splits into a bulkN=1, d=5 supersymmetric theory with the such five-dimensional cosmologies should be inhomoge-
gravity supermultiplet and the universal hypermultiplet, andneous in the orbifold coordinate. What should realistic mod-
two four-dimensional “boundary” theories which reside on els look like? In the ideal case, one would have a situation in
the two orbifold fixed hyperplanes. The additional fields of which the internal six-dimensional Calabi-Yau space and the
the boundary theories aid=1, d=4 gauge multiplets and orbifold evolve in time for a short period and then settle
chiral multiplets. More specifically, due to the standard em-down to their “phenomenological” values while the three
bedding there is atg gauge field and gauge matter on one non-compact dimensions continue to expand. Then, for late
side whereas the other side carriesEBngauge field. The time, when all physical scales are much larger than the orbi-
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fold size, the theory is effectively four dimensional and tute fundamental cosmological solutions in weakly coupled
should, in the “static” limit, provide a realistic supergravity string theory. Unlike those rolling radii which represent scale
model of particle physics. As we have argued above, sucfactors of homogeneous, isotropic spaces, here they measure
realistic supergravity models originate from a reduction ofthe separation of the two walls of the three-brane and its
the five-dimensional theory in its domain wall vacuum state world volume size(which, at the same time, is the size of
Hence, in the “static” limit at late time, realistic cosmologi- “our” three-dimensional universe All in all, we therefore

cal solutions should reduce to the domain wall or perhaps Bave a time-dependent domain wall pair with its shape stay-
modification thereof that incorporates breaking of the reNd rigid but its size and separation evolving like rolling
maining four-dimensionalN=1 supersymmetry. Conse- "adil- , o _
quently, one is forced to look for solutions which depend on, o' the second example, we consider a similar setting as

the orbifold coordinate as well as on time. The main goal of,f‘Or the first but, |n addition, we aII_ow a npnvamshmg
‘Ramond-Ramond” scalar. This terminology is perhaps a

this paper 1s J.[O prese.nt S|m.ple example; of such cosmologh—ttle misleading, but relates to the fact that the scalar would
cal solutions in five-dimensional heterotic M theory to illus- /= type Il Ramond-Ramond field in the case where the

trate some of the characteristic cosmological features of th8rbifold was replaced by a circle. This makes connection
theory. . with type Il cosmologies with non-trivial Ramond-Ramond
In earlier work[7,8], we showed how a general class of fie|4s discussed ifi7,8]. Separation of variables occurs for a
cosmological solutions, that is, time-dependent solutions 0fpecific time-independent form of this scalar. The orbifold-
the equations of motion that are homogeneous and isotropigependent part then coincides with the domain wall with,
in our physicald=3 subspace, can be obtained in both su-however, the addition of the Ramond-Ramond scalar. This
perstring theories and M theory defined in spacetimis-  non-vanishing value of the scalar breaks supersymmetry
out a boundaryLoosely speaking, we showed that a cosmo-even in the static limit. We find that the time-dependent part
logical solution could be obtained from any p-brane orof the equations fits into the general scheme of M-theory
D-brane by inverting the roles of the time and “radial” spa- cosmological solutions with form fields as presented in Refs.
tial coordinate. This method will clearly continue to work in [7,8]. Applying the results of these papers, the domain wall
Horava-Witten theory as long as one exchanges time with anoduli are found to behave like rolling radii asymptotically
radial coordinate not aligned in the orbifold direction. An for early and late times. The evolution rates in these
example of this in 11-dimensions, based on the solution ofsymptotic regions are different and the transitions between
[9]’ has been given |Eﬂ_0] It can, however, not be app“ed to them can be attributed to the nontrivial Ramond-Ramond
the fundamental domain wall since its radial direction coin-Scalar. . _ _
cides with the orbifold coordinate. This coordinate is L€t us now summarize our conventions. We use coordi-
bounded and cannot be turned into time. Also, as argueBat€sx® with indices «,8,7, ...=0,...,3,11 to param-
above, exchanging radius and time in the domain wall solu€trize the five-dimensional spabés. Throughout this paper,
tion would not be desirable since it should be viewed as thé/hen we refer to the orbifold, we will work in the “up-
vacuum state and hence should not be modified in such ${airs” picture with the orbifoldS"/Z; in the x*-direction.
way. Instead, the domain wall itself should be made time/Ve choose the range‘e [ —mp, mp] with the end points
dependent, thereby leading to solutions that depend on boftfing identified. TheZ, orbifold symmetry acts as
time and the orbifold coordinate. As a result, we have to deaf~ ~X - Then there exist two four-dimensional hyperplanes
with coupled partial differential equations, but under certainfixed under theZ, symmetry which we denote by{’, i
constraints, these can be solved by separation of variables;1,2. Locally, they are specified by the conditions'
though the equations remain non-linear. Essentially, we are 0,mp. The indicesu,v,p, ...=0,...,3 areused for the
allowing the moduli describing the geometry of the domainfour-dimensional space orthogonal to the orbifold. Fields
wall and the excitations of other five-dimensional fields towill be required to have a definite behavior under @e
become time dependent. Technically, we will simply take theorbifold symmetry, so that a general fieldis either even or
usualAnsdzefor the five-dimensional fields, but now allow odd, with®(x*) =+ d(—x).
the functions to depend dooth the time and radial coordi-
nates. We will further demand that these functions each fac-
tor into a purely time dependent piece and a purely radial
dependent piece. This is not, in general, sufficient to separate The five-dimensional effective action for Fora-Witten
the equations of motion. However, we will show that subjecttheory, obtained from the 11-dimensional theory by compac-
to certain constraints a separation of variables is achievedifying on a Calabi-Yau three-fold with standard embedding,
We can solve these separated equations and find new, casas derived in 6] for the universal zero modes, that is, the
mologically relevant solutions. In this paper, we will restrict five-dimensional graviton supermultiplet and the breathing
our attention to two examples representing cosmological exmode of the Calabi-Yau space, along with its superpartners.
tensions of the pure BPS three-brane. These last fields form a hypermultiplet in five dimensions.
The first example is simply the domain wall itself with Furthermore, the theory contains four-dimensiom&: 1
two of its three moduli made time dependent. We show thagauge multiplets and chiral gauge matter fields on the orbi-
a separation of variables occurs in this case. It turns out thdbld planes. To keep the discussion as simple as possible we
these moduli behave like “rolling radii’l11] which consti-  will omit the gauge matter fields in the effective five-

