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Critical exponents from seven-loop strong-couplingf4 theory in three dimensions
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~Received 4 December 1998; revised manuscript received 7 June 1999; published 9 September 1999!

Using strong-coupling quantum field theory, we calculate highly accurate critical exponentsn,h following
from new seven-loop expansions in three dimensions. Our theoretical value for the critical exponenta of the
specific heat near thel point of superfluid helium isa520.0129460.00060, in excellent agreement with the
space shuttle experimental valuea520.0128560.00038.@S0556-2821~99!01312-0#

PACS number~s!: 11.10.Gh, 11.10.Hi
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The accurate calculation of critical exponents from fie
theory presents a theoretical challenge, since the relevan
formation is available only from divergent power series e
pansions. The results are also of practical relevance, s
they predict the outcome of many possible future exp
ments on many second-order phase transitions. In re
work @1# we have developed a novel method for extract
these exponents from such expansions via a strong-coup
theory of scalar fields with af4 interaction. The fields are
assumed to haven components with an action which is O(n)
symmetric. As an application, we have used available
loop perturbation expansions of the renormalization c
stants in three dimensions@2–4# to calculate the critical ex-
ponents for all O(n) universality classes with high precision
Strong-coupling theory works also in 42e dimensions@6#,
and is capable of interpolating between the expansion
42e with those in 21e dimensions of the nonlinears model
@7#.

The purpose of this note is to improve significantly t
accuracy of our earlier results in three dimensions@1# by
making use of new seven-loop expansion coefficients for
critical exponentsn and h @8# and, most importantly, by
applying a more powerful extrapolation method to infin
order than before. The latter makes our results as accura
those obtained by Guida and Zinn-Justin@9# via a more so-
phisticated resummation technique based on analytic m
ping and Borel transformations, which in addition takes in
account information on the large-order growth of the exp
sion coefficients. We reach this accuracy without using t
information which, as we shall demonstrate at the end in S
0556-2821/99/60~8!/085001~15!/$15.00 60 0850
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V, has practically no influence on the results, except for lo
ering v slightly ~by less than;0.2%). The reason for the
little importance of the large-order information in our a
proach is that the critical exponents are obtained from ev
ations of expansions at infinite bare couplings. The inform
tion on the large-order behavior, on the other hand, spec
the discontinuity at the tip of the left-hand cut which starts
the origin of the complex-coupling constant plane@10#. This
is too far from the infinite-coupling limit to be of relevance
In our resummation scheme for expansion in powers of
bare coupling constant, an important role is played by
critical exponent of approach to scalingv, whose precise
calculation by the same scheme is crucial for obtaining h
accuracies in all other critical exponents. It is determined
the condition that the renormalized coupling strengthg goes
against a constantg* in the strong-coupling limit. The
knowledge ofv is more yielding than the large-order info
mation in previous resummation schemes in which the c
cal exponents are determined as a function of the renorm
ized coupling constantg near g* which is of order unity,
thus lying a finite distance away from the left-hand cut in t
complexg plane. Although these determinations are sen
tive to the discontinuity at the top of the cut, it must b
realized that the influence of the cut is very small due to
smallness of the fugacity of the leading instanton, which c
ries a Boltzmann factore2const/g.

We briefly recall the available expansions@4# of the
renormalized couplingḡ[g/m in terms of the bare coupling
ḡ0[g0 /m for all O(n),
ḡ/ḡ0512ḡ0~81n!1ḡ0
2~2108/271514n/271n2!1ḡ0

3~2878.79371932312.63444671n232.54841303n22n3!

1ḡ0
4~11068.0618315100.403285n1786.3665699n2148.21386744n31n4!

1ḡ0
5~2153102.85023285611.91996n217317.702545n221585.1141894n3265.82036203n42n5!

1ḡ0
6~2297647.14811495703.313n1371103.0896n2144914.04818n312797.291579n4185.21310501n51n6!,

~1!

and of the critical exponents@5#,
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v~ ḡ0!52112ḡ0~81n!2ḡ0
2~1912/91452n/912n2!1ḡ0

3~3398.85796411140.946693n195.9142896n212n3!

1ḡ0
4~260977.50127226020.14956n23352.610678n22151.1725764n322n4!

1ḡ0
5~1189133.1011607809.998n1104619.0281n217450.143951n31214.8857494n412n5!

1ḡ0
6~224790569.76214625241.87n23119527.967n22304229.0255n3214062.53135n42286.3003674n522n6!,

~2!

h~ ḡ!5ḡ0
2~16/2718n/27!1ḡ0

3~29.08653745925.679085912n20.5679085912n2!

1ḡ0
4~127.4916153194.77320534n117.1347755n210.8105383221n3!

1ḡ0
5~21843.4919921576.46676n2395.2678358n2236.00660242n321.026437849n4!

1ḡ0
6~28108.60398126995.87962n18461.481806n211116.246863n3162.8879068n411.218861532n5!, ~3!

hm~ ḡ!5ḡ0~21n!1ḡ0
2~2523/272316n/272n2!1ḡ0

3~229.37445441162.8474234n126.08009809n21n3!

1ḡ0
4~23090.99603722520.848751n2572.3282893n2244.32646141n32n4!

1ḡ0
5~45970.71839142170.32707n112152.70675n211408.064008n3165.97630108n41n5!

1ḡ0
6~2740843.19852751333.064n2258945.0037n2239575.57037n322842.8966n4290.7145582n52n6!, ~4!

TABLE I. Fluctuation determinants and integrals over extremal field solution.

