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Magnetic monopoles near the black hole threshold

Arthur Lue* and Erick J. Weinberg†

Department of Physics, Columbia University, New York, New York 10027
~Received 3 June 1999; published 28 September 1999!

We present new analytic and numerical results for self-gravitating SU~2!-Higgs magnetic monopoles ap-
proaching the black hole threshold. Our investigation extends to large Higgs self-coupling,l, a regime here-
tofore unexplored. Whenl is small, the critical solution where a horizon first appears is extremal Reissner-
Nordström outside the horizon but has a nonsingular interior. Whenl is large, the critical solution is an
extremal black hole with non-Abelian hair and a mass less than the extremal Reissner-Nordstro¨m value. The
transition between these two regimes is reminiscent of a first-order phase transition. We analyze in detail the
approach to these critical solutions as the Higgs expectation value is varied, and compare this analysis with the
numerical results.@S0556-2821~99!01422-8#

PACS number~s!: 04.70.Bw, 14.80.Hv
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I. INTRODUCTION

The physics of a nonsingular spacetime is qualitativ
distinct from that of a spacetime exhibiting a black ho
However, families of spacetimes exist that may be viewed
interpolating between the two. These spacetimes are non
gular and have no horizons; nevertheless, they have a re
whose metric can be made arbitrarily close to that of
exterior region of a black hole. In the limiting case, the inn
boundary of this region takes on the characteristics of
extremal horizon, even though no curvature singularity
velops in the interior. By studying such solutions, one m
gain further insight into the properties of black holes.

One approach to the construction of such ‘‘almost bla
holes’’ begins with a spontaneously broken Yang-Mi
theory that has magnetic monopole solutions. For sm
Higgs expectation values, these monopole solutions pe
when gravitational effects are included. However, as
Higgs expectation value is increased toward a critical va
on the order of the Planck mass, the monopole soluti
begin to approximate black holes with finite mass and n
zero horizon radius.

Such gravitating monopoles, as well as the related m
netically charged black holes with hair, have been stud
previously @1–5#. For a review article and recent work i
related subjects, see@6#. In this paper we investigate thes
solutions in more detail, concentrating on some aspects
were not previously noted. Most notably, we find that tw
distinct types of behavior, with qualitatively different ex
tremal black hole limits, can occur. Our focus here is on
detailed properties of these solutions and their behavio
they approach the black hole limit. We describe elsewh
@7# how these solutions can be used as approximate b
holes that provide insight into the transition from a nons
gular spacetime to one with horizons.

We work in the context of an SU~2! gauge theory that is
spontaneously broken to U~1! by a triplet Higgs fieldf with
vacuum expectation valuêf&5v. The elementary particle
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spectrum of this theory contains a pair of vector mesonsW6

that carry U~1! electric charge and have massev ~wheree is
the gauge coupling!, as well as a massless photon and
massive electrically neutral Higgs particle. In flat space
classical field equations have a spherically symmetric mo
pole solution with U~1! magnetic charge 4p/e and a mass of
order 4pv/e. This has a central ‘‘core’’ region, of radiu
Rcore;1/mW , in which there are nontrivial matter fields. Be
yond this radius is a ‘‘Coulomb’’ region in which the mas
sive fields fall off exponentially fast, leaving only a long
range Coulomb magnetic field.

In studying the behavior of these solutions in the prese
of gravity, we assume spherical symmetry, and so can w
the metric in the form

ds25B~r !dt22A~r !dr22r 2~du21sin2udf2!. ~1.1!

It is often convenient to rewriteA in terms of a mass function
m(r ) defined by

1

A~r !
512

2Gm~r !

r
~1.2!

with m(`)[M . For a configuration to be nonsingular at th
origin, A(0)51 andm(0)50. A horizon occurs when 1/A
has a zero or, equivalently, whenm(r )/r 51/2G.

A benchmark with which to compare our results is pr
vided by the Reissner-Nordstro¨m metric, with

B~r !5
1

A
512

2MG

r
1

Q2G

4pr 2 . ~1.3!

If M.AQ2/4pG, this describes a black hole solution with
charge~either magnetic or electric! Q and an outer horizon
determined by the larger of the two zeroes of 1/A. If instead
M,AQ2/4pG, there is no horizon separating the curvatu
singularity atr 50 from the asymptotic regions and a nak
singularity results. The boundary between these two regim
M5AQ2/4pG, gives the extremal Reissner-Nordstro¨m
black hole. ForQ54p/e, the case with which we will be
concerned in this paper, the extremal black hole has a h
zon radius
©1999 The American Physical Society25-1
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r 05A4pG

e2 ~1.4!

and a mass

M05A 4p

Ge2. ~1.5!

When v!MPl the gravitational effects on the monopo
are relatively small. The metric at large distances approac
the Reissner-Nordstro¨m form, with AQ2/4pG@M . There is
no singularity, because the actual metric deviates from
Reissner-Nordstro¨m form when r &Rcore. One finds that
1/A51 at the origin, decreases to a minimum at a radius
order Rcore, and then increases monotonically. Asv is in-
creased, the core shrinks and the minimum of 1/A moves
inward and becomes deeper. In most cases, this conti
until 1/A develops a double zero, corresponding to an
tremal horizon, whenv5vcr . A slightly different behavior is
found for very small Higgs self-coupling@3#. In this case, the
solution varies continuously asv is increased up to a valu
vmax. Although the minimum value of 1/A is still nonzero at
this point, static solutions do not exist for higher values ofv.
Instead, these solutions join smoothly on to a second bra
of solutions for which (1/A)min decreases asv is decreased
from vmax to a critical valuevcr , where the extremal horizon
develops.

For small values of the Higgs mass, the extremal horiz
of the critical solution occurs at the Reissner-Nordstro¨m ra-
dius r 0, in the exterior Coulomb region of the monopo
solution. The matter fields take on their vacuum value eve
where outside the horizon and the exterior metric is exa
that of an extremal Reissner-Nordstro¨m black hole. When
the Higgs to vector mass ratio is greater than about 12
regime not explored in depth in previous studies, the beh
ior is rather different. The horizon is in the monopole core
a radiusr * ,r 0 that decreases with increasing Higgs ma
In this case there are nontrivial matter fields, or ‘‘hair,’’ ou
side the horizon. The transition between the two regime
not smooth, but instead is reminiscent of a first-order tran
tion.

The remainder of this paper is organized as follows.
Sec. II we outline the general formalism and define our c
ventions. In Sec. III we use numerical methods to obt
monopole solutions to the field equations. We describe
detail their behavior asv is increased towards its critica
value. The critical solutions that are the limits of these fam
lies of monopole solutions are characterized by the prese
of extremal horizons. In Sec. IV, we use analytic methods
study the properties of these critical solutions, focusing
the behavior near the horizon. We show that the problem
finding a solution with an extremal horizon can be form
lated as a pair of boundary value problems, one for the
gion 0,r ,r * and one forr * ,r ,`, that must be solved
simultaneously. The conditions for a solution to these pla
strong constraints on the behavior of the fields near the
rizon. These constraints allow only two types of behavi
one associated with a core region horizon, the other wit
08402
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Coulomb region horizon, which we examine in detail in Se
V. In Sec. VI we compare these analytic predictions with o
numerical results. Section VII contains some concluding
marks. The Appendix contains details of the numerical
vestigation of the transition region between the two types
critical solutions.

II. GENERAL FORMALISM

We consider an SU~2! gauge theory with a triplet Higgs
field fa whose self-interactions are governed by the sca
field potential

V~f!5
l

2
~fafa2v2!2. ~2.1!

In flat spacetime, this theory has nonsingular monopole
lutions, with magnetic charge 4p/e, that are described by th
spherically symmetric ansatz

fa5v r̂ ah~r ! ~2.2!

Aia5e iakr̂
k
12u~r !

er
~2.3!

A0a50. ~2.4!

