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Understanding radiatively induced Lorentz-CPT violation in differential regularization

W. F. Chen*
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~Received 1 April 1999; published 27 September 1999!

We investigate the perturbative ambiguity of the radiatively induced Chern-Simons term in differential
regularization. The result obtained by this method contains all those obtained by other regularization schemes
and the ambiguity is explicitly characterized by an indefinite ratio of two renormalization scales. It is argued
that the ambiguity can only be eliminated by either imposing a physical requirement or resorting to a more
fundamental principle. Some calculation techniques in coordinate space are developed in the appendixes.
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In a relativistic quantum field theory, Lorentz andCPT
violating terms should be strictly prohibited. Otherwise, t
status of special relativity, as one of the cornerstones of m
ern physics, will be challenged. However, recently some
vestigations have been carried out to consider this possib
@1,2#. Motivated by the proposal put forward about a deca
ago of introducing a Chern-Simons term@3#, Lk

51/2kmemnlrFnlAr , to violate the Lorentz andCPT sym-
metry of quantum electrodynamics, recently a Lorentz a
CPT violating extension of the standard model was co
structed and some of its quantum aspects were investig
@2#. As pointed out by Jackiw@4#, the availability of higher
precision instruments nowadays allows a more precise
on some of fundamental principles to be carried out. Such
investigation at least at the theoretical level is not comple
unreasonable. The question is how this Lorentz andCPT
violating term can naturally arise rather than be introduc
by hand.

Based on the experience in~211!-dimensional QED@5#,
where a parity-odd Chern-Simons term is induced from
fermionic determinant@6,7#, one natural guess is that th
Lorentz andCPT violation term can come from a Lorent
andCPT violation termc̄b”g5c in the fermionic sector. The
explicit calculation carried out recently shows that this ca
can happen@8,9#, there has induced a Chern-Simons te
with its coefficientkm proportional tobm . However, since
the UV divergence usually emerges in a perturbative qu
tum correction, one must first choose a regularization sch
to make the theory well defined. It was shown that the co
ficient of this radiatively induced Chern-Simons term
regularization dependent@2,8#. In Pauli-Villars regulariza-
tion, this coefficient is zero, while dimensional regularizati
combined with the derivative expansion leads to a defin
nonzero value@8#. It also seems to us that this induced te
cannot be observed by calculating the fermionic determin
in Fock-Schwinger proper time method@10#. In particular,
based on the hypothesis that the axial vector currentj m

5

5c̄(x)gmg5c(x) should be gauge invariant at arbitra
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four-momentum, Coleman and Glashow claimed that thekm

must be zero@11#. Thus the existence of this radiatively in
duced Chern-Simons term in perturbative theory is someh
ambiguous. More recently, a new calculation was perform
by Jackiw and Kostelecky´ @9#, using thebm-exact propagator
instead of the free fermionic propagator, in which the Lo
entz andCPT violating fermionic term was treated nonpe
turbatively. It was shown that in this nonperturbative a
proach the Lorentz andCPT violating term is generated
unambiguously at low energy. Therefore, it is interesting
understand the discrepancies among these various re
within the framework of perturbative theory.

One possible way is utilizing an improved regularizati
scheme. It is known that a regularization is a tempor
modification of the original theory. Different regularizatio
schemes have actually provided different methods to ca
late a quantum correction. Thus it is possible to incur a re
larization dependent result. To avoid this occurrence,
should choose a regularization scheme that modifies
original theory as little as possible and preserves the feat
of the original theory such as symmetries, etc., as much
possible. In view of this criterion, differential regularizatio
seems to be the most appropriate candidate@12#. This regu-
larization scheme is a relatively new calculation method a
it works for a Euclidean field theory in coordinate space. T
invention of this regularization is based on the observat
that in coordinate space the UV divergence manifest itsel
the singularity preventing the amplitude from having a Fo
rier transform into momentum space. So one can regulate
amplitude by writing its singular term as the derivative
another less singular function, which has a well defined F
rier transform, then performing the Fourier transform a
discarding the surface term. In this way one can directly
a well defined amplitude. Up to now this method and
modified version have been applied successfully to alm
every aspects of field theories, including chiral anoma
low-dimensional and supersymmetric field theories@13–17#.
One can easily see that this regularization method actu
has never introduced an regulator to modify the Lagrang
of the original theory, hence it does not pull the value o
primitively divergent Feynman diagram away from its sing
larity. In comparison with the usual route of calculating
©1999 The American Physical Society07-1
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W. F. CHEN PHYSICAL REVIEW D 60 085007
quantum correction, this method has actually skipped o
the regularization procedure and straightforwardly yield
the renormalized result. Therefore, the quantum correc
obtained in this regularization method should be more u
versal than any other regularization schemes and hence
provide a better understanding to above ambiguity.