Il. FIVE-DIMENSIONAL EFFECTIVE ACTION
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dimensional action since they are of no relevance to the COS:%EMVWF%. Furthermore, ks and agyr are the five-

mological solutions considered in this paper. The generalimensional Newton constant and the gauge coupling respec-

Lagrangian will be presented elsewh¢i2,13. tively. The constant, in the above action is given H,6]
In detail, we have the five-dimensional gravity supermul-

tiplet with the metricg,z and an Abelian gauge field,, as

2/3
the t_)osonic fields. The bosonic fields in .the universal hyper-ao: _ 1 (L) f w0\ trROAR®), V:f \/5
multiplet are the real scalar fieM (the dilaton, measuring 8\/577\/ 4w X X
the volume of the internal Calabi-Yau spacihe three-form (4)
C.ps, and the complex Ramond-Ramond scaaNote that

the three-formC,;, can be dualized to a scalar field.  Here Q,p is the metric of the Calabi-Yau spade R is
Hence the hypermultiplet contains four real scalar fields. Ashe corresponding curvature two-form angy=i,p is the
explained in the Introduction, all bulk fields should be evenKahler form. Furthermorex is the 11-dimensional Newton
or odd under theZ, orbifold symmetry. One finds that the constant. We remark that, is related to the presence of
fieldsg,,, 911,11, A1, 0 must be even whereag,;1, A, , internal gravity and gauge field instantons. It can be ex-
& must be odd. If one studies cosmological solutions of thepressed solely in terms of the curvature since the standard
theory, these transformation properties are important as theymbedding relates those two types of instantons. In the
restrict the set of allowed solutions to those with the correctaibove action, we have dropped higher-derivative terms. The
Z, symmetry. Now consider the boundary theories. In thesigma model for the scalar fields is the well-known coset
five-dimensional spachls, the orbifold fixed planes consti- Mqo=SU(2,1)/SU(2)xU(1) of the universal hypermulti-
tute the four-dimensional hypersurfadvél'), i=1,2. Since plet. The coupling ofr to A, implies that aJ(1) symmetry
the standard embedding has been used in the reduction froan Mg has been gauged. This gauging also induces the
11 to 5 dimensions, there is &y gauge fieldAfj) and gauge «ap-dependent potential term in E¢B). It has been demon-
matter fields on the orbifold plank 511)_ For simplicity, we  strated 6,13 that the above action is indeed the bosonic part
will set these gauge matter fields to zero in the following.of @ minimalN=1 gauged supergravity theory in five di-
This will not effect our solutions. On the orbifold plaigl?) ~ mensions coupled to chiral boundary theories. .
there is arEg gauge fieldA® . The most striking features of this action from the view-
The five-dimensional effective action of Fuor-Witten ~POINt of cosmology(and otherwispare the bulk and bound-
theory is then given by ary potentials for the dilato in Sy and Syoung- These
potential terms are proportional to the parametgand their
Ss=Syukt Soound (1)  origin is directly related to the nonzero internal four-form
that had to be included in the dimensional reduction from 11
where dimensions. We stress that this non-zero four-form results
from the source terms in the 11 dimensional Bianchi identity
1 3 " which are non-vanishing even for the standard embedding
2_K§JM5\/__9{ R+ Efaﬂ]: ? which we consider here. For a very similar reason we have
non-vanishing boundary potentials. They arise from the in-

Spulk= —

1 1 ternal part of the 10-dimensional boundary action and in-
+ —e“/’ﬁan]-'ﬁy}}eJr —zaavaav clude the contributions from the gauge field kinetic terms as
V2 2V well as from the curvatur®? terms. Observe that these po-
tentials are equal but have opposite signs. Therefore, al-
1 - — . . . L
+——[,0—i(£0,6— £0,6)— 2ape(xtH A, ] though they cancel in a four-dimensional limit, they do not
V? cancel separately on each boundary. These potentials lead to
sources in the Einstein equation and the equation of motion