While it is clear thatvh(r ) is the magnitude of the Higgs
field, the meaning ofu(r ) is somewhat obscured by thi
‘‘radial gauge’’ ansatz. By applying a singular gauge tran
formation that makes the direction of the Higgs field un
form, one finds thatu(r )/er is equal to the magnitude of th
massive vector field, and so it, like 12h(r ), should be ex-
pected to vanish exponentially fast outside the monop
core.

The generalization of this ansatz to curved spacetim
straightforward. Since we are considering only static sph
cally symmetric solutions, we can take the metric to be of
form of Eq. ~1.1!. The matter part of the action is

Smatter524pE dtdrr2AABFK~u,h!

A
1U~u,h!G ~2.5!

where

K5
1

e2r 2 S du

dr D
2

1
v2

2 S dh

dr D
2

U5
~u221!2

2e2r 4 1
v2u2h2

r 2 1
lv4

2
~h221!2.

One may viewU(u,h) as a position-dependent potentia
It has several stationary points, which we enumerate here
later reference:

~1! u50,h561. This is a local minimum ofU for r
.1/ev.

~2! u5û(r ),h5ĥ(r ), or u52û(r ),h52ĥ(r ), where
5-2
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MAGNETIC MONOPOLES NEAR THE BLACK HOLE THRESHOLD PHYSICAL REVIEW D60 084025
û5Al~12e2v2r 2!

l2e2
~2.6!

ĥ5Al2e2/~evr !2

l2e2
. ~2.7!

These are real only forr lying between 1/ev and 1/Alv. In
that range it is a minimum ofU if l/e2.1, but a saddle
point if l/e2,1. If l/e251, this solution is replaced by
degenerate set of local minima, withh21u251, that exist
only for evr 51.

~3! u5h50. This is never a local minimum ofU.
~4! u561,h50. This is a local minimum ofU for r

,1/Alv.
We will see that these stationary points are key to und

standing the local existence of extremal horizons in mo
pole systems.

For static solutions, the matter fields obey the equatio

1

AAB

d

dr SAAB

A

du

dr D 5
e2r 2

2

]U

]u

5
u~u221!

r 2 1e2v2uh2 ~2.8!

1

r 2AAB

d

dr S r 2AAB

A

dh

dr D 5
1

v2

]U

]h

5
2hu2

r 2 12lv2h~h221!.

~2.9!

These must be supplemented by the two gravitational fi
equations

1

AAB

dAAB

dr
58pGrK ~2.10!

r
d

dr S 1

AD5~128pGr2U !2
1

A
~118pGr2K !. ~2.11!

Note that, up to a rescaling of distances, the solutions
these equations depend only on the dimension
parameters1 a58pGv2 andb5l/e25(mH/2mW)2.

Integration of Eq.~2.10! gives B(r ) in terms of the re-
maining functions. With the boundary conditionA(`)B(`)
51, corresponding to the conventional normalization ot,
we have

B~r !5
1

A~r !
expF216pGE

r

`

dr8r 8KG . ~2.12!

1These parameters are related to those in Ref.@1# by m5a, in Ref.
@2# by a52b and b5a, and in Ref. @3# by a5Aa/2 and b
52Ab.
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Using this result to eliminateB(r ) from the remaining field
equations leaves one first-order and two second-order e
tions to be solved. A solution of these is determined by fi
boundary conditions. Requiring that the fields be nonsingu
at the origin gives three of these,u(0)51, h(0)50, and
A(0)51. Two more,u(`)50 and h(`)51, follow from
the finiteness of the energy. Additional boundary conditio
arise when a horizon is present. While these are not rele
for our numerical solutions, which are all regular monopol
they play an important role in our analysis of the extrem
black hole configurations that are the limiting points of s
quences of monopole solutions.

III. MONOPOLE SOLUTIONS

A. The method

In our search for regular solutions and their approach
criticality, let us identify an energy functional on the space
static configurations. Following van Nieuwenhuizen, Wilki
son, and Perry@8#, one can write down an action which is
functional of just u(r ) and h(r ) by not only eliminating
AAB using Eq.~2.10!, but also eliminatingA by integrating
Eq. ~2.11! subject to the boundary conditionA(0)51. The
complete action~i.e., gravitational plus matter! then becomes

S52E dt E

E54pE
0

`

drH r

8pG

d

dr
AABF12

1

AG
1r 2AABFK~u,h!

A
1U~u,h!G J ~3.1!

with AAB and A understood to be implicit functionals o
u(r ) andh(r ). Configurations that extremize this action a
solutions to Eqs.~2.8!–~2.11!, with the energyE being equal
to the massM5m(`) @8#. This energy functional is no
bounded from below, even when satisfying the appropri
boundary conditions, unless the 1/A(r ) that corresponds to a
given matter field configuration$u(r ),h(r )% is everywhere
greater than zero. This restriction is not serious for our p
poses, since we are only interested in static regular mono
solutions and their approach to criticality; all such solutio
satisfy the condition that 1/A(r ).0 everywhere.

Thus, we findregular solutions to the field equations b
seeking extrema of this energy functional that satisfy
boundary conditions atr 50 andr 5`. This is equivalent to
solvingdE/du5dE/dh50. We do this numerically by solv-
ing the alternative system of equations

d2u

dt2
1G

du

dt
5

dE

du

d2h

dt2
1G

dh

dt
5

dE

dh
~3.2!
5-3
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ARTHUR LUE AND ERICK J. WEINBERG PHYSICAL REVIEW D60 084025
for an appropriate damping factorG and taking the final
steady state solution as the result. This approach is analo
to having a massive particle roll on a manifold determin
by E while the particle’s motion is viscously damped, eve
tually coming to rest at some local minimum of the energ

The discretization used to numerically implement this
gorithm places a limit on how close we can approach
critical solutions in which the extremal horizon has actua
formed. The errors in the fields are proportional to the squ
of the spatial step size. As a result we can only obtain so
tions in which the minimum value of 1/A is at least
O@(Dr )2#.

One should contrast our relaxation method with the al
rithms used in previous analyses@1–3# that employ shooting
from the origin. In these, a choice is made for the values
the fields and their first spatial derivatives at the origin, a
08402
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the equations of motion are then used to integrate out
wards infinity. The initial choice is then adjusted to ensu
that the boundary conditions at infinity are satisfied. W
this approach, difficulties appear with largeb because of the
extreme sensitivity at the origin to small perturbations. N
such problem exists with relaxation, and as a result we h
been able to obtain solutions for largeb. However, although
solutions that are unstable under perturbations may be fo
by shooting, such solutions cannot be obtained by our re
ation method.

In particular, previous work@3# has shown that forb
&0.1 monopole solutions exist for a range of values ofa that
are greater than the valueacr of the critical solution. More-
over, for each value ofa in this range there are two solution
with the one having the smaller value of (1/A)min being un-
e, to

to
FIG. 1. Monopole solutions forb51.0 and various values ofa. The progression from dot-dashed line, to dashed line, to dotted lin
solid line corresponds toa51.0, 2.0, 2.3, and 2.37. The first three panels depict the metric functions~a! 1/A(r ), ~b! B(r ), ~c! (AB)1/2(r ).
~d! Matter fields variables;u(r ) begins at unity at the origin and asymptotes to zero asr→`. h(r ) is zero at the origin and asymptotes
unity asr→`.
5-4
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MAGNETIC MONOPOLES NEAR THE BLACK HOLE THRESHOLD PHYSICAL REVIEW D60 084025
stable@9,10#. Hence, for this range ofb our methods canno
find the critical limit of the regular monopole solutions.

B. Approach to criticality: Low- b case

We investigate the approach to criticality by studying t
nature of the monopole solutions asa58pGv2 is increased
with the Higgs self-coupling held fixed. Two distinct beha
iors are seen, depending on the size ofb5l/e2.