D DL DT I 1 I 4 I 6 H3

3 10.54460.004 1.45716.0001 31.691522 75.589005 659.868352 13.563312
2 135.360.1 1.46560.001 15.10965 23.40179 71.08023 9.99118
to

e

ar
on
n

s

8

wherehm[22n21. To save space we have omitted a fac
1/(n18)n accompanying each powerḡ0

n on the right-hand
sides. The additional seventh-order coefficients have b
calculated forn50, 1, 2, 3 and are@8# @these without a factor
1/(n18)7 on the right-hand side#

h (7)55
20.2164239372

20.2395467913

20.2414247646

20.2333645418
6 ḡ0

7 ,

n21(7)55
26.0998295658

27.0482198342

27.3780809849

27.3808485089
6 ḡ0

7 for 5
n50

n51

n52

n53
6 . ~5!

It is instructive to see how close the new coefficients
to their large-order limiting values derived from instant
calculations, according to which the expansion coefficie
with respect to the renormalized couplingḡ should grow for
large orderk as follows@11#:
08500
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v (k)5gv~2a!kk!kG~k1bv!S 11
cb

(1)

k
1

cb
(2)

k2
1 . . . D , ~6!

h (k)5gh~2a!kk!kG~k1bh!S 11
ch

(1)

k
1

ch
(2)

k2
1 . . . D , ~7!

h̄ (k)5gh̄~2a!kk!kG~k1bh̄!S 11
ch̄

(1)

k
1

ch̄
(2)

k2
1 . . . D , ~8!

TABLE II. Growth parameter ofD53 perturbation expansion
of b(ḡ), h(ḡ), andh̄5h1n2122.

n50 n51 n52 n53

a 0.1662460 0.14777422 0.1329968 0.1209061
bv 4 9/2 9 11/2
bh̄ 3 7/2 4 9/2
bh 2 5/2 3 7/2
1023g 8.5489~16! 3.9962~6! 1.6302~3! 0.59609~10!

1033gh̄ 10.107 6.2991 3.0836 1.2813
1033gh 2.8836 1.7972 0.8798 0.3656
1-2
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CRITICAL EXPONENTS FROM SEVEN-LOOP STRONG- . . . PHYSICAL REVIEW D60 085001
FIG. 1. Precocity of large-order behavior of coefficients of the expansions of the critical exponentsv, h̄[n211h22, andh in powers
of the renormalized coupling constant. The dots show the relative deviations exact/asymptotic-1. The curves are plots of the a
expressions in Eqs.~6!–~8! listed in Table III. The curve forv is the smoothest, promising the best extrapolation to the next orders,
consequences to be discussed in Sec. V.

FIG. 2. Strong-coupling values for the critica
exponentn21 obtained from expansion~4! via
formula ~14!, for increasing ordersN52,3, . . . ,7
of the approximation. The exponents are plott

against the variablexN5e2cN12v
and should for

largen lie on a straight line. Here at finiteN, even
and odd approximants may be connected
slightly curved parabolas whose common inte
section determines the critical exponents forN
5`. More details on the determination of th
constantc are given in the text. The numbers o
top give the extrapolated critical exponents an
in parentheses, the highest approximants, to ill
trate the extrapolation distance.
085001-3
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TABLE III. Coefficients of the large-order expansions~6!–~8!, to fit the known expansion coefficients ofv, h, h̄. The coefficientsh (k) possess
two shorter expansions for even and oddk.

n c(1) c(2) c(3) c(4) c(5) c(6)

v 0 0.2630147511231 3.440818282282231.7673335904347 209.94304685908772387.982076950413 212.15657395383

1 1.6353509905175 28.762940856111 32.5298724631003 49.56939798556202198.550118637547 130.53935976592

2 4.1903240993241232.521882201016 159.23160834532432271.5678237829086 185.521462986276236.220362093550

3 8.0659054235535269.138003762384 356.19870179271732773.4084307341978 787.4105682986742297.863117806916

h̄ 0 15.47452873233492263.105249597920 1695.85217994178 24797.25478881458 6198.2112689101822825.37877442787

1 10.94704206385432169.697930580512 1074.82692242305 22886.57808941584 3577.4865530552921577.19837665961

2 1.2481454871524 60.9324565140402409.59535356475 1526.62040773429 22300.49464074955 1163.4255373249

3 225.8032867124555 508.52365933756523253.93912011988 9876.17157690861213307.48621904672 6257.5906544943

ho 0 26.3634296712273 54.7969857339922209.212694395258 159.7791383324933

1 25.8608156341154 58.1732922278722237.158174423958 183.8456978302008

2 25.1086981057007 64.4651051506092285.116154230741 224.7597471858332

3 24.2039863427233 76.2691471289152364.452995945739 291.3878351595474

he 0 25.6929922203758 15.551243915764 61.12469347544379

1 25.3245881267711 14.110708087849 81.2312043328075

2 24.5203425601138 9.799960635959 117.4131477198922

3 23.1970976073075 1.705210978430 176.4615812743069
n
ve

ion
I.

n

where h̄[h1n2122. The growth parametera is propor-
tional to the inverse Euclidean action of the classicalinstan-
ton solutionwc(x) to the field equations

a5~D21!
16p

I 4

1

N18
50.14777423

9

N18
. ~9!

The quantityI 4 denotes the integralI 45*dDx@wc(x)#4. Its
numerical values in two and three dimensionsD are listed in
Table I. The growth parametersbv ,b_h,bh̄ are directly re-
lated to the numberD1n of zero-modes in the fluctuatio
determinant around the instanton~associated withD transla-
tions,n21 rotations, and one dilation!. Their values are

bv5bb115 1
2 ~D151n!,

bh5 1
2 ~D111n!, bh̄5 1

2 ~D131n!. ~10!
08500
The prefactorsgb ,gh ,gh̄ in Eqs.~6!–~8! require the calcu-
lation of the full fluctuation determinants. This yields

gb[
~n18!2(n1D25)/2323(D22)/2

p31D/2G@21~1/2!n#
S I 1

2

I 4
D 2

3S I 6

I 4
21D D/2

DL
21/2DT

2(n21)/2e21/a. ~11!

