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Cosmological solutions of Horˇava-Witten theory
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We discuss cosmological solutions of Horˇava-Witten theory describing the strongly coupled heterotic string.
At energies below the grand-unified scale, the effective theory is five, not four, dimensional, where the
additional coordinate parametrizes anS1/Z2 orbifold. Furthermore, it admits no homogeneous solutions.
Rather, the static vacuum state, appropriate for a reduction to four-dimensionalN51 supersymmetric models,
is a BPS domain wall pair. Relevant cosmological solutions are those associated with this BPS state. In
particular, such solutions must be inhomogeneous, depending on the orbifold coordinate as well as on time. We
present two examples of this new type of cosmological solution, obtained by separation of variables rather than
by exchange of the time and radius coordinates of a brane solution, as in previous work. The first example
represents the analogue of a rolling radii solution with the radii specifying the geometry of the domain wall
pair. This is generalized in the second example to include a nontrivial ‘‘Ramond-Ramond’’ scalar.
@S0556-2821~99!04818-3#

PACS number~s!: 11.25.Mj, 11.27.1d, 98.80.Cq
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I. INTRODUCTION

Hořava and Witten have shown that the strongly coup
E83E8 heterotic string can be identified as the 1
dimensional limit of M theory compactified on anS1/Z2 or-
bifold with a set ofE8 gauge fields at each ten-dimension
orbifold fixed plane@1,2#. Furthermore, Witten has demon
strated that there exists a consistent compactification of
M-theory limit on a ‘‘deformed’’ Calabi-Yau threefold, lead
ing to a supersymmetricN51 theory in four dimensions
@3,5#. Matching at the tree level to the phenomenologi
gravitational and grand-unified-theory~GUT! couplings
@3,4#, one finds the orbifold must be larger than the Cala
Yau radius, by a factor of 10 or so. Since the GUT sc
~about 1016 GeV) is set by the size of the Calabi-Yau thre
fold, this implies that at energies below the unification sc
there is a regime where the universe appears five dim
sional. This five-dimensional regime represents a new set
for early universe cosmology, which has been traditiona
studied in the framework of the four-dimensional effecti
action.

In a previous paper@6#, the effective five-dimensiona
Hořava-Witten theory was derived for the universal field
which are independent of the particular form of the Cala
Yau manifold. In this derivation the standard embedding
the spin connection in one of theE8 gauge groups has bee
used. This five-dimensional theory has a number of inter
ing and unusual features. The theory resides in a fi
dimensional space which is a product of a smooth fo
dimensional manifold times the orbifoldS1/Z2. As a result, it
splits into a bulkN51, d55 supersymmetric theory with th
gravity supermultiplet and the universal hypermultiplet, a
two four-dimensional ‘‘boundary’’ theories which reside o
the two orbifold fixed hyperplanes. The additional fields
the boundary theories areN51, d54 gauge multiplets and
chiral multiplets. More specifically, due to the standard e
bedding there is anE6 gauge field and gauge matter on o
side whereas the other side carries anE8 gauge field. The
0556-2821/99/60~8!/086001~11!/$15.00 60 0860
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reduction from 11 to 5 dimensions requires the inclusion
non-zero values of the four-form field strength in the intern
Calabi-Yau directions. This non-zero form field arises b
cause, even for the standard embedding, gauge field
gravitational sources in the form field Bianchi identity do n
cancel. As a result one obtains a gauged version of fi
dimensional supergravity with a potential term that had
previously been constructed. In addition, the theory h
boundary potentials for the projection of the bulk scalar fie
onto the orbifold planes.

These potentials lead to a particularly interesting effe
the boundary sources mean that the theory has no solu
homogeneous in the orbifold direction. In particular, fl
space is not a solution. Instead, the ‘‘vacuum’’ which lea
to a supersymmetric flat four-dimensional space is a thr
brane domain wall solution. The three-brane couples to
bulk potential and is supported by the sources provided
the two boundary potentials. More precisely, it is a dou
domain wall solution with the two (311)-dimensional
world volumes each covering an orbifold plane and the
bifold itself as the transverse coordinate. It is Bogomol’n
Prasad-Sommerfield~BPS!, preserving half of thed55 su-
persymmetries, and so is the appropriate background f
further reduction to four-dimensionalN51 supergravity
theories. In such a reduction, four-dimensional space-t
becomes identified with the three-brane world volume.

Thus we have the interesting possibility of a fiv
dimensional early universe in Horˇava-Witten theory. Fur-
thermore, as a result of the presence of boundary potent
such five-dimensional cosmologies should be inhomo
neous in the orbifold coordinate. What should realistic mo
els look like? In the ideal case, one would have a situation
which the internal six-dimensional Calabi-Yau space and
orbifold evolve in time for a short period and then set
down to their ‘‘phenomenological’’ values while the thre
non-compact dimensions continue to expand. Then, for
time, when all physical scales are much larger than the o
©1999 The American Physical Society01-1
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fold size, the theory is effectively four dimensional an
should, in the ‘‘static’’ limit, provide a realistic supergravit
model of particle physics. As we have argued above, s
realistic supergravity models originate from a reduction
the five-dimensional theory in its domain wall vacuum sta
Hence, in the ‘‘static’’ limit at late time, realistic cosmolog
cal solutions should reduce to the domain wall or perhap
modification thereof that incorporates breaking of the
maining four-dimensionalN51 supersymmetry. Conse
quently, one is forced to look for solutions which depend
the orbifold coordinate as well as on time. The main goa
this paper is to present simple examples of such cosmol
cal solutions in five-dimensional heterotic M theory to illu
trate some of the characteristic cosmological features of
theory.