We will describe the low-b behavior in detail in this sub
section, and the high-b behavior in the next. Figure 1 illus
trates the behavior forb51.0, a typical low-b case. Asa
increases and gravitational effects become stronger, 1/A(r )
begins to dip down until ata5acr it develops a double zero
corresponding to an extremal horizon, atr 5r 0, the horizon
radius of the extremal Reissner-Nordstro¨m solution. At the
same time, the matter fieldsu(r ) andh(r ) are pulled inward.
At a5acr , the variation of these fields occurs entirely with
the horizon. Only the Abelian Coulomb magnetic field su
vives outside the horizon, while the metric forr>r 0 is pre-
cisely that of the extremal Reissner-Nordstro¨m black hole.

All of this reproduces results found in earlier work@1–4#.
Some features that were not previously stressed are reve
when we examineB(r ). Coming in from larger , B de-
creases with 1/A until the latter reaches its minimum.B then
continues to decrease, although at a much smaller rate.
very smallb this decrease continues all the way in tor 50,
while for somewhat larger values ofb there is a minimum in
B at a finite r ,r 0. The situation for the critical solution is
somewhat ambiguous. If we adopt the conventional norm
ization B(`)51, thenB(r ) vanishes identically inside th
horizon. If instead we setB(0)51, thenB is finite and vary-
ing inside the horizon and infinite outside the horizon, with
minimum either atr 50 or at some finite radius, dependin
on the value ofb. In neither case is the minimum a zero ofB.

Closely related to this is the behavior ofAAB. Whena is
small, this is very nearly constant, with a value close
unity. As a is increased,AAB develops a step-like behavio

FIG. 2. (AB) r 50
1/2 versus (1/A)min for b516.0 and various values

of a nearacr .
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until, at criticality, it is precisely a step function centered
the horizon. This is in sharp contrast with the Schwarzsch
and Reissner-Nordstro¨m solutions, whereAAB51 every-
where. To show how this behavior becomes more p
nounced as the solution approaches criticality, in Fig. 2
plot the value ofAAB at the origin as a function of (1/A)min
for b516. Note that there is a power law relationship b
tween the two. Similar curves, but with different powers, a
found throughout the low-b regime.

As a final illustration of the behavior of the low-b solu-
tions near criticality, in Fig. 3 we plotu for several near-
critical solutions. However, rather than using the variabler,
we have plottedu as a function of the proper length

l ~r !5E
0

r

dr AA~r !. ~3.3!

We see that, for sufficiently largel ,u( l ) is close to a decay-
ing exponential, and that this behavior does not significan
change as one crosses the minimum of 1/A; similar behavior
is seen with 12h.

C. Approach to criticality: High- b case

The scenario whenb is large differs significantly from
that for smallb; we illustrate this in Fig. 4 for the case o
b5100. So long asa is not too near its critical value, the
qualitative evolution of the metric functions and field va
ables is similar to that in the previous case: 1/A(r ) dips
down in a regionr'r 0, the value ofB(r ) decreases in a
region near the origin, and the fieldsu,h are drawn into the
core of the system.

Near criticality, a different behavior emerges. The evo
tion of 1/A(r ) as the solution approaches criticality is d
picted in Fig. 4a and, in more detail, in Fig. 5. Althoug

FIG. 3. A21 ~curves with minima! andu ~monotonic curves! as
functions of the proper lengthl for b516.0. The progression from
dashed line, to dotted line, to solid line corresponds toa51.529,
1.53 and 1.531 withacr'1.532.
5-5
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FIG. 4. Monopole solutions forb5100 and various values ofa. The progression from dot-dashed line, to dashed line, to dotted lin
solid line corresponds toa51.0, 1.1, 1.2, and 1.29344. The first three panels depict the metric functions~a! 1/A(r ), ~b! B(r ), ~c! (AB)1/2(r ).
~d! Matter fields variables;u(r ) begins at unity at the origin and asymptotes to zero asr→`. h(r ) is zero at the origin and asymptotes
unity asr→`.
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initially similar to that for the low-b case, the decrease of th
minimum atr'r 0 ceases before it actually reaches zero.
this occurs, a second minimum at a radiusr ,r 0 rapidly
drops down and forms a double zero, corresponding to
extremal horizon, atr 5r * ,r 0. Figure 4b~and, in more de-
tail, Fig. 6! shows the functionB(r ) as a approaches its
critical value. In contrast to the small-b case, in the critical
limit the minimum of B is a zero located at the horizon
r 5r * .

The evolution ofAAB is shown in Fig. 4c. The behavio
is similar to that for the small-b case until the outer mini-
mum of 1/A stops decreasing and the inner minimum beg
to appear. Until this point, there is a power law relations
betweenAABur 50 and (1/A)min similar to that for the small-
b case, with most of the variation inAAB occurring atr
'r 0. Once the inner minimum begins to appear, the decre
08402
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in AABur 50 slows down, so that even for the critical solutio
AABur 50Þ0.

Figure 4d depicts the matter fieldsu(r ) and h(r ) for a
series of values ofa at fixed largeb. Their behavior is analo-
gous to that for smallb except that the fields are never com
pletely drawn into the regionr ,r 0; the degree to which they
are drawn into this region is dictated by the value of 1/A at
the outer minimum at criticality. The smaller that minimu
value of 1/A, the more contained the matter fields are. Sin
they have nontrivial fields outside the horizon the critic
solutions for largeb are examples of extremal black hole
with non-Abelian hair.

The qualitative picture differs somewhat whenb*400, in
that the 1/A always has only a single minimum. One ma
think of the sequence of monopole solutions here as largb
solutions in which the inner minimum of 1/A drops out suf-
5-6
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MAGNETIC MONOPOLES NEAR THE BLACK HOLE THRESHOLD PHYSICAL REVIEW D60 084025
ficiently early that no double minimum solutions exist. T
illustrate this, in Fig. 7 we show the approach to critical
for b51000.

D. Behavior of the critical solutions

The critical solutions themselves are not access
through our numerical method. Nevertheless, we can ob
good approximations to these by following sequences
regular monopole solutions. Here we briefly summarize h
some of the properties inferred from these numerical so
tions vary withb.

As we have already noted, the critical solutions for sm
b have horizons at the Reissner-Nordstro¨m radiusr 0, while
for largeb the horizon occurs at a valuer * ,r 0 ~see Fig. 8!.
There is a discontinuity in passing from the low-b to the
high-b regime: The critical solution does not continuous
vary from one type to the other, but instead undergoes so
thing like a first-order transition. For a value ofb just below
the transition, an inner minimum appears2 at a radiusr ,r 0,
while 1/A has a double zero atr 0. As b increases, the inne
minimum rapidly descends and at the transition 1/A has two
degenerate minima, one atr * ,r 0 and the other atr 0. As b
increases further the outer minimum moves upward, wh
the inner minimum atr * remains at zero. Eventually th
outer minimum vanishes, and the only minimum in 1/A is
associated with the horizon atr * . This radiusr * asymptotes
to zero asb→`. As b is increased, the critical black hol
solution approaches that found in the literature in the infin
b limit @3,5#.

The mass of the critical solution can be inferred from t
long-range behavior of 1/A. In Fig. 9 we plot this mass as
function ofb. As expected, the mass of the low-b solutions is
just that of an extremal Reissner-Nordstro¨m black hole.

2This inner minimum in low-b monopole solutions only appear
for b very close to the transition point and whena is very nearacr .

FIG. 5. Details of the metric function 1/A(r ) near criticality at
b5100. The progression from dot-dashed line, to dashed line
dotted line, to solid line corresponds toa51.27, 1.29, 1.293, and
1.29344.
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However, in the high-b regime the mass of the critical solu
tion is less than the extremal Reissner-Nordstro¨m valueM0.
The mass decreases with increasingb, and appears to hav
an asymptotic value of about 0.990. Note that there is
discontinuity in the mass in going from the low-b to the
high-b regime.