The constantsI 1 , I 2 , I 6 are are generalizations of the abo
integral I 4 : I p5*dDx@wc(x)#p, and DL and DT are found
from the longitudinal and transverse parts of the fluctuat
determinants. Their numerical values are given in Table
The constantgb is the prefactor of growth in the expansio
coefficients of theb function @the integral overv(ḡ)]:
l

ed

ts
n-
x-
FIG. 3. Strong-coupling values for the critica
exponenth obtained from the expansion~3! via
formula ~14! for increasing ordersN53, . . . ,7 of
the approximation. The exponents are plott

against xN5e2cN12v
. Even approximants are

connected by straight line and odd approxima
by slightly curved parabolas, whose common i
tersection determines the critical exponents e
pected forN5`.
1-4
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CRITICAL EXPONENTS FROM SEVEN-LOOP STRONG- . . . PHYSICAL REVIEW D60 085001
FIG. 4. Plot analogous to Fig. 3, but the e
trapolation is found from the intersection of th
straight lines connecting the last two even a
odd approximants. The resulting critical expo
nents differ only little from those obtained in Fig
3, the differences given an estimate for the sy
tematic error of our results.
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b (k)'gb(2a)kk!G(k1bb). The prefactors ingv , gh , and
gh̄ in Eqs.~6!–~8! are related togb by

gv52agb , gh5gh̄

2H3

I 1D~42D !
,

gh̄5gb

n12

n18
~D21!4p

I 2

I 1
2

, ~12!

where I 25(12D/4)I 4 and H3 are listed in Table I. The
numerical values of all growth parameters for are listed
Table II. In Fig. 1 we show a comparison between the ex
coefficients and their asymptotic forms~8!.

The critical exponents are derived from the divergent
pansions~1!–~5! by going to the limitḡ0→`. In a theory
with scaling behavior, the renormalized coupling constanḡ
tends to a limiting valueḡ* as follows:

ḡ~ ḡ0!5ḡ* 2
const

ḡ0
v/e

1•••, ~13!

where g* is commonly referred to as the infrared-stab
fixed point, andv is called the critical exponent of the ap
proach to scaling. The same exponent governs the appr
08500
n
ct

-

ch

to scaling of every functionG(ḡ) which behaves likeG(ḡ)

5G(ḡ* )1G8(ḡ* )3const/ḡ0
v1••• .

How do we recover theḡ0→` limits of a function f (ḡ0)
if we know the firstN terms of its asymptotic expansio
f N(ḡ0)5(n50

N anḡ0
n? Extending systematically the behavi

~13! we shall assume thatf (ḡ0) approaches its constant lim
iting value f * in the form of an inverse power series@12#
f M(ḡ0)5(m50

M bm(ḡ0
2v)m. This strong-coupling expansio

has usually a finite convergence radiusgs ~see @1,10,13#!.
The Nth approximation to the valuef * is obtained from the
formula

f N* 5optĝ0F (j 50

N

a
j
ĝ0

j (
k50

N2 j S 2 j /v

k D ~21!kG , ~14!

where the expression in brackets has to be optimized in
variational parameterĝ0. The optimum is the smoothes
among all real extrema. If there are no such extrema, wh
happens for the even approximants, the turning points se
the same purpose.

From the theory@1#, we expect the exact values to b
approached exponentially fast with the orderN of the avail-
able expansions, with the error decreasing likee2cN12v

. In
l

s

by
r-

ti-
FIG. 5. Strong-coupling values for the critica
exponent g5n(22h)5(22h)/(22hm) ob-
tained from a combination of the expansions~3!
and ~4! via formula ~14! for increasing ordersN
52,3, . . . ,7 of theapproximation. The exponent

are plotted against the variablexN5e2cN12v
and

should lie on a straight line in the limit of largeN.
Even and odd approximants are connected
slightly curved parabolas whose common inte
section with the vertical axis determines the cri
cal exponents expected forN5`. The determi-
nation of the constantc is described in the text.
1-5
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TABLE IV. Our seven-loop critical exponents~superscript s!, compared with results obtained by other techniques. The superscripts
g refer to other seven-loop expansions inD53 dimensions~f P @9#, g P @8#!, the other superscripts a–e refer to six-loop results o
Padé-Borel resummation~a P @4#, b P @3#, c P @15#!, and to five-loop expansions ine542D ~dP @16#, eP @17#!. For each of our results
we give the highest approximation before the extrapolated one in parentheses. Only the first three rows and thev values with superscript a
in the entries forn50,1,2,3 are new with respect to the table in Ref.@1#.

n gc g(g6,7) h(h6,7) n(n6,7) a b v (v6)

0 1.161~1.159! s 0.031160.001s 0.5883~0.5864! s 0.810~0.773!
1.41360.006f 1.16060.002f 0.028460.0025f 0.588260.0011f 0.23560.003f 0.302560.0008f 0.81260.016f

1.39g 1.156960.0004g 0.029760.0009g 0.587260.0004g

1.402a 1.160a 0.034a 0.589a 0.231a 0.305a

1.42160.004b 1.16160.003b 0.02660.026b 0.58860.001b 0.23660.004b 0.30260.004b 0.79460.06b

