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Magnetic monopoles near the black hole threshold
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We present new analytic and numerical results for self-gravitatin@2Stdiggs magnetic monopoles ap-
proaching the black hole threshold. Our investigation extends to large Higgs self-coupliagegime here-
tofore unexplored. When is small, the critical solution where a horizon first appears is extremal Reissner-
Nordstran outside the horizon but has a nonsingular interior. Wheis large, the critical solution is an
extremal black hole with non-Abelian hair and a mass less than the extremal Reissner-onddtre. The
transition between these two regimes is reminiscent of a first-order phase transition. We analyze in detail the
approach to these critical solutions as the Higgs expectation value is varied, and compare this analysis with the
numerical results.S0556-2820199)01422-9

PACS numbd(s): 04.70.Bw, 14.80.Hv

[. INTRODUCTION spectrum of this theory contains a pair of vector mesafis
that carry U1) electric charge and have mams (wheree is
The physics of a nonsingular spacetime is qualitativelythe gauge coupling as well as a massless photon and a
distinct from that of a spacetime exhibiting a black hole.massive electrically neutral Higgs particle. In flat space the
However, families of spacetimes exist that may be viewed aslassical field equations have a spherically symmetric mono-
interpolating between the two. These spacetimes are nonsipole solution with W1) magnetic charge #/e and a mass of
gular and have no horizons; nevertheless, they have a regiander 4wv/e. This has a central “core” region, of radius
whose metric can be made arbitrarily close to that of theR.qe~1/myy,, in which there are nontrivial matter fields. Be-
exterior region of a black hole. In the limiting case, the inneryond this radius is a “Coulomb” region in which the mas-
boundary of this region takes on the characteristics of asive fields fall off exponentially fast, leaving only a long-
extremal horizon, even though no curvature singularity defange Coulomb magnetic field.
velops in the interior. By studying such solutions, one may In studying the behavior of these solutions in the presence
gain further insight into the properties of black holes. of gravity, we assume spherical symmetry, and so can write
One approach to the construction of such “almost blackthe metric in the form
holes” begins with a spontaneously broken Yang-Mills
theory that has magnetic monopole solutions. For small ds?=B(r)dt*~A(r)dr’—r?(d6*+sirfod¢?). (1.1
Higgs expectation values, these monopole solutions persist. _ o .
when gravitational effects are included. However, as th tis often_ convenient to rewritd in terms of a mass function
Higgs expectation value is increased toward a critical valudn(") defined by
on the order of the Planck mass, the monopole solutions 1 2Gm(r)
begin to approximate black holes with finite mass and non- —1—
zero horizon radius. A(r) r
Such gravitating monopoles, as well as the related mag- _ _ _
netically charged black holes with hair, have been studiedVith m(<<)=M. For a configuration to be nonsingular at the

previously [1-5]. For a review article and recent work in ©rigin, A(0)=1 andm(0)=0. A horizon occurs when &/
related subjects, sdé]. In this paper we investigate these Nas a zero or, equivalently, when(r)/r = 1/2G. .
solutions in more detail, concentrating on some aspects that A benchmark with which to compare our results is pro-
were not previously noted. Most notably, we find that two Vided by the Reissner-Nordstrometric, with
distinct types of behavior, with qualitatively different ex- 5
tremal black hole limits, can occur. Our focus here is on the B(r)= E: 1— 2MG E
detailed properties of these solutions and their behavior as A r 4mr?
they approach the black hole limit. We describe elsewhere
[7] how these solutions can be used as approximate bladk M>+/Q?/4xG, this describes a black hole solution with a
holes that provide insight into the transition from a nonsin-charge(either magnetic or electricQ and an outer horizon
gular spacetime to one with horizons. determined by the larger of the two zeroes A.1f instead
We work in the context of an S@) gauge theory that is M </Q?4=G, there is no horizon separating the curvature
spontaneously broken to(ll) by a triplet Higgs field$ with  singularity atr =0 from the asymptotic regions and a naked
vacuum expectation valu@p)=v. The elementary particle singularity results. The boundary between these two regimes,
M=Q%4wG, gives the extremal Reissner-Nordstro
black hole. ForQ=41/e, the case with which we will be
*Email address: lue@phys.columbia.edu concerned in this paper, the extremal black hole has a hori-
TEmail address: ejw@phys.columbia.edu zon radius
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47G Coulomb region horizon, which we examine in detail in Sec.
ro= 2 (1.4  V.In Sec. VI we compare these analytic predictions with our
numerical results. Section VII contains some concluding re-
and a mass marks. The Appendix ppntains. details of the numerical in-
vestigation of the transition region between the two types of

critical solutions.

4
Mo= c& (1.5

IIl. GENERAL FORMALISM

Whenv<Mp, the gravitational effects on the monopole ~ We consider an S(2) gauge theory with a triplet Higgs
are relatively small. The metric at large distances approachéigld ¢® whose self-interactions are governed by the scalar
the Reissner-Nordstno form, with \Q%47G>M. There is  field potential
no singularity, because the actual metric deviates from the \

Reissner-Nordsfra form whenr=<R_,.. One finds that _Noaga,2)2

1/A=1 at the origin, decreases to a minimum at a radius of V(¢) 2(¢ ¢V 2.
order Rere, @nd then increases monotonically. &sis in-

creased, the core shrinks and the minimum & bioves In flat spacetime, this theory has nonsingular monopole so-
inward and becomes deeper. In most cases, this continudgions, with magnetic chargem# e, that are described by the
until 1/A develops a double zero, corresponding to an exspherically symmetric ansatz

tremal horizon, whew=v,. A slightly different behavior is

found for very small Higgs self-couplin@]. In this case, the $2=vrah(r) (2.2
solution varies continuously asis increased up to a value
Vmax- Although the minimum value of & is still nonzero at . 1—u(r)
this point, static solutions do not exist for higher values of Aia= €akl er (2.3
Instead, these solutions join smoothly on to a second branch
of solutions for which (14),,, decreases as is decreased

Apa=0. (2.9

from v to a critical valuev,, where the extremal horizon
develops.

For small values of the Higgs mass, the extremal horizo yvhile it is clear thatvh(r) is the magnitude of the Higgs

of the critical solution occurs at the Reissner-Nordstna- ?‘ield! the mezining olu(r) is somewhat obscured by this
radial gauge” ansatz. By applying a singular gauge trans-

dius rq, in the exterior Coulomb region of the monopole . I X > )
solution. The matter fields take on their vacuum value everyform"’ltlon t'hat makes the 'dlrect|on of the nggs field uni-
where outside the horizon and the exterior metric is exactl;torm’.one finds thaﬂ(r)/er IS e_qugl to the magnitude of the
that of an extremal Reissner-Nordstrblack hole. When ~Massive vector field, and so it, like-Ih(r), should be ex-
the Higgs to vector mass ratio is greater than about 12, Bected to vanish exponentially fast outside the monopole

regime not explored in depth in previous studies, the behavgor_l?r'1 lizati f thi tr 1 d ime i
ior is rather different. The horizon is in the monopole core at € generalization ot this ansalz 1o curved spacetime 1S

a radiusr,, <r, that decreases with increasing Higgs mass§tra|ghtfonNard. Since we are considering only static spheri-