X[0“o—i(£9"E— E9°E) — 2ape(X™) A“] for V and o that are proportional té(x'Y) or 8(x*'— mp).
Hence, as long a¥ is finite (the internal Calabi-Yau space is
T Ea E0°E+ iaz} 7) compact purely time-dependent solutions of the theory do
A 3y2 ° not exist as they could never cancel these delta-function

sources. One is therefore led to always consider dependence

V2 V2 on time and the orbifold coordinate’. The presence of a
Shound= —zf (l)\/—gV_lao— . (2)\/—gV_1ao bulk potential proportional t&/ 2 seems to indicate that the
K7 Mg K5 Mg dilaton has a runaway behavior and the internal space de-

compactifies at late time. This picture, however, is too naive
f =g{VtrEO pur in that it ignores the boundary potentials and Zesymme-
M{) ’W tries of the fields. In fact, as we will show, the correct static
o domain wall vacuum of the theory depends on the orbifold
—otrFQF e, (3 direction in a way so as to exactly cancel these potentials.
. ] Consequently, it is important to note that for cosmological
where F,z=d,As—dpA, and the F{) are the field solutions based on the domain wall the time-dependent scale
strengths of the boundary gauge fields, whil€)*”  factors do not feel the potential terms.

167TaGUT i=1
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[1l. DOMAIN-WALL VACUUM SOLUTION ing the boundary sources =0 and 7p, however, has
forced us to consider only two such linear pieces, namely

In this section, we would like to review the static €[0,7p] andy e[ — 7p,0]. These pieces are glued together
“vacuum” solution of the five-dimensional Hawa-Witten aty=0 andp (recall here that we have identifiegp and
theory, as given iff6]. As argued in the Introduction, this —p). To see this explicitly, let us consider one of the equa-
solution is the basis for physically relevant cosmological sotions of motion, specifically, the equation derived from the
lutions. It is clear from the five-dimensional action given in variation ofg,, . For theAnsatzin Eq. (5), this is given by
the previous section that flat spacetime is not a solution of

the equations of motion. It is precluded from being a solution a” a'? a'b 1V'? a% b?

by the potential terms, both in the bulk and on the bound- a 2 ab 1 W“LE V2

aries. If not flat space, what is the natural vacuum solution?

To answer this, notice that the thedrd) has all of the pre- V2aq b

requisites necessary for a three-brane solution to exist. Gen- =3 v[&(y)— S(y—mp)] (7)

erally, in order to have al¥—2)-brane in aD-dimensional

theory, one needs to have B 1)-form field or, equiva- \ here the prime denotes differentiation with respectyto
lently, a cosmological constant. This is familiar from the the term involving the delta functions arises from the stress
eight-brang 14] in the massive type IIA supergravity in ten energy on the boundary planes. Inserting the solut@rin
dimensions[15], and has been systematically studied forig equation, we have

theories in arbitrary dimension obtained by generalized di-

mensional reduction16] using the method of Scherk and 2.2

SchwarZ 17]. In our case, this cosmological term is provided (9§H = TaO[ oy)—o6(y—mp)] (8

by the bulk potential term in the actiofl), precisely the

term that disallowed flat space as a solution. From the Viewy hich shows that the solution represents two parallel three-

point of the bulk theory, we could have multi three-brane ranes located at the orbifold planes. Using the five-
solutions with an arbitrary number of parallel branes locate(ﬁimensional supersymmetry transformations presented in
at various places in the' direction. However, elementary pet [6], one can check that this solution indeed preserves
brane solutions have singularities at the location of the, . o 'Ehe eight supersymmetries of the theory.

branes, needing to be supported by source terms. The natural | ;s discuss the meaning of this solution. As is apparent

candidates for those source terms, in our case, are the bounﬁic—)m the Ansatz(5), it has (3+ 1)-dimensional Poincarie-

ary actions. This restricts the possible solutions to those "€Rjariance and, as just stated, it preserves four supercharges.

resgntlng a pair of .paraI.IeI three-b'ranes correspondmg to th?herefore, a dimensional reduction to four dimensions in this
orbifold planes. This pair of domain walls can be viewed aSqo|ution leads to ahl= 1 supergravity theory. In fact, this is

the ‘_‘vacuqm” of the five-d_imensional theory, in the SENSE st the same “physical” four-dimensional effective theory
that it provides the appropriate background for a reduction t hat one obtains by reducing Fva-Witten theory directly

thed=4, N=1 effective theory. . __from 11 to 4 dimensions using the background of R&.
From the above discussion, it is clear that in order to ﬂndThis has been explicitly demonstrated in R¢2,13. This
a three-brane solution, we should start with Aresatz effective four-dimensional theory is the starting point of low

_ 2dxtdx’n + 2442 energy particle phenomenology. Indeed, the linearized ver-
di a(y)"dx"dx",,,+ b(y)"dy sion of the five-dimensional domain wall solution is nothing
V=\(y) (5) else but the zero mode part of the 11 dimensional solution of

Ref. [3] “pulled” down to five dimensiong13]. The two
wherea andb are functions ofy=x'* and all other fields parallel three-branes of the solution, separated by the bulk,
vanish. The general solution for thisnsatz satisfying the are oriented in the four uncompactified space-time dimen-

equations of motion derived from actigh), is given by sions, and carry the physical low-energy gauge and matter
fields. Therefore, from the low-energy point of view where
a=agH"? the orbifold is not resolved, the three-brane world volume is

identified with four-dimensional space-time. In this sense the
Universe resides on the world volume of a three-brane. It is
the purpose of the following sections to put this picture into
the context of cosmology, that is, to make it dynamical. Con-
V=DboH? sequently, we are looking for time dependent solutions based

on the static domain wall which we have just presented.
wherea,, by andhg are constants. We note that the bound-

ary source terms have fixed the form of the harmonic func-
tion H in the above solution. Without specific information
about the sources, the functibhwould generically be glued In this section, we will present a cosmological solution
together from an arbitrary number of linear pieces withrelated to the static domain wall vacuum of the previous
slopes= \2a,/3. The edges of each piece would then indi- section. As discussed in Refd,8], a convenient way to find
cate the location of the source terms. The necessity of matclsuch a solution is to usAnsatz(5) where they=x** coor-