In earlier work@7,8#, we showed how a general class
cosmological solutions, that is, time-dependent solutions
the equations of motion that are homogeneous and isotr
in our physicald53 subspace, can be obtained in both s
perstring theories and M theory defined in spacetimeswith-
out a boundary. Loosely speaking, we showed that a cosm
logical solution could be obtained from any p-brane
D-brane by inverting the roles of the time and ‘‘radial’’ sp
tial coordinate. This method will clearly continue to work
Hořava-Witten theory as long as one exchanges time wi
radial coordinate not aligned in the orbifold direction. A
example of this in 11-dimensions, based on the solution
@9#, has been given in@10#. It can, however, not be applied t
the fundamental domain wall since its radial direction co
cides with the orbifold coordinate. This coordinate
bounded and cannot be turned into time. Also, as arg
above, exchanging radius and time in the domain wall so
tion would not be desirable since it should be viewed as
vacuum state and hence should not be modified in suc
way. Instead, the domain wall itself should be made ti
dependent, thereby leading to solutions that depend on
time and the orbifold coordinate. As a result, we have to d
with coupled partial differential equations, but under cert
constraints, these can be solved by separation of varia
though the equations remain non-linear. Essentially, we
allowing the moduli describing the geometry of the doma
wall and the excitations of other five-dimensional fields
become time dependent. Technically, we will simply take
usualAnsätze for the five-dimensional fields, but now allow
the functions to depend onboth the time and radial coordi
nates. We will further demand that these functions each
tor into a purely time dependent piece and a purely ra
dependent piece. This is not, in general, sufficient to sepa
the equations of motion. However, we will show that subj
to certain constraints a separation of variables is achie
We can solve these separated equations and find new,
mologically relevant solutions. In this paper, we will restr
our attention to two examples representing cosmological
tensions of the pure BPS three-brane.

The first example is simply the domain wall itself wit
two of its three moduli made time dependent. We show t
a separation of variables occurs in this case. It turns out
these moduli behave like ‘‘rolling radii’’@11# which consti-
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tute fundamental cosmological solutions in weakly coup
string theory. Unlike those rolling radii which represent sca
factors of homogeneous, isotropic spaces, here they mea
the separation of the two walls of the three-brane and
world volume size~which, at the same time, is the size
‘‘our’’ three-dimensional universe!. All in all, we therefore
have a time-dependent domain wall pair with its shape s
ing rigid but its size and separation evolving like rollin
radii.

For the second example, we consider a similar setting
for the first but, in addition, we allow a nonvanishin
‘‘Ramond-Ramond’’ scalar. This terminology is perhaps
little misleading, but relates to the fact that the scalar wo
be a type II Ramond-Ramond field in the case where
orbifold was replaced by a circle. This makes connect
with type II cosmologies with non-trivial Ramond-Ramon
fields discussed in@7,8#. Separation of variables occurs for
specific time-independent form of this scalar. The orbifo
dependent part then coincides with the domain wall wi
however, the addition of the Ramond-Ramond scalar. T
non-vanishing value of the scalar breaks supersymm
even in the static limit. We find that the time-dependent p
of the equations fits into the general scheme of M-the
cosmological solutions with form fields as presented in Re
@7,8#. Applying the results of these papers, the domain w
moduli are found to behave like rolling radii asymptotical
for early and late times. The evolution rates in the
asymptotic regions are different and the transitions betw
them can be attributed to the nontrivial Ramond-Ramo
scalar.

Let us now summarize our conventions. We use coo
natesxa with indices a,b,g, . . . 50, . . .,3,11 to param-
etrize the five-dimensional spaceM5. Throughout this paper
when we refer to the orbifold, we will work in the ‘‘up-
stairs’’ picture with the orbifoldS1/Z2 in the x11-direction.
We choose the rangex11P@2pr,pr# with the end points
being identified. TheZ2 orbifold symmetry acts asx11

→2x11. Then there exist two four-dimensional hyperplan
fixed under theZ2 symmetry which we denote byM4

( i ) , i
51,2. Locally, they are specified by the conditionsx11

50,pr. The indicesm,n,r, . . . 50, . . . ,3 areused for the
four-dimensional space orthogonal to the orbifold. Fie
will be required to have a definite behavior under theZ2
orbifold symmetry, so that a general fieldF is either even or
odd, withF(x11)56F(2x11).

II. FIVE-DIMENSIONAL EFFECTIVE ACTION

The five-dimensional effective action for Horˇava-Witten
theory, obtained from the 11-dimensional theory by comp
tifying on a Calabi-Yau three-fold with standard embeddin
was derived in@6# for the universal zero modes, that is, th
five-dimensional graviton supermultiplet and the breath
mode of the Calabi-Yau space, along with its superpartn
These last fields form a hypermultiplet in five dimension
Furthermore, the theory contains four-dimensionalN51
gauge multiplets and chiral gauge matter fields on the o
fold planes. To keep the discussion as simple as possible
will omit the gauge matter fields in the effective five
1-2
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COSMOLOGICAL SOLUTIONS OF HORˇ AVA-WITTEN THEORY PHYSICAL REVIEW D 60 086001
dimensional action since they are of no relevance to the
mological solutions considered in this paper. The gene
Lagrangian will be presented elsewhere@12,13#.

In detail, we have the five-dimensional gravity superm
tiplet with the metricgab and an Abelian gauge fieldAa as
the bosonic fields. The bosonic fields in the universal hyp
multiplet are the real scalar fieldV ~the dilaton, measuring
the volume of the internal Calabi-Yau space!, the three-form
Cabg and the complex Ramond-Ramond scalarj. Note that
the three-formCabg can be dualized to a scalar fields.
Hence the hypermultiplet contains four real scalar fields.
explained in the Introduction, all bulk fields should be ev
or odd under theZ2 orbifold symmetry. One finds that th
fieldsgmn , g11,11, A11, s must be even whereasgm11, Am ,
j must be odd. If one studies cosmological solutions of
theory, these transformation properties are important as
restrict the set of allowed solutions to those with the corr
Z2 symmetry. Now consider the boundary theories. In
five-dimensional spaceM5, the orbifold fixed planes consti
tute the four-dimensional hypersurfacesM4

( i ) , i 51,2. Since
the standard embedding has been used in the reduction
11 to 5 dimensions, there is anE6 gauge fieldAm

(1) and gauge
matter fields on the orbifold planeM4

(1) . For simplicity, we
will set these gauge matter fields to zero in the followin
This will not effect our solutions. On the orbifold planeM4

(2)

there is anE8 gauge fieldAm
(2) .