Not only these favourable features, differential regulari
tion has another great advantage over other regulariza
schemes. When implementing a differential regularization
a quantum amplitude, one can introduce a renormaliza
scale for each singular term. These individual renormali
tion scales are not independent and the relations among
can be fixed by the symmetries of theory. In other words,
maintenance of the symmetries in the theory such as ga
symmetry etc., can be achieved by choosing the indefi
renormalization scales at the final stage of the calculation
will be shown later, this special feature of differential reg
larization is not only the reason why the regularization a
biguity can be explicitly parameterized by the ratio of tw
renormalization scales, but also provide a guide for us
search for a natural setting to eliminate this ambiguity.

In view of this, in this paper we shall investigate th
radiatively induced ambiguity in terms of differential reg
larization. The model we shall start from is quantum elect
dynamics with the inclusion of a Lorentz-andCPT-violating
axial vector term in the fermionic sector@8,9,18#,

Lfermion5c̄~]”2A” 2b”g5!c, ~1!

wherebm is a constant four-vector with a fixed orientation
space-time. The termc̄b”g5 is gauge invariant, but it explic
itly violates Lorentz andCPT symmetries, sincebm picks up
a preferred direction in space-time. We will see that t
Lorentz andCPT violation in the fermionic sector is the
origin of the induced Chern-Simons term.

In Ref. @9#, it was found that the radiatively induce
Chern-Simons term can arise in the low-energy, or equ
lently in the large fermionic mass limit. In principle, we ca
also utilize thebm-exact propagator in coordinate space
calculate the vacuum polarization tensor. However, the e
tence of theb term make it impossible to write out thi
bm-exact propagator in coordinate space, and hence one
not proceed parallel to Ref.@5# in coordinate space. Thus w
have to adopt a free fermionic propagator. The Feynm
diagram that will be calculated is the vacuum polarizat
tensor but with an insertion of a zero-momentum compo
operator*d4zc̄b”g5c in the internal fermionic line~Fig. 1!,
since only this kind of diagram can give the lowest ord
contribution in b and hence possibly leads to the induc
Chern-Simons term. Equivalently, this kind of Feynman d
gram can also be thought as the triangle diagram compo
of two vector currents and one axial vector currents but w
zero momentum transfer between the vector currents. In
the explicit calculation in Ref.@9# is very similar to that for
the chiral anomaly, only the zero-momentum transfer
tween two vector gauge field vertices was achieved natur
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due to the utilization of thebm-exact propagator. Here w
can also get a natural zero-momentum transfer by consi
ing the above Feynman diagrams.

We need the free fermionic propagator

S~x!5
1

4p2
]”

1

x2
~2!

for the massless case, and

~x!5~]”2m!D~x!5
m

4p2
~]”2m!FK1~mx!

x G ~3!

for the massive case, here and later on we denotx
[uxu, K1(x) is the first-order modified Bessel function o
the second kind. The short-distance expansion of the mas
scalar propagatorD(x) is

D~x!5
1

4p2

m

x
K1~mx!

5
1

4p2 F 1

x2
1

1

2
m2 ln~mx!

1
m2

4
@122c~2!#1regular termsG . ~4!

We first have look at the massless case. The vacuum
larization with an insertion of the zero-momentum compos
operator*d4zc̄b”g5c on either of the fermionic lines is rea
as

FIG. 1. Vacuum polarization contributed by fermionic loop wi

an insertion of zero-momentum composite operator*d4zc̄b”g5c in
either of the internal fermionic lines,3 denoting the zero-

momentum composite operator*d4zc̄b”g5c.
7-2



UNDERSTANDING RADIATIVELY INDUCED LORENTZ- . . . PHYSICAL REVIEW D60 085007
Pmn~x,y!52blE d4z$Tr@g5glS~z2x!gmS~x2y!gnS~y2z!#1Tr@g5glS~z2y!gnS~y2x!gmS~x2z!#%

