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Understanding radiatively induced Lorentz-CPT violation in differential regularization
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We investigate the perturbative ambiguity of the radiatively induced Chern-Simons term in differential
regularization. The result obtained by this method contains all those obtained by other regularization schemes
and the ambiguity is explicitly characterized by an indefinite ratio of two renormalization scales. It is argued
that the ambiguity can only be eliminated by either imposing a physical requirement or resorting to a more
fundamental principle. Some calculation techniques in coordinate space are developed in the appendixes.
[S0556-282(99)02218-3

PACS numbsds): 11.10.Kk, 11.15-q

In a relativistic quantum field theory, Lorentz a@PT  four-momentum, Coleman and Glashow claimed thatkthe
violating terms should be strictly prohibited. Otherwise, themust be zerd11]. Thus the existence of this radiatively in-
status of special relativity, as one of the cornerstones of modduced Chern-Simons term in perturbative theory is somehow
ern physics, will be challenged. However, recently some inambiguous. More recently, a new calculation was performed
vestigations have been carried out to consider this possibilitpy Jackiw and Kosteleckig], using theb ,-exact propagator
[1,2]. Motivated by the proposal put forward about a decadenstead of the free fermionic propagator, in which the Lor-
ago of introducing a Chern-Simons termi3], £,  entz andCPT violating fermionic term was treated nonper-
:1/2&6”“"':%'%, to violate the Lorentz an@PT sym-  turbatively. It was shown that in this nonperturbative ap-
metry of quantum electrodynamics, recently a Lorentz androach the Lorentz an€PT violating term is generated
CPT violating extension of the standard model was con-Unambiguously at low energy. Therefore, it is interesting to
structed and some of its quantum aspects were investigatétfderstand the discrepancies among these various results
[2]. As pointed out by Jackii4], the availability of higher ~Within the framework of perturbative theory. o
precision instruments nowadays allows a more precise test One posslble way is utilizing an '”.’p“?"ed. regularization
on some of fundamental principles to be carried out. Such aﬁChe_me' .It 1S known_that a regulan;aﬂon IS a temporary
investigation at least at the theoretical level is not compIetel)}md'f'c""t'On of the original t'heory.' Different regularization
unreasonable. The question is how this Lorentz T schemes have actually provided different methods to calcu-

violating term can naturally arise rather than be introduc:e«iat_e a quantum correction. Thus it is poss!ble to incur a regu-
by hand. arization dependent result. To avoid this occurrence, one

Based on the experience i@+ 1)-dimensional QEL5] should choose a regularization scheme that modifies the
where a parity-odd Chern-Simons term is induced fror;w thé:)riginal theory as little as possible and preserves the features
fermionic determinan{6,7], one natural guess is that this of thg orlgma! theory .SUCh. as symmetrles', etc,, as mugh as
Lorentz andCPT violation term can come from a Lorentz possible. In view of this criterion, differential regularization

q olati b i the fermioni h seems to be the most appropriate candifia®. This regu-
andCPT violation termyiys¢ in the fermionic sector. The 547 ati0n scheme is a relatively new calculation method and
explicit calculation carried out recently shows that this cas

: . Gt works for a Euclidean field theory in coordinate space. The
can happer{8,9], there has induced a Chern-Simons term;,antion of this regularization is {)ased on the ogservation
with its coefficientk,, proportional tob,,. However, sincé ¢ i coordinate space the UV divergence manifest itself in
the UV divergence usually emerges in a perturbative quang,q singylarity preventing the amplitude from having a Fou-
tum correction, one must flr_st choose a regularization schemeg,, transform into momentum space. So one can regulate the
to make the theory well defined. It was shown that the coefy, it de by writing its singular term as the derivative of
ficient of this radiatively induced Chern-Simons term is 5 qiher less singular function, which has a well defined Fou-
regularization dependeri,8]. In Pauli-Villars regulariza-  jor yransform, then performing the Fourier transform and
tion, this coefficient is zero, while dimensional regularizationdiscarding the surface term. In this way one can directly get
combined with the derivative expansion Iea}d§ to a definite, \vall defined amplitude. Up to now this method and its
nonzero valug8]. It also seems to us that this induced term y,jified version have been applied successfully to almost
cannot be observed by calculating the fermionic determinangyery aspects of field theories, including chiral anomaly,
in Fock-Schwinger proper time meth¢d0]. In particular, |4 dimensional and supersymmetric field theofi€3—17.
based on the hypothesis that the axial vector curignt  one can easily see that this regularization method actually
=y(x)y,vs¥(x) should be gauge invariant at arbitrary has never introduced an regulator to modify the Lagrangian
of the original theory, hence it does not pull the value of a
primitively divergent Feynman diagram away from its singu-
*Email address: wchen@theory.uwinnipeg.ca larity. In comparison with the usual route of calculating a
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guantum correction, this method has actually skipped over