1.42160.008c 1.161560.002c 0.02760.004c 0.588060.0015c 0.302060.0015c 0.8060.04c

1.16060.004e 0.03160.003e 0.588560.0025e 0.302560.0025e 0.8260.04e

1 1.241~1.236! s 0.034760.001s 0.6305~0.6270! s 0.805~0.772!
1.41160.004f 1.24060.001f 0.033560.0025f 0.630460.0013f 0.10960.004f 0.325860.0014f 0.79960.011f

1.40g 1.237860.0006g 0.035560.0009g 0.630160.0005g

1.419a 1.239a 0.038a 0.631a 0.107a 0.327a 0.781a

1.41660.0015b 1.24160.004b 0.03160.011b 0.63060.002b 0.11060.008b 0.32460.06b 0.78860.003b

1.41660.004c 1.241060.0020c 0.03160.004c 0.630060.0015c 0.325060.0015c 0.7960.03c

0.03560.002d 0.62860.001d 0.8060.02d

1.123960.004e 0.03760.003e 0.630560.0025e 0.326560.0025e 0.8160.04e

2 1.318~1.306! s 0.035660.001s 0.6710~0.6652! s 0.800~0.772!
1.40360.003f 1.31760.002f 0.035460.0025f 0.670360.0013f 20.01160.004f 0.347060.0014f 0.78960.011f

1.40g 1.317860.001g 0.037760.0006g 0.671560.0007g

1.408a 1.315a 0.039a 0.670a 20.010a 0.348a 0.780a

1.40660.005b 1.31660.009b 0.03260.015b 0.66960.003b 20.00760.009b 0.34660.009b 0.7860.01b

1.40660.004c 1.316060.0025c 0.03360.004c 0.669060.0020c 0.345560.002c 0.7860.025c

0.03760.002d 0.66560.001d 0.7960.02d

1.31560.007e 0.04060.003e 0.67160.005e 0.348560.0035e 0.8060.04e

3 1.390~1.374! s 0.035060.0005s 0.7075~0.7004! s 0.797~0.776!
1.39160.004f 1.39060.005f 0.035560.0025f 0.707360.0030f 20.12260.009f 0.366260.0025f 0.78260.0013f

1.39g 1.392660.001g 0.037460.0004g 0.709660.0008g

1.392a 1.386a 0.038a 0.706a 20.117a 0.366a 0.780a

1.39260.009b 1.39060.01b 0.03160.022b 0.70560.005b 20.11560.015b 0.362b 0.7860.02b

1.39160.004c 1.38660.004c 0.03360.004c 0.70560.003c 0.364560.0025c 0.7860.02c

0.03760.002d 0.7960.02d 0.7960.02d

1.39060.010e 0.04060.003e 0.71060.007e 0.36860.004e 0.7960.04e

4 1.451~1.433! 0.031~0.0289! 0.737~0.732! 0.795~0.780!
1.375a 1.449a 0.036a 0.738a 20.213a 0.382a 0.783a

5 1.511~1.487! 0.0295~0.0283! 0.767~0.760! 0.795~0.785!
1.357a 1.506a 0.034a 0.766a 20.297a 0.396a 0.788a

6 1.558~1.535! 0.0276~0.0273! 0.790~0.785! 0.797~0.792!
1.339a 1.556a 0.031a 0.790a 20.370a 0.407a 0.793a

7 1.599~1.577! 0.0262~0.0260! 0.810~0.807! 0.802~0.800!
1.321a 1.599a 0.029a 0.811a 20.434a 0.417a 0.800a

8 1.638~1.612! 0.0247~0.0246! 0.829~0.825! 0.810~0.808! 0.848
1.305a 1.637a 0.027a 0.830a 20.489a 0.426a 0.808a
085001-6



CRITICAL EXPONENTS FROM SEVEN-LOOP STRONG- . . . PHYSICAL REVIEW D60 085001
TABLE IV. ~Continued).

n gc g(g6) h(h6) n(n6) a b v (v6)

9 1.680~1.643! 0.0233~0.0233! 0.850~0.841! 0.817~0.815! 0.854
1.289a 1.669a 0.025a 0.845a 20.536a 0.433a 0.815a

10 1.713~1.670! 0.0216~0.0220! 0.866~0.854! 0.824~0.822!0.860
1.275a 1.697a 0.024a 0.859a 20.576a 0.440a 0.822a

12 1.763~1.716! 0.0190~0.0198! 0.890~0.877! 0.838~0.835!
1.249a 1.743a 0.021a 0.881a 20.643a 0.450a 0.836a

14 1.795~1.750! 0.0169~0.0178! 0.905~0.894! 0.851~0.849!
1.227a 1.779a 0.019a 0.898a 20.693a 0.457a 0.849a

16 1.822~1.779! 0.0152~0.0161! 0.918~0.907! 0.862~0.860!
1.208a 1.807a 0.017a 0.911a 20.732a 0.463a 0.861a

18 1.845~1.803! 0.0148~0.0137! 0.929~0.918! 0.873~0.869!
1.191a 1.829a 0.015a 0.921a 20.764a 0.468a 0.871a

20 1.864~1.822! 0.0125~0.0135! 0.938~0.927! 0.883~0.878!
1.177a 1.847a 0.014a 0.930a 20.789a 0.471a 0.880a

24 1.890~1.850! 0.0106~0.0116! 0.950~0.939! 0.900~0.894!
1.154a 1.874a 0.012a 0.942a 20.827a 0.477a 0.896a

28 1.909~1.871! 0.009232~0.01010! 0.959~0.949! 0.913~0.906!
1.136a 1.893a 0.010a 0.951a 20.854a 0.481a 0.909a

32 1.920~1.887! 0.00814~0.00895! 0.964~0.955! 0.924~0.915!
1.122a 1.908a 0.009a 0.958a 20.875a 0.483a 0.919a

aSix-loop results of a Pade-Borel resummation,P @4#.
bSix-loop results of a Pade-Borel resummation,P @3#.
cSix-loop results of a Pade-Borel resummation,P @15#.
dFive-loop expansions ine542D, P @16#.