In this case there are nontrivial matter fields, or “hair,” out- cally symmetric solutions, we can take the metric to be of the

side the horizon. The transition between the two regimes igorm of Eq.(1.1. The matter part of the action is
not smooth, but instead is reminiscent of a first-order transi-

tion. - _ f 2 {K(u,h)
Smate= — 4 | dtdrr?\AB +U(u,h)| (2.5
The remainder of this paper is organized as follows. In A
Sec. Il we outline the general formalism and define our con-
ventions. In Sec. Ill we use numerical methods to obtainvhere
monopole solutions to the field equations. We describe in
detail their behavior aw is increased towards its critical 1 (du|? v?[dh\?
value. The critical solutions that are the limits of these fami- - e?r2\dr + 2 \dr
lies of monopole solutions are characterized by the presence
of extremal horizons. In Sec. IV, we use analytic methods to (U2=1)2 vAch? a4
study the properties of these critical solutions, focusing on = - —+ ——(h?—1)2.
the behavior near the horizon. We show that the problem of 2er r 2

finding a solution with an extremal horizon can be formu-

lated as a pair of boundary value problems, one for the re- One may viewU(u,h) as a position-dependent potential.
gion 0<r<r, and one forr, <r<co, that must be solved It has several stationary points, which we enumerate here for
simultaneously. The conditions for a solution to these placeter reference:

strong constraints on the behavior of the fields near the ho- (1) u=0,h==1. This is a local minimum ol for r
rizon. These constraints allow only two types of behavior,>1/ev. A . . .

one associated with a core region horizon, the other with a (2) u=u(r),h=h(r), oru=—u(r),h=—h(r), where
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M(1—e?v2r2) Using this result to eliminat&(r) from the remaining field
u — (2.6)  equations leaves one first-order and two second-order equa-
A—e

tions to be solved. A solution of these is determined by five
boundary conditions. Requiring that the fields be nonsingular
N N—e?/(evr)? at the origin gives three of thesa(0)=1, h(0)=0, and
h= T- (2.7) A(0)=1. Two more,u()=0 andh(x)=1, follow from

the finiteness of the energy. Additional boundary conditions
These are real only far lying between v and 14/\v. In arise when a horizon ig present. While these are not relevant
that range it is a minimum ob if \/e?>1, but a saddle for our numer!cal solutions, WhICh are all rggular monopoles,
point if N/e?<1. If Ne?=1, this solution is replaced by a they play an important role in our analysis of the extremal

degenerate set of local minima, witiF+u2=1, that exist black hole configurations that are the limiting points of se-
only for evr=1 ’ ’ guences of monopole solutions.

(3) u=h=0. This is never a local minimum dJ.

(4) u=x1h=0. This is a local minimum ofU for r I1l. MONOPOLE SOLUTIONS
<1Av.

We will see that these stationary points are key to under-
standing the local existence of extremal horizons in mono- In our search for regular solutions and their approach to
pole systems. criticality, let us identify an energy functional on the space of

For static solutions, the matter fields obey the equationsstatic configurations. Following van Nieuwenhuizen, Wilkin-

son, and Perry8], one can write down an action which is a

A. The method

1 d{JVABdu| e?24U functional of justu(r) and h(r) by not only eliminating
\/ﬁa A drl” 2 au VAB using EQ.(2.10, but also eliminating? by integrating
Eqg. (2.11) subject to the boundary conditioh(0)=1. The
_ u(u?>-1) 5 2 o complete actiorti.e., gravitational plus mattgthen becomes
—z +e“veuh (2.8
S=—f dtE
1 d (rZ\/AB dh) 19U
2 dr dr! V2 oh
r2/apdri A dr]/ v©h - focd rod - 1
hu? 7], 987G dr A
= —r+2)\V2h(h2—1).
"
) K(u,h)
(2.9 +r°JAB T+U(u,h) (3.)
These must be supplemented by the two gravitational field
equations with AB and A understood to be implicit functionals of
u(r) andh(r). Configurations that extremize this action are
1 dyAB solutions to Eqs(2.8)—(2.11), with the energyE being equal
ETZSWGVK (210 to the massM=m(x) [8]. This energy functional is not

bounded from below, even when satisfying the appropriate
1 1 boundary conditions, unless theAlf) that corresponds to a
r— —) =(1-87GrU)— —(1+8nGr2K). (2.11) given matter field configuratiofu(r),h(r)} is everywhere
driA A greater than zero. This restriction is not serious for our pur-
Note that, up to a rescaling of distances, the solutions oPOSes, since we are only interested in static regular monopole
these equations depend only on the dimensionles%omt'ons and th.e.|r approach to criticality; all such solutions
parametersa=87Gv? andb=\/e?= (my/2my)>. satisfy the condition that &(r)>0 everywhere. '
Integration of Eq.(2.10 gives B(r) in terms of the re- Thus, we flndregular_ solutions to thg field equatlo'ns by
maining functions. With the boundary conditié(=)B(s) seeking extrema of this energy functional that satisfy the

=1, corresponding to the conventional normalizationt,of Poundary conditions at=0 andr =2. This is equivalent to
we have solving 6E/ su= SE/ sh= 0. We do this numerically by solv-

ing the alternative system of equations

1 ©
B(r)=—ex;{—16w6f dr’r’K}. (2.12

A(r) d’u _du &E

— 4T —=—

dt? dt éu

These parameters are related to those in Réby n=a, in Ref. d2h dh SE
[2] by @=2b and B=a, and in Ref.[3] by a=+a/2 and B - ar—== (3.2

=2.b. dt? dt oh
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for an appropriate damping factdr and taking the final the equations of motion are then used to integrate out to-
steady state solution as the result. This approach is analogowsrds infinity. The initial choice is then adjusted to ensure
to having a massive particle roll on a manifold determinedthat the boundary conditions at infinity are satisfied. With
by E while the particle’s motion is viscously damped, even-this approach, difficulties appear with largdecause of the
tually coming to rest at some local minimum of the energy. oy yreme sensitivity at the origin to small perturbations. No

The discretization used to numerically implement this al'such problem exists with relaxation, and as a result we have

gorithm places a limit on how close we can approach th . .
critical solutions in which the extremal horizon has actuallyebeen able to obtain solutions for largeHowever, although

formed. The errors in the fields are proportional to the squarg®!utions that are unstable under perturbations may be found
of the spatial step size. As a result we can only obtain soluby shooting, such solutions cannot be obtained by our relax-
tions in which the minimum value of A/ is at least ation method.
O[(Ar)?]. In particular, previous worKk3] has shown that fob

One should contrast our relaxation method with the algo=0.1 monopole solutions exist for a range of valuea tfat
rithms used in previous analysglk-3] that employ shooting are greater than the valwag, of the critical solution. More-
from the origin. In these, a choice is made for the values obver, for each value dd in this range there are two solutions,
the fields and their first spatial derivatives at the origin, andwvith the one having the smaller value of £/, being un-
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FIG. 1. Monopole solutions fao=1.0 and various values @ The progression from dot-dashed line, to dashed line, to dotted line, to
solid line corresponds ta=1.0, 2.0, 2.3, and 2.37. The first three panels depict the metric fund@pagA(r), (b) B(r), (c) (AB)Y4(r).
(d) Matter fields variables;(r) begins at unity at the origin and asymptotes to zero-ase. h(r) is zero at the origin and asymptotes to
unity asr—oo.
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of a neara,. dashed line, to dotted line, to solid line correspondst01.529,
1.53 and 1.531 witfa,~1.532.

stable[9,10]. Hence, for this range df our methods cannot

find the critical limit of the regular monopole solutions. until, at criticality, it is precisely a step function centered at
the horizon. This is in sharp contrast with the Schwarzschild
B. Approach to criticality: Low- b case and Reissner-Nordstmo solutions, whereJAB=1 every-

. , L , where. To show how this behavior becomes more pro-
We investigate the approach to criticality by studying thepgnced as the solution approaches criticality, in Fig. 2 we

nature of the monopole solutions as-87Gv? is increased lot the value of/AB at the origin as a function of _
with the Higgs self-coupling held fixed. Two distinct befav- fa: p "6 Nata thet there f  power I TelAtoueH be

. . . 2
iors are seen, depending on the sizebefA/e”. tween the two. Similar curves, but with different powers, are
We will describe the lows behavior in detail in this sub- found throughout the lov- regime.

section, and the high-behavior in the next. Figure 1 illus- g 5 final llustration of the behavior of the lotv-solu-
trates the behavior fob=1.0, a typical lowb case. Asa  {ions near criticality, in Fig. 3 we ploti for several near-
increases and gravitational effects become strong&(rl/  critical solutions. However, rather than using the variable

begins to dip down until a= a,, it develops a double zero, e have plottedi as a function of the proper length
corresponding to an extremal horizon,ratr, the horizon

radius of the extremal Reissner-Nordstr@olution. At the .

same time, the matter fieldgr) andh(r) are pulled inward. |(r)=f dr VA(T). (3.3
At a=a,,, the variation of these fields occurs entirely within 0

the horizon. Only the Abelian Coulomb magnetic field sur-
vives outside the horizon, while the metric foer is pre-
cisely that of the extremal Reissner-Nordstrblack hole.