the regularization procedure and straightforwardly yielded S dt 2y

the renormalized result. Therefore, the quantum correctior

obtained in this regularization method should be more uni- -’75‘6“@‘6‘0“ W‘Qfﬂ‘\
versal than any other regularization schemes and hence ce

provide a better understanding to above ambiguity. [ diadys

Not only these favourable features, differential regulariza-
tion has another great advantage over other regularization e ) . .
schemes. When implementing a differential regularization on G- 1 Vacuum polarization contributed by fermionic loop with
a quantum amplitude, one can introduce a renormalizatio@" insertion of zero-momentum composite operdtzyBysy in
scale for each singular term. These individual renormaliza$ither of the internal fermionic linesx  denoting the zero-
tion scales are not independent and the relations among thefPmentum composite operatfd*zyys .
can be fixed by the symmetries of theory. In other words, the
maintenance of the symmetries in the theory such as gauge
symmetry etc., can be achieved by choosing the indefinitelue to the utilization of thév ,-exact propagator. Here we
renormalization scales at the final stage of the calculation. Asan also get a natural zero-momentum transfer by consider-
will be shown later, this special feature of differential regu-ing the above Feynman diagrams.
larization is not only the reason why the regularization am- We need the free fermionic propagator
biguity can be explicitly parameterized by the ratio of two
renormalization scales, but also provide a guide for us to
search for a natural setting to eliminate this ambiguity.

I_n yiew _of this, in th?s paper we shall !nvestigate this S(X)= —— b~ )
radiatively induced ambiguity in terms of differential regu- 472 %2
larization. The model we shall start from is quantum electro-
dynamics with the inclusion of a Lorentz-a@P T-violating
axial vector term in the fermionic sectf8,9,18,

for the massless case, and
Efermion:Z(ﬂ_A_ l357’5) i, (1)

K1(mx)
X

()

m
_ o (X)=(=m)A(X)=—(h—m)
whereb, is a constant four-vector with a fixed orientation in A
space-time. The tern#ldys is gauge invariant, but it explic-
itly violates Lorentz andC PT symmetries, sinch, picks up  for the massive case, here and later on we denote
a preferred direction in space-time. We will see that this=|y| K, (x) is the first-order modified Bessel function of
Lorentz andCPT violation in the fermionic sector is the the second kind. The short-distance expansion of the massive
origin of the induced Chern-Simons term. scalar propagatoh (x) is

In Ref. [9], it was found that the radiatively induced
Chern-Simons term can arise in the low-energy, or equiva-
lently in the large fermionic mass limit. In principle, we can
also utilize theb ,-exact propagator in coordinate space to
calculate the vacuum polarization tensor. However, the exis-
tence of theb term make it impossible to write out this
b ,-exact propagator in coordinate space, and hence one can-
not proceed parallel to Ref5] in coordinate space. Thus we 111 1,
have to adopt a free fermionic propagator. The Feynman = 5|zt M In(mx)

47| X

diagram that will be calculated is the vacuum polarization
tensor but with an insertion of a zero-momentum composite ,
operatorfd*zydbysy in the internal fermionic lingFig. 1), mw..
since only this kind of diagram can give the lowest order * 4 [1=24(2)]+regular term} @
contribution inb and hence possibly leads to the induced
Chern-Simons term. Equivalently, this kind of Feynman dia-
gram can also be thought as the triangle diagram composed
of two vector currents and one axial vector currents but with
zero momentum transfer between the vector currents. In fact, We first have look at the massless case. The vacuum po-
the explicit calculation in Refl9] is very similar to that for ~larization with an insertion of the zero-momentum composite
the chiral anomaly, only the zero-momentum transfer beoperatorfd*zytysy on either of the fermionic lines is read
tween two vector gauge field vertices was achieved naturallps