V2
b:bon, H:?ao|y|+h0 (6)

IV. DOMAIN-WALL COSMOLOGICAL SOLUTION
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dinate in the functions, b andV is replaced by the time the equations of motion. With the abovensatz the gqq
coordinater. However, in Hoava-Witten theory the bound- equation of motion is given By

ary planes preclude this from being a solution of the equa-

tions of motion, since llt.does not adml'g homogeneou; solu- a2 ( a’ a2 a'b’ 1V'? ajb?p?
tions. To see this explicitly, let us consider thg equation )

of motion, where we replaca(y)— a(7), b(y)— 8(7) and b

V— (7). We find that N

2 B
— 3 @y ldy)— 5(y—7TP)];

—+ — - — e —
a a2 ab 12y2 18y2,2

e 1 Bt .

Note that if we seh=a=B=vy=1, this equation becomes

where the overdot denotes differentiation with respect.to 'dentical to Eq.(_?). Similarly, if we seta=b=V=1 and

Again, the term containing the delta functions arises from thd@Ke the gauge=1, this equation becomes the same as Eq.
boundary planes. It is clear that, because ofitdependence (9)- AS iS, the above equation does not separate. However,
introduced by the delta functions, this equation has no g|0'_[he obstruction to a separation of variables is the two terms

bally defined solution. The structure of E§) suggests that Proportional toa,. Note that both of these terms would be
a solution might be found if one were to let functioasb  Strictly functions ofy only if we demanded thgBey. With-
andV depend on both- andy coordinates. This would be ©ut l0ss of generality, one can take

acceptable from the point of view of cosmology, since any

such solution would be homogeneous and isotropic in the B="- (13
spatial coordinateg™ wherem,n,r, ...=1,2,3. In fact, the

pre\/iousAnsatz\Nas too homogeneous, being independent ONVe WI”, henceforth, assume that this is the case. Note that
the y coordinate as well. Instead, we are interested in solythis result is already indicated by the structure of integration
tions where the inhomogeneous vacuum domain walfonstants(modul in the static domain wall solutiot6).

evolves in time. With this condition, the left hand side of E(L2) is purelyy
We now construct a cosmological solution where all func-dependent, whereas the right hand side is puretjepen-
tions depend on both andy. We start with theAnsatz dent. Both sides must now equal the same constant which,
for simplicity, we take to be zero. The equation obtained by
ds2=—N(7,y)?d7+a(7,y)2dx"dx" mn+ b(7,y)2dy? setting the left hand side to zero is identical to the pyre
equation(7). The equation for the pure dependent func-
V=V(ry). (10 tionsis
Note that we have introduced a separate funchiointo the o ap 1 Y -0 14
purely temporal part of the metric. ThdsatZeads to equa- o2 t B 1_2?_ : (14

tions of motion that mix ther andy variables in a compli-
cated non-linear way. In order to solve this system of equag,

. . . . ence, separation of variables can be achieved forgthe
tions, we will try to separate the two variables. That is, we le P oLt

tequation by demanding that E(L3) be true. What is more
remarkable is that, subject to the constraint {Baty, all the
equations of motion separate. The pyrequations are iden-
tical to those of the previous section and, hence, the domain

N(7y)=n(7)a(y)

a(ny)=a(r)aly) wall solution(6) remains valid as thg-dependent part of the
(11)  solution.
b(7,y)=pB(7)b(y) The full set ofr equations is found to be
V(7,y)=y(1)V(Y). > aB 19
—2 - ,E - 1—2 —2_0 (15)

There are two properties of thinsatzthat we wish to point a® « Y
out. The first is that fon=a= 8= y=1 it becomes identical
to Eq. (5). Second, we note that can be chosen to be any « an B Bn a®> apB 19°
function b formi definiti f thevariable. That 2—=2——+ - - —+—+2——-+-—=0 (16
unction by performing a redefinition o variable. Tha « “an B Bn 2 ‘apa, (16)

is, we can think of as being subject to a gauge transforma-
tion. There is na priori reason to believe that separation of
variables will lead to a solution of the equations of motion
derived from the actioiil). However, as we now show, there  From now on, we denote bg, b, V the y-dependent part of the
is indeed such a solution. It is instructive to present one ofnsatz(11).
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@ an a? 1 5? Note that the vectod specifies the dimensions of the various
% an ST 12 2 0 (17 subspaces, where the entty=3 is the spatial world volume
@ Y dimensionsd,=1 is the orbifold dimension and we insert 0
- Ce ey for the dilaton. On the “moduli space” spanned by we
Yy By v v (18  introduce the metric