Finally, Fig. 10 showsacr as a function ofb. The critical
value acr is always of order unity and is a monotonical
decreasing function ofb. This can be understood by recallin
that the mass of the flat space monopole increases~by a
factor of 1.8! as the ratio of the Higgs mass to the vect
mass varies from zero to infinity. Stated differently, the va
of v needed to achieve a given mass decreases with incr
ing Higgs mass, making it plausible that the criticalv should
decrease in a similar fashion.

For largeb there appears to be a power law relationsh
betweenb and acr21. That acr→1 as b→` is consistent
with observations made in past investigations@3–5#. The lit-
erature also@3# indicates that the curve should asymptote
acr'3.94 asb→0. The kink in the data atb'40 is real and
reflects the transition between the small and largeb regimes.
Note thatacr,1.5 at this transition point; this fact will be o
importance later. The dashed curve in the inset of Fig.
shows an extension of the high-b type critical solutions into
the low-b regime. The corresponding solutions are well b
haved inside the horizon, but are not asymptotically flat
spatial infinity; see the Appendix for more details.

IV. ANALYTIC CONSTRAINTS FROM EXTREMAL
HORIZONS

We would now like to use analytic methods to gain som
deeper understanding of our numerical results. We begin
focusing on the critical solutions with extremal horizons, b
regular at the origin, that are the limits of the gravitatin
monopole solutions. In this section we will obtain a set
conditions at the extremal horizon that are necessary,
though not sufficient, for the existence of such solutio
These turn out to allow two distinct types of limiting solu
tions. We discuss both of these, as well as the nearby n

FIG. 6. Details of the metric functionB(r ) near criticality atb
5100. The progression for differenta’s is the same as in Fig. 5.to
5-7
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FIG. 7. Monopole solutions forb51000 and various values ofa. The progression from dot-dashed line, to dashed line, to dotted lin
solid line corresponds toa50.5, 0.9, 1.0, and 1.05576. The first three panels depict the metric functions~a! 1/A(r ), ~b! B(r ), ~c! (AB)1/2(r ).
~d! Matter fields variables;u(r ) begins at unity at the origin and asymptotes to zero asr→`. h(r ) is zero at the origin and asymptotes
unity asr→`.
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singular solutions, in more detail in the next section. O
analysis of the behavior of the fields near the horiz
complements and extends earlier treatments@4,11#.

Because a simultaneous zero of both 1/A and its first de-
rivative is a singular point of the differential Eqs.~2.8! and
~2.9!, the critical solutions are nonanalytic at the horiz
radius r * . Ordinarily, physical considerations would co
strain the allowable singularities at such a point. Howev
we are not actually requiring that the solution be physica
acceptable, but only that it be the limiting point of a fami
of physically acceptable solutions. Keeping this in mind
seems reasonable to impose the following set of requ
ments:

~1! We assume that the functionsu, h, 1/A, andB are all
finite and continuous atr * .

~2! Since r is a singular coordinate at the horizon, w
08402
r
n

r,
y

t
e-

should not assume that the derivatives of these functi
with respect tor are continuous, or even finite, atr * . In-
stead, we require only thatd(1/A)/dr vanishes at the horizon
and thatdu/dr and dh/dr diverge less rapidly thanA1/2

does.
~3! We assume that the leading singularities of the

quantities near the horizon can be approximated by~not nec-
essarily integer! powers of ur 2r * u, although we allow for
the possibility that both the power and the coefficient of t
leading term may be different on opposite sides of the h
zon.

Given these assumptions, Eqs.~2.8! and ~2.9! imply that
the matter fields at the horizon, which we denote byu* and
h* , must lie at one of the stationary points ofU that were
enumerated in Sec. II. Once these are specified,r * is deter-
mined by Eq.~2.11!, which reduces to
5-8



n
t
-

b

ha
h
ia

r
he

lly
io

ns
t it

ns
m

al
ed

r,
mi-
ly-
on

pro-
oes
er-

ke it
nd,

be-
pa-
the
in

r
es-

r

ion

sion

side

MAGNETIC MONOPOLES NEAR THE BLACK HOLE THRESHOLD PHYSICAL REVIEW D60 084025
05128pGr
*
2 U~r * !. ~4.1!

The monopole solutions without horizons were solutio
to a boundary value problem with conditions imposed ar
50 and r 5`. The existence of the extremal horizon im
poses three more conditions~on the values ofu, h, and 1/A
at r 5r * ) and thus leads to a pair of boundary value pro
lems, one for the interval 0<r<r * and one forr * <r ,`,
that must be solved simultaneously. The interior problem
three boundary conditions at the origin and three at the
rizon, for a total of six, while the exterior has two at spat
infinity and three at the horizon, giving five in all.

A standard approach to such problems is to look fo
family of solutions obeying the conditions at one of t
boundaries. If these can be shown to depend onN adjustable
parameters, integration of these solutions will~assuming no
singularities intervene! give anN-parameter family of solu-
tions in the neighborhood of the other boundary. Generica
a necessary, although not sufficient, condition for a solut

FIG. 8. Extremal horizon radius for various values ofb. Ana-
lytic arguments indicate thatr * →0 asb→`.

FIG. 9. Mass of critical solutions as a function ofb. Low-b type
solutions (b,40) all haveM5M0. The dots indicate the values fo
high-b type solutions.
08402
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is thatN be greater than or equal to the number of conditio
imposed at the second boundary. Thus, at first though
would seem that, given a suitable set of values foru* , h* ,
andr * , we would need a two-parameter family of solutio
asr 2r * →01 to solve the exterior boundary value proble
and a three-parameter family forr 2r * →02 to solve the
interior problem. However, we do not expect to find extrem
solutions for arbitrary values of parameters. Instead, for fix
b we must adjustv ~or, equivalently,a) to its critical value.
We may therefore viewv as an extra adjustable paramete
and need only require the existence of two-parameter fa
lies of solutions on both sides of the horizon. The nonana
ticity at the horizon allows us to choose the parameters
the two sides independently.

There are several caveats. First, the presence of the ap
priate number of adjustable parameters at the horizon d
not guarantee the existence of a solution. Global consid
ations that are beyond the scope of this analysis may ma
impossible to satisfy all of the boundary conditions. Seco
it may, and in some cases does, happen that the leading
havior near the horizon is fixed and that the adjustable
rameters appear only in subdominant terms. Finally, if
values ofu andh at the horizon are the same as at the orig
~infinity!, the interior~exterior! boundary value problem fo
the matter fields has a trivial solution, and so it is not nec
sary to have any adjustable parameters.

We find it convenient to define

c5S u2u*
er* v~h2h* !/A2

D ~4.2!

and to use the dimensionless position variablex[(r
2r * )/r * . It is also useful to define the matrix

FIG. 10. Critical values fora21 as function ofb. The inset
shows in detail the transition region between low-b and high-b
behavior, with the open circle indicating the apparent transit
point at b540. Note that at this pointa51.4187,1.5, the latter
value indicated by the dotted line. The dashed line is an exten
of the high-b type critical solutions to smallerb. For the solutions
represented by this dashed line, the fields are well-behaved in
the horizon, but are not asymptotically flat at spatial infinity.
5-9
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Mi j 5
e2r

*
4

2

]2U

]c i]c j
U

r
*

. ~4.3!

The orthonormal eigenvectors and the eigenvalues ofM
play an important role in the analysis; we denote these byua
and ma (a51,2), respectively. Finally, we define the two
component vector

F i5
e2r

*
5

2

]2U

]r ]c i
U

r
*

~4.4!

as well as the ratio

s[
4pG

e2r
*
2 5

r 0
2

r
*
2 ~4.5!

where, as before,r 0 is the horizon radius of the extrema
Reissner-Nordstro¨m black hole.

Equation~2.11! and the equations obtained by substituti
of Eq. ~2.10! into Eqs. ~2.8! and ~2.9! form a set of three
equations for the functionsu, h, and 1/A. In the notation we
have just defined, the first two of these can be compa
written as

1

A
c91S 1

AD 8
c81

2

A
s@~c8! tc8#c85Mc1Fx1•••

~4.6!

while the third becomes

S 1

AD 8
52Fx22sFc tMc1

1

A
~c8! tc8G1••• ~4.7!

where

F52se2r
*
3 ]~r 2U !