A(X)= ! mK
(X)_ﬁ; 1(mx)
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I,,(Xy)=— b}\J d*Z{Tr ys 7\ S(z— X) ¥ S(X=Y) v, (Y =2) ]+ T s\ S(z=Y) v, S(y —=X) v, S(X—=2) ]}

1 d 1 d 1

- (4 2)3bh T(vsvwavﬂwm)f ﬁza(z WE A y)? v 52
1 1% 1 d 1
+Tr(757>\7a7y7b7,u7’c)J 523 (z— y) 7 (y_x)z &_Xc (X—Z)2
4 2 (Z7X)a (Z=y)e ¢ 1
(4 2)3b>\ Tr()’s%ﬁ’a‘)’#?’b?’u?’c)f (Z X)* (2 y)4 (9Xb (x—y)2
y)a (Z_X)c d 1
+Tr( 757%7&7V?b7u7C)f (Z y) (Z—X)4 a_yb (X_y)2:| (5)

Using the convolution integral given by EGA6), 1
,,(x)= be TrLys YA (YaYu b Yo ¥e™ Ya¥u ¥ Yu¥e)]

fd (z=X)u(2Y),

(Z x)4(z—y)* 9 1 1 & 1 1
>< —_— —_—— =
11_2 (X_y)#(x_y)y dX 4 7ac 6 ﬂXaaXbaXc X 3
=5, 2" (g)
2(x—y)? (Xx—y)?
X! 6 i + 6 + 6, 7)1 9
we obtain Poxe  oxa Xy x4

Obviously, 1kx* is too singular to have a Fourier transform
I, (X y)=11,,(x=y) into momentum space, so we must replace it by its differen-
tial regulated version

32t
1 1 In(x*Mm?
XTysYa(YaYu b ¥ ¥e™ Ya¥u ¥ VuYe)] (—4) =— ZD(—Z), (10
X X
(X=Y)a(X=Y)e "
X| Bpe— 22— , _ .
(X—vy) where[J= g~ denotes the four-dimensional Laplacian opera-
tor. Thus the differential regulated version of the vacuum
1 9 1 polarization tensor with an insertion of the zero-momentum

()

(x y)2 Xp (x—y)2 composite operatofd*zyd ys i is

For convenience, denoting-y asx and employing the dif-

ferential operation (X)= Tl s A (YaYu Yo Yo Yo Ya¥ ¥ ¥u¥o)]
XaXpXc 1 73 1 1 - .
x8 A8 X XydX. x2 24 x| — 1, 9 My 1 4 1
4 7% 9x, X2 6 IX0XpdXe X2
) J + J ) J 8
X [ R —_
ab 5Xc bc (9Xa cao—,xb X4, ( ) 1

(5 3 s 5 d ) In(x*M3)
+ | Sap=—+ Spe——+ pq— | O———|.
12| “3gx.  PCox,  “C@ax, X2

we can write the above vacuum polarization tensor in the
following form: (11
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Note that we chosen two different renormalization scales for

1/x* in the first and the third term of Eq9) since two sin- I, (x)=
gular terms can differ from a finite quantity. After contract-

ing with the externaly-matrix trace, we get

1
i Py TrLysYA(YaYu ¥ Yo ¥Ye™ Ya¥u Yo ¥u¥e)]

1 9 _Inx*™M%) 1 # 1

>< R R [ [
4 "3y, N 6 IX,0XpdXe x2
I, ,(x) b i M3 0
(X)=——bye, pa—| = +In— | O—
“ 16m4 "\ MR9xa| 3 M2) X2
L1 a _In(x®M%) g _In(x®M3)
1_2 abé,_xc X2 bCO—,_Xa X2
SR PRI e
123 nM_2 xfwyaa—xa (X).
a _In(x>M2)
Tk, e
(12
1|1 M
In the above calculation, we have used = | 42—
4723 (M3M 4 M) Y3
T ys M (YaYu Yo Ye™ Ya¥o Yo ¥u¥e)16cam— d
a a IxXp Xb)\e)\uvaﬁb‘(“)(x). (14)
a