Gij=2(d;&j; —did))
In these equations we have display@dndy independently,

for reasons to become apparent shortly. Of course, one must Gin=Gp=0 (29
solve these equations subject to the condition ghaty. As
a first attempt to solve these equations, it is most convenient G,,=36,

to choose a gauge for which
which in our case explicitly reads

n=const (19
1
so thatr becomes proportional to the comoving titaince 1 2 0
dt=n(7)d7. In such a gauge, the equations simplify consid-
erably and we obtain the solution G=-12| 1 0 o (25)
2
a:A|t_to|p 0 0 -3
B=y=B|t—tq|* (20 Furthermore, we definE by
where ed-a  g3atp
E= = . (26)
n n

3 2

4
=—|15¥F——=], =—(1%x2+3 21
P 11( +3\/§> a 11( v3) @) The equations of motiofl5)—(18) can then be rewritten as

and A, B andt, are arbitrary constants. We have therefore 1 o = d S

found a cosmological solution, based on the separation ;B Ga=0, E(EGO‘)_O' (27)
satz (11), with the y-dependent part being identical to the

domain wall solution(6) and the scale factors, 3, y evolv- |t is straightforward to show that if we choose a gauge

ing according to the power law&0). This means that the =const, these two equations exactly reproduce the solution
shape of the domain wall pair stays rigid while its size andgiven in Eqs(20) and(21). The importance of this reformu-
the separation between the walls evolve in time. Specificallylation of the equations of motion lies, however, in the fact
a measures the size of the spatial domain wall world volumehat we now get solutions more easily by exploiting the
(the size of the three-dimensional universehile 8 speci- gauge choice fom. For example, let us now choose the
fies the separation of the two wallthe size of the orbifold  gauge

Because of the separation constrajnt 8, the time evolu- o

tion of the Calabi-Yau volume, specified by, is always n=ede (28
tracking the orbifold. From this point of view, we are allow-

ing two of the three moduli in Eq6), namelyay andbg, to  Note that in this gaug&=1. The reader can verify that this
become time dependent. Since these moduli multiply the hagauge choice greatly simplifies solving the equations. The
monic functionH, it is then easy to see why a solution by result is that

separation of variables was appropriate.

To understand the structure of the above solution, it is &=6§/=CT+ ky
useful to rewrite its time dependent part in a more systematic
way using the formalism developed in Ref,8]. First, let B=(6+4\3)Cr+k, (29

us define new functiona, ,Z% andax by
whereC, k; andk, are arbitrary constants. Of course this

a=e", p=ef, y=¢e% (22)  solution is completely equivalent to the previous one, Eg.
. . (20), but written in a different gauge. We will exploit this
and introduce the vector notation gauge freedom to effect in the next section.
R To discuss cosmological properties we define the Hubble
a 3 parameters
a=(a)=| B |, d=(d)=|1]. (23 . od.
';/ H= aa’ (30)
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wheret is the comoving time. From Eq$20) and (22) we 9(43:(911 1])1/29(53 (35)
easily find K’ ’ a
0 we find that this modifiep, to
- p - | d ~ P2
=— = =p,;+—=.
H . p 1 . (31) P1=P1t 35 (36)
64

In the following, we will discuss both frames. We recall that
the separation condition3=+y implies that the internal
Calabi-Yau space always tracks the orbifold. In the discus-
pTGp=0, d-p=1 32 sion we can, ther_efore, concentrate on the spatial world vol-
' ' ume and the orbifold, corresponding to the first and second

These relations are characteristic for rolling radii solutions€ntries in Eq.(34). Let us first consider the<) branch. In

[11] which are fundamental cosmological solutions of this branctt e[ —e,to] and, hencet—to is glways negfati\ie.
weakly coupled heterotic string theory. Comparison of thelt follows from Eq. (31) that a subspace will expand if its
equations of motiori27) indeed shows that the scale factors component is negative and contract if it is positive. For the

a behave like rolling radii. The original rolling radii solu- first set of powers; in Eq. (34) both the world volume and
tions describe free|y evo|ving scale factors of a product Oﬁhe orbifold contract in the five-dimensional Einstein frame.
homogeneous, isotropic spaces. In our case, the scale factdf'ge same conclusion h0|d5_) in the four-dimensional Einstein
also evolve freelysince the time-dependent part of the equa-frame. For the second sep,, in both frames the world
tions of motion, obtained after separating variables, does natolume contracts while the orbifold expands. Furthermore,
contain a potentiglbut they describe the time evolution of since the Hubble parameter of the orbifold increases in time,
the domain wall. This also proves our earlier claim that thethe orbifold undergoes superinflation.

Note that the power§ satisfy the constraints

potential terms in the five-dimensional acti¢t) do not di- Now we turn to the ) branch. In this brancht
rectly influence the time dependence but are canceled by the[t,,~] and, hencet—t, is always positive. Consequently,
static domain wall part of the solution. a subspace expands for a positive component ahd con-

Let us now be more specific about the cosmological proptracts otherwise. In addition, since the absolute values of all
erties of our solution. First note from E(1) that there exist powersp are smaller than 1, an expansion is always sublu-

two different types of time ranges, namehkzt, andt>tg. In i > .
the first case, which we call the-() branch, the evolution minal. For the vectop, the world volume and the orbifold

starts at— —o and runs into a future curvature singularity €xpand in both frames. On the other hand, the veptor
[7.8] att=t,. In the second case, called the J branch, we describes an expanding world volume and a contracting or-
start out in a past curvature singularitytatt, and evolve bifold in both frames. T_hls last solution pe_rhaps corresponds
towardt—ce. In summary, we therefore have the branches Most closely to our notion of the early universe.