All of this reproduces results found in earlier wdrk—4]. c
Some features that were not previously stressed are reveal?sg
when we examineB(r). Coming in from larger, B de-
creases with K until the latter reaches its minimurB.then
continues to decrease, although at a much smaller rate. For
very smallb this decrease continues all the way inrte 0,
while for somewhat larger values bfthere is a minimum in The scenario whei is large differs significantly from
B at a finiter <r,. The situation for the critical solution is that for smallb; we illustrate this in Fig. 4 for the case of
somewhat ambiguous. If we adopt the conventional normalb=100. So long as is not too near its critical value, the
ization B() =1, thenB(r) vanishes identically inside the qualitative evolution of the metric functions and field vari-
horizon. If instead we sé(0)=1, thenB is finite and vary-  ables is similar to that in the previous caseA(r/) dips
ing inside the horizon and infinite outside the horizon, with adown in a regionr ~r, the value ofB(r) decreases in a
minimum either ar =0 or at some finite radius, depending region near the origin, and the fieldsh are drawn into the
on the value ob. In neither case is the minimum a zeroBf  core of the system.

Closely related to this is the behavior gAB. Whena is Near criticality, a different behavior emerges. The evolu-
small, this is very nearly constant, with a value close totion of 1/A(r) as the solution approaches criticality is de-
unity. As a is increased,/AB develops a step-like behavior picted in Fig. 4a and, in more detail, in Fig. 5. Although

We see that, for sufficiently lardeu(l) is close to a decay-
ing exponential, and that this behavior does not significantly
ange as one crosses the minimum &f; Kimilar behavior
seen with -h.

C. Approach to criticality: High- b case
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FIG. 4. Monopole solutions fdp= 100 and various values @f The progression from dot-dashed line, to dashed line, to dotted line, to
solid line corresponds ta=1.0, 1.1, 1.2, and 1.29344. The first three panels depict the metric funcaiohé\(r), (b) B(r), (c) (AB)Y4(r).
(d) Matter fields variables;i(r) begins at unity at the origin and asymptotes to zero-asc. h(r) is zero at the origin and asymptotes to
unity asr —o.

initially similar to that for the lowb case, the decrease of the in \JAB|,_, slows down, so that even for the critical solution
minimum atr~r, ceases before it actually reaches zero. As\/AB|,_,#0.
this occurs, a second minimum at a radiusr, rapidly Figure 4d depicts the matter fieldgr) andh(r) for a
drops down and forms a double zero, corresponding to ageries of values dd at fixed largeb. Their behavior is analo-
extremal horizon, at=r, <r,. Figure 4b(and, in more de- gous to that for smal except that the fields are never com-
tail, Fig. 6 shows the functiorB(r) as a approaches its pletely drawn into the region<r; the degree to which they
critical value. In contrast to the smdil-case, in the critical are drawn into this region is dictated by the value of &t
limit the minimum of B is a zero located at the horizon, the outer minimum at criticality. The smaller that minimum
r=r,. value of 1A, the more contained the matter fields are. Since
The evolution ofyAB is shown in Fig. 4c. The behavior they have nontrivial fields outside the horizon the critical
is similar to that for the smalp- case until the outer mini- solutions for largeb are examples of extremal black holes
mum of 1A stops decreasing and the inner minimum beginsyith non-Abelian hair.
to appear. Until this point, there is a power law relationship  The qualitative picture differs somewhat whier 400, in
betweenyAB|,_q and (1A) p, similar to that for the small- that the 1A always has only a single minimum. One may
b case, with most of the variation ifAB occurring atr think of the sequence of monopole solutions here as large-
~ro. Once the inner minimum begins to appear, the decreassolutions in which the inner minimum of A/drops out suf-

084025-6



MAGNETIC MONOPOLES NEAR THE BLACK HOLE THRESHOLD PHYSICAL REVIEW [B0 084025

0.01 [ L S —
>‘\ \‘ /] \‘\ .
. \\ ’/ L \\ i
0.008 \ \
\ L |
. \
\ \
\ 0.0004 - \ 1
0.006 L \ |
\
< = - | |
0.004 *
0.0002 - N .
| . A
0002 N\, o~ | \\ [
I \\\
o L— L 0 T S S ,
0.7 0.9 1.0 11 0.0 0.2 0.4 0.6 038
/1, r/t,
FIG. 5. Details of the metric function A(r) near criticality at FIG. 6. Details of the metric functioB(r) near criticality atb

b=100. The progression from dot-dashed line, to dashed line, tg= 100. The progression for differeats is the same as in Fig. 5.

dotted line, to solid line corresponds #&=1.27, 1.29, 1.293, and ) ) ] -
1.29344, However, in the highs regime the mass of the critical solu-

o o . _ tion is less than the extremal Reissner-NordstnalueM.
flCIently early that no double minimum solutions exist. To The mass decreases with increasmgand appears to have
illustrate this, in Fig. 7 we show the approach to criticality an asymptotic value of about 0.990. Note that there is no

for b=1000. discontinuity in the mass in going from the ldw+o the
high-b regime.
D. Behavior of the critical solutions Finally, Fig. 10 shows, as a function ob. The critical

The critical solutions themselves are not accessibl&/@U€ac iS always of order unity and is a monotonically
through our numerical method. Nevertheless, we can obtaiflecréasing function di. This can be understood by recalling
good approximations to these by following sequences offiat the mass of the flat space monopole incredbgsa

regular monopole solutions. Here we briefly summarize howactor of 1.8 as the ratio of the Higgs mass to the vector

some of the properties inferred from these numerical soluMass varies from zero to infinity. Stated differently, the value

tions vary withb. of v needed to achieve a given mass decreases with increas-
As we have already noted, the critical solutions for smallind Higgs mass, making it plausible that the critigashould

b have horizons at the Reissner-Nordstreadiusr,, while ~ decrease in a similar fashion. .

for largeb the horizon occurs at a valug <r,, (see Fig. 8 For largeb there appears to be a power law relationship

There is a discontinuity in passing from the ldwto the Petweenb andag,—1. Thata,—1 asb—= is consistent
highb regime: The critical solution does not continuously With observations made in past investigati8s5]. The lit-

vary from one type to the other, but instead undergoes som&rature als@3] indicates that the curve should asymptote to

thing like a first-order transition. For a value pfust below ~ &c=3-94 asb—0. The kink in the data d~40 is real and
the transition, an inner minimum appeags a radiug <r, reflects the transition between the small and ldrgegimes.