=— 166}\M,,b(9—xb,

With the definitionM,=(M3;M,Mz)Y3 we still obtain the
9 same result as Eq12). It can be easily checked that any
Trlys A (Ya¥Yu Yo ¥oYe— 7’a7y7b7#7c)]5bc5 other differential operations on Xt/ will lead to the same
a conclusion: the ambiguity is only relevant to two indepen-
dent mass scales and uniquely parametrized by their ratio
InM{/M,. The physical renormalization conditions or sym-
metries will fix this ambiguity.
The vacuum polarization tens¢t2) shows that the fol-
lowing Lorentz andC P T violated action are indeed induced:

= 166}\#’/3%’
a

T ys YA(YaYu Yo Yo Ye— 'Ya'}’v')’b'}’,u')’c)]aab[?T
C

1

1 M,
= —166}\;“,0077, Sind:_z
C

—+2In—) f d*Xe, b, AF,. (15

8m2\3 M,

83
Tys M (Ya¥u Yoo ¥e™ 7a3’v7b7u7’c)]m It is remarkable that this radiatively induced Lagrangian has
: ¢ an ambiguity parametrized by an indefinite coefficient
InM;/M,. It is just the case recently pointed out by Jackiw
that the radiative correction is finite but undeterminaf].

The more interesting case is when the fermion is massive,
where Jackiw and Kosteleck®] successfully escaped from
the “no-go” theorem proposed by Coleman and Glashow

One may wonder why we only adopt two mass scales ii11] and found the existence of the radiatively induced
Eq. (11) for those four short-distance singular terms of Eq.Chern-Simons term in a nonperturbative way, so this case
(9). Of course, we can introduce four distinct mass scaleshas a direct physical relevance. The corresponding vacuum
then there appears polarization tensor is

J
:—SGAMVaWD. (13)
a
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bkf d4z{ Tr

d Ki[m(y—2)]
X '}’ca_yc_m y—z

’ a )Kl[m(z—X)]y( G )Kl[m(x—y)]

7’5%\( Yaa_za 7—x Yb&_xb_ X—y

I,.,(x=y) ( "
(X— =7\
a y 472

+Tr(u— v,x<—>y)]

m 7 Kim(z=x)] 4 Kimx=y)] & Ki[m(y=2)]

3

4

R T R

p 2) bxfd Z[ r(mnnmm%n)aza =X o x=y . vy-z

9 Kim(z—y)] ¢ Kim(y—x)] ¢ Kim(x—2z)]
T\ Ya Yo Yo YY) 5~ o yx e x—z
a C

+ 8m26)\;wa

(i Kl[m(Z—X)]) Kilm(x—y)] Ky[m(y—2)]

9z, Z—X X—y y—z

+K1[m(2—y)](i Kl[m(y_x)])Kl[m(X_Z)]+Kl[m(z_x)] Kilm(x—y)] iKl[m(y_Z)])
z—y IYa y—X X—2Z Z—X X—y Ia y—z

(16)

Using the convolution integralA14) for the massive case and denotingy asx, we can write the vacuum polarization tensor
(16) as follows:

m 22 J Ky(mx) é?
I, (x)=— a2 b\ ?[Tr(ysywamywyvc)—Tr(ywwayﬂby,ﬂc)]a—)% " axaachO(mX)
212 Ky(mx) J d Ky(mx)
7 S s Ko(mx) +8mKo(mx) . X 17)

One natural way to perform the operation on ELj) is to expand the term/ dx,[ K 1(mx)/x] 9/ (dx,0%.) Ko(mX), write its
singular terms in a derivative form and then contract it witlmatrix trace. However, we have no way to realize this due to
the difficulty in solving a differential equation with the modified Bessel function. Neither can we do it for the terms
Ki(mx)/xal 9xKo(mx) and Ko(mx) d/ dx,Ko(mx). Therefore, in contrast to the massless case, we shall first carry out the
trace calculation. Making use of the techniques collected in EBf5—(B4), we can work out above vacuum polarization
tensor as follows:

I _ m b.l16 d | d Kimx) 9 Kg(mx) 16 d | d Kimx) 9 Kg(mx)
pX)= o M 100 G 150 T ax,  x Mabu | o T X X, X
16e g Kymx) ¢° < 8 d |<1(mx)DK a2 2K1(mx) 9 <
B VICY Vv v v o(mx) Nwagy T x o(mMX) —8mMZ€, ,a X ox. o(mx)
d Kyi(mx)
+K0(mx)(97 » }
a
m? g (Kimx)\2 a9 [Kymx)\2 9 [Ki(mx)Ko(mx
T ] 2| (K9 Ko} w5
274 dXq X 0Xa X Xy X

Obviously, due to the asymptotic expansi@ the function[ K;(mx)/x]? is singular ax~0 and has no Fourier transform
into the momentum space. It should be emphasized that in deriving B2js-(B4) and(18) the substraction operation among
the singular terms such &k ,(mx)/x]? should not be naively carried out. It is analogous to the fact that in momentum space
two divergent terms with the same form but opposite sign cannot be canceled, until after a regularization scheme is imple-
mented so that they become well defined and the substraction operation can work safely. Otherwise, a finite term will probably
be lost since in general the difference of two infinite quantities is not zero. In fact, the operation keeping the singular terms
untouched before performing the regularization is a crucial point in the differential regularization method.

Unfortunately, as above, due to the difficulty in solving a differential equation with the modified Bessel function, we still
cannot write the singular functidik ;(mx)/x]? as the derivative of another less singular function. However, we can consider
the asymptotic expansidd). One can easily see that in E48) the singularity at short distance is only carried by the leading
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term 14, the other terms are finite and hence they are exactly canceled. Therefore, making us€Lof &ggin, we obtained
the regulated form for the vacuum polarization tensor in the massive case:

- m? ) 1 9 DInszi Inx?M3 3 [Ky(mx)Ko(mx)
)= 27t MM T o0 axg x2 x? IXa X

1 My 0 1 d |Ki(mx)Kg(mx)

= —ln—_ —— 3__ |~ 7 P 7

2774 b)\ﬁ)\luva |I"IM2 &XaDXZ +m &Xa X

1 M, d d [Ki(mx)Kgy(mx)

_ 2 ) 3
Tr4bxewya[4w InM2 axa5 (X)+m ﬁxa[ " . (19

The above vacuum polarization tensor can be expressed in 3

momentum space by performing its Fourier transform. Ac- 115 ,u(P)|p2=0= = €xpvai Pa- (23
cording to the standard differential regularization procedure 8m

[12], we have

. It is remarkable that a natural choib&; =M, does not cor-
HW(D)=j d*xe™ P *II,,(x) respond to a subtraction in the dispersive representation
given in Ref.[9].
2 M The above conclusion is not strange to us and the pro-

1
|ﬂM— found reason lies in the excellent features possessed by dif-
2 ferential regularization. As it is shown above, the basic op-
eration in differential regularization is replacing a singular

= ) b)\e)\,uval Pa
an

3
m —Ki(mx)Kg(m L . ; .
+— d&g'“w term by the derivative of another less singular function. This
4r? X operation has provided a possibility to add arbitrary local

) terms to the higher order amplitude since we have to solve a
M, m arcsintip/(2m)]

It —
M2 2p 1+p?/(4m?)

= _Zb)\f)\,u.yeﬂ Pa
T

2 .
= _zb)\f)\,uval pa
w

XIn

differential equation for noncoincident poinfd9]. When

performing such a operation, we are introducing a new arbi-

trary local term into the quantum effective action. According

M m to renormalization theory, the introduction of an arbitrary

|”M_27L 2 m local term into the amplitude of a Green function is equiva-

P P lent to the addition of a finite counterterm to the Lagrangian.