The five-dimensional effective action of Horˇava-Witten
theory is then given by

S55Sbulk1Sbound ~1!

where

Sbulk52
1

2k5
2EM5

A2gH R1
3

2
FabF ab

1
1

A2
eabgdeAaFbgFde1

1

2V2
]aV]aV

1
1

2V2
@]as2 i ~j]aj̄2 j̄]aj!22a0e~x11!Aa#

3@]as2 i ~j]aj̄2 j̄]aj!22a0e~x11!A a#

1
2

V
]aj]aj̄1

1

3V2
a0

2J ~2!

Sbound5
A2

k5
2 EM4

(1)
A2gV21a02

A2

k5
2 EM4

(2)
A2gV21a0

2
1

16paGUT
(
i 51

2 E
M4

( i )
A2g$VtrFmn

( i ) F ( i )mn

2strFmn
( i ) F̃ ( i )mn%. ~3!

where Fab5]aAb2]bAa and the Fmn
( i ) are the field

strengths of the boundary gauge fields, whileF̃ ( i )mn
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(i) . Furthermore, k5 and aGUT are the five-

dimensional Newton constant and the gauge coupling res
tively. The constanta0 in the above action is given by@3,6#

a052
1

8A2pv
S k

4p D 2/3E
X
v`tr R(V)`R(V), v5E

X
AV.

~4!

Here Vab̄ is the metric of the Calabi-Yau spaceX, R(V) is
the corresponding curvature two-form andvab̄5 iVab̄ is the
Kähler form. Furthermore,k is the 11-dimensional Newton
constant. We remark thata0 is related to the presence o
internal gravity and gauge field instantons. It can be
pressed solely in terms of the curvature since the stand
embedding relates those two types of instantons. In
above action, we have dropped higher-derivative terms.
sigma model for the scalar fields is the well-known co
MQ5SU(2,1)/SU(2)3U(1) of the universal hypermulti-
plet. The coupling ofs to Aa implies that aU(1) symmetry
on MQ has been gauged. This gauging also induces
a0-dependent potential term in Eq.~3!. It has been demon
strated@6,13# that the above action is indeed the bosonic p
of a minimal N51 gauged supergravity theory in five d
mensions coupled to chiral boundary theories.

The most striking features of this action from the view
point of cosmology~and otherwise! are the bulk and bound
ary potentials for the dilatonV in Sbulk and Sbound. These
potential terms are proportional to the parametera0 and their
origin is directly related to the nonzero internal four-for
that had to be included in the dimensional reduction from
dimensions. We stress that this non-zero four-form res
from the source terms in the 11 dimensional Bianchi iden
which are non-vanishing even for the standard embedd
which we consider here. For a very similar reason we h
non-vanishing boundary potentials. They arise from the
ternal part of the 10-dimensional boundary action and
clude the contributions from the gauge field kinetic terms
well as from the curvatureR2 terms. Observe that these po
tentials are equal but have opposite signs. Therefore,
though they cancel in a four-dimensional limit, they do n
cancel separately on each boundary. These potentials le
sources in the Einstein equation and the equation of mo
for V and s that are proportional tod(x11) or d(x112pr).
Hence, as long asV is finite ~the internal Calabi-Yau space i
compact! purely time-dependent solutions of the theory
not exist as they could never cancel these delta-func
sources. One is therefore led to always consider depend
on time and the orbifold coordinatex11. The presence of a
bulk potential proportional toV22 seems to indicate that th
dilaton has a runaway behavior and the internal space
compactifies at late time. This picture, however, is too na
in that it ignores the boundary potentials and theZ2 symme-
tries of the fields. In fact, as we will show, the correct sta
domain wall vacuum of the theory depends on the orbif
direction in a way so as to exactly cancel these potenti
Consequently, it is important to note that for cosmologic
solutions based on the domain wall the time-dependent s
factors do not feel the potential terms.
1-3
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III. DOMAIN-WALL VACUUM SOLUTION

In this section, we would like to review the stat
‘‘vacuum’’ solution of the five-dimensional Horˇava-Witten
theory, as given in@6#. As argued in the Introduction, thi
solution is the basis for physically relevant cosmological
lutions. It is clear from the five-dimensional action given
the previous section that flat spacetime is not a solution
the equations of motion. It is precluded from being a solut
by the potential terms, both in the bulk and on the bou
aries. If not flat space, what is the natural vacuum soluti
To answer this, notice that the theory~1! has all of the pre-
requisites necessary for a three-brane solution to exist. G
erally, in order to have a (D22)-brane in aD-dimensional
theory, one needs to have a (D21)-form field or, equiva-
lently, a cosmological constant. This is familiar from th
eight-brane@14# in the massive type IIA supergravity in te
dimensions@15#, and has been systematically studied
theories in arbitrary dimension obtained by generalized
mensional reduction@16# using the method of Scherk an
Schwarz@17#. In our case, this cosmological term is provid
by the bulk potential term in the action~1!, precisely the
term that disallowed flat space as a solution. From the vi
point of the bulk theory, we could have multi three-bra
solutions with an arbitrary number of parallel branes loca
at various places in thex11 direction. However, elementar
brane solutions have singularities at the location of
branes, needing to be supported by source terms. The na
candidates for those source terms, in our case, are the bo
ary actions. This restricts the possible solutions to those
resenting a pair of parallel three-branes corresponding to
orbifold planes. This pair of domain walls can be viewed
the ‘‘vacuum’’ of the five-dimensional theory, in the sen
that it provides the appropriate background for a reduction
the d54, N51 effective theory.

From the above discussion, it is clear that in order to fi
a three-brane solution, we should start with theAnsatz

ds5
25a~y!2dxmdxnhmn1b~y!2dy2

V5V~y! ~5!

wherea and b are functions ofy5x11 and all other fields
vanish. The general solution for thisAnsatz, satisfying the
equations of motion derived from action~1!, is given by

a5a0H1/2

b5b0H2, H5
A2

3
a0uyu1h0 ~6!