while 1/A has a double zero ab. As b increases, the inner Note thata,<1.5 at this transition point; this fact will bg of
minimum rapidly descends and at the transitioA has two importance Iater._ The dashe_d curve |_n_the Inset of Fig. 10
degenerate minima, one Bt <r, and the other at,. As b shows an ext.en3|on of the hlghtype crltlcall solutions into
increases further the outer minimum moves upward, whildh€ [owD regime. The corresponding solutions are well be-
the inner minimum at, remains at zero. Eventually the aved |_ns_|d_e the horizon, but are not asympto_tlcally flat at
outer minimum vanishes, and the only minimum i %is spatial infinity; see the Appendix for more details.
associated with the horizon gf . This radius, asymptotes

to zero asb—o. As b is increased, the critical black hole V- ANALYTIC CONSTRAINTS FROM EXTREMAL

solution approaches that found in the literature in the infinite HORIZONS

b limit [3,5] . _ ) We would now like to use analytic methods to gain some
The mass of the critical solution can be inferred from thedeeper understanding of our numerical results. We begin by

long-range behavior of &, In Fig. 9 we plot this mass as & focysing on the critical solutions with extremal horizons, but
function ofb. As expected, the mass of the ldwsolutions is  yeqylar at the origin, that are the limits of the gravitating
just that of an extremal Reissner-Nordstroblack hole.  monopole solutions. In this section we will obtain a set of

conditions at the extremal horizon that are necessary, al-
though not sufficient, for the existence of such solutions.

2This inner minimum in lowb monopole solutions only appears These turn out to allow two distinct types of limiting solu-
for b very close to the transition point and whaiis very neam,, . tions. We discuss both of these, as well as the nearby non-
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FIG. 7. Monopole solutions fdo=1000 and various values af The progression from dot-dashed line, to dashed line, to dotted line, to
solid line corresponds ta=0.5, 0.9, 1.0, and 1.05576. The first three panels depict the metric funcaloh\(r), (b) B(r), (c) (AB)Y4(r).
(d) Matter fields variables;i(r) begins at unity at the origin and asymptotes to zero-asc. h(r) is zero at the origin and asymptotes to
unity asr—oo.

singular solutions, in more detail in the next section. Ourshould not assume that the derivatives of these functions
analysis of the behavior of the fields near the horizonwith respect tor are continuous, or even finite, af . In-
complements and extends earlier treatmé#is1]. stead, we require only thd{1/A)/dr vanishes at the horizon
Because a simultaneous zero of botA &hd its first de- and thatdu/dr and dh/dr diverge less rapidly tham'/?
rivative is a singular point of the differential Eq®.8) and  does.
(2.9, the critical solutions are nonanalytic at the horizon (3) We assume that the leading singularities of these
radiusr, . Ordinarily, physical considerations would con- quantities near the horizon can be approximatednoy nec-
strain the allowable singularities at such a point. Howevergssarily integer powers of|r—r, |, although we allow for
we are not actually requiring that the solution be physicallythe possibility that both the power and the coefficient of the
acceptable, but only that it be the limiting point of a family leading term may be different on opposite sides of the hori-
of physically acceptable solutions. Keeping this in mind, itzon.
seems reasonable to impose the following set of require- Given these assumptions, EqR.8) and (2.9) imply that

ments: the matter fields at the horizon, which we denoteugyand
(1) We assume that the functions h, 1/A, andBare all  h, , must lie at one of the stationary points dfthat were
finite and continuous at, . enumerated in Sec. Il. Once these are specifieds deter-

(2) Sincer is a singular coordinate at the horizon, we mined by Eq.(2.11), which reduces to
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FIG. 8. Extremal horizon radius for various valuestofAna-
lytic arguments indicate that, —0 asb—oo.
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FIG. 10. Critical values fom—1 as function ofb. The inset
shows in detail the transition region between Ibwand highb
behavior, with the open circle indicating the apparent transition
) point at b=40. Note that at this poinh=1.418% 1.5, the latter

0=1-87Gr U(r,). 4.9 value indicated by the dotted line. The dashed line is an extension
) . . . of the highb type critical solutions to smallds. For the solutions

The monopole solutions without horizons were solutionsyepresented by this dashed line, the fields are well-behaved inside
to a boundary value problem with conditions imposed at he horizon, but are not asymptotically flat at spatial infinity.
=0 andr==. The existence of the extremal horizon im-
poses three more conditiofisn the values ofi, h, and 1A s thatN be greater than or equal to the number of conditions
atr=r,) and thus leads to a pair of boundary value prob-mposed at the second boundary. Thus, at first thought it
lems, one for the interval €r<r, and one for, <r<<,  \yoyld seem that, given a suitable set of valuesupr, h, ,
that must be solved simultaneously. The interior problem haﬁndr* , we would need a two-parameter family of solutions
three boundary conditions at the origin and three at the hosg, — r, —0., to solve the exterior boundary value problem
rizon, for a total of six, while the exterior has two at spatial 34 g three-parameter family for-r, —0_ to solve the
infinity and three at the horizon, giving five in all. interior problem. However, we do not expect to find extremal

A standard approach to such problems is to look for agg|ytions for arbitrary values of parameters. Instead, for fixed
family of solutions obeying the conditions at one of they, e muyst adjusv (or, equivalentlya) to its critical value.
boundaries. If these can be shown to depentl@djustable  \ye may therefore view as an extra adjustable parameter,
parameters, integration of these solutions wasuming N0 g need only require the existence of two-parameter fami-
singularities intervenegive anN-parameter family of solu- jjag of solutions on both sides of the horizon. The nonanaly-
tions in the neighborhood of the other boundary. Generlcallyticity at the horizon allows us to choose the parameters on
a necessary, although not sufficient, condition for a solutione two sides independently.

There are several caveats. First, the presence of the appro-

1002 priate number of adjustable parameters at the horizon does
1 not guarantee the existence of a solution. Global consider-
1.000 ations that are beyond the scope of this analysis may make it
impossible to satisfy all of the boundary conditions. Second,
0.998 it may, and in some cases does, happen that the leading be-
- havior near the horizon is fixed and that the adjustable pa-
2 0.996 rameters appear only in subdominant terms. Finally, if the
S values ofu andh at the horizon are the same as at the origin
0,994 (infinity), the interior(exterion boundary value problem for
the matter fields has a trivial solution, and so it is not neces-
sary to have any adjustable parameters.
0.992 We find it convenient to define
Ll vt et el ol
0990, 58 10’ 10° 10’ 10° 10° 10° U=—Uy
b Y=\ er,vin—h,)1\2 “-2
* *

FIG. 9. Mass of critical solutions as a functiontfLow-b type ) ) N .
solutions p<40) all haveM =M. The dots indicate the values for and to use the dimensionless position variabdes (r
high- type solutions. —r,)/r, . Itis also useful to define the matrix
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™ lei 22U w3 This reduces Eq<€4.6) and (4.7) to
b2 aayyl, ' K[X20" + 2x" + 203 (") 1o 1= Map+ DX+ - - -
(4.10
The orthonormal eigenvectors and the eigenvalues\of
play an important role in the analysis; we denote thesé_ by and
and u, (a=1,2), respectively. Finally, we define the two- 1
component vector k=F—o ;(/,tM(/ﬁL kx(g)y! [+ - - (4.12
e’r> 42U :
= W (4.9 We now turn to the behavior af asx—0. We see thai
Hr, must vanish at least as fast #g'2 since otherwise the
. nonlinear term on the left-hand side of the equation domi-
as well as the ratio nates and there is no solution. Hence, we may write
2
_4nG g U= X[V [ X+ X -]
o= ezrz —r2 (45)
* * + 7M1|X|71+ 7772|X|”2+ - (4.12

where, as beforer is the horizon radius of the extremal _ -
Reissner-Nordstra black hole. where the ellipsis within the square brackets represents