\/WJF p/(2m) Therefore, from this viewpoint, differential regL_JIarization
. (20 can lead to a more general quantum effective action than any

V1+p</(4m?)—p/(2m) other regularization schemes. In particular, differential regu-

o ) ) larization keeps all the ambiguities to the final stage of the

As Ref.[5], the radlatlvelyz induced Chern-Simons term cancy|cylation, and these ambiguities can only be fixed by im-
be defined at low energg®=0 (or equivalently at largen  osing some additional physical requirements or resorting to
limit) some more fundamental principle. This special feature pre-
sented by differential regularization has formed a sharp con-
m,,.(p)2 :ie i et 4 = 21) trast to other regularization schemes such as dimensional,

At EJIpT=0"" 5 Fhuva Pa M, 4] Pauli-Villars, and cutoff regularization, etc. These regular-

ization methods, together with the given renormalization pre-

Equation(21) shows that the coefficient of the induced scription, can fix the those arbitrary terms automatically at
Chern-Simons term has a finite ambiguity, which was explicthe beginning. In different regularization schemes, these lo-
itly parametrized by the ratio of two renormalization scales,cal terms are different. This is the reason why different regu-
M, /M,. Especially, Eq.(21) has contained all the results larization schemes can induce different Chern-Simons terms.

obtained in other regularization schemes. For=e~ M, It should be emphasized that no regularization can claim that
we get the conclusion in Pauli-Villars regu|ariza’[ion: it giveS the rlght value for this induced term. In differential
regularization, this ambiguity is explicitly parametrized by

I, ., (P)|p2=0=0, (220  the ratio of two indefinite renormalization scales and the re-

sults obtained in other regularization schemes can be repro-
while if we chooseM ;=e~ Y18, then the result in dimen- duced by an appropriate choices on this arbitrary ratio.
sional regularizatior{8] and the nonperturbative approach Therefore, one can say that differential regularization has
[9] is reproduced, yielded a more universal result than any other regularization
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method, since it does not impose any preferred choice on thee obtain
Green function at the beginning.

In summary, we have investigated the Lorentz &®T
violating Chern-Simons term induced by radiative correc- O,f(x—y)=—4m? 5
tions in differential regularization. The ambiguous results (x=y)
obtained in other regularization schemes are universally ob- ] ) ] ) )
tained and especially, the ambiguity is quantitively param-W'th the aid of the(four-d|men5|c_)na)l spherical symmetric
etrized by the ratio of two renormalization scales. This amform , to , Zthe , Laplacian operator [,
biguity should be fixed by renormalization conditions or =4/X°d/dx’[(x?)°d/dx"], the solution to the differential
certain fundamental physical symmetries rather than an arb@duation(A4) can be easily found,
trary choice on the mass scales. For example, if one requires 5 5 5
the Lagrangian density rather than the action to be gauge f(x=y)= =7 In[A“(x=y)“], (A5)
invariant, one must choosk!;=e Y*M,, and hence the
generated Chern-Simons term vanishes. Another choice is, t being the cutoff. Thus we obtain the convolution integral

require the action angﬂd“xji (i.e., the axial vector current formula

jiz Yy, vs¥ at zero momentumto be gauge invariant, as

done by Jackiw and Kosteleck®]. In this case, one must f 4 (z—x)#(z—y)V: 2(X—y)#(X—y)V

chooseM ;=e~ 1%\, and consequently, the Chern-Simons (z—x)4(z—y)* (x—y)* '

term is generated unambiguously. It should be emphasized (A6)

that the natural prescription on the renormalization scales,

M;=M,, can be taken only when it corresponds to certain Now we turn to the massive case, where the situation is

physical renormalization condition. quite complicated. From Eq16), what we need to deter-
mine is

(A4)

2

T
7| o
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gineering Research Council of Canada. | am very grateful to g(X—y)=J d4ZK1[m(z—x)] Kl[m(z—y)]. (A7)
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tinuous discussions and improvement on this manuscript. |
would like to thank Dr. M. Carrington and Professor R.

Kobes for their encouragement and help. | am also obliged to (CJ—m?)A(x)=(0—m?)
Dr. M. Perez-Victoria for his useful discussions on differen-
tial regularization.