52
1

~4p2!3
blFTr~g5glgagmgbgngc!E d4z

]

]za

1

~z2x!2

]

]xb

1

~x2y!2

]

]yc

1

~y2z!2

1Tr~g5glgagngbgmgc!E d4z
]

]za

1

~z2y!2

]

]yb

1

~y2x!2

]

]xc

1

~x2z!2G
5

4

~4p2!3
blFTr~g5glgagmgbgngc!E d4z

~z2x!a

~z2x!4

~z2y!c

~z2y!4

]

]xb

1

~x2y!2

1Tr~g5glgagngbgmgc!E d4z
~z2y!a

~z2y!4

~z2x!c

~z2x!4

]

]yb

1

~x2y!2G . ~5!
th

m
en-

ra-
m

um
Using the convolution integral given by Eq.~A6!,

E d4z
~z2x!m~z2y!n

~z2x!4~z2y!4

5
p2

2~x2y!2 Fdmn22
~x2y!m~x2y!n

~x2y!2 G , ~6!

we obtain

Pmn~x,y!5Pmn~x2y!

5
1

32p4
bl

3Tr@g5gl~gagmgbgngc2gagngbgmgc!#

3Fdac22
~x2y!a~x2y!c

~x2y!2 G
3

1

~x2y!2

]

]xb

1

~x2y!2
. ~7!

For convenience, denotingx2y asx and employing the dif-
ferential operation

xaxbxc

x8
52

1

48

]3

]xa]xb]xc

1

x2
2

1

24

3S dab

]

]xc
1dbc

]

]xa
1dca

]

]xb
D 1

x4
, ~8!

we can write the above vacuum polarization tensor in
following form:
08500
e

Pmn~x!5
1

64p4
bl Tr@g5gl~gagmgbgngc2gagngbgmgc!#

3F ]

]xb

1

x4
dac2

1

6

]3

]xa]xb]xc

1

x2
2

1

3

3S dab

]

]xc
1dbc

]

]xa
1dca

]

]xb
D 1

x4G . ~9!

Obviously, 1/x4 is too singular to have a Fourier transfor
into momentum space, so we must replace it by its differ
tial regulated version

S 1

x4D
R

52
1

4
h

ln~x2M2!

x2
, ~10!

whereh[]2 denotes the four-dimensional Laplacian ope
tor. Thus the differential regulated version of the vacuu
polarization tensor with an insertion of the zero-moment
composite operator*d4zc̄b”g5c is

Pmn~x!5
1

64p4
bl Tr@g5gl~gagmgbgngc2gagngbgmgc!#

3F2
1

4
dca

]

]xb
h

ln~x2M1
2!

x2
2

1

6

]3

]xa]xb]xc

1

x2

1
1

12S dab

]

]xc
1dbc

]

]xa
1dca

]

]xb
Dh

ln~x2M2
2!

x2 G .

~11!
7-3
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W. F. CHEN PHYSICAL REVIEW D 60 085007
Note that we chosen two different renormalization scales
1/x4 in the first and the third term of Eq.~9! since two sin-
gular terms can differ from a finite quantity. After contrac
ing with the externalg-matrix trace, we get

Pmn~x!5
1

16p4
blelmna

]

]xa
S 1

3
1 ln

M1
2

M2
2D h

1

x2

52
1

4p2 S 1

3
12 ln

M1

M2
Dblelmna

]

]xa
d (4)~x!.

~12!

In the above calculation, we have used

Tr@g5gl~gagmgbgngc2gagngbgmgc!#dca

]

]xb

5216elmnb

]

]xb
,

Tr@g5gl~gagmgbgngc2gagngbgmgc!#dbc

]

]xa

5216elmna

]

]xa
,

Tr@g5gl~gagmgbgngc2gagngbgmgc!#dab

]

]xc

5216elmnc

]

]xc
,

Tr@g5gl~gagmgbgngc2gagngbgmgc!#
]3

]xa]xb]xc

528elmna

]

]xa
h. ~13!