Equation(2.11) and the equations obtained by substitutionigher-order analytic terms, thg>1/2 are noninteger pow-
of Eq. (2.10 into Egs.(2.8) and (2.9) form a set of three ers to determined, and the final ellipsis represents smaller

equations for the functions, h, and 1A. In the notation we nonanalytic terms that are determined by the lower-order

have just defined, the first two of these can be compactl rms. ) L . .
J P When this expansion is substituted into E¢.10, the

written as
terms of ordefx|'? give the nonlinear equation
1l/f”+ - ’1//’+2 (") 'y 1y = Myp+ Dx+ 3
i — — 0 = X . g
A A A Kz et T12m12) | M2= M1 (4.13
(4.9
while the third becomes wheree is equal to plus or minus unity according to whether
X is negative or positivei.e., for the interior and exterior
1\’ . 1 . problems, respectivelyA solution is possible only ifp,, is
A =2FX=20| Myt ()Y |+ (47 proportional to one of the eigenvectors.bl. Let us denote
this eigenvector by and the orthogonal eigenvector By ,
where with analogous conventions for the eigenvalues. We thus
have
, 30(r?U)

with p obeying
Here primes denote derivatives with respecktavhile the
ellipses represent terms, of higher order in eitkesr the
components ofy, that can be neglected here. kp
We are assuming that the leading behavior of the various

functions can be approximated by powersoflt is then  |n addition, substitution of our expansion far into Eq.
fairly easy to showthat (4.10 yields

3 o
2 4P

2= wyp. (4.19

o
1—e—p?

1—k2 4.9
Ak (4.9 K 1

=F+eoup’. (4.16

These equations can be used to finals a function op?,
and the result then substituted back into E415. For the

3Assume that B~|x|®. If a>2, Eq. (4.7 is dominated by the &9 ' :
interior solution €=1), this leads to the result that

two terms not involving 24, and one finds thag~|x|*2 This in
turn implies that Eq(4.6) is dominated by a single term, the first

one on the right-hand side, and hence has no solution. If instead »_ F ﬂ_1+ /1+ % of p2=0
a<2, the two terms involving B dominate Eq(4.7), again im- im_20'lu,H F - F Pint=
plying thaty~|x|*2 Equation(4.6) is now dominated by the three (4.17)
terms on the left-hand side. Because the last two of these cancel,

there is again no solution. and

084025-10



MAGNETIC MONOPOLES NEAR THE BLACK HOLE THRESHOLD PHYSICAL REVIEW [B0 084025

AF order to have two roots positive and greater than 1/2, we
Kint=——% - (4.1  must require that both eigenvalues satisfy
(2— Upint)
F
Sincek must be positive, we require thet>0. The require- Ma>T>O' p=0. (4.23

ment thatp be real then implies that nonzero solutions ffor
exist only if uj=—F/4; for the solution with the lower For p#0, the form of Eq.(4.22 depends on whether we
choice of sign, there is the additional requirement fghot  are considering the mode proportional@por the one pro-
lie between 0 and B/4. portional to#, . In either case, it is most convenient to pro-
Although Egs.(4.15 and (4.16 allow a nontrivial solu- ceed by using Eq(4.15 to eliminateu,. For e=—1 the
tion for p? in the exterior region, other constraints, describedcoefficient ofy is positive, so at least one root is negative for
below, require that each mode. Detailed examination of the equation foréhe
) mode then shows that it has no roots greater than 1/2; since
Pex=0 (4.19 the equation for th&, mode can have at most one such, we
must setp=0 in the exterior region. Foe=1 (i.e., the in-
and hence that terior region, the equation for th@ mode has one and only
root greater than 1/2 for all values pfj consistent with the
Kex=F- (4.20 reality of p. The equation for the other mode can be rewritten

. . . as
Having determinedy,,,, we can now turn to the remain-

ing terms in Eq.(4.12. Extracting the coefficients of the 1 1\ (2w =

integral powers ok in Eq. (4.10 yields a series of inhomo- 0= 7( —35| Tl 5) (T) +( K ) (4.24
geneous linear equations that determine #fje the first of

these i8 For this to have a solution withy>1/2, eitheru <u, or

1 <0; since we will see that at most one of thg can be
negative, the second alternative implies the first. Combining
this with the previous conditions on the,, we see that a
p# 0 solution exists in the interior region if

(2k= M) 71— kPP 5[ 261 70) O+ 71] =D (420

In a similar fashion, the nonanalyt@(|x|?) terms give a
linear equation fornyj. However, because the inhomoge-

neous term in Eq(4.10 is analytic and cannot contribute,

the resulting equation is homogeneous. A solution of this . ) N
equation is possible only iy, is proportional to one of the Equations(4.23 and (4.25, together with the condition.
! F>0, are the fundamental conditions that must be satisfied

at the extremal horizon. To explore the various possibilities,
we must apply these in turn to the stationary point&Jdhat
—p, Mo, were enumerated in Sec. Il. The last two cases can be imme-
diately eliminated: Case 3 is excluded because hotk O,
thus ruling out the possibility of @=0 exterior solution,
while case 4 has<0. This leaves cases 1 and 2. The
(4.22 :
former,u, =0 andh, =1, corresponds to an extremal hori-

zon in the Coulomb region while the lattar, =u and h,

=h, gives a horizon in the monopole caté&Ve will study
these in detail in the next section.

F
ML>MH>_Z, p#0. (4.25

0, and if y; is a root of

3
0= k[ y(y+1)— Eeyo'pz

1
0=k y(y+1)= 5 €eyop®|—pr, 70, .

Note that both equations take the same form in pRe:0
case, where the twg, are on the same footing. Because the
equation is homogeneou%j is determined only up to an

?r:/erhall _multlﬁllcatltve co(gl_stzin'ij.lln ordetr thtat E[r;]e solutlo?bnegllz V. BEHAVIOR NEAR COULOMB AND CORE REGION
e horizon have two adjustable constants, there must be two EXTREMAL HORIZONS

independent nonanalytic terms with powers greater than 1/2.
Thus, the pair of equations corresponding to the fwp In Sec. IV we showed that there are only two possibilities
must, between them, have two roots greater than 1/2. for the values of the fields at the extremal horizon. Although
For p=0, the coefficient ofy in Eq. (4.22 is positive, the local analysis that we used cannot tell whether these are
implying that at least ong must be negative for eagh,. In  consistent with the existence of a global solution, our nu-
merical results show that both types of solution actually oc-

“The coefficient ofy, on the left-hand side of this equation van-
ishes for certain choices of parameters, leavingindetermined. A SSince it seems unlikely that the minimum energy solutions will
similar phenomenon can also happen in the equations for the othéave eitheru or h change sign, we assume that the fields are posi-
7, - These parameter choices correspond to points where the powgve at the horizon. There can, however, be excited monopoles in
7; of one of the nonanalytic terms goes through an integer value.which u(r) goes through a zero; see, e.g., R&.
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cur. In this section we examine these more closely. We also u=Cy|x| "+ ayx+---
consider the nonsingular near-critical solutions in which 1/
has a related minimum.

h=1-p+a|x|¥?— Cpy|x| "= apx+ - - -

A. Coulomb region horizons

1
_—— 2 ...
The first possibility,u, =0, h, =1, corresponds to a ho- A =kxt- (5.9
rizon in the Coulomb region outside the monopole core.
Equation(4.1) implies thatr, =r,, the extremal Reissner- Here
Nordstran value, sooc=F=1. The matrix M is diagonal, S
with eigenvalues k=(1-p%2) (5.6
a and
— — 2 —
p1= M= (evro) _1—5_1 1
PP=5—[4u— 1% V1+4u] (5.7
o= Moy=4NvZr2=2ba., (5.1) ol

. . . L with | equal to the lesser of the two eigenvalues in Eqg.
A solution outside the horizon is given by the extremal(5_1)_ If 2<a<7/2, the upper sign must be used in E57).