V5b0H3

wherea0 , b0 andh0 are constants. We note that the boun
ary source terms have fixed the form of the harmonic fu
tion H in the above solution. Without specific informatio
about the sources, the functionH would generically be glued
together from an arbitrary number of linear pieces w
slopes6A2a0/3. The edges of each piece would then in
cate the location of the source terms. The necessity of ma
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ing the boundary sources aty50 and pr, however, has
forced us to consider only two such linear pieces, namely
P@0,pr# andyP@2pr,0#. These pieces are glued togeth
at y50 andpr ~recall here that we have identifiedpr and
2pr). To see this explicitly, let us consider one of the equ
tions of motion, specifically, the equation derived from t
variation ofgmn . For theAnsatzin Eq. ~5!, this is given by

a9

a
1

a82

a2
2

a8

a

b8

b
1

1

12

V82

V2
1

a0
2

18

b2

V2

5
A2a0

3

b

V
@d~y!2d~y2pr!# ~7!

where the prime denotes differentiation with respect toy.
The term involving the delta functions arises from the str
energy on the boundary planes. Inserting the solution~6! in
this equation, we have

]y
2H5

2A2

3
a0@d~y!2d~y2pr!# ~8!

which shows that the solution represents two parallel thr
branes located at the orbifold planes. Using the fiv
dimensional supersymmetry transformations presented
Ref. @6#, one can check that this solution indeed preser
four of the eight supersymmetries of the theory.

Let us discuss the meaning of this solution. As is appar
from theAnsatz~5!, it has (311)-dimensional Poincare´ in-
variance and, as just stated, it preserves four supercha
Therefore, a dimensional reduction to four dimensions in t
solution leads to anN51 supergravity theory. In fact, this i
just the same ‘‘physical’’ four-dimensional effective theo
that one obtains by reducing Horˇava-Witten theory directly
from 11 to 4 dimensions using the background of Ref.@3#.
This has been explicitly demonstrated in Refs.@12,13#. This
effective four-dimensional theory is the starting point of lo
energy particle phenomenology. Indeed, the linearized v
sion of the five-dimensional domain wall solution is nothin
else but the zero mode part of the 11 dimensional solution
Ref. @3# ‘‘pulled’’ down to five dimensions@13#. The two
parallel three-branes of the solution, separated by the b
are oriented in the four uncompactified space-time dim
sions, and carry the physical low-energy gauge and ma
fields. Therefore, from the low-energy point of view whe
the orbifold is not resolved, the three-brane world volume
identified with four-dimensional space-time. In this sense
Universe resides on the world volume of a three-brane. I
the purpose of the following sections to put this picture in
the context of cosmology, that is, to make it dynamical. Co
sequently, we are looking for time dependent solutions ba
on the static domain wall which we have just presented.

IV. DOMAIN-WALL COSMOLOGICAL SOLUTION

In this section, we will present a cosmological solutio
related to the static domain wall vacuum of the previo
section. As discussed in Refs.@7,8#, a convenient way to find
such a solution is to useAnsatz~5! where they5x11 coor-
1-4
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dinate in the functionsa, b and V is replaced by the time
coordinatet. However, in Horˇava-Witten theory the bound
ary planes preclude this from being a solution of the eq
tions of motion, since it does not admit homogeneous so
tions. To see this explicitly, let us consider theg00 equation
of motion, where we replacea(y)→a(t), b(y)→b(t) and
V→g(t). We find that

ȧ2

a2
1

ȧ

a

ḃ

b
2

1

12

ġ2

g2
2

a0
2

18

1

g2

52
A2a0

3

1

bg
@d~y!2d~y2pr!#, ~9!

where the overdot denotes differentiation with respect tot.
Again, the term containing the delta functions arises from
boundary planes. It is clear that, because of they dependence
introduced by the delta functions, this equation has no g
bally defined solution. The structure of Eq.~9! suggests tha
a solution might be found if one were to let functionsa, b
and V depend on botht and y coordinates. This would be
acceptable from the point of view of cosmology, since a
such solution would be homogeneous and isotropic in
spatial coordinatesxm wherem,n,r , . . . 51,2,3. In fact, the
previousAnsatzwas too homogeneous, being independen
the y coordinate as well. Instead, we are interested in so
tions where the inhomogeneous vacuum domain w
evolves in time.

We now construct a cosmological solution where all fun
tions depend on botht andy. We start with theAnsatz

ds5
252N~t,y!2dt21a~t,y!2dxmdxnhmn1b~t,y!2dy2

V5V~t,y!. ~10!

Note that we have introduced a separate functionN into the
purely temporal part of the metric. ThisAnsatzleads to equa-
tions of motion that mix thet andy variables in a compli-
cated non-linear way. In order to solve this system of eq
tions, we will try to separate the two variables. That is, we

N~t,y!5n~t!a~y!

a~t,y!5a~t!a~y!

~11!
b~t,y!5b~t!b~y!

V~t,y!5g~t!V~y!.

There are two properties of thisAnsatzthat we wish to point
out. The first is that forn5a5b5g51 it becomes identica
to Eq. ~5!. Second, we note thatn can be chosen to be an
function by performing a redefinition of thet variable. That
is, we can think ofn as being subject to a gauge transform
tion. There is noa priori reason to believe that separation
variables will lead to a solution of the equations of moti
derived from the action~1!. However, as we now show, ther
is indeed such a solution. It is instructive to present one
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the equations of motion. With the aboveAnsatz, the g00
equation of motion is given by1

a2

b2 S a9

a
1

a82

a2
2

a8

a

b8

b
1

1

12

V82

V2
1

a0
2

18

b2

V2

b2

g2

2
A2

3
a0

b

V
@d~y!2d~y2pr!#

b

g D
5

b2

n2 S ȧ2

a2
1

ȧ

a

ḃ

b
2

1

12

ġ2

g2D . ~12!

Note that if we setn5a5b5g51, this equation become
identical to Eq.~7!. Similarly, if we seta5b5V51 and
take the gaugen51, this equation becomes the same as
~9!. As is, the above equation does not separate. Howe
the obstruction to a separation of variables is the two te
proportional toa0. Note that both of these terms would b
strictly functions ofy only if we demanded thatb}g. With-
out loss of generality, one can take

b5g. ~13!

We will, henceforth, assume that this is the case. Note
this result is already indicated by the structure of integrat
constants~moduli! in the static domain wall solution~6!.
With this condition, the left hand side of Eq.~12! is purelyy
dependent, whereas the right hand side is purelyt depen-
dent. Both sides must now equal the same constant wh
for simplicity, we take to be zero. The equation obtained
setting the left hand side to zero is identical to the purey
equation~7!. The equation for the puret dependent func-
tions is

ȧ2

a2
1

ȧ

a

ḃ

b
2

1

12

ġ2

g2
50. ~14!