One may wonder why we only adopt two mass scales
Eq. ~11! for those four short-distance singular terms of E
~9!. Of course, we can introduce four distinct mass sca
then there appears
08500
r

n
.
s,

Pmn~x!5
1

64p4
bl Tr@g5gl~gagmgbgngc2gagngbgmgc!#

3F2
1

4
dac

]

]xb
h

ln~x2M1
2!

x2
2

1

6

]3

]xa]xb]xc

1

x2

1
1

12S dab

]

]xc
h

ln~x2M3
2!

x2
1dbc

]

]xa
h

ln~x2M4
2!

x2

1dca

]

]xb
h

ln~x2M5
2!

x2 D G
52

1

4p2 F1

3
12 ln

M1

~M3M4M5!1/3G
3blelmna

]

]xa
d (4)~x!. ~14!

With the definitionM2[(M3M4M5)1/3, we still obtain the
same result as Eq.~12!. It can be easily checked that an
other differential operations on 1/x4 will lead to the same
conclusion: the ambiguity is only relevant to two indepe
dent mass scales and uniquely parametrized by their r
ln M1 /M2. The physical renormalization conditions or sym
metries will fix this ambiguity.

The vacuum polarization tensor~12! shows that the fol-
lowing Lorentz andCPT violated action are indeed induced

Sind5
1

8p2 S 1

3
12 ln

M1

M2
D E d4xemnlrbmAnFlr . ~15!

It is remarkable that this radiatively induced Lagrangian h
an ambiguity parametrized by an indefinite coefficie
ln M1 /M2. It is just the case recently pointed out by Jack
that the radiative correction is finite but undetermined@18#.

The more interesting case is when the fermion is mass
where Jackiw and Kostelecky´ @9# successfully escaped from
the ‘‘no-go’’ theorem proposed by Coleman and Glash
@11# and found the existence of the radiatively induc
Chern-Simons term in a nonperturbative way, so this c
has a direct physical relevance. The corresponding vacu
polarization tensor is
7-4
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Pmn~x2y!52S m

4p2D 3

blE d4zH TrFg5glS ga

]

]za
2mDK1@m~z2x!#

z2x
gmS gb

]

]xb
2mDK1@m~x2y!#

x2y
gn

3S gc

]

]yc
2mD K1@m~y2z!#

y2z G1Tr~m↔n,x↔y!J
52S m

4p2D 3

blE d4zH Tr~g5glgagmgbgngc!
]

]za

K1@m~z2x!#

z2x

]

]xb

K1@m~x2y!#

x2y

]

]yc

K1@m~y2z!#

y2z

1Tr~g5glgagngbgmgc!
]

]za

K1@m~z2y!#

z2y

]

]yb

K1@m~y2x!#

y2x

]

]xc

K1@m~x2z!#

x2z

18m2elmnaF S ]

]za

K1@m~z2x!#

z2x D K1@m~x2y!#

x2y

K1@m~y2z!#

y2z

1
K1@m~z2y!#

z2y S ]

]ya

K1@m~y2x!#

y2x DK1@m~x2z!#

x2z
1

K1@m~z2x!#

z2x

K1@m~x2y!#

x2y S ]

]ya

K1@m~y2z!#

y2z D G J .

~16!

Using the convolution integral~A14! for the massive case and denotingx2y asx, we can write the vacuum polarization tens
~16! as follows:

Pmn~x!52S m

4p2D 3

blH 2p2

m2
@Tr~g5glgagmgbgngc!2Tr~g5glgagngbgmgc!#

]

]xb

K1~mx!

x

]2

]xa]xc
K0~mx!

2
2p2

m2
elmnaF16m2

K1~mx!

x

]

]xa
K0~mx!18m2K0~mx!

]

]xa

K1~mx!

x G J . ~17!

One natural way to perform the operation on Eq.~17! is to expand the term]/]xb@K1(mx)/x#]2/(]xa]xc)K0(mx), write its
singular terms in a derivative form and then contract it withg-matrix trace. However, we have no way to realize this due
the difficulty in solving a differential equation with the modified Bessel function. Neither can we do it for the t
K1(mx)/x]/]xaK0(mx) and K0(mx)]/]xaK0(mx). Therefore, in contrast to the massless case, we shall first carry ou
trace calculation. Making use of the techniques collected in Eqs.~B1!–~B4!, we can work out above vacuum polarizatio
tensor as follows:

Pmn~x!52
m

32p4
blH 16elabn

]

]xa
F ]

]xb

K1~mx!

x

]

]xm

K0~mx!

x G216elabm

]

]xa
F ]

]xb

K1~mx!

x

]

]xn

K0~mx!

x G
216elmna

]

]xb

K1~mx!

x

]2

]xa]xb
K0~mx!18elmna

]

]xa

K1~mx!

x
hK0~mx!28m2elmnaF2

K1~mx!

x

]

]xa
K0~mx!