Reissner-Nordstra metric, withu=0 andh=1 for all v, 4 type |1a solutions Eq4.25 requires that either
>ro. We assume that this is the only exterior solution satis-

fying the boundary conditions, and concentrate on the inte- 3 2 1

rior solution. §<a<m and b<Z (5.8
There are several possibilities for the behavior of fields

just inside the horizon: or

Type | The singularity in the matter fields is less singular

thanx*? (i.e., p=0). Equation(4.18 implies thatk=1, so 3 1
near the horizon a>§ and b>Z' (5.9
u=Cy[x| "+ ayx+--- The corresponding requirement for type Ilb is that
h=1-Cy|x|"—apx+--- 1
a>1_4b>2 and b<4. (5.10
1 2
A X e (5.2 Atthe boundary between the Ila and Ilb regimass 2/(1

—4b), both y, and y,, are equal to 1/2 and the two types of
where the ellipses represent terms that are determined by tiselutions merge. Note that none of these solutions is possible
terms shown explicitly. Herex, and «;, denote constants if a<<3/2; this point will be important when we compare this
whose values are fixed by E¢4.21). C, and Cy, are not analysis to the numerical results.
determined locally, but must instead be adjusted so the The mostimportant difference between the type | and the
boundary conditions at the origin are satisfied. The expotype Il solutions is in the behavior of the quantifAB. If
nentsy, and y, are solutions of Eq(4.22) and, depending p+0, one of the matter fields varies hd*? near the hori-
on the values ofr and b, may or may not be greater than zon. As a result, the integral in the exponent in E12
unity. The requirement that these exponents both be greateliverges for anyr<r,, and VAB becomes a step function
than 1/2 leads to Eq4.23, which implies that centered at the horizon. Horowitz and R§%8] have shown

that a particle in geodesic motion across a horizon feels a
. (5.3 tidal force proportional to the logarithmic derivative gAB,
and have used the term “naked black holes” to describe
certain near-extremal black holes solutions for which this
Type IL Matter fields with|x|*? singularities. There are quantity is large. Not only do our Coulomb region extremal
two possibilities here, depending on which field has the sinsolutions fit in this category, but so do the nearby nonsingu-
gularity. In the first(type lla), lar solutions.

7 3

a>Max E’%

_ 12
u=p|x| 7+ Cy|X| v+ a X+ - - . .
il ulx| u B. Horizons in the monopole core

h=1-Cy|X|""— apx+--- The second possibility allowed by the analysis of Sec. IV
is thatu, =u(r,) andh, =h(r,), with u andh given by

1, Egs. (2.6) and (2.7). This corresponds to a horizon in the
A KXo (5.4 monopole core region. Unlike the case of a Coulomb region
horizon, there must be a nontrivial exterior solution, thus
while in the secondtype IIb), giving an extremal black hole with Higgs and gauge boson
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hair. Because our numerical results show solutions of this 3 1

type only for relatively large values df, we will find it 0>3—2a2+ >a+0(1hb). (5.18

convenient to use large-expansions to simplify some of the

algebra below. o We also obtain the requiremelnt-1, since otherwis& has
Substituting the expressions farandh into the potential a negative eigenvalue. Sineeand o are also related by Eq.

U gives (5.13, we can obtain a constraint that depends onlyoio

satisfy both Eqs(5.13 and(5.18, we must take the upper

a N . -t
87GrU= (evr)~Z[—1+2b(evr)?—b(evr)*]. sign in Eq.(5.13. We can then combine the two conditions

2(b—1) to obtain
(5.11
. . . . 2 41
Equation(4.1) requires that this be equal to unity at the ho- 607~ 750—4+0(1b)>0 (5.19
rizon. By making use of the fact thaeyr, )?=a/20, this
constraint can be rewritten as which implies thato>1.06+ O(1/b). Note in particular that
o=1 (i.e.,r, =rg) is not possible for any value df.
_ 4o(1-0) _ (5.12 Once this condition is satisfied, there are no further con-
a’~4ac+4o straints imposed by local analysis at the horizon. In particu-

lar, the interior solution can be either of tipe=0 or thep
#0 type. BecauséM is not diagonal, as it was in the Cou-
lomb case, the same irrational powers appear in bathdh.

The roots of this equation determimein terms ofb ando.
For largeb, the b-dependence is negligible, and

a=20[17 VI— o 1]+0(1b) (5.13 Thus, if p=0, the fields near the horizon behave as
In contrast with the previous case, the matfi4 is not u=u(r,)+0g;Cq|x|71+qaC,|x| "2+ ayx+ - - -
diagonal. Using the equations obeyedibwandh, it can be .
written as h=(r,)+07C4|x|"1+a5Co|x| "2+ apx+ - - -
o Z‘Eew*aﬁ) %: FX24 - - (5.20
2\2evr,uh 4be?v?r2h?

Herey; and y, are solutions of Eq(4.22 corresponding to
_ 2(1-y% 2\/§y V1-y? +0O(1/b) the twou,; as before, their values may be either greater or
2\/§y\/1—y2 4by?—4(1—-y?) less than unity, depending on the valuesaond b. The
(5.14 constantsy,, andq?1 are determined by the eigenvectats.
' The values ofx, and ay, are fixed and are the same on both
where in the second line we have defined sides of the horizon, whil€,; and C, can be varied inde-
pendently inside and outside the horizon so that the boundary

. , @ conditions can be satisfied both at the origin and at spatial
y'=(evr,) =5 519 infinity.
If insteadp # 0, the fields outside the horizon are as in Eq.
The eigenvalues oM are (5.20), but inside the horizon
2ba U=U(r,)+pd|X| ">+ q1Cy x| "1+ 5C,[x| 2+ ayx+ - - -

m=——+0(1)
h=h(r,)+paj|x| "2+ aiCy|x| "1+ q5C,|X| 2+ apx+ - - -
a
p2=2-—+0(1hb). (5.16
A= KxP+ - (5.21
The exterior solution must be of thp=0 type, implying
that these eigenvalues must obey E423. This requires We have assumed that < u4; if the opposite were the case,

that they both be greater tharf8l, where the |x|“? terms would involveq! andq. Herek andp are
1 la2b given by Eqs(4.18 and(4.17), with there being two accept-
S U} able solutions. As before, the valuesqf and «y, are deter-
b—1|4c mined, although they are no longer the same as in the exter-
) nal solution.
a
=-—+0(1b). (5.17
4o VI. COMPARISON WITH NUMERICAL RESULTS

In the largeb limit, w, clearly satisfies this condition, while Let us now see how well these analytic results agree with
for u, we obtain the constraint our numerical results. We begin with the Idw+egime,
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where the nonsingular monopole solutions tend toward a I_El(r_)~cl_1ln(1/A). 6.3
critical solution with a Coulomb region horizon at the

Reissner-Nordstro value r=ro. Throughout this regime, \yyiting u as a decreasing exponentiak- u, exp(—c,l), we
the critical solutions we find appear to be the more singulaghen have

type Il solutions rather than the type | solutions of E82).

This is consistent with our findingsee Fig. 10 that the u(r_)~u (LAY, (6.4
values ofa,, are always less than the lower bound for type | 0 min '
solutions given in Eq(5.3.