[—»,t] (—) branch, 33 V. COSMOLOGICAL SOLUTIONS
= [tg,+o] (+) branch. (33 WITH RAMOND FORMS

For both of these branches we have two options for the pow- Thus far, we have looked for both static and cosmological
- , . i P ) POS 5 1utions where the form fields A, ando have been set to
ersp, defined in Eq(31), corresponding to the two different

! : . ' zero. As discussed in previous paplts], turning on one or
signs in Eq.(21). Numerically, we find several such fields can drastically alter the solutions and their
cosmological properties. Hence, we would like to explore

+.06 +.48 cosmological solutions with such non-trivial fields. For clar-
5T2 +.81] 512 —.45 (39 ity, in this paper we will restrict the discussion to turning on
+14 — 08 the Ramond-Ramond scaldronly, postponing the general
discussion to another publication.
for the upper and lower sign in E421) respectively. We The Ansatzwe will use is the following. For the metric

recall that the three entries in these vectors specify the ev@nd dilaton field, we choose

lution powers for the spatial world volume of the three-

brane, the domain wall separation and the Calabi-Yau vol- d$5=—N(7,y)?d7*+a(7,y)?dx"dX" 7yt b(7,y)*dy>
ume. The expansion of the domain wall world volume has so

far been measured in terms of the five-dimensional Einstein  V=V(7,y). (37)
frame metricg(y). This is also what the above numbers

reflect. Alternatively, one could measure this expansion with~or the ¢ field, we assume thag= £(7,y) and, hence, the
the four-dimensional Einstein frame metg(;f,} so that the field strengthF ,=4,¢ is given by

curvature scalar on the world volume is canonically normal-

ized. From the relation Fo=Y(7y), Fs=X(7yYy). (39
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All other components of, vanish. Note that sinc€ is  dent, but are related to each other by the integrability condi-
complex, bothX and Y are complex. Once again, we will tion d,X(7,y)=4,Y(7,y). We find that, because of this con-
solve the equations of motion by separation of variablesdition, it is impossible to obtain a solution by separation of
That is, we let variables that has botK(7,y) and Y(7,y) non-vanishing.
Now X(7,y), but notY(7,y), can be made to vanish by
N(7,y)=n(7)N(y) taking £€= £(7); that is, & is a function ofr only. However,
we can find no solution by separation of variables under this
a(ry)=a(r)aly) circumstance. Thus, we are finally led to the choige
(B9  =¢(y). In this caseY(r,y)=0 and we can, without loss of

b(7,y)=B(7)b(y) generality, choose

x=1. (44)
V(7y)=y(1)V(y)
At this point, the only obstruction to separation of variables
and in Eq. (42 is the next to last termiN?|X|?/3b?Vy. Setting

=const is too restrictive, so we must demand that
X(7,y)=x(1)X(y) 4o 7

Y(7y)=a(7)Y(y). (41) X=

Note that, in addition to thg field, we have also allowed for wherecg is a non-zero but otherwise arbitrary real constant

the possibility thatN(y) #a(y). Again, there is na priori , . . . i
reason to believe that a solution can be found by separatio"Fllnd 6(y) is an, as yet, undetermined phase. Putting this con

of variables. However, as above, there is indeed such a sg—'tlon into the£ equation of motion

bV
coe' 'Y (45)

lution, although the constraints required to separate variables a3N
are more subtle. It is instructive to present one of the equa- dy b_VX) =0 (46)
tions of motion. With the abovénsatz the g, equation of
motion becomes we find thaté is a constan#), andax V¢ with an arbitrary
2/ s L s 2.9 2 coefficient. Note that the last condition is consistent with the
N“fa” a'® a’ b_+ 1 V_+ g b® B° static vacuum solutiori6). Inserting this result into thggs
b2la a2 ab 12y2 18y2 42 equation of motion
V2ay b B afa’ N\ Bla 1V
T3yl —dy= )T Zla " N/TElaTe Vv (47)
N2 |X|2 | x|2 we learn thalNea with an arbitrary coefficient. Henceforth,

- we chooseN=a which is consistent with the static vacuum
3p2 V vy

solution(6). Inserting all of these results, tlyg, equation of
motion now becomes
B IV |4 @
3n2 V. vy’ a’(a”
. . . p2la
Note that if we setX=Y=0 andN=a, this equation be-

a/2 a/ b/ 1 VIZ a,(z) b2
a

comes identical to Eq12). We now see that there are two J2
3

2 ab 12vyz 18y2

different types of obstructions to the separation of variables. —
The first type, which we encountered in the previous section,
is in the two terms proportional ta,. Clearly, we can sepa-
rate variables only if we demand that