eFive-loop expansions ine542D, P @17#.
f Seven-loop expansions inD53 dimensions,P @9#.
gSeven-loop expansions inD53 dimensions,P @8#.
hOur seven-loop critical exponents.
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ce-
order to extrapolate our results toN5`, we plot the data
against the variablesxN5e2cN12v

~see also Addendum to
Ref. @1#!. This is done separately for even and odd appro
mants, since the former stem from extrema, the latter fr
turning points. The unknown constants c c are determined b
fitting to each set of points a slightly curved parabola a
making them intersect the vertical axis at the same po
which yields the extrapolated critical exponent listed on
of each figure~together with the seventh-order value in p
rentheses, and the optimal parameterc).

Following this procedure, we find from the expansion~4!
for n21 the approximantsnN

21 via formula ~14!. Extrapolat-
ing separately even and odd approximantsnN , we determine
the limiting valuen, as shown in Fig. 2. Thev values used
for this extrapolation are those of Ref.@6#, listed in the last
column of Table IV:

v655
0.810

0.805

0.797

0.790
6 for 5

n50

n51

n52

n53
6 . ~15!
08500
i-

d
t,
p

They lead to then values n75$0.5883, 0.6305, 0.6710
0.7075%, the entries in this vector referring ton50,1,2,3.
Since these results depend on the critical exponentsv, it is
useful to study the dependence of the extrapolation onv,
with the result

n755
0.588310.04173~v20.810!

0.630510.04003~v20.805!

0.671010.05533~v20.800!

0.707510.18913~v20.797!
6 for 5

N50

N51

N52

N53
6 .

~16!

For the critical exponenth, we cannot use the same e
trapolation procedure, since the expansion~3! starts out with
ḡ0

2, so that there exists only an odd number of approxima
hN . We therefore use two alternative extrapolation pro
dures. In the first we connect the even approximantsh2 and
h4 by a straight line and the odd onesh3 ,h5 ,h7 by a
1-7



HAGEN KLEINERT PHYSICAL REVIEW D 60 085001
TABLE V. Coefficients of extended perturbation expansions obtained from the large-order expansions~6!–~8! for v, hm , h up to g12.

k n50 n51 n52 n53

v (k) 0 21 21 21 21
1 2 2 2 2
2 295/72 2308/243 2272/225 21252/1089
3 1.559690758 1.404278391 1.259667768 1.131786725
4 22.236580484 21.882634142 21.589642400 21.351666500
5 3.803133000 2.973285060 2.346615000 1.875335400
6 27.244496000 25.247823000 23.867143000 22.904027000
7 15.0706772 10.0938530 6.9384728 4.8954471
8 233.8354460 220.9045761 213.3833570 28.8630280
9 81.4263429 46.2983010 27.5543342 17.1018561

10 2209.0371337 2109.1428445 260.2679848 234.9985085
11 570.2558985 272.8574773 139.5403648 75.6925030
12 21647.63898 2721.159283 2340.986931 2172.506443
13 5027.12671 2009.473994 877.142753 413.269514
14 216154.2792 25888.53514 22369.63316 21038.433113
15 54539.7867 18105.83253 6708.76515 2731.28823
16 2193034.402 258292.0930 219865.5739 27505.78230
17 714771.195 196130.5369 61414.0151 21513.8526
18 2.76372893106 2688418.829 2197883.530 264215.5872
19 1.11395303107 2.51661193106 663509.086 199303.824
20 24.67287063107 29.56688663106 22.31177133106 2642301.398
21 2.03703463108 3.77656303107 8.35817693106 2.14656433106

22 29.21527123108 21.54602683108 23.13179413107 27.43018873106

23 4.32066693109 6.55528853108 1.21470593108 2.66077493107

24 22.097013231010 22.87551553109 24.87145603108 29.84691193107

25 1.052367631011 1.303511131010 2.01789603109 3.76213363108

h̄ (k) 1 21/4 21/3 22/5 25/11

2 1/16 2/27 2/25 10/121
3 20.0357672729 20.0443102531 20.0495134446 20.0525519564
4 0.0343748465 0.0395195688 0.0407881055 0.0399640005
5 20.0408958349 20.0444003474 20.0437619509 20.0413219917
6 0.0597050472 0.0603634414 0.0555575703 0.0490929344
7 20.09928487 20.09324948 20.08041336 20.06708630
8 0.18143353 0.15857090 0.12955711 0.10413882
9 20.35946458 20.29269274 20.22839265 20.17925852

10 0.76759881 0.58218392 0.43525523 0.33488318
11 21.75999735 21.24181846 20.88911482 20.66904757
12 4.31887516 2.82935836 1.93487570 1.41644564
13 211.3068155 26.86145603 24.46485563 23.15991301
14 31.4831400 17.65348358 10.8846651 7.40110473
15 292.9568675 248.04185493 227.9476939 218.1528875
16 290.205144 137.9015950 75.3808299 46.5326521
17 2955.369710 2416.4425396 2213.088140 2124.454143
18 3308.08653 1319.8954890 630.008039 346.784997
19 212019.6749 24380.9238169 21944.51060 21005.36571
20 45726.095 15196.764595 6254.75115 3028.67211
21 2181763.39 254989.750148 220934.4636 29469.48945
22 753530.79 207207.59430 72800.2529 30694.0685
23 23.25229813106 2811759.779 2262684.705 2103030.713
24 1.45906043107 3.30143773106 982242.312 357779.77
25 26.79360163107 21.39198483107 23.80163993106 21.28402853106
085001-8
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TABLE V. ~Continued!.