Given the values foa., as a function ob, Egs.(5.8) and
(5.10 predict that there should be a transitionbat0.1 be-
tween the type lla regime, where~ |x|2 and the type Ilb
regime, where t h has thex|'? singularity. Atb=0.1, the
lowestb for which we have a sequence of stable configura
tions that approaches a critical black hole solution, we fin L 1/4. Turning to our numerical results, we do indeed see a

that the powers ot and 1-h are both close to 1/2, as ,qyer Jaw behavior fou, with q ranging between 0.23 and
predicted for this transition. It is curious to note that this isg og

close to the value ob below which (1A).,, can be a
double-valued functiom.

with g=c,/2c,. This analysis does not give predictions for
¢, andc,. However, we can get an indication of what to
expect forq by recalling that for the critical {=0) caseu
~(1/A)Y* as the horizon is approached from the inside. If
the above expressions were exact apcand c, were truly
‘constant and independent df, this would imply thatq

A similar analysis can be applied to the jump\JAB near
the minimum of 1A. For the parameter ranges where we find

Examining the Coulomb-type black hole solutions in . . . . — i
more detail, we find, fob=<20, that ag approaches, from extremal soll;gi)ns witlp#0, this predicts thayAB;— var

below, the values ofi2(A~1)/dx? andu?x tend toward the 1€ @S (MA)n, " assuming a normalization mrw.: 1.

values ofk andp predicted by Eqs(5.6) and (5.7) with the ~ Not only does this account for the power law behavior noted

upper choice of sign. in Sec. lll B, b_ut_the predlctlo_ns for the power are borne out
We observed in Sec. Il B that the matter fields displayed?y the data within the numerical accuracy, where the power

exponential falloffs when written as functions of the properP?/4 ranges from about 0.7 to unity.

lengthl(r) for low-b type solutions. To understand this, we ~ Nearb=20, a, equals 3/2, the lower bound allowed by

note that the field equation far, Eq.(2.8), can be written as  the analysis of the previous section for Coulomb-type solu-
tion. Nevertheless, the qualitative nature of the approach to

d?u [d(A~Y9) 8xGrk|du u(u?-1) criticality does not change dsincreases past this valug_ and
W+ g + i ———+e?viuh?, as a., becomes smaller than 3/2. Indeed, the transition to
r VA r core-type horizons does not appear to occur until aliout
(6.1) =40, wherea,=1.4187. It does not seem as if this discrep-

ancy can be attributed simply to numerical errors. We find
Ghat changing numerical parameters or modifying details of
the algorithm gives a variation in the value af, at the

ansition that is at most of order 0.01. For more details of
Ithe numerical aspect of this issue, see the Appendix.

Our analytic results indicate that the quantity in squar
brackets is of order unity as— 0 for the interior portion of
the extremal solution. This suggests that this quantity shoul
be a relatively slowly varying function for largeand hence

that the falloff ofu should behave as a decaying exponential The resolution of this puzzle seems to lie beyond the pre-

with a slowly varying decay constant. As we saw in Fig. 3, iision of our numerical simulations. Several possibilities

th!s_ IS '”de?d the case both for_the critical apd the near'suggest themselves. First, there may be a sharp change in the
critical solutions. A similar analysis can be applied te .

E hi it of Vi h ishing of and 1—h approach to criticality that is only seen when one reaches
rom this point of view, the vanishing afand 1—h at = ¢4 ions for which (14) nin is less than the limits set by our

}he eftremil.horlz?n 1S aIS|mpII<Ia con_;equer?ce Off tlrée faﬁt tT%[patial step size, in such a way that our extrapolation to the
(ro) =c=. This analysis also tells us how these fields shouldyisica) jimit is incorrect. It could be that the decrease in the

behave as the critical solution is approached. We concentra inimum of 1A suddenly slows, and that it only reaches
here onu, and restrict ourselves tgthe rangeivhereu zero ata.,>3/2, or it could be that a new family of solutions
~[x|"?in the critical solution. Near, the minimum of 1A, intervenes. Alternatively, it may be that, is correctly ex-
we can writé trapolated, but that the critical solution violates one or more
of the assumptions that we enumerated at the beginning of
Sec. IV. For example, the critical solution might have dis-
continuities in the matter fields at the horizon; because this
would occur at a zero in &, it would not necessarily lead to
Substituting this into Eq(3.3), we find that a divergent energy.
We turn now to the higho regime, where the critical so-
lution has an extremal horizon in the core region, with

®Note thatc? cannot be the same as the coefficikhat appears = U(r'y), hy=h(r,). The numerical solutions all have

1 —
A~CHr—r)?+A% (6.2

in the critical solution, since the second derivative oA Hlas a =0 fOl’_bOth the_internal an_d external solutions, V\{ith the
discontinuity at the horizon of the critical solution, but is continu- matter fields varying less rapidly théxi*2 near the horizon.
ous whenA #0. Moreover, for the entire region where we observe this type
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of black hole solution, the leading behavior of-u, and the critical solution has nontrivial matter fields outside the

h—h, at the horizon appears to be linear xn with the  horizon, and thus is an extremal black hole with hair. Al-

nonanalytic terms being subdominant. The relations betweethough the metric functions are still nonanalytic at the hori-

a, u,, h, andr, are all in agreement with our analytic zon, their singularities are much weaker and do not lead to
results. large tidal forces.

Examining the solutions in more detail, we find that in  The transition between these two regimes is itself quite
most of the interior portion of the Critical’\and nea['critical inter‘esting7 and is in many ways reminiscent of a first-order
solutions bothu(r) and h(r) closely tracku(r) andh(r). transition. For a range of values bfon both sides of the
This is easily understood by recalling the form of the matterransition point, 1A for the critical solution has two distinct
action, Eq.(2.5. Once 1A has become small, the gradient minima. For values ob below the transition, 2 is positive
terms in the action are much less important than the positiorat the inner minimum and has a double zero at the outer
dependent potentiaﬂ. As a result, the fields that minimize minimum atr=r. The inner minimum moves downward
the action should point-by-point be close to the minimum ofwith increasingb until, at the transition point, there are two
U, namelyu(r) andh(r). distinct but degenerate minima, withAl&anishing at both.

It may be at first surprising that a second minimum iA 1/ As b is increased further, the outer minimum moves upward
exists afr ~r outside the true horizon. To explain this, con- while the inner minimum remains a zero ofAl/While this
sider the behavior of the metric outside the monopole core. limplies a discontinuity in the horizon area, the mass of the
the matter fieldsu and h are negligibly small forr >R e, black hole is continuous. In terms of black hole thermody-
then in this Coulomb region the mass function for a configu-namics, this corresponds to a discontinuity in the entropy but
ration with magnetic charge# e can be approximated by (because these are zero temperature black haléee en-

ergy that is a continuous function bf
2 Our focus in this paper has been on the behavior of the
m(r)=M—?. 6.9 monopole solutions as the Higgs expectation value is in-
creased to its critical value. It seems natural to ask how these
This gives a local maximum af(r)/r, corresponding to a solutions evolve ifv is increased still further. Actually, there

local minimum of 1A, at is a bifurcation at this point. If one requires that the solutions
remain well-behaved at spatial infinity, the solutions with
.- =4—7T=r (%) 6.6 >v,, are black hole solutions with singularities rat0. In
min~—e2p 0l M ' the lowb regime, these are simply nonextremal Reissner-

Nordstran black holes, of varying mass, with no dependence
with the value of 1A at this minimum being +(M/Mg)?.  on eithera or b. (There are also magnetically charged black
This minimum will occur, regardless of whether or not therenples with hair in this regime; however, they are not continu-
is a horizon at a smaller value ofas long as in>Reore- It ously connected to our critical solutiondn the highb re-
is absent in our solutions for very largebecause for those gime, the counting of boundary conditions suggests that, for
solutionsa, and thusv, are small enough that the core ex- given values ofa and b, the continuation of the external

tends beyond,. solution is a one-parameter family of black holes with hair.
Alternatively, one can require that the fields remain nonsin-
VIl. CONCLUDING REMARKS gular atr=0 and continue the interior solution. Because