1 m
a2 ;Kl(mx)] =6"(x),
(A8)

we act the operatoi{,—m?) on both sides of EqA7) and
APPENDIX A: DERIVATION OF CONVOLUTION

obtain
INTEGRAL
One important technique in our calculation is the applica- oo S Kamx=y)]
tion of the convolution integrals. Here we give a detail deri- (Ox=mAg(x—y)=4m m(x—y) (A9)
vation.
In the massless case, there exists that Repeating the above operation on E49), we get
(z=X),(z=y), 1 49 4 J 167"
4= TR Jv_ T T 4 - T
f d Z(Z_X)4(Z_y)4 4 (?X,u ay, d Z(Z—X)Z(Z—y)zl (Dx_mz)zg(x): m2 5(4)()()- (AlO)
(A1)
We need to write the integratiofl/[ (z—x)%(z—y)?] as an Upon considering the Fourier transform @fx),
explicit function ofx—y. So we first assume ”
p ip-
g(X)=J 2 )4g(p)e"’ % (A11)
f(x—y)=J dz————. (A2) T
(z=x)%(z—y)? : .
Eq. (Al1l) directly yields
Acting the four-dimensional Laplacian operatar, on the
both sides of Eq(A2) and using the formula 167*
9IP)= =553 (A12)
1 m< (p“+m°)
Oy—=—475Y(x), (A3) _ : :
X2 g(x) can be obtained by performing the Fourier transform

085007-7



W. F. CHEN PHYSICAL REVIEW D 60 085007

167 [ d%p 1 _ Thus we have finally worked out the important convolution
g(x)= f 2 (Pt 2)Ze'p'X integral formula
™ pTtm

1 )
=—f d —f d @ sin? ge'Px cos?

m?Jo p(p +m2)2

f d4ZK1[m(Z—X)] Kim(z—y)] 2#*

xfo SIh(pd(p qu 7 x 7=y —FKo[m(X—y)L
(A14)

472 °°d p? 3.(p%) 2772K (M)
=— _— X)= —Kqy(mX).
m2xJo p(p2+m2)2 P m2 0

(A13) second kind.

APPENDIX B: DIFFERENTIAL OPERATIONS

Some differential calculation techniques used in deriving the massive vacuum polarization(i&nssrcollected in this
appendix:

d Kymx) ¢°

Tr(%vwav,ﬂwﬂc)ax x Ixax. Ko(mx)
a C
g d | d Kimx) 9 Kg(mx) d | d Kimx) 9 Kg(mx)
Naubgy lax, X x, X bl X X, X
+8 7 Kymy & K +4 7 KMy oy B1
fhﬂvaax X (9Xa(7Xb o(mX) fxﬂvaaxa X o(mX), ( )
a1 a Ky(mx o K d Ki(mx) 9 Ky(my] 1 d d [Ky(mx)\2
Ehab gl xe x0T e G M T T T 2 M g Xk, | T x
1 d [Ky(mx))|?
= fmew”ba—xb( " : (B2)
9 Kymx) & « 1(mx) l(mx 1 d [K;(mx)
Amragy TX aXadXg o(mMx)= mf”’”aax X XaXbS ax| T x
B 1 9 [Ky(mx) 2+ d Kymx)\ d Ky(mx)
B me”“”azaxa X Xy X dx X
1 9 (Kimx)\2 a9 Kymx) Kl(mx)Jr d K
T TMewal 25| T x| Tk x x TaxKamY
1 g [Kymx)\? 1 0 [Ky(mx) 2+ g Ky(mx d
TMewaz g T x| T2l x ) e x ax ™
1 0 [Kimx)\2 1 0 [Kymx)\2
Méxwra) 2 5% |~ x 2%, x
d Ki(mx) K1i(mx)
—a—Xa > Ko(mx) + »
1 0 [Kymx)\? J [Kymx)\? d Ky(mx)
= - —m— +m— + —
Enuval T Mo | T x Xa\ X mKo(m )axa x |
(B3)
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Ko(X) being the zeroth-order modified Bessel function of the
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d Kqi(mx) d Ki(mx)| Ki(mx) d Ky(mx)
GA;Lvaa_Xa TDKO(mX)__mG)\,uva(?_Xa X X + d_X X
d [Ky(mx))2 d [Ky(mx)\2 d Ky(mx

=€\ a _Zm(?_xa(g) +mﬁ—xa(£) +m2KO(mx)a—Xa¥ . (B%
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