]r U
r
*

. ~4.8!

Here primes denote derivatives with respect tox, while the
ellipses represent terms, of higher order in eitherx or the
components ofc, that can be neglected here.

We are assuming that the leading behavior of the vari
functions can be approximated by powers ofx. It is then
fairly easy to show3 that

1

A
5kx21•••. ~4.9!

3Assume that 1/A;uxua. If a.2, Eq. ~4.7! is dominated by the
two terms not involving 1/A, and one finds thatc;uxu1/2. This in
turn implies that Eq.~4.6! is dominated by a single term, the firs
one on the right-hand side, and hence has no solution. If ins
a,2, the two terms involving 1/A dominate Eq.~4.7!, again im-
plying thatc;uxu1/2. Equation~4.6! is now dominated by the thre
terms on the left-hand side. Because the last two of these ca
there is again no solution.
08402
ly

s

This reduces Eqs.~4.6! and ~4.7! to

k@x2c912xc812sx2@~c8! tc8#c8#5Mc1Fx1•••

~4.10!

and

k5F2sF1

x
c tMc1kx~c8! tc8G1•••. ~4.11!

We now turn to the behavior ofc asx→0. We see thatc
must vanish at least as fast asuxu1/2, since otherwise the
nonlinear term on the left-hand side of the equation do
nates and there is no solution. Hence, we may write

c5h1/2uxu1/21@h1x1h2x21•••#

1hg1
uxug11hg2

uxug21••• ~4.12!

where the ellipsis within the square brackets represe
higher-order analytic terms, theg j.1/2 are noninteger pow
ers to determined, and the final ellipsis represents sma
nonanalytic terms that are determined by the lower-or
terms.

When this expansion is substituted into Eq.~4.10!, the
terms of orderuxu1/2 give the nonlinear equation

kF3

4
2e

s

4
~h1/2

t h1/2!Gh1/25Mh1/2 ~4.13!

wheree is equal to plus or minus unity according to wheth
x is negative or positive~i.e., for the interior and exterior
problems, respectively!. A solution is possible only ifh1/2 is
proportional to one of the eigenvectors ofM. Let us denote
this eigenvector byu i and the orthogonal eigenvector byu' ,
with analogous conventions for the eigenvalues. We t
have

h1/25pu i ~4.14!

with p obeying

kpF3

4
2e

s

4
p2G5m ip. ~4.15!

In addition, substitution of our expansion forc into Eq.
~4.10! yields

kF12e
s

4
p2G5F1esm ip

2. ~4.16!

These equations can be used to findk as a function ofp2,
and the result then substituted back into Eq.~4.15!. For the
interior solution (e51), this leads to the result that

pint
2 5

F

2sm i
F4m i

F
216A11

4m i

F G or pint
2 50

~4.17!

and

ad

el,
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kint5
4F

~22spint
2 !2

. ~4.18!

Sincek must be positive, we require thatF.0. The require-
ment thatp be real then implies that nonzero solutions forp
exist only if m i>2F/4; for the solution with the lower
choice of sign, there is the additional requirement thatm i not
lie between 0 and 3F/4.

Although Eqs.~4.15! and ~4.16! allow a nontrivial solu-
tion for p2 in the exterior region, other constraints, describ
below, require that

pext
2 50 ~4.19!

and hence that

kext5F. ~4.20!

Having determinedh1/2, we can now turn to the remain
ing terms in Eq.~4.12!. Extracting the coefficients of the
integral powers ofx in Eq. ~4.10! yields a series of inhomo
geneous linear equations that determine thehn ; the first of
these is4

~2k2M!h12ekp2
s

2
@2~u i

th1!u i1h1#5F. ~4.21!

In a similar fashion, the nonanalyticO(uxug j) terms give a
linear equation forhg j

. However, because the inhomog
neous term in Eq.~4.10! is analytic and cannot contribute
the resulting equation is homogeneous. A solution of t
equation is possible only ifhg j

is proportional to one of the

ua and if g j is a root of

05kFg~g11!2
3

2
egsp2G2m i , h1/2}u i ,

05kFg~g11!2
1

2
egsp2G2m' , h1/2}u' . ~4.22!

Note that both equations take the same form in thep250
case, where the twoma are on the same footing. Because t
equation is homogeneous,hg j

is determined only up to an
overall multiplicative constant. In order that the solution ne
the horizon have two adjustable constants, there must be
independent nonanalytic terms with powers greater than
Thus, the pair of equations corresponding to the twoma
must, between them, have two roots greater than 1/2.

For p50, the coefficient ofg in Eq. ~4.22! is positive,
implying that at least oneg must be negative for eachma . In

4The coefficient ofh1 on the left-hand side of this equation va
ishes for certain choices of parameters, leavingh1 undetermined. A
similar phenomenon can also happen in the equations for the o
hn . These parameter choices correspond to points where the p
g j of one of the nonanalytic terms goes through an integer valu
08402
d

s

r
o

2.

order to have two roots positive and greater than 1/2,
must require that both eigenvalues satisfy

ma.
3F

4
.0, p50. ~4.23!

For pÞ0, the form of Eq.~4.22! depends on whether w
are considering the mode proportional tou i or the one pro-
portional tou' . In either case, it is most convenient to pr
ceed by using Eq.~4.15! to eliminatema . For e521 the
coefficient ofg is positive, so at least one root is negative f
each mode. Detailed examination of the equation for theu i
mode then shows that it has no roots greater than 1/2; s
the equation for theu' mode can have at most one such, w
must setp50 in the exterior region. Fore51 ~i.e., the in-
terior region!, the equation for theu i mode has one and onl
root greater than 1/2 for all values ofm i consistent with the
reality of p. The equation for the other mode can be rewritt
as

05gS g2
1

2D1S g2
1

2D S 2m i

k D1S m i2m'

k D . ~4.24!

For this to have a solution withg.1/2, eitherm i,m' or
m i,0; since we will see that at most one of thema can be
negative, the second alternative implies the first. Combin
this with the previous conditions on thema , we see that a
pÞ0 solution exists in the interior region if

m'.m i.2
F

4
, pÞ0. ~4.25!

Equations~4.23! and ~4.25!, together with the condition
F.0, are the fundamental conditions that must be satis
at the extremal horizon. To explore the various possibiliti
we must apply these in turn to the stationary points ofU that
were enumerated in Sec. II. The last two cases can be im
diately eliminated: Case 3 is excluded because bothma,0,
thus ruling out the possibility of ap50 exterior solution,
while case 4 hasF,0. This leaves cases 1 and 2. Th
former,u* 50 andh* 51, corresponds to an extremal hor
zon in the Coulomb region while the latter,u* 5û and h*
5ĥ, gives a horizon in the monopole core.5 We will study
these in detail in the next section.

V. BEHAVIOR NEAR COULOMB AND CORE REGION
EXTREMAL HORIZONS

In Sec. IV we showed that there are only two possibiliti
for the values of the fields at the extremal horizon. Althou
the local analysis that we used cannot tell whether these
consistent with the existence of a global solution, our n
merical results show that both types of solution actually

er
er

.

5Since it seems unlikely that the minimum energy solutions w
have eitheru or h change sign, we assume that the fields are po
tive at the horizon. There can, however, be excited monopole
which u(r ) goes through a zero; see, e.g., Ref.@3#.
5-11
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cur. In this section we examine these more closely. We a
consider the nonsingular near-critical solutions in which 1A
has a related minimum.

A. Coulomb region horizons

The first possibility,u* 50, h* 51, corresponds to a ho
rizon in the Coulomb region outside the monopole co
Equation~4.1! implies that r * 5r 0, the extremal Reissner
Nordström value, sos5F51. The matrixM is diagonal,
with eigenvalues

m15M115~evr 0!2215
a

2
21

m25M2254lv2r 0
252ba. ~5.1!