_ i there are three boundary conditions at the origin, compared
We have used both analytic and numerical methods 19, the two at spatial infinity, this gives solutions with non-
study self-gravitating Yang-Mills-Higgs magnetic mono- qinqyjar interiors bounded by horizons that are uniquely de-
poles for a range of parameters, with an emphasis on thejpmined by specifying andb. The behavior of the metric
approach to the black hole threshold as the Higgs expectatiqaar the horizon is similar to that found when de Sitter
value tends toward its critical value. We find two quite dis- gpacetime is written in static coordinates, suggesting a cos-
tinct behaviors. In the lovp regime, with weak Higgs self- 5|qgical interpretation for these solutions. We suspect that,

coupling, the critical solution is identical to the extremal ,sgihly with a suitably modified Higgs potential, these may
Reissner-Nordstma solution outside the horizon. Inside the give rise to topological inflatiofi13,14).

horizon, the matter fields are smooth apd nonsingular, as is Finally, having studied these self-gravitating monopoles
1/A. However, because _Of the_step_functl_on behawo_ﬁAB and obtained an understanding of their approach to critical-
at the horizonB =gy, vanishes identically in the interior. The jty we can use these solutions as tools for investigating the
associated singularity at the horizon means that an observginsition from a nonsingular spacetime to one containing

falling freely into a critical or near-critical monopole will piack hole horizons. We will describe this elsewhere.
experience the strong tidal forces characteristic of a

Horowitz-Ross naked black hole.

One might speculate that these singularities were inextri-
cably associated with the transition from a nonsingular
monopole to a black hole spacetime and were independent of We wish to thank Dieter Maison, Gary Horowitz, and
the details of the Higgs potential. However, our solutions inMark Trodden for useful conversations. This work was sup-
the largeb regime show that this is not the case. For theseported in part by the U.S. Department of Energy.
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8x107° T . . algorithm. Different numerical implementations of the field
I ] equations leads to differencesag of a few parts in 16 for
. ] a highb type critical solution.

-5 R
6x10™ | ] The numerical and analytic results could be reconciled if

! ] (1) the highb type solutions persisted down to loweiinto
4x10™ - \ ] a region whera > 1.5 and(2) the identification of the outer

min

(I/A) .

minimum as a zero of & for the critical solutions in this

2x10°° F y ] region was a result of numerical error. We can address the
* first issue by using a trick. In Sec. IV we learned that critical
H ‘ L solutions solve separate interior and exterior boundary value
(1)_528 1529 1530 1531 1532 1.533 problems. Hence, we can determig as a function ob for
8x10°° —— — the highb type solutions by just solving the field equations
I ] from the origin to the horizon, ignoring the exterior region
6x10° L 1 from the horizon out to spatial infinity. By using an algo-

rithm similar to that described in Sec. Ill, we find the family
I of critical solutions represented by the dashed line in the
4x10°° 1 inset of Figure 10. These solutions have higtype horizons

: but are not asymptotically flat at spatial infinity; however, if

min
T

(1/A) .

2x10°° L ’ ] there were an asymptotically flat critical solution with the
:\.\\ ] same value ob, it would have the sama,, as these solu-
L L tions. This dashed line crossag=1.5 whenb=25.6. Thus
‘1)'424 1.425  1.426 1.427 1.428 1.429 to be consistent with the analytic results, the transition value

between low and high- critical solutionsmustoccur forb

< 25.6 (rather that at the value di=40 indicated by our
FIG. 11. Comparison of (&), versusa using two different  numerical results Again, this result appears to be numeri-

discretizations ab=16 (top diagram andb= 35 (bottom diagram cally robust to a few parts in 0

The dotted curve employs the system E@51) while the solid

curve employs the system Eq#2).

a

2. The Coulomb minimum

APPENDIX: NUMERICAL DISCUSSION According to the previous discussion, the ability to recon-
OF TRANSITION REGIME cile numerical and analytic results now depends on the sen-
. sitivity of the outer minimum, the one negg, to numerical
In Sec. VI we noted that a discrepancy appears betweegyror From the inset in Fig. 10, we see that in ordertigr
the analytic argument that lol-type critical solutions can <25.6, our values foa,, for the low-b type critical solutions
oqu exist whe_r_lacr> 1.5 _and the _numerical observation_ that must be in erroitoo low) by approximately 0.04A priori,
this type of critical solution persists whe,<1.5. We dis-  gych an error is certainly plausible. At this minimum, the
cuss here the Qetalls of our investigation .that Iefad us to beso|ytions near criticality vary sluggishly with and b. The
lieve that this discrepancy is not a numerical artifact. spatial derivatives of field variables are large at this radius,
'Recall that the transition between the high and lotype  anq indeed are expected to be singular if the outer minimum
critical solutions is reminiscent of a first-order phase transiyecomes a horizon. It is here that we are most susceptible to
tion. The metric function ¥(r) for a regular monopole so- numerical errors.
lution near criticality withb near the transition value pos-  ag we discussed in Sec. Ill, discretized versions of Egs.
sesses two minima, one near the extremal Reissne( g _(2.11) are implemented in our numerical algorithm to
Nordstron radius,ro, the other in the core of the monopole, identify static monopole solutions. In order to probe the ro-
r<ro. As ais increasedfor a fixedb), one of these minima  pystness of the algorithm and the confidence with which we
becomes a horizon, and a critical solution is attained.Af 1/ can treat these Solutions7 different imp|ementations of the
at the inner minimum becomes zero first, then we have @jscretization were examined and compared. In particular,
high-b type critical solution; when K for the outer mini- e focus on Eqs(2.8) and(2.9). First, we used the straight-
mum touches down first, we have ldwtype solution. Let us  forward expansion of these equations.
examine each of these minima separately for regular solu-

tions near criticality in this transition region. 1 dqur duj d (1 L 8rG rKi AL
AdrZ dr|dr\A T AT (A1)
1. The core minimum
The inner minimum for the types of solutions under con- 1d%h dhld /1 rK  2r
sideration varies rapidly with both andb, so one can iden- A WJF ar a(;) +8WGT+ N

tify very precisely when such a minimum becomes a hori-
zon. Moreover, the field variables and their derivatives are
well-behaved near this radius, and the numerical solutiontn a separate treatment, we used E2.11) to eliminate
here are robust and insensitive to variations in the numerical(1/A)/dr:
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1d%u 1du ) 1 happens for this very small (A) i, is beyond the ability of
Aare T 7 gr|(1—87Gr U—xl= (A2)  our resources to probe.

Nevertheless, the extrapolated differenceajpn between
the two numerical implementations were on the order 0.001.
Other similar variations in the numerical algorithm were
tried, and analogous results are found. Moreover, varying the
spatial discretization size also yielded differencegipon
Though these two systems of equations are equivalent in thiée order 0.001. Thus, numerical error does not seem to pro-
continuum limit, their discretized forms which appear in thevide the Aa.,,~0.04 needed to account for the discrepancy
numerical implementation suffer @[ (Ar)?] difference. between the numerical observations and the analytic results.

Figure 11 shows the (&), as a function ofa for solu-  To illustrate the scope of the discrepancy needed, the differ-
tions near criticality using the two different equation setsence between the two curves needs to be approximately eight
Egs.(Al) and(A2) atb=16 andb=35. The curves in Fig. times the total range of the horizontal axis shown in Fig. 11.
11 do not extend into the region where Alin=1.0 Finally, there is no apparent qualitative change between
X 108 since this isO[ (Ar)?] and our solutions break down. solutions whose criticad,, is greater than or less than 1.5, as
(For these calculations we uséd =5x10 %)) Indeed we seen in Fig. 11. The approach of A}/, to zero is a much
find no stable solutions at all in this regime; however, weslower function ofa as b increases, but there is no sharp
expect this effect is an artifact of the discretization. Whatchange at,=1.5.

1d’h 1dh
Adr? " rr

[(1—quGrZU)+K
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