Hence, separation of variables can be achieved for theg00
equation by demanding that Eq.~13! be true. What is more
remarkable is that, subject to the constraint thatb5g, all the
equations of motion separate. The purey equations are iden
tical to those of the previous section and, hence, the dom
wall solution~6! remains valid as they-dependent part of the
solution.

The full set oft equations is found to be

ȧ2

a2
1

ȧ

a

ḃ

b
2

1

12

ġ2

g2
50 ~15!

2
ä

a
22

ȧ

a

ṅ

n
1

b̈

b
2

ḃ

b

ṅ

n
1

ȧ2

a2
12

ȧ

a

ḃ

b
1

1

4

ġ2

g2
50 ~16!

1From now on, we denote bya, b, V the y-dependent part of the
Ansatz~11!.
1-5
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ANDRÉ LUKAS, BURT A. OVRUT, AND DANIEL WALDRAM PHYSICAL REVIEW D 60 086001
ä

a
2

ȧ

a

ṅ

n
1

ȧ2

a2
1

1

12

ġ2

g2
50 ~17!

g̈

g
13

ȧġ

ag
1

ḃġ

bg
2

ġ2

g2
2

ṅġ

ng
50. ~18!

In these equations we have displayedb andg independently,
for reasons to become apparent shortly. Of course, one m
solve these equations subject to the condition thatb5g. As
a first attempt to solve these equations, it is most conven
to choose a gauge for which

n5const ~19!

so thatt becomes proportional to the comoving timet, since
dt5n(t)dt. In such a gauge, the equations simplify cons
erably and we obtain the solution

a5Aut2t0up

b5g5But2t0uq ~20!

where

p5
3

11S 17
4

3A3
D , q5

2

11
~162A3! ~21!

and A, B and t0 are arbitrary constants. We have therefo
found a cosmological solution, based on the separationAn-
satz ~11!, with the y-dependent part being identical to th
domain wall solution~6! and the scale factorsa, b, g evolv-
ing according to the power laws~20!. This means that the
shape of the domain wall pair stays rigid while its size a
the separation between the walls evolve in time. Specifica
a measures the size of the spatial domain wall world volu
~the size of the three-dimensional universe!, while b speci-
fies the separation of the two walls~the size of the orbifold!.
Because of the separation constraintg5b, the time evolu-
tion of the Calabi-Yau volume, specified byg, is always
tracking the orbifold. From this point of view, we are allow
ing two of the three moduli in Eq.~6!, namelya0 andb0, to
become time dependent. Since these moduli multiply the
monic functionH, it is then easy to see why a solution b
separation of variables was appropriate.

To understand the structure of the above solution, i
useful to rewrite its time dependent part in a more system
way using the formalism developed in Refs.@7,8#. First, let
us define new functionsâ, b̂ and ĝ by

a5eâ, b5eb̂, g5e6ĝ ~22!

and introduce the vector notation

aW 5~a i !5S â

b̂

ĝ
D , dW 5~di !5S 3

1

0
D . ~23!
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Note that the vectordW specifies the dimensions of the variou
subspaces, where the entryd153 is the spatial world volume
dimensions,d251 is the orbifold dimension and we insert
for the dilaton. On the ‘‘moduli space’’ spanned byaW we
introduce the metric

Gi j 52~did i j 2didj !

Gin5Gni50 ~24!

Gnn536,

which in our case explicitly reads

G5212S 1
1

2
0

1

2
0 0

0 0 23

D . ~25!

Furthermore, we defineE by

E5
edW •aW

n
5

e3â1b̂

n
. ~26!

The equations of motion~15!–~18! can then be rewritten as

1

2
EaẆ TGaẆ 50,

d

dt
~EGaẆ !50. ~27!

It is straightforward to show that if we choose a gaugen
5const, these two equations exactly reproduce the solu
given in Eqs.~20! and~21!. The importance of this reformu
lation of the equations of motion lies, however, in the fa
that we now get solutions more easily by exploiting t
gauge choice forn. For example, let us now choose th
gauge

n5edW •aW . ~28!

Note that in this gaugeE51. The reader can verify that thi
gauge choice greatly simplifies solving the equations. T
result is that

â56ĝ5Ct1k1

b̂5~664A3!Ct1k2 ~29!

whereC, k1 and k2 are arbitrary constants. Of course th
solution is completely equivalent to the previous one, E
~20!, but written in a different gauge. We will exploit thi
gauge freedom to effect in the next section.

To discuss cosmological properties we define the Hub
parameters

HW 5
d

dt
aW ~30!
1-6
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where t is the comoving time. From Eqs.~20! and ~22! we
easily find

HW 5
pW

t2t0
, pW 5S p

q

1

6
q
D . ~31!

Note that the powerspW satisfy the constraints

pW TGpW 50, dW •pW 51. ~32!

These relations are characteristic for rolling radii solutio
@11# which are fundamental cosmological solutions
weakly coupled heterotic string theory. Comparison of
equations of motion~27! indeed shows that the scale facto
aW behave like rolling radii. The original rolling radii solu
tions describe freely evolving scale factors of a product
homogeneous, isotropic spaces. In our case, the scale fa
also evolve freely~since the time-dependent part of the equ
tions of motion, obtained after separating variables, does
contain a potential! but they describe the time evolution o
the domain wall. This also proves our earlier claim that
potential terms in the five-dimensional action~1! do not di-
rectly influence the time dependence but are canceled by
static domain wall part of the solution.

Let us now be more specific about the cosmological pr
erties of our solution. First note from Eq.~31! that there exist
two different types of time ranges, namelyt,t0 andt.t0. In
the first case, which we call the (2) branch, the evolution
starts att→2` and runs into a future curvature singulari
@7,8# at t5t0. In the second case, called the (1) branch, we
start out in a past curvature singularity att5t0 and evolve
toward t→`. In summary, we therefore have the branche

tPH @2`,t0# ~2 ! branch,

@ t0 ,1`# ~1 ! branch.
~33!