A solution outside the horizon is given by the extrem
Reissner-Nordstro¨m metric, withu50 andh51 for all r *
.r 0. We assume that this is the only exterior solution sa
fying the boundary conditions, and concentrate on the in
rior solution.

There are several possibilities for the behavior of fie
just inside the horizon:

Type I. The singularity in the matter fields is less singu
than x1/2 ~i.e., p50). Equation~4.18! implies thatk51, so
near the horizon

u5Cuuxugu1aux1•••

h512Chuxugh2ahx1•••

1

A
5x21••• ~5.2!

where the ellipses represent terms that are determined b
terms shown explicitly. Hereau and ah denote constants
whose values are fixed by Eq.~4.21!. Cu and Ch are not
determined locally, but must instead be adjusted so
boundary conditions at the origin are satisfied. The ex
nentsgu and gh are solutions of Eq.~4.22! and, depending
on the values ofa and b, may or may not be greater tha
unity. The requirement that these exponents both be gre
than 1/2 leads to Eq.~4.23!, which implies that

a.MaxF7

2
,

3

8bG . ~5.3!

Type II. Matter fields withuxu1/2 singularities. There are
two possibilities here, depending on which field has the s
gularity. In the first~type IIa!,

u5puxu1/21Cuuxugu1aux1•••

h512Chuxugh2ahx1•••

1

A
5kx21••• ~5.4!

while in the second~type IIb!,
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u5Cuuxugu1aux1•••

h512pAauxu1/22Chuxugh2ahx1•••

1

A
5kx21•••. ~5.5!

Here

k5~12p2/2!22 ~5.6!

and

p25
1

2m i
@4m i216A114m i# ~5.7!

with m i equal to the lesser of the two eigenvalues in E
~5.1!. If 2,a,7/2, the upper sign must be used in Eq.~5.7!.
For type IIa solutions Eq.~4.25! requires that either

3

2
,a,

2

124b
and b,

1

4
~5.8!

or

a.
3

2
and b.

1

4
. ~5.9!

The corresponding requirement for type IIb is that

a.
2

124b
.2 and b,

1

4
. ~5.10!

At the boundary between the IIa and IIb regimes,a52/(1
24b), bothgu andgh are equal to 1/2 and the two types
solutions merge. Note that none of these solutions is poss
if a,3/2; this point will be important when we compare th
analysis to the numerical results.

The most important difference between the type I and
type II solutions is in the behavior of the quantityAAB. If
pÞ0, one of the matter fields varies asuxu1/2 near the hori-
zon. As a result, the integral in the exponent in Eq.~2.12!
diverges for anyr ,r 0, and AAB becomes a step functio
centered at the horizon. Horowitz and Ross@12# have shown
that a particle in geodesic motion across a horizon fee
tidal force proportional to the logarithmic derivative ofAAB,
and have used the term ‘‘naked black holes’’ to descr
certain near-extremal black holes solutions for which t
quantity is large. Not only do our Coulomb region extrem
solutions fit in this category, but so do the nearby nonsin
lar solutions.

B. Horizons in the monopole core

The second possibility allowed by the analysis of Sec.
is that u* 5û(r * ) and h* 5ĥ(r * ), with û and ĥ given by
Eqs. ~2.6! and ~2.7!. This corresponds to a horizon in th
monopole core region. Unlike the case of a Coulomb reg
horizon, there must be a nontrivial exterior solution, th
giving an extremal black hole with Higgs and gauge bos
5-12
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hair. Because our numerical results show solutions of
type only for relatively large values ofb, we will find it
convenient to use large-b expansions to simplify some of th
algebra below.

Substituting the expressions forû andĥ into the potential
U gives

8pGr2U5
a

2~b21!
~evr !22@2112b~evr !22b~evr !4#.

~5.11!

Equation~4.1! requires that this be equal to unity at the h
rizon. By making use of the fact that (evr * )25a/2s, this
constraint can be rewritten as

b5
4s~12s!

a224as14s
. ~5.12!

The roots of this equation determinea in terms ofb ands.
For largeb, theb-dependence is negligible, and

a52s@17A12s21#1O~1/b!. ~5.13!

In contrast with the previous case, the matrixM is not
diagonal. Using the equations obeyed byû and ĥ, it can be
written as

M5S 2û2 2A2evr * ûĥ

2A2evr * ûĥ 4be2v2r
*
2 ĥ2D

5S 2~12y2! 2A2yA12y2

2A2yA12y2 4by224~12y2!
D 1O~1/b!

~5.14!

where in the second line we have defined

y25~evr * !25
a

2s
. ~5.15!

The eigenvalues ofM are

m15
2ba

s
1O~1!

m2522
a

s
1O~1/b!. ~5.16!

The exterior solution must be of thep50 type, implying
that these eigenvalues must obey Eq.~4.23!. This requires
that they both be greater than 3F/4, where

F5
1

b21 Fa2b

4s
2sG

5
a2

4s
1O~1/b!. ~5.17!

In the largeb limit, m1 clearly satisfies this condition, while
for m2 we obtain the constraint
08402
is
s.

3

32
a21

1

2
a1O~1/b!. ~5.18!

We also obtain the requirementb.1, since otherwiseM has
a negative eigenvalue. Sincea ands are also related by Eq
~5.13!, we can obtain a constraint that depends only ons. To
satisfy both Eqs.~5.13! and ~5.18!, we must take the uppe
sign in Eq.~5.13!. We can then combine the two condition
to obtain

6s22
41

15
s241O~1/b!.0 ~5.19!

which implies thats.1.061O(1/b). Note in particular that
s51 ~i.e., r * 5r 0) is not possible for any value ofb.

Once this condition is satisfied, there are no further c
straints imposed by local analysis at the horizon. In parti
lar, the interior solution can be either of thep50 or thep
Þ0 type. BecauseM is not diagonal, as it was in the Cou
lomb case, the same irrational powers appear in bothu andh.
Thus, if p50, the fields near the horizon behave as

u5û~r * !1q1
uC1uxug11q2

uC2uxug21aux1•••

h5ĥ~r * !1q1
hC1uxug11q2

hC2uxug21ahx1•••

1

A
5Fx21•••. ~5.20!

Hereg1 andg2 are solutions of Eq.~4.22! corresponding to
the twoma ; as before, their values may be either greater
less than unity, depending on the values ofa and b. The
constantsqa

u andqa
h are determined by the eigenvectorsua .

The values ofau andah are fixed and are the same on bo
sides of the horizon, whileC1 and C2 can be varied inde-
pendently inside and outside the horizon so that the bound
conditions can be satisfied both at the origin and at spa
infinity.

If insteadpÞ0, the fields outside the horizon are as in E
~5.20!, but inside the horizon

u5û~r * !1pq2
uuxu1/21q1

uC1uxug11q2
uC2uxug21aux1•••

h5ĥ~r * !1pq2
huxu1/21q1

hC1uxug11q2
hC2uxug21ahx1•••

1

A
5kx21•••. ~5.21!

We have assumed thatm2,m1; if the opposite were the case
the uxu1/2 terms would involveq1

u andq1
h . Herek andp are

given by Eqs.~4.18! and~4.17!, with there being two accept
able solutions. As before, the values ofau andah are deter-
mined, although they are no longer the same as in the ex
nal solution.

VI. COMPARISON WITH NUMERICAL RESULTS

Let us now see how well these analytic results agree w
our numerical results. We begin with the low-b regime,
5-13
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ARTHUR LUE AND ERICK J. WEINBERG PHYSICAL REVIEW D60 084025
where the nonsingular monopole solutions tend towar
critical solution with a Coulomb region horizon at th
Reissner-Nordstro¨m value r 5r 0. Throughout this regime
the critical solutions we find appear to be the more singu
type II solutions rather than the type I solutions of Eq.~5.2!.
This is consistent with our finding~see Fig. 10! that the
values ofacr are always less than the lower bound for typ
solutions given in Eq.~5.3!.