k n50 n51 n52 n53

h (k) 1 0 0 0 0
2 1/108 8/729 8/675 40/3267
3 0.0007713749 0.0009142223 0.0009873600 0.0010200000
4 0.0015898706 0.0017962229 0.0018368107 0.0017919257
5 20.0006606149 20.0006536980 20.0005863264 20.0005040977
6 0.0014103421 0.0013878101 0.0012513930 0.0010883237
7 20.001901867 20.0016976941 20.001395129 20.001111499
8 0.003178395 0.0026439888 0.002043629 0.001544149
9 20.006456700 20.0049783320 20.003585593 20.002532983

10 0.012015200 0.0084255120 0.005570210 0.003647578
11 20.029656348 20.0194143738 20.012066168 20.007451622
12 0.064239639 0.0378738590 0.021403479 0.012148673
13 20.180415293 20.0992734993 20.0527914785 20.0282931664
14 0.4519047994 0.22304200134 0.1074844332 0.0528085190
15 21.4092869972 20.6472476781 20.2928360472 20.135567321
16 4.0214900375 1.65386975 0.6774143887 0.287414739
17 213.758814405 25.24609037 22.01071514 20.801301742
18 44.090284529 15.0426293 5.21919799 1.907241838
19 2164.205876 251.7544723 216.7458885 25.728643910
20 583.728411 164.571258 48.2146655 15.13540671
21 22352.30706 2610.647520 2166.308263 248.72074256
22 9182.66367 2131.95908 525.890013 141.4691142
23 239836.8326 28491.50902 21941.60261 2486.0716246
24 169338.243 32279.4193 6686.67654 1538.009823
25 2787352.117 2137442.343 226325.2747 25621.263980
a

to
ure,

the
n
odd
n

ted
slightly curved parabola, and varyc until there is an inter-
section atx50. This yields the critical exponentsh shown
in Fig. 3.

Allowing for the inaccurate knowledge ofv, the results
may be stated as

h755
0.0321510.13273~v20.810!

0.0357210.08643~v20.805!

0.0364210.06553~v20.800!

0.0354910.03203~v20.797!
6 for 5

n50

n51

n52

n53
6 .

~17!

Alternatively, we connect the last odd approximantsh5
andh7 also by a straight line and choosec to make the lines
intersect atx50. This yields the exponents

h755
0.0301010.087603~v20.810!

0.0337010.038163~v20.805!

0.0348010.015603~v20.800!

0.0344710.005883~v20.797!
6 for 5

n50

n51

n52

n53
6 ,

~18!

as shown in Fig. 4, thev dependences being somewh
weaker than in Eq.~17!.
08500
t

Combining the two results and using the difference
estimate the systematic error of the extrapolation proced
we obtain forh the values

h755
0.031160.001

0.034760.001

0.035660.001

0.035060.001
6 for 5

n50

n51

n52

n53
6 , ~19!

whosev dependence is the average of that in Eqs.~17! and
~18!.

For our extrapolation procedure, the power series for
critical exponentg5n(22h) are actually better suited tha
those for h, since they possess three even and three
approximants, just asn21. Advantages of this expansio
have been observed before@14#.

The associated plots are shown in Fig. 5. The extrapola
exponents are, including thev dependence,

g755
1.16120.0493~v20.810!

1.24120.0633~v20.805!

1.31820.0443~v20.800!

1.39020.1203~v20.797!
6 for 5

n50

n51

n52

n53
6 .

~20!
1-9



HAGEN KLEINERT PHYSICAL REVIEW D 60 085001
FIG. 6. Relative errors in predicting thekth expansion coefficient by fitting the strong-coupling expansions~6!–~8! for v, h̄[n21

1h22, andh to the firstk21 expansion coefficients.
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Unfortunately, the exponentg5n(22h) is not very insen-
sitive to h, since this is small compared to 2, so that t
extrapolation results~17! are more reliable than those ob
tained fromg via the scaling relationh522g/n. By com-
bining Eqs.~16! and ~17!, we find fromg5n(22h):

g755
1.1589

1.2403

1.3187

1.3932
6 for 5

n50

n51

n52

n53
6 , ~21!

the difference with respect to Eq.~20! showing the typical
small errors of our approximation, which are of the sa
order as those of the exponents obtained in Ref.@9#. As men-
tioned in the beginning, the knowledge of the large-ord
behavior does not help to improve significantly the accur
of the approximation. In our theory, the most important e
ploited information is the knowledge of the exponentia
fast convergence which leads to a linear behavior of the
summation results of orderN in a plot against xN

5e2cN12v
. This knowledge, which allows us to extrapola

our approximations forN52,3,4,5,6,7 quite well to infinite
08500
e

r
y
-

e-

orderN, seems to be more powerful than the knowledge
the large-order behavior exploited by other authors~quoted
in Table IV!.

The complete updated list of exponents is shown in Ta
IV, which also contains values for the other critical exp
nentsa522Dn andb5n(D221h)/2.

Let us now show that the large-order information is i
deed rather irrelevant to the critical exponents within stro
coupling theory. For this purpose we choose the coefficie
c( i ) in the asymptotic formulas~6!–~8! to fit exactly the six
known expansion coefficients ofv(ḡ) and the seven ofh̄(ḡ)
and h(ḡ). The coefficients are listed in Table III, and th
associated fits are shown in Fig. 1. Since even and odd
efficientsh (k) lie on two separate smooth curves, we fit t
two sets separately. These fits permit us to extend the p
ently available coefficients and predict the results of futu
higher-loop calculations, listed in Table V up to order 2
The errors in these predictions are expected to be smalles
v (k), as illustrated in Fig. 6.