For both of these branches we have two options for the p
erspW , defined in Eq.~31!, corresponding to the two differen
signs in Eq.~21!. Numerically, we find

pW ↑.S 1.06

1.81

1.14
D , pW ↓.S 1.48

2.45

2.08
D ~34!

for the upper and lower sign in Eq.~21! respectively. We
recall that the three entries in these vectors specify the e
lution powers for the spatial world volume of the thre
brane, the domain wall separation and the Calabi-Yau v
ume. The expansion of the domain wall world volume has
far been measured in terms of the five-dimensional Eins
frame metricgmn

(5) . This is also what the above numbersp1

reflect. Alternatively, one could measure this expansion w
the four-dimensional Einstein frame metricgmn

(4) so that the
curvature scalar on the world volume is canonically norm
ized. From the relation
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(4)5~g11,11!

1/2gmn
(5) ~35!

we find that this modifiesp1 to

p̃15p11
p2

2
. ~36!

In the following, we will discuss both frames. We recall th
the separation conditionb5g implies that the internal
Calabi-Yau space always tracks the orbifold. In the disc
sion we can, therefore, concentrate on the spatial world
ume and the orbifold, corresponding to the first and sec
entries in Eq.~34!. Let us first consider the (2) branch. In
this branchtP@2`,t0# and, hence,t2t0 is always negative.
It follows from Eq. ~31! that a subspace will expand if itspW
component is negative and contract if it is positive. For t
first set of powerspW ↑ in Eq. ~34! both the world volume and
the orbifold contract in the five-dimensional Einstein fram
The same conclusion holds in the four-dimensional Einst
frame. For the second set,pW ↓ , in both frames the world
volume contracts while the orbifold expands. Furthermo
since the Hubble parameter of the orbifold increases in tim
the orbifold undergoes superinflation.

Now we turn to the (1) branch. In this brancht
P@ t0 ,`# and, hence,t2t0 is always positive. Consequently
a subspace expands for a positive component ofpW and con-
tracts otherwise. In addition, since the absolute values o
powerspW are smaller than 1, an expansion is always sub
minal. For the vectorpW ↑ the world volume and the orbifold
expand in both frames. On the other hand, the vectorpW ↓
describes an expanding world volume and a contracting
bifold in both frames. This last solution perhaps correspo
most closely to our notion of the early universe.

V. COSMOLOGICAL SOLUTIONS
WITH RAMOND FORMS

Thus far, we have looked for both static and cosmologi
solutions where the form fieldsj, Aa ands have been set to
zero. As discussed in previous papers@7,8#, turning on one or
several such fields can drastically alter the solutions and t
cosmological properties. Hence, we would like to explo
cosmological solutions with such non-trivial fields. For cla
ity, in this paper we will restrict the discussion to turning o
the Ramond-Ramond scalarj only, postponing the genera
discussion to another publication.

The Ansatzwe will use is the following. For the metric
and dilaton field, we choose

ds5
252N~t,y!2dt21a~t,y!2dxmdxnhmn1b~t,y!2dy2

V5V~t,y!. ~37!

For the j field, we assume thatj5j(t,y) and, hence, the
field strengthFa5]aj is given by

F05Y~t,y!, F55X~t,y!. ~38!
1-7
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All other components ofFa vanish. Note that sincej is
complex, bothX and Y are complex. Once again, we wi
solve the equations of motion by separation of variab
That is, we let

N~t,y!5n~t!N~y!

a~t,y!5a~t!a~y!

~39!

b~t,y!5b~t!b~y!

V~t,y!5g~t!V~y!

and

X~t,y!5x~t!X~y! ~40!

Y~t,y!5f~t!Y~y!. ~41!

Note that, in addition to thej field, we have also allowed fo
the possibility thatN(y)Þa(y). Again, there is noa priori
reason to believe that a solution can be found by separa
of variables. However, as above, there is indeed such a
lution, although the constraints required to separate varia
are more subtle. It is instructive to present one of the eq
tions of motion. With the aboveAnsatz, the g00 equation of
motion becomes2

N2

b2 S a9

a
1

a82

a2
2

a8

a

b8

b
1

1

12

V82

V2
1

a0
2

18

b2

V2

b2

g2

2
A2a0

3

b

V
@d~y!2d~y2pr!#

b

g D
5

b2

n2 S ȧ2

a2
1

ȧ

a

ḃ

b
2

1

12

ġ2

g2D 2
N2

3b2

uXu2

V

uxu2

g

2
b2

3n2

uYu2

V

ufu2

g
. ~42!

Note that if we setX5Y50 and N5a, this equation be-
comes identical to Eq.~12!. We now see that there are tw
different types of obstructions to the separation of variab
The first type, which we encountered in the previous sect
is in the two terms proportional toa0. Clearly, we can sepa
rate variables only if we demand that

b5g ~43!

as we did previously. However, for non-vanishingX and Y
this is not sufficient. The problem, of course, comes from
last two terms in Eq.~42!. There are a number of options on
could try in order to separate variables in these terms.
important to note thatX and Y are not completely indepen

2In the following, N, a, b, V denote they-dependent part of the
Ansatz~39!.
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dent, but are related to each other by the integrability con
tion ]tX(t,y)5]yY(t,y). We find that, because of this con
dition, it is impossible to obtain a solution by separation
variables that has bothX(t,y) and Y(t,y) non-vanishing.
Now X(t,y), but not Y(t,y), can be made to vanish b
taking j5j(t); that is,j is a function oft only. However,
we can find no solution by separation of variables under
circumstance. Thus, we are finally led to the choicej
5j(y). In this caseY(t,y)50 and we can, without loss o
generality, choose

x51. ~44!