Given the values foracr as a function ofb, Eqs.~5.8! and
~5.10! predict that there should be a transition atb'0.1 be-
tween the type IIa regime, whereu;uxu1/2 and the type IIb
regime, where 12h has theuxu1/2 singularity. Atb50.1, the
lowestb for which we have a sequence of stable configu
tions that approaches a critical black hole solution, we fi
that the powers ofu and 12h are both close to 1/2, a
predicted for this transition. It is curious to note that this
close to the value ofb below which (1/A)min can be a
double-valued functiona.

Examining the Coulomb-type black hole solutions
more detail, we find, forb&20, that asr approachesr 0 from
below, the values ofd2(A21)/dx2 andu2/x tend toward the
values ofk andp predicted by Eqs.~5.6! and ~5.7! with the
upper choice of sign.

We observed in Sec. III B that the matter fields display
exponential falloffs when written as functions of the prop
length l (r ) for low-b type solutions. To understand this, w
note that the field equation foru, Eq. ~2.8!, can be written as

d2u

dl2
1Fd~A21/2!

dr
1

8pGrK

AA
G du

dl
5

u~u221!

r 2 1e2v2uh2.

~6.1!

Our analytic results indicate that the quantity in squ
brackets is of order unity asx→0 for the interior portion of
the extremal solution. This suggests that this quantity sho
be a relatively slowly varying function for largel and hence
that the falloff ofu should behave as a decaying exponen
with a slowly varying decay constant. As we saw in Fig.
this is indeed the case both for the critical and the ne
critical solutions. A similar analysis can be applied to 12h.

From this point of view, the vanishing ofu and 12h at
the extremal horizon is a simple consequence of the fact
l (r 0)5`. This analysis also tells us how these fields sho
behave as the critical solution is approached. We concen
here onu, and restrict ourselves to the range ofb whereu

;uxu1/2 in the critical solution. Nearr̄ , the minimum of 1/A,
we can write6

1

A
'c1

2~r 2 r̄ !21D2. ~6.2!

Substituting this into Eq.~3.3!, we find that

6Note thatc1
2 cannot be the same as the coefficientk that appears

in the critical solution, since the second derivative of 1/A has a
discontinuity at the horizon of the critical solution, but is contin
ous whenDÞ0.
08402
a

r

I

-
d

d
r

e

ld

l
,
r-

at
d
te

l̄ [ l ~ r̄ !;c1
21ln~1/D!. ~6.3!

Writing u as a decreasing exponential,u;u0 exp(2c2l), we
then have

u~ r̄ !;u0~1/A!min
q ~6.4!

with q5c2/2c1. This analysis does not give predictions f
c1 and c2. However, we can get an indication of what
expect forq by recalling that for the critical (D50) caseu
;(1/A)1/4 as the horizon is approached from the inside.
the above expressions were exact andc1 and c2 were truly
constant and independent ofD, this would imply thatq
51/4. Turning to our numerical results, we do indeed se
power law behavior foru, with q ranging between 0.23 an
0.28.

A similar analysis can be applied to the jump inAAB near
the minimum of 1/A. For the parameter ranges where we fi
extremal solutions withpÞ0, this predicts thatAABr50 var-

ies as (1/A)min
2p2/4 assuming a normalization ofAABr5`51.

Not only does this account for the power law behavior no
in Sec. III B, but the predictions for the power are borne o
by the data within the numerical accuracy, where the pow
p2/4 ranges from about 0.7 to unity.

Nearb520, acr equals 3/2, the lower bound allowed b
the analysis of the previous section for Coulomb-type so
tion. Nevertheless, the qualitative nature of the approach
criticality does not change asb increases past this value an
as acr becomes smaller than 3/2. Indeed, the transition
core-type horizons does not appear to occur until aboub
540, whereacr51.4187. It does not seem as if this discre
ancy can be attributed simply to numerical errors. We fi
that changing numerical parameters or modifying details
the algorithm gives a variation in the value ofacr at the
transition that is at most of order 0.01. For more details
the numerical aspect of this issue, see the Appendix.

The resolution of this puzzle seems to lie beyond the p
cision of our numerical simulations. Several possibiliti
suggest themselves. First, there may be a sharp change i
approach to criticality that is only seen when one reac
solutions for which (1/A)min is less than the limits set by ou
spatial step size, in such a way that our extrapolation to
critical limit is incorrect. It could be that the decrease in t
minimum of 1/A suddenly slows, and that it only reache
zero atacr.3/2, or it could be that a new family of solution
intervenes. Alternatively, it may be thatacr is correctly ex-
trapolated, but that the critical solution violates one or mo
of the assumptions that we enumerated at the beginnin
Sec. IV. For example, the critical solution might have d
continuities in the matter fields at the horizon; because
would occur at a zero in 1/A, it would not necessarily lead to
a divergent energy.

We turn now to the high-b regime, where the critical so
lution has an extremal horizon in the core region, withu*
5û(r * ), h* 5ĥ(r * ). The numerical solutions all havep
50 for both the internal and external solutions, with t
matter fields varying less rapidly thanuxu1/2 near the horizon.
Moreover, for the entire region where we observe this ty
5-14
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of black hole solution, the leading behavior ofu2u* and
h2h* at the horizon appears to be linear inx, with the
nonanalytic terms being subdominant. The relations betw
a, u* , h* and r * are all in agreement with our analyti
results.

Examining the solutions in more detail, we find that
most of the interior portion of the critical and near-critic
solutions bothu(r ) and h(r ) closely trackû(r ) and ĥ(r ).
This is easily understood by recalling the form of the mat
action, Eq.~2.5!. Once 1/A has become small, the gradie
terms in the action are much less important than the posit
dependent potentialU. As a result, the fields that minimiz
the action should point-by-point be close to the minimum
U, namelyû(r ) and ĥ(r ).

It may be at first surprising that a second minimum in 1A
exists atr'r 0 outside the true horizon. To explain this, co
sider the behavior of the metric outside the monopole core
the matter fieldsu and h are negligibly small forr .Rcore,
then in this Coulomb region the mass function for a config
ration with magnetic charge 4p/e can be approximated by

m~r !5M2
2p

e2 . ~6.5!

This gives a local maximum ofm(r )/r , corresponding to a
local minimum of 1/A, at

r min5
4p

e2M
5r 0S M0

M D ~6.6!

with the value of 1/A at this minimum being 12(M /M0)2.
This minimum will occur, regardless of whether or not the
is a horizon at a smaller value ofr, as long asr min.Rcore. It
is absent in our solutions for very largeb because for those
solutionsa, and thusv, are small enough that the core e
tends beyondr 0.

VII. CONCLUDING REMARKS

We have used both analytic and numerical methods
study self-gravitating Yang-Mills-Higgs magnetic mon
poles for a range of parameters, with an emphasis on t
approach to the black hole threshold as the Higgs expecta
value tends toward its critical value. We find two quite d
tinct behaviors. In the low-b regime, with weak Higgs self-
coupling, the critical solution is identical to the extrem
Reissner-Nordstro¨m solution outside the horizon. Inside th
horizon, the matter fields are smooth and nonsingular, a
1/A. However, because of the step function behavior ofAAB
at the horizon,B5gtt vanishes identically in the interior. Th
associated singularity at the horizon means that an obse
falling freely into a critical or near-critical monopole wi
experience the strong tidal forces characteristic of
Horowitz-Ross naked black hole.

One might speculate that these singularities were inex
cably associated with the transition from a nonsingu
monopole to a black hole spacetime and were independe
the details of the Higgs potential. However, our solutions
the large-b regime show that this is not the case. For the
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the critical solution has nontrivial matter fields outside t
horizon, and thus is an extremal black hole with hair. A
though the metric functions are still nonanalytic at the ho
zon, their singularities are much weaker and do not lead
large tidal forces.