B=vy (43)
. . o Note that the left-hand side is of the same form as the static
as we did previously. However, for non-vanishiXgandY  ,5cuum equatiorf7). The effect of turning on thé back-
this is not suffi(_:ient. The problem, of course, comes from theground is to add a purely dependent piece to the right hand
last two terms in Eq(42). There are a number of options one gjge pytting these results into the remaining four equations
pould try in order to separate variables in these .terms. It ig) motion, we find that they too separate, with the left hand
important to note thak and'Y are not completely indepen- gjge peing purely dependent and the right hand side purely
7 dependent. Again, we find that in these equations the left
hand sides are identical to those in the static vacuum equa-
2In the following, N, a, b, V denote they-dependent part of the tions and the effect of turning oé is to add extrar depen-
Ansatz(39). dent terms to the right hand sides. In each equation, both

b
aov[é(y)—é(y—wp)]>

-2z (48)
Y
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sides must now equal the same constant which, for simplicwe can now exploit the gauge freedommao simplify these
ity, we take to be zero. Theg equations fora, b andV thus  equations. Choose the gauge
obtained by setting the left hand side to zero are identical to o
the static vacuum equations. Hence, we have shown that n=gld-a-a (57)
N=a=aoH"? whered is defined in E i
g(23). ThenE becomes proportional
to the potentialJ so that the potential terms in EG4) turn

b=b.H2 H= Ea ly|+h into constants. Thanks to this simplification, the equations of
o 370 0 motion can be integrated which leads to the general solution
(49  [7.8
V=DboH? -

+k (58)

&:5ln|rl—r|+v9ln( i
X=xoH® neT
where 7, is an arbitrary parameter which we take, without

71b3/2
0 c;oss of generality, to be positive and

wherex,=cqe' %oa, is an arbitrary constant.
The 7 equations obtained by setting the right hand side t
zero are the following: 1=

-

G q -
2 2 c=2—=—=-, s=sgr(q,q)). (59
ey Y X L (50 (g.0)

The scalar product is defined 4§,q)=q"G'q. The vec-

W ah B B 2 ap 19 n2 tors w and k are integration constants subject to the con-
2—-2——+ - T+ —42— Z—z—CSTZO straints
o an B Bn 4 a B 0% By
(51 g-w=1

o an a,2 1 72 Cg n2 0 (52) _)TG N 0 (60)

- J— _ _ W W=

a an o2 12,2 3 p?

. , q-k=In(c3(a.)]).

—+3—t———-—- 2c;——=0. 53 . L . . . . .
o ¥ (53 This solution is quite general in that it describes an arbitrary

number of scale factors with equations of motion given by
In these equations we have, once again, displggehd y ~ Eq. (54). Let us now specify to our example. Férandq as
independently, although they should be solved subject to thgiven in Egs.(25) and(56) we find that
condition 8= vy. Note that the above equations are similar to
the 7 equations in the previous section, but each now has an (q,9)=1; (61)
additional term proportional tog. These extra terms consid-
erably complicate finding a solution of theequations. Here, hences=1, and
however, is where the formalism introduced in the previous

section becomes important. Defining 8 and y as in Eq. 0
(22), anda, E andG as in Egs(23), (26) and (25) respec- ) -2
tively, Egs.(50)—(53) can be written in the form c= E (62)

1 Lo 1 d 5 _15U
EEa Ga+E "U=0, d—(EGa)+E —=0
T da Recall that we must, in addition, demand thg# y. Note

(54) that the last two components of are consistent with this
where the potentiall is defined as equality. We can also solve the constrai@8) subject to the
condition 8= vy. The result is
U=2c3ed @ (55) 1 1
- - 2
with ) W3+ 6 ) ky+ 6Inc0
6 WL ewg | KT 6ks 63
- w k
g=| 0 (56) : :
-6 where
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that is, att— —<,tq in the (=) branch and at—tg,% in the
(64) (+) branch. The two asymptotic regions in both branches
have different expansion properties in general and the tran-

by Eq. (57), the solution is given by field. o . |
Let us now analyze this in more detail for our solution,
1 ( T
In
T1— T

) following the method presented in Refg7,8]. First we
Wst g +kat gIncg should express our solution in terms of the comoving ttme
by integratingdt=n(7)dr. The gauge paramete(7) is ex-

=+

Kl o

ol -

W3:_

a=

n T plicitly given by
B=—2In7— T|+6W3|n< . _7_) +6k3
1 n:e(d—q)~k|7_l_7,|—X+A—1|7_|x—1 (67)

- 1

7=—§|n|71—r|+w3ln(71_7) +kq (65  where
with w; as above. As a consequencesefl, the range forr x=d-w, A=d-c. (68)
is restricted to

0<r<m, 66) Given this expression, the integration cannot easily be per-

formed in general except in the asymptotic regiens0,7;.
in this solution. Let us now summarize our result. We have! "€Se regions will turn out to be precisely the asymptotic
found a cosmological solution with a nontrivial Ramond- rolling-radius limits. Therefore, for our purpose, it suffices to

Ramond scalag starting with the separatiohnsatz(39). To ~ concentrate on those regions. E67) shows that the result-
achieve a separation of variables we had to demandghat N9 range for the comoving time depends on the magnitude