At this place we observe an interesting phenomenon:
cording to Table V, the expansion coefficientsv (k) of v(ḡ)
have alternating signs and grow rapidly, reaching pre
ciously their asymptotic form~6!, as we have seen in Fig. 1
1-10
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TABLE VI. Coefficients ofḡ0(ḡ) obtained from extended perturbation expansions obtained from the large-order expansions~6!–~8! for
v(ḡ) up to g25.

k n50 n51 n52 n53

ḡ0
(k) 1 1 1 1 1

2 11 11 11 11
3 1337/432 1575/729 1539/675 12641/3267
4 10.61685694588 10.62411053351 10.63484885720 10.64721832545
5 10.44266705709 10.45557995443 10.47149516705 10.48876206059
6 10.35597494073 10.35927512536 10.36876801981 10.38195333853
7 10.21840619207 10.23668638696 10.25507866294 10.27372501773
8 10.23516444398 10.22010271935 10.21833333377 10.22423492600
9 10.02522653990 10.07797541233 10.11146939079 10.13619054953
10 10.32466738893 10.21722566733 10.17071122132 10.15281461436
11 20.46084539160 20.17781419227 20.04796874299 10.01851106465
12 11.36111296151 10.62177013621 10.32371445346 10.19688967179
13 23.42004319798 21.33935153089 20.55625249070 20.23297770291
14 19.68597708110 13.55457753745 11.44715002648 10.65263956302
15 228.5286709455 29.51594412468 23.51833733708 21.41477489238
16 188.9376821020 127.1477264424 19.31404148366 13.53850316476
17 2291.235785543 281.0609653416 225.6008150903 29.00262320492
18 11000.66241399 1253.799830529 173.8458792207 124.1544067361
19 23599.15484483 2830.784519325 2222.359395181 267.4743858406
20 113526.5566605 12838.71379781 1698.348588943 1196.518945901
21 253025.6841577 210107.5962344 22283.46544025 2595.358754523
22 1216470.154554 137445.8720302 17762.54138666 11873.85881729
23 2918905.735057 2144134.115732 227396.7807350 26119.04352841
24 14050397.96349 1575646.134976 1100259.282083 120705.5670994
25 218514433.0840 22382463.70507 2379975.758849 272517.4413857
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Now, from v(ḡ) we can derive the so calledb function
b(ḡ)[*dḡv(ḡ), and from this the expansion for the ba
coupling constantḡ0(ḡ)52*dḡ/b(ḡ), with coefficients
ḡ0

(k) listed in Table VI. From the standard instanton analy
@10#, we know that the functionḡ0(ḡ) has the same left-han
cut in the complex ḡ-plane as the functions
v(ḡ),h̄(ḡ),h(ḡ), with the same discontinuity proportiona
to e2const/g at the tip of the cut. Hence, the coefficientsḡ0

(k)

must have asymptotically a similar alternating signs an
factorial growth. Surprisingly, this expectation is not bor
out by the explicit seven-loop coefficientsḡ0

(k) following
from Eq.~6! in Table VI. If we, however, look at the higher
order coefficients derived from the extrapolatedv (k) se-
quence which are also listed in that table, we see that
change and factorial growth do eventually set in at the ra
high order 11. Before this order, the coefficientsḡ0

(k) look
like those of a convergent series. Thus, if we would mak
plot analogous to those in Fig. 1 forḡ0

(k) , we would observe
huge deviations from the asymptotic form up to an ord
much larger than 10. In contrast, the inverse seriesḡ(ḡ0) has
expansion coefficientsḡk which do approach rapidly thei
asymptotic form, as seen in Table VII. This is the reas
why our resummation of the critical exponentsv,h̄,h as
power series inḡ0 yields good results already at the availab
rather low order seven.
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Given the extrapolated list of expansion coefficients
Table V, we may wonder how much these change the sev
loop results. In Fig. 7 we show the results. The known s
loops coefficients ofv(ḡ0) andh(ḡ0) were extended by one
extrapolated coefficient, since this produces an even num
of approximants which can be most easily extrapolated
infinite order. Forh̄(ḡ0) we use two more coefficients fo
the same reason. The extrapolations are shown in Fig. 7.
resultingv8 values are lowered somewhat with respect tov6
from Eq. ~15! to

v855
0.7935

0.7916

0.7900

0.7880
6 for 5

n50

n51

n52

n53
6 . ~22!

The newh values are

h8

55
0.0282920.016753~v20.7935!

0.0331920.015233~v20.7916!

0.0350320.024283~v20.7900!

0.0353720.014903~v20.7880!
6 for 5

n50

n51

n52

n53
6 ,

~23!
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TABLE VII. Coefficients ofḡ(ḡ0) obtained from extended perturbation expansions obtained from the large-order expansions~6!–~8! for
v(ḡ) up to g25.

k n50 n51 n52 n53

ḡ(k) 1 1 1 1 1

2 21 21 21 21
3 1527/432 1883/729 1811/675 13893/3267
4 21.7163939829 21.680351960126292 21.642256264617284 21.60528382897736
5 12.7021635328 12.591685040643859 12.481604560563785 12.378891143794822
6 24.6723281932 24.363908063002809 24.073635397816119 23.813515390028028
7 18.7648283753 17.926093595753771 17.180326093595318 16.539645290718699
8 217.684135663 215.39841276963578 213.47981441366666 211.90293506879397
9 138.129348202 131.80063328573243 126.79259688548747 122.86325133485651