The transition between these two regimes is itself qu
interesting, and is in many ways reminiscent of a first-ord
transition. For a range of values ofb on both sides of the
transition point, 1/A for the critical solution has two distinc
minima. For values ofb below the transition, 1/A is positive
at the inner minimum and has a double zero at the ou
minimum at r 5r 0. The inner minimum moves downwar
with increasingb until, at the transition point, there are tw
distinct but degenerate minima, with 1/A vanishing at both.
As b is increased further, the outer minimum moves upwa
while the inner minimum remains a zero of 1/A. While this
implies a discontinuity in the horizon area, the mass of
black hole is continuous. In terms of black hole thermod
namics, this corresponds to a discontinuity in the entropy
~because these are zero temperature black holes! a free en-
ergy that is a continuous function ofb.

Our focus in this paper has been on the behavior of
monopole solutions as the Higgs expectation value is
creased to its critical value. It seems natural to ask how th
solutions evolve ifv is increased still further. Actually, ther
is a bifurcation at this point. If one requires that the solutio
remain well-behaved at spatial infinity, the solutions withv
.vcr are black hole solutions with singularities atr 50. In
the low-b regime, these are simply nonextremal Reissn
Nordström black holes, of varying mass, with no dependen
on eithera or b. ~There are also magnetically charged bla
holes with hair in this regime; however, they are not contin
ously connected to our critical solutions.! In the high-b re-
gime, the counting of boundary conditions suggests that,
given values ofa and b, the continuation of the externa
solution is a one-parameter family of black holes with ha
Alternatively, one can require that the fields remain nons
gular at r 50 and continue the interior solution. Becau
there are three boundary conditions at the origin, compa
to the two at spatial infinity, this gives solutions with no
singular interiors bounded by horizons that are uniquely
termined by specifyinga andb. The behavior of the metric
near the horizon is similar to that found when de Sit
spacetime is written in static coordinates, suggesting a c
mological interpretation for these solutions. We suspect t
possibly with a suitably modified Higgs potential, these m
give rise to topological inflation@13,14#.

Finally, having studied these self-gravitating monopo
and obtained an understanding of their approach to criti
ity, we can use these solutions as tools for investigating
transition from a nonsingular spacetime to one contain
black hole horizons. We will describe this elsewhere.
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APPENDIX: NUMERICAL DISCUSSION
OF TRANSITION REGIME

In Sec. VI we noted that a discrepancy appears betw
the analytic argument that low-b type critical solutions can
only exist whenacr.1.5 and the numerical observation th
this type of critical solution persists whenacr,1.5. We dis-
cuss here the details of our investigation that lead us to
lieve that this discrepancy is not a numerical artifact.

Recall that the transition between the high and low-b type
critical solutions is reminiscent of a first-order phase tran
tion. The metric function 1/A(r ) for a regular monopole so
lution near criticality withb near the transition value pos
sesses two minima, one near the extremal Reiss
Nordström radius,r 0, the other in the core of the monopol
r ,r 0. As a is increased~for a fixedb), one of these minima
becomes a horizon, and a critical solution is attained. If 1A
at the inner minimum becomes zero first, then we hav
high-b type critical solution; when 1/A for the outer mini-
mum touches down first, we have low-b type solution. Let us
examine each of these minima separately for regular s
tions near criticality in this transition region.

1. The core minimum

The inner minimum for the types of solutions under co
sideration varies rapidly with botha andb, so one can iden-
tify very precisely when such a minimum becomes a ho
zon. Moreover, the field variables and their derivatives
well-behaved near this radius, and the numerical soluti
here are robust and insensitive to variations in the numer

FIG. 11. Comparison of (1/A)min versusa using two different
discretizations atb516 ~top diagram! andb535 ~bottom diagram!.
The dotted curve employs the system Eqs.~A1! while the solid
curve employs the system Eqs.~A2!.
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algorithm. Different numerical implementations of the fie
equations leads to differences inacr of a few parts in 104 for
a high-b type critical solution.

The numerical and analytic results could be reconciled
~1! the high-b type solutions persisted down to lowerb into
a region whereacr.1.5 and~2! the identification of the outer
minimum as a zero of 1/A for the critical solutions in this
region was a result of numerical error. We can address
first issue by using a trick. In Sec. IV we learned that critic
solutions solve separate interior and exterior boundary va
problems. Hence, we can determineacr as a function ofb for
the high-b type solutions by just solving the field equation
from the origin to the horizon, ignoring the exterior regio
from the horizon out to spatial infinity. By using an algo
rithm similar to that described in Sec. III, we find the fami
of critical solutions represented by the dashed line in
inset of Figure 10. These solutions have high-b type horizons
but are not asymptotically flat at spatial infinity; however,
there were an asymptotically flat critical solution with th
same value ofb, it would have the sameacr as these solu-
tions. This dashed line crossesacr51.5 whenb525.6. Thus
to be consistent with the analytic results, the transition va
between low and high-b critical solutionsmustoccur for b
,25.6 ~rather that at the value ofb540 indicated by our
numerical results!. Again, this result appears to be nume
cally robust to a few parts in 104.

2. The Coulomb minimum

According to the previous discussion, the ability to reco
cile numerical and analytic results now depends on the s
sitivity of the outer minimum, the one nearr 0, to numerical
error. From the inset in Fig. 10, we see that in order forbtr
,25.6, our values foracr for the low-b type critical solutions
must be in error~too low! by approximately 0.04.A priori,
such an error is certainly plausible. At this minimum, t
solutions near criticality vary sluggishly witha and b. The
spatial derivatives of field variables are large at this radi
and indeed are expected to be singular if the outer minim
becomes a horizon. It is here that we are most susceptib
numerical errors.

As we discussed in Sec. III, discretized versions of E
~2.8!–~2.11! are implemented in our numerical algorithm
identify static monopole solutions. In order to probe the
bustness of the algorithm and the confidence with which
can treat these solutions, different implementations of
discretization were examined and compared. In particu
we focus on Eqs.~2.8! and~2.9!. First, we used the straight
forward expansion of these equations.

1

A

d2u

dr21
du

dr F d

dr S 1

AD18pG
rK

A G5••• ~A1!

1

A

d2h

dr21
dh

dr F d

dr S 1

AD18pG
rK

A
1

2r

A G5•••.

In a separate treatment, we used Eq.~2.11! to eliminate
d(1/A)/dr:
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1

A

d2u

dr2 1
1

r

du

dr F ~128pGr2U !2
1

AG5••• ~A2!

1

A

d2h

dr2 1
1

r

dh

dr F ~128pGr2U !1
1

AG5•••.

Though these two systems of equations are equivalent in
continuum limit, their discretized forms which appear in t
numerical implementation suffer aO@(Dr )2# difference.

Figure 11 shows the (1/A)min as a function ofa for solu-
tions near criticality using the two different equation se
Eqs.~A1! and ~A2! at b516 andb535. The curves in Fig.
11 do not extend into the region where (1/A)min&1.0
31026 since this isO@(Dr )2# and our solutions break down
~For these calculations we usedDr 5531024.! Indeed we
find no stable solutions at all in this regime; however,
expect this effect is an artifact of the discretization. Wh
.

.

ef
ar
y

;

.
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happens for this very small (1/A)min is beyond the ability of
our resources to probe.

Nevertheless, the extrapolated difference inacr between
the two numerical implementations were on the order 0.0
Other similar variations in the numerical algorithm we
tried, and analogous results are found. Moreover, varying
spatial discretization size also yielded differences inacr on
the order 0.001. Thus, numerical error does not seem to
vide theDacr;0.04 needed to account for the discrepan
between the numerical observations and the analytic res
To illustrate the scope of the discrepancy needed, the dif
ence between the two curves needs to be approximately e
times the total range of the horizontal axis shown in Fig.

Finally, there is no apparent qualitative change betwe
solutions whose criticalacr is greater than or less than 1.5,
seen in Fig. 11. The approach of (1/A)min to zero is a much
slower function ofa as b increases, but there is no sha
change atacr51.5.
ys.
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