1K0~mx!
]

]xa

K1~mx!

x G J
5

m2

2p4
blelmnaH 22F ]

]xa
S K1~mx!

x D 2

2
]

]xa
S K1~mx!

x D 2G1m
]

]xa
FK1~mx!K0~mx!

x G J . ~18!

Obviously, due to the asymptotic expansion~4! the function@K1(mx)/x#2 is singular asx;0 and has no Fourier transform
into the momentum space. It should be emphasized that in deriving Eqs.~B2!–~B4! and~18! the substraction operation amon
the singular terms such as@K1(mx)/x#2 should not be naively carried out. It is analogous to the fact that in momentum s
two divergent terms with the same form but opposite sign cannot be canceled, until after a regularization scheme
mented so that they become well defined and the substraction operation can work safely. Otherwise, a finite term will
be lost since in general the difference of two infinite quantities is not zero. In fact, the operation keeping the singula
untouched before performing the regularization is a crucial point in the differential regularization method.

Unfortunately, as above, due to the difficulty in solving a differential equation with the modified Bessel function, w
cannot write the singular function@K1(mx)/x#2 as the derivative of another less singular function. However, we can con
the asymptotic expansion~4!. One can easily see that in Eq.~18! the singularity at short distance is only carried by the lead
085007-5
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term 1/x4, the other terms are finite and hence they are exactly canceled. Therefore, making use of Eq.~10! again, we obtained
the regulated form for the vacuum polarization tensor in the massive case:

Pmn~x!5
m2

2p4
blelmnaH 2

1

2m2

]

]xa
Fh

ln x2M1
2

x2
2h

ln x2M2
2

x2 G1m
]

]xa
FK1~mx!K0~mx!

x G J
5

1

2p4
blelmnaH 2 ln

M1

M2

]

]xa
h

1

x2
1m3

]

]xa
FK1~mx!K0~mx!

x G J
5

1

2p4
blelmnaH 4p2 ln

M1

M2

]

]xa
d (4)~x!1m3

]

]xa
FK1~mx!K0~mx!

x G J . ~19!
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The above vacuum polarization tensor can be expresse
momentum space by performing its Fourier transform. A
cording to the standard differential regularization proced
@12#, we have

Pmn~p!5E d4xe2 ip•xPmn~x!

5
2

p2
blelmnaipaF ln

M1

M2

1
m3

4p2E d4xe2 ip•x
K1~mx!K0~mx!

x G
5

2

p2
blelmnaipaF ln

M1

M2
1

m

2p

arcsin h@p/~2m!#

A11p2/~4m2!
G

5
2

p2
blelmnaipaF ln

M1

M2
1

m

4pA11p2/~4m2!

3 ln
A11p2/~4m2!1p/~2m!

A11p2/~4m2!2p/~2m!
G . ~20!

As Ref. @5#, the radiatively induced Chern-Simons term c
be defined at low energyp250 ~or equivalently at large-m
limit !

Plmn~p!up2505
2

p2
elmnaipaS ln

M1

M2
1

1

4D . ~21!

Equation~21! shows that the coefficient of the induce
Chern-Simons term has a finite ambiguity, which was exp
itly parametrized by the ratio of two renormalization scal
M1 /M2. Especially, Eq.~21! has contained all the result
obtained in other regularization schemes. ForM15e21/4M2,
we get the conclusion in Pauli-Villars regularization:

Plmn~p!up25050, ~22!

while if we chooseM15e21/16M2, then the result in dimen
sional regularization@8# and the nonperturbative approac
@9# is reproduced,
08500
in
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Plmn~p!up2505
3

8p2
elmnaipa . ~23!

It is remarkable that a natural choiceM15M2 does not cor-
respond to a subtraction in the dispersive representa
given in Ref.@9#.