10 287.419391225 269.48420478282783 256.1279351033013 246.14596304145893
11 1212.28789113 1160.0400066477353 1123.4985362910675 197.5437851896555
12 2544.33806227 2387.4479410496121 2284.6297746951519 2215.3826650602743
13 11470.2445538 1983.719405302971 1685.668309006505 1495.7770927688912
14 24175.1804881 22614.933427024693 21723.672999416843 21187.794187410145
15 112447.739474 17268.064649337187 14516.120357408118 12958.336103932099
16 238915.141370 221101.49568383381 212320.85534817637 27652.516371929849
17 1127440.33105 163943.24392789235 134975.98186824855 120545.02631707489
18 2436738.21140 2202094.1329180427 2103252.1798678474 257215.98372843337
19 11564637.2472 1665710.523944826 1316810.7604431689 1165210.8008728902
20 25853354.4104 22283830.09806744 21009811.938755735 2494409.476944406
21 122839087.694 18153184.95412866 13341698.327836095 11532757.736028176
22 292830002.172 230260412.9590709 211473421.52345331 24920271.757368278
23 1392524311.64 1116646023.338810 140840739.00033049 116345368.25243382
24 21724406456.3 2466498175.446816 2150595276.6851763 256159032.51385756
25 17860313710.5 11933471826.94197 1574727529.9905997 1199417525.2243582
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lying reasonably close to the previous seven-loop res
~17!, ~18! for the smallerv values~22!. The first set yields
h85$0.0300,0.0356,0.0360,0.0354%, the second h8
5$0.03150.0342,0.0349,0.0345%.

For h̄ we find the results

h̄955
20.271110.04003~v20.810!

20.380310.09743~v20.805!

20.473510.12403~v20.800!

20.550610.47613~v20.797!
6 for 5

N50

N51

N52

N53
6 .

~24!

It is interesting to observe how the resummed valu
vN ,h̄N ,hN obtained from the extrapolated expansion co
ficients in Table V continue to higher orders inN This is
shown in Fig. 8. The dots converge against some spe
values which, however, are different from the extrapolat
results in Fig. 7 based on the theoretical convergence be
ior error 'e2cN12v

. We shall argue below that these resu
are worse than the properly extrapolated values.

All the above numbers agree reasonably well with ea
other and with other estimates in the literature listed in Ta
08500
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IV. The only comparison with experiment which is sensiti
enough to judge the accuracy of the results and the reliab
of the resummation procedure is provided by the meas
ment of n for n52, where the critical exponenta5223n
has been extracted from the singularityC}u12T/Tcu2a in
the specific heat at thel point of superfluid helium with high
accuracy@18#:

a520.0128560.00038. ~25!

Sincen is of the order 2/3, this measurement is extrem
sensitive ton. It is therefore useful to do the resummatio
and extrapolations forN52 directly for the approximatea
valuesaN5223nN, once for the six-loopv value v50.8,
and once for a neighboring valuev50.790, to see thev
dependence. The results are shown in Fig. 9. The extra
lated values for ourv50.8 in Table IV yield

a520.0129460.00060, ~26!

in very good agreement with experiment.
The extrapolated expansion coefficients for orders lar

than 11 do not carry significant information on the critic
1-12
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CRITICAL EXPONENTS FROM SEVEN-LOOP STRONG- . . . PHYSICAL REVIEW D60 085001
FIG. 7. Extrapolation of resummedv,h̄,h values if one (v,h) or two (h̄) more expansion coefficients of Table V are taken into accou
The fat dots show the resummed values used for extrapolation, the small dots indicate higher resummed values not used for the ex
The numbers on top specify the extrapolated values and the values of the last approximation, corresponding to the leftmost fat d
ffi
ct
no
fo
la
ts

w
on
se
r

al
le
in

ld
io
o

exponentn. The fact that the extrapolated expansion coe
cients should lie rather close to the true ones as expe
from the decreasing errors in the plots in Fig. 6 does
imply the usefulness of the new coefficients in Table V
obtaining better critical exponents. The errors are only re
tively small with respect to the huge expansion coefficien
The resummation procedure removes the factorial gro
and becomes extremely sensitive to very small deviati
from thes huge coefficients. This is the numerical con
quence of the fact discussed earlier that the information
siding in the exponentially small imaginary part of all critic
exponents near the tip of the left-hand cut in the comp
ḡ0-plane has practically no effect upon the strong-coupl
results at infiniteḡ0.

Note also that the critical exponents which one wou
obtain from a resummation of the extrapolated expans
coefficients of high order in Table V and their naive extrap
lation performed in Fig. 8 yield slightly worse results fora
in superfluid helium. Indeed, insertingh̄520.47366 andh
50.0331 into the scaling relationa5223/(21h̄2h) we
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obtain a520.0091, which differs by;25% from the ex-
perimentala.

The extrapolation of the approximationsn1 , . . . ,n9 can
be done similarly, as illustrated in Fig. 9.

Combining these with~23!, we find from n51/(21h̄
2h) the new values forn:

n855
0.588020.01963~v20.7935!

0.630320.04473~v20.7916!

0.670520.02673~v20.7900!

0.707220.31233~v20.7880!
6 for 5

n50

n51

n52

n53
6 ,

~27!

quite close to the seven-loop results~16!. We may also sum
directly the series forn21521h̄2h and extrapolate the
resulting values forn1 , . . . ,n9 yielding
1-13
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FIG. 8. Direct plots of the resummedv,h̄,h values for all resummed values from all extrapolated expansion coefficients of Table V
line is fitted to the maximum of all dots at the place specified by the number on top. Fat and small dots distinguish the resummed e
used in the previous extrapolations from the unused ones.

FIG. 9. Extrapolation of resummeda values if two more expansion coefficients are taken from list in Table V. The large dots sho
resummed values used for extrapolation; the small dots indicate higher resummed values not used for the extrapolation.
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even closer to the seven-loop results~16!.
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