At this point, the only obstruction to separation of variabl
in Eq. ~42! is the next to last term,N2uXu2/3b2Vg. Setting
g5const is too restrictive, so we must demand that

X5
bV1/2

N
c0eiu(y) ~45!

wherec0 is a non-zero but otherwise arbitrary real consta
andu(y) is an, as yet, undetermined phase. Putting this c
dition into thej equation of motion

]yS a3N

bV
XD50 ~46!

we find thatu is a constantu0 anda}V1/6 with an arbitrary
coefficient. Note that the last condition is consistent with t
static vacuum solution~6!. Inserting this result into theg05
equation of motion

ȧ

a S a8

a
2

N8

N D5
ḃ

b S a8

a
2

1

6

V8

V D ~47!

we learn thatN}a with an arbitrary coefficient. Henceforth
we chooseN5a which is consistent with the static vacuu
solution~6!. Inserting all of these results, theg00 equation of
motion now becomes

a2

b2 S a9

a
1

a82

a2
2

a8

a

b8

b
1

1

12

V82

V2
1

a0
2

18

b2

V2

2
A2

3
a0

b

V
@d~y!2d~y2pr!# D

5
b2

n2 S ȧ2

a2
1

ȧ

a

ḃ

b
2

1

12

ġ2

g2D 2
c0

2

3

1

g
. ~48!

Note that the left-hand side is of the same form as the st
vacuum equation~7!. The effect of turning on thej back-
ground is to add a purelyt dependent piece to the right han
side. Putting these results into the remaining four equati
of motion, we find that they too separate, with the left ha
side being purelyy dependent and the right hand side pure
t dependent. Again, we find that in these equations the
hand sides are identical to those in the static vacuum eq
tions and the effect of turning onj is to add extrat depen-
dent terms to the right hand sides. In each equation, b
1-8
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sides must now equal the same constant which, for simp
ity, we take to be zero. They equations fora, b andV thus
obtained by setting the left hand side to zero are identica
the static vacuum equations. Hence, we have shown tha

N5a5a0H1/2

b5b0H2, H5
A2

3
a0uyu1h0

~49!

V5b0H3

X5x0H3

wherex05c0eiu0a0
21b0

3/2 is an arbitrary constant.
Thet equations obtained by setting the right hand side

zero are the following:

ȧ2

a2
1

ȧ

a

ḃ

b
2

1

12

ġ2

g2
2

c0
2

3

n2

b2g
50 ~50!

2
ä

a
22

ȧ

a

ṅ

n
1

b̈

b
2

ḃ

b

ṅ

n
1

ȧ2

a2
12

ȧ

a

ḃ

b
1

1

4

ġ2

g2
2c0

2 n2

b2g
50

~51!

ä

a
2

ȧ

a

ṅ

n
1

ȧ2

a2
1

1

12

ġ2

g2
1

c0
2

3

n2

b2g
50 ~52!

g̈

g
13

ȧġ

ag
1

ḃġ

bg
2

ġ2

g2
2

ṅġ

ng
22c0

2 n2

b2ġ
50. ~53!

In these equations we have, once again, displayedb and g
independently, although they should be solved subject to
conditionb5g. Note that the above equations are similar
the t equations in the previous section, but each now has
additional term proportional toc0

2. These extra terms consid
erably complicate finding a solution of thet equations. Here
however, is where the formalism introduced in the previo
section becomes important. Definingâ, b̂ and ĝ as in Eq.
~22!, andaW , E andG as in Eqs.~23!, ~26! and ~25! respec-
tively, Eqs.~50!–~53! can be written in the form

1

2
EaẆ TGaẆ 1E21U50,

d

dt
~EGaẆ !1E21

]U

]aW
50

~54!

where the potentialU is defined as

U52c0
2eqW •aW ~55!

with

qW 5S 6

0

26
D . ~56!
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We can now exploit the gauge freedom ofn to simplify these
equations. Choose the gauge

n5e(dW 2qW )•aW ~57!

wheredW is defined in Eq.~23!. ThenE becomes proportiona
to the potentialU so that the potential terms in Eq.~54! turn
into constants. Thanks to this simplification, the equations
motion can be integrated which leads to the general solu
@7,8#

aW 5cW lnut12tu1wW lnS st

t12t D1kW ~58!

wheret1 is an arbitrary parameter which we take, witho
loss of generality, to be positive and

cW52
G21qW

^qW ,qW &
, s5sgn~^qW ,qW &!. ~59!

The scalar product is defined as^qW ,qW &5qW TG21qW . The vec-
tors wW and kW are integration constants subject to the co
straints

qW •wW 51

wW TGwW 50 ~60!

qW •kW5 ln~c0
2u^qW ,qW &u!.

This solution is quite general in that it describes an arbitr
number of scale factors with equations of motion given
Eq. ~54!. Let us now specify to our example. ForG andqW as
given in Eqs.~25! and ~56! we find that

^qW ,qW &51; ~61!

hences51, and

cW5S 0

22

2
1

3

D . ~62!

Recall that we must, in addition, demand thatb5g. Note
that the last two components ofcW are consistent with this
equality. We can also solve the constraints~60! subject to the
conditionb5g. The result is

wW 5S w31
1

6

6w3

w3

D , kW5S k31
1

6
lnc0

2

6k3

k3

D ~63!

where
1-9
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w352
1

6
6

A3

12
~64!

andk3 is arbitrary. We conclude that in the gauge specifi
by Eq. ~57!, the solution is given by

â5S w31
1

6D lnS t

t12t D1k31
1

6
lnc0

2

b̂522 lnut12tu16w3lnS t

t12t D16k3

ĝ52
1

3
lnut12tu1w3lnS t

t12t D1k3 ~65!

with w3 as above. As a consequence ofs51, the range fort
is restricted to

0,t,t1 ~66!

in this solution. Let us now summarize our result. We ha
found a cosmological solution with a nontrivial Ramon
Ramond scalarj starting with the separationAnsatz~39!. To
achieve a separation of variables we had to demand thb
5g, as previously, and that the Ramond-Ramond scalar
pend on the orbifold coordinate but not on time. Then
orbifold dependent part of the solution is given by Eq.~49!
and is identical to the static domain wall solution with t
addition of the Ramond-Ramond scalar. The time depend
part, in the gauge~57!, is specified by Eq.~65!. Furthermore,
we have found that the time-dependent part of the equat
of motion can be cast in a form familiar from cosmologic
solutions studied previously@7,8#. Those solutions describ
the evolution for scale factors of homogeneous, isotro
subspaces in the presence of antisymmetric tensor fields
are, therefore, natural generalizations of the rolling radii
lutions. Each antisymmetric tensor field introduces an ex
nential type potential similar to the one in Eq.~55!. For the
case with only one nontrivial form field, the general soluti
could be found and is given by Eq.~58!. We have, therefore
constructed a strong coupling version of these general
rolling radii solutions with a one-form field strength, whe
the radii now specify the domain wall geometry rather th
the size of maximally symmetric subspaces. We stress
the potentialU in the time-dependent equations of motio
does not originate from the potentials in the action~1! but
from the nontrivial Ramond-Ramond scalar. The potent
in the action are canceled by the static domain wall par
the solution, as in the previous example.