The above conclusion is not strange to us and the p
found reason lies in the excellent features possessed by
ferential regularization. As it is shown above, the basic o
eration in differential regularization is replacing a singu
term by the derivative of another less singular function. T
operation has provided a possibility to add arbitrary lo
terms to the higher order amplitude since we have to solv
differential equation for noncoincident points@19#. When
performing such a operation, we are introducing a new a
trary local term into the quantum effective action. Accordi
to renormalization theory, the introduction of an arbitra
local term into the amplitude of a Green function is equiv
lent to the addition of a finite counterterm to the Lagrangia
Therefore, from this viewpoint, differential regularizatio
can lead to a more general quantum effective action than
other regularization schemes. In particular, differential re
larization keeps all the ambiguities to the final stage of
calculation, and these ambiguities can only be fixed by
posing some additional physical requirements or resorting
some more fundamental principle. This special feature p
sented by differential regularization has formed a sharp c
trast to other regularization schemes such as dimensio
Pauli-Villars, and cutoff regularization, etc. These regul
ization methods, together with the given renormalization p
scription, can fix the those arbitrary terms automatically
the beginning. In different regularization schemes, these
cal terms are different. This is the reason why different re
larization schemes can induce different Chern-Simons ter
It should be emphasized that no regularization can claim
it gives the right value for this induced term. In differenti
regularization, this ambiguity is explicitly parametrized b
the ratio of two indefinite renormalization scales and the
sults obtained in other regularization schemes can be re
duced by an appropriate choices on this arbitrary ra
Therefore, one can say that differential regularization h
yielded a more universal result than any other regulariza
7-6
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method, since it does not impose any preferred choice on
Green function at the beginning.

In summary, we have investigated the Lorentz andCPT
violating Chern-Simons term induced by radiative corre
tions in differential regularization. The ambiguous resu
obtained in other regularization schemes are universally
tained and especially, the ambiguity is quantitively para
etrized by the ratio of two renormalization scales. This a
biguity should be fixed by renormalization conditions
certain fundamental physical symmetries rather than an a
trary choice on the mass scales. For example, if one requ
the Lagrangian density rather than the action to be ga
invariant, one must chooseM15e21/4M2, and hence the
generated Chern-Simons term vanishes. Another choice i
require the action and*d4x jm

5 ~i.e., the axial vector curren

j m
5 5c̄gmg5c at zero momentum! to be gauge invariant, a

done by Jackiw and Kostelecky´ @9#. In this case, one mus
chooseM15e21/16M2 and consequently, the Chern-Simo
term is generated unambiguously. It should be emphas
that the natural prescription on the renormalization sca
M15M2, can be taken only when it corresponds to cert
physical renormalization condition.
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would like to thank Dr. M. Carrington and Professor
Kobes for their encouragement and help. I am also oblige
Dr. M. Perez-Victoria for his useful discussions on differe
tial regularization.

APPENDIX A: DERIVATION OF CONVOLUTION
INTEGRAL

One important technique in our calculation is the appli
tion of the convolution integrals. Here we give a detail de
vation.

In the massless case, there exists that

E d4z
~z2x!m~z2y!n

~z2x!4~z2y!4
5

1

4

]

]xm

]

]yn
E d4z

1

~z2x!2~z2y!2
.

~A1!

We need to write the integration*1/@(z2x)2(z2y)2# as an
explicit function ofx2y. So we first assume

f ~x2y!5E d4z
1

~z2x!2~z2y!2
. ~A2!

Acting the four-dimensional Laplacian operatorhx on the
both sides of Eq.~A2! and using the formula

hx

1

x2
524p2d (4)~x!, ~A3!
08500
he

-
s
b-
-
-

i-
es
e

to

ed
s,
n

-
to
e
. I
-
I

to
-

-
-

we obtain

hxf ~x2y!524p2
1

~x2y!2
. ~A4!

With the aid of the~four-dimensional! spherical symmetric
form of the Laplacian operator hx
54/x2d/dx2@(x2)2d/dx2#, the solution to the differentia
equation~A4! can be easily found,

f ~x2y!52p2 ln@L2~x2y!2#, ~A5!

L being the cutoff. Thus we obtain the convolution integ
formula

E d4z
~z2x!m~z2y!n

~z2x!4~z2y!4
5

p2

2 Fdmn22
~x2y!m~x2y!n

~x2y!4 G .

~A6!

Now we turn to the massive case, where the situation
quite complicated. From Eq.~16!, what we need to deter
mine is

g~x2y!5E d4z
K1@m~z2x!#

z2x

K1@m~z2y!#

z2y
. ~A7!