— y, as previously, and that the Ramond-Ramond scalar déf A andx (note thatA is a fixed number, for a given model,
pend on the orbifold coordinate but not on time. Then the/Vhereast depends on the integration constantsturns out
orbifold dependent part of the solution is given by E4Q) that for all values of the m{egraﬂon constan.ts we hgve either
and is identical to the static domain wall solution with the X<4 Or x>0>A. This splits the space of integration con-
addition of the Ramond-Ramond scalar. The time dependerft@nt into two disjunct sets corresponding to the) (and the
part, in the gaugés7), is specified by Eq(65). Furthermore, () branch as explained before. More precisely, we have the
we have found that the time-dependent part of the equation&aPpPINg

of motion can be cast in a form familiar from cosmological

solutions studied previously7,8]. Those solutions describe [—»,to] for x<A<O, (—) branch,
the evolution for scale factors of homogeneous, isotropic T—te [tg,+%] for x>0>A, (+) branch,
subspaces in the presence of antisymmetric tensor fields and

are, therefore, natural generalizations of the rolling radii so-

lutions. Each antisymmetric tensor field introduces an expownheret, is a finite arbitrary timgwhich can be different for
nential type potential similar to the one in E&5). For the  the two branches We recall that the range of is 0<r
case with only one r)ont_rlwal form field, the general solution < -, - The above result can be easily read off from the ex-
could be found and is given by E(58). We have, therefore, pression(67) for the gauge parameter. Performing the inte-
constructed a strong coupling version of these generalizegration in the asymptotic region we can express terms of

rolling radii solutions with a one-form field strength, where the comoving time and find the Hubble parameters, defined
the radii now specify the domain wall geometry rather thatb

the size of maximally symmetric subspaces. We stress that’ Eq. (30, and the powers. Generally, we have
the potentialU in the time-dependent equations of motion
does not originate from the potentials in the actidn but
from the nontrivial Ramond-Ramond scalar. The potentials -
in the action are canceled by the static domain wall part of p= (70)
the solution, as in the previous example. _

From the similarity to the known generalized rolling radii
solutions, we can also directly infer some of the basic cos-
mological properties of our solution, using the results ofNote that, from the mapping69), the expression at=0
Refs.[7,8]. We expect the integration constants to split intodescribes the evolution powerstat: — in the (—) branch
two disjunct sets which lead to solutions in theX branch, and att=t; in the (+) branch, that is, the evolution powers
comoving time rangé e[ —,ty], and the (+) branch, co- in the early asymptotic region. Correspondingly, the expres-
moving time rangé e [ty,% ], respectively. The<{) branch  sion for r=7; applies to the late asymptotic regions, that is,
ends in a future curvature singularity and the)(branch  to t=t, in the (=) branch and td—« in the (+) branch.
starts in a past curvature singularity. In both branches thés before, these powers satisfy the rolling radius constraints
solutions behave like rolling radii solutions asymptotically, (32).

(69

x| =,

at =0,

=3
O

A at 7=r71,.

x
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Let us now insert the explicit expression fdy w andc,  conversion to the four-dimensional Einstein frame one
Egs. (29, (63) and (62), which specify our example into should again apply Eq36). It is clear from the above num-

those formulas. First, from Eq68) we find that bers, however, that this conversion does not change the
gualitative behavior of the world volume evolution in any of
J3 the cases. Having said this, let us first discuss the (
X=_1i37v A=-2. (71) branch. Att— —o the powers are positive and, hence, the

world volume and the orbifold are contracting. The solution
Note that the space of integration constants just consists dfien undergoes the transition induced by the Ramond-
two points in our case, represented by the two signs in th&amond scalar. Then &t=t, the world volume is still con-
expression foix above. Clearly, from the criterio(69) the  tracting while the orbifold has turned into superinflating ex-
upper sign leads to a solution in ther] branch and the pansion. In the ) branch we start out with a subluminally
lower sign to a solution in the-{) branch. In each branch expanding world volume and a contracting orbifold &t.
we therefore have a uniquely determined solution. Using EgAfter the transition both subspaces have turned into sublumi-
(70) we can calculate the asymptotic evolution powers in thenal expansion.

(=) branch:
VI. CONCLUSION
+.06 +.48
- - In this paper we have presented the first examples of cos-
Poo—=| TBL, po = T8 (72 mological solutions in five-dimensional FHora-Witten
+.13 —.08 theory. They are physically relevant in that they are related
) to the exact BPS three-brane pair in five dimensions, whose
Correspondingly, for the<t) branch we have D =4 world volume theory exhibitsl=1 supersymmetry. A
4 48 406 wider _class of such cosmological solutions can b_e obtaine_d
' ' and will be presented elsewhere. We expect solutions of this
5+,th0: —.45/, 5+'Hw= +.81|. (73) type to provide the fundamental scaffolding for theories of
— 08 + 13 the early universe derived from Haora-Witten theory, but

they are clearly not sufficient as they stand. The most notable
Note that these vectors are in fact the same as in thp ( deficiency is the fact that they are vacuum solutions, devoid
branch, with the time order being reversed. This happensf any matter, radiation or potential stress energy. Inclusion
because they are three conditions on the powettsat hold of such stress energy is essential to understand the behavior
in both branches, namely the two rolling radii constraintsOf €arly universe cosmology. A study of its effect on the
(32) and the separation constrajit v, Eq. (43), which im- cosmology of Hoava-Witten theory is presently underway

plies thatp;=6p,. Since two of these conditions are linear (18]
and one is quadratic, we expect at most two different solu-

tions forﬁ. As in the previous solution, the time variation of
the Calabi-Yau voluméthird entry) is tracking the orbifold A.L. is supported in part by the Deutsche Forschungsge-
variation (second entryas a consequence of the separationmeinschaft DFG. A.L. and B.A.O. are supported in part by
condition and, hence, needs not to be discussed separatetiie DOE under contract No. DE-AC02-76-ER-03071. D.W.
The first entry gives the evolution power for the spatialis supported in part by the DOE under contract No. DE-
world volume in the five-dimensional Einstein frame. For aFG02-91ER40671.
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