From the similarity to the known generalized rolling rad
solutions, we can also directly infer some of the basic c
mological properties of our solution, using the results
Refs.@7,8#. We expect the integration constants to split in
two disjunct sets which lead to solutions in the (2) branch,
comoving time rangetP@2`,t0#, and the (1) branch, co-
moving time rangetP@ t0 ,`#, respectively. The (2) branch
ends in a future curvature singularity and the (1) branch
starts in a past curvature singularity. In both branches
solutions behave like rolling radii solutions asymptotical
08600
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that is, att→2`,t0 in the (2) branch and att→t0 ,` in the
(1) branch. The two asymptotic regions in both branch
have different expansion properties in general and the t
sition between them can be attributed to the nontrivial fo
field.

Let us now analyze this in more detail for our solutio
following the method presented in Refs.@7,8#. First we
should express our solution in terms of the comoving timt
by integratingdt5n(t)dt. The gauge parametern(t) is ex-
plicitly given by

n5e(dW 2qW )•kWut12tu2x1D21utux21 ~67!

where

x5dW •wW , D5dW •cW . ~68!

Given this expression, the integration cannot easily be p
formed in general except in the asymptotic regionst→0,t1.
These regions will turn out to be precisely the asympto
rolling-radius limits. Therefore, for our purpose, it suffices
concentrate on those regions. Eq.~67! shows that the result
ing range for the comoving time depends on the magnit
of D andx ~note thatD is a fixed number, for a given mode
whereasx depends on the integration constants!. It turns out
that for all values of the integration constants we have eit
x,D or x.0.D. This splits the space of integration con
stant into two disjunct sets corresponding to the (2) and the
(1) branch as explained before. More precisely, we have
mapping

t→tPH @2`,t0# for x,D,0, ~2 ! branch,

@ t0 ,1`# for x.0.D, ~1 ! branch,
~69!

wheret0 is a finite arbitrary time~which can be different for
the two branches!. We recall that the range oft is 0,t
,t1. The above result can be easily read off from the e
pression~67! for the gauge parameter. Performing the in
gration in the asymptotic region we can expresst in terms of
the comoving time and find the Hubble parameters, defi
by Eq. ~30!, and the powerspW . Generally, we have

pW 55
wW

x
at t.0,

wW 2cW

x2D
at t.t1 .

~70!

Note that, from the mapping~69!, the expression att.0
describes the evolution powers att→2` in the (2) branch
and att.t0 in the (1) branch, that is, the evolution power
in the early asymptotic region. Correspondingly, the expr
sion for t.t1 applies to the late asymptotic regions, that
to t.t0 in the (2) branch and tot→` in the (1) branch.
As before, these powers satisfy the rolling radius constra
~32!.
1-10
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Let us now insert the explicit expression fordW , wW andcW ,
Eqs. ~23!, ~63! and ~62!, which specify our example into
those formulas. First, from Eq.~68! we find that

x52163
A3

4
, D522. ~71!

Note that the space of integration constants just consist
two points in our case, represented by the two signs in
expression forx above. Clearly, from the criterion~69! the
upper sign leads to a solution in the (1) branch and the
lower sign to a solution in the (2) branch. In each branch
we therefore have a uniquely determined solution. Using
~70! we can calculate the asymptotic evolution powers in
(2) branch:

pW 2,t→2`5S 1.06

1.81

1.13
D , pW 2,t→t0

5S 1.48

2.45

2.08
D . ~72!

Correspondingly, for the (1) branch we have

pW 1,t→t0
5S 1.48

2.45

2.08
D , pW 1,t→`5S 1.06

1.81

1.13
D . ~73!

Note that these vectors are in fact the same as in the2)
branch, with the time order being reversed. This happ
because they are three conditions on the powerspW that hold
in both branches, namely the two rolling radii constrain
~32! and the separation constraintb5g, Eq. ~43!, which im-
plies thatp356p2. Since two of these conditions are line
and one is quadratic, we expect at most two different so
tions for pW . As in the previous solution, the time variation
the Calabi-Yau volume~third entry! is tracking the orbifold
variation ~second entry! as a consequence of the separat
condition and, hence, needs not to be discussed separa
The first entry gives the evolution power for the spat
world volume in the five-dimensional Einstein frame. For
s

08600
of
e

q.
e

s

s

-

n
ely.
l

conversion to the four-dimensional Einstein frame o
should again apply Eq.~36!. It is clear from the above num
bers, however, that this conversion does not change
qualitative behavior of the world volume evolution in any
the cases. Having said this, let us first discuss the (2)
branch. At t→2` the powers are positive and, hence, t
world volume and the orbifold are contracting. The soluti
then undergoes the transition induced by the Ramo
Ramond scalar. Then att.t0 the world volume is still con-
tracting while the orbifold has turned into superinflating e
pansion. In the (1) branch we start out with a subluminall
expanding world volume and a contracting orbifold att.t0.
After the transition both subspaces have turned into sublu
nal expansion.

VI. CONCLUSION

In this paper we have presented the first examples of c
mological solutions in five-dimensional Horˇava-Witten
theory. They are physically relevant in that they are rela
to the exact BPS three-brane pair in five dimensions, wh
D54 world volume theory exhibitsN51 supersymmetry. A
wider class of such cosmological solutions can be obtai
and will be presented elsewhere. We expect solutions of
type to provide the fundamental scaffolding for theories
the early universe derived from Horˇava-Witten theory, but
they are clearly not sufficient as they stand. The most nota
deficiency is the fact that they are vacuum solutions, dev
of any matter, radiation or potential stress energy. Inclus
of such stress energy is essential to understand the beh
of early universe cosmology. A study of its effect on th
cosmology of Horˇava-Witten theory is presently underwa
@18#.
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