According to the property

~h2m2!D~x!5~h2m2!F 1

4p2

m

x
K1~mx!G5d (4)~x!,

~A8!

we act the operator (hx2m2) on both sides of Eq.~A7! and
obtain

~hx2m2!g~x2y!54p2
K1@m~x2y!#

m~x2y!
. ~A9!

Repeating the above operation on Eq.~A9!, we get

~hx2m2!2g~x!5
16p4

m2
d (4)~x!. ~A10!

Upon considering the Fourier transform ofg(x),

g~x!5E d4p

~2p!4
g~p!eip•x, ~A11!

Eq. ~A11! directly yields

g~p!5
16p4

m2

1

~p21m2!2
. ~A12!

g(x) can be obtained by performing the Fourier transform
7-7
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g~x!5
16p4

m2 E d4p

~2p!4

1

~p21m2!2
eip•x

5
1

m2E0

`

dp
p3

~p21m2!2E0

p

du sin2ueipx cosu

3E
0

p

sinwdwE
0

2p

df

5
4p2

m2x
E

0

`

dp
p2

~p21m2!2
J1~px!5

2p2

m2
K0~mx!.

~A13!
08500
Thus we have finally worked out the important convoluti
integral formula

E d4z
K1@m~z2x!#

z2x

K1@m~z2y!#

z2y
5

2p2

m2
K0@m~x2y!#,

~A14!

K0(x) being the zeroth-order modified Bessel function of t
second kind.
APPENDIX B: DIFFERENTIAL OPERATIONS

Some differential calculation techniques used in deriving the massive vacuum polarization tensor~19! is collected in this
appendix:

Tr~g5glgagmgbgngc!
]

]xb

K1~mx!

x

]2

]xa]xc
K0~mx!

58elamb

]

]xa
F ]

]xb

K1~mx!

x

]

]xn

K0~mx!

x G18elabn

]

]xa
F ]

]xb

K1~mx!

x

]

]xm

K0~mx!

x G
18elmna

]

]xb

K1~mx!

x

]2

]xa]xb
K0~mx!14elmna

]

]xa

K1~mx!

x
hK0~mx!, ~B1!

elabn

]

]xa
F ]

]xb

K1~mx!

x

]

]xm
K0~mx!G5elabn

]

]xa
F2mxm

K1~mx!

x

]

]xb

K1~mx!

x G52
1

2
melabn

]

]xa
Fxm

]

]xb
S K1~mx!

x D 2G
5

1

2
melmnb

]

]xb
S K1~mx!

x D 2

, ~B2!

elmna

]

]xb

K1~mx!

x

]2

]xa]xb
K0~mx!52melmna

]

]xb

K1~mx!

x H dab

K1~mx!

x
1xaxb

1

x

d

dx FK1~mx!

x G J
52melmnaF1

2

]

]xa
S K1~mx!

x D 2

1S ]

]xa

K1~mx!

x D x
d

dx

K1~mx!

x G
52melmnaH 1

2

]

]xa
S K1~mx!

x D 2

1
]

]xa

K1~mx!

x F2
K1~mx!

x
1

d

dx
K1~mx!G J

52melmnaF1

2

]

]xa
S K1~mx!

x D 2

2
1

2

]

]xa
S K1~mx!

x D 2

1
]

]xa

K1~mx!

x

d

dx
K1~mx!G

52melmnaH 1

2

]

]xa
S K1~mx!

x D 2

2
1

2

]

]xa
S K1~mx!

x D 2

2
]

]xa

K1~mx!

x FmK0~mx!1
K1~mx!

x G J
5elmnaF2

1

2
m

]

]xa
S K1~mx!

x D 2

1m
]

]xa
S K1~mx!

x D 2

1m2K0~mx!
]

]xa

K1~mx!

x G ,
~B3!
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elmna

]

]xa

K1~mx!

x
hK0~mx!52melmna

]

]xa

K1~mx!

x F4
K1~mx!

x
1x

d

dx

K1~mx!

x G
5elmnaF22m

]

]xa
S K1~mx!

x D 2

1m
]

]xa
S K1~mx!

x D 2

1m2K0~mx!
]

]xa

K1~mx!

x G . ~B4!
T
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