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Light-cone fluctuations in flat spacetimes with nontrivial topology
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The quantum light-cone fluctuations in flat spacetimes with compactified spatial dimensions or with bound-
aries are examined. The discussion is based upon a model in which the source of the underlying metric
fluctuations is taken to be quantized linear perturbations of the gravitational field. General expressions are
derived, in the transverse trace-free gauge, for the summation of graviton polarization tensors, and for vacuum
graviton two-point functions. Because of the fluctuating light cone, the flight time of photons between a source
and a detector may be either longer or shorter than the light propagation time in the background classical
spacetime. We calculate the mean deviations from the classical propagation time of photons due to the changes
in the topology of the flat spacetime. These deviations are in general larger in the directions in which topology
changes occur and are typically of the order of the Planck time, but they can get larger as the travel distance
increases.@S0556-2821~99!10118-8#

PACS number~s!: 04.60.2m, 04.62.1v
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I. INTRODUCTION

The existence of fixed light-cone structures is one of
characteristics of classical gravitational theory. Light con
are basically hypersurfaces which distinguish timelike se
ration from spacelike separation and divide spacetime
causally distinct regions. However, if gravity is to be qua
tized, it is natural to expect that the quantum metric fluct
tions would smear out the light cone, and the concept o
fixed light-cone structure has to be abandoned. Based u
the observation that the ultraviolet divergences of quan
field theory arise from the light-cone singularities of tw
point functions, and that quantum fluctuations of the spa
time metric ought to smear out the light cone, thus poss
removing these singularities, Pauli@1# conjectured many
years ago that the ultraviolet divergences of quantum fi
theory might be removed if gravity is quantized. This id
was further explored by several other authors@2–4#. At the
present time, this conjecture remains unproven. If light co
fluctuate, so do horizons, which are, of course, light con
The horizon fluctuations could then presumably lead to
formation leakage across the black hole in a way that is
allowed by classical physics. Bekenstein and Mukhanov@5#
have suggested that horizon fluctuations could result in
creetness of the spectrum of black holes. Since the exist
of black hole horizons is the origin of the so-called bla
hole information paradox, which has been widely discus
in the literature but still remains to be resolved, the study
light-cone fluctuations might help us better understand
problem.

Recently the problem of light-cone fluctuations has be
investigated@6,7# in a model of quantum linearized theory o
gravity, where the fluctuations are produced by gravito
propagating on a background spacetime. The light con
smeared out if the linearized gravitational perturbations
quantized. It has been demonstrated that gravitons in a q
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tum state, such as a squeezed vacuum state, or a the
state, can produce light-cone fluctuations, thus smearing
the light cone. Because of the fluctuating light cone,
propagation time of a classical light pulse over distancer is
no longer preciselyr , but undergoes fluctuations around
mean value ofr . The fluctuations in the photon arrival tim
can also be understood as fluctuations in the velocity of lig
This model has been applied to study the quantum cos
logical and black hole horizon fluctuations@8#. It is interest-
ing to note that recently, the quantum gravitational met
fluctuations have also been discussed within a different c
text, i.e., a Liouville string formulation of quantum gravit
@9,10#. In this paper we shall examine light-cone fluctuatio
in flat spacetime with nontrivial topology based upon t
model proposed in Ref.@6#. In Sec. II, we review the basic
formalism and examine its gauge invariance, then der
general expressions for the vacuum graviton two-point fu
tions in the transverse trace-free gauge. In Sec. III we st
the light cone fluctuations in flat spacetimes with a comp
tified spatial dimension, and with a single plane bounda
Our results are summarized and discussed in Sec. VI.

II. BASIC FORMALISM AND GRAVITON TWO-POINT
FUNCTION IN TRANSVERSE TRACE-FREE GAUGE

Let us consider a flat background spacetime with a line
ized perturbationhmn propagating upon it, so the spacetim
metric may be written as

ds25gmndxmdxn5~hmn1hmn!dxmdxn

5dt22dx21hmndxmdxn. ~1!

Let s(x,x8) be one half of the squared geodesic separa
for any pair of spacetime pointsx andx8, ands0(x,x8) be
the corresponding quantity in the flat background. We c
expand, in the presence of the perturbation,s(x,x8) in pow-
ers ofhmn as

s5s01s11s21¯ , ~2!
©1999 The American Physical Society23-1
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wheres1 is first order inhmn , etc. We now suppose that th
linearized perturbationhmn is quantized, and that the quan
tum stateuc& is a ‘‘vacuum’’ state in the sense that we ca
decomposehmn into positive and negative frequency par
hmn

1 andhmn
2 , respectively, such that

hmn
1 uc&50, ^cuhmn

2 50. ~3!

It follows immediately that

^hmn&50 ~4!

in state uc&. In general, however,̂(hmn)2&RÞ0, where the
expectation value is understood to be suitably renormaliz
This reflects the quantum metric fluctuations.

A. Basic formalism and gauge invariance

If we average the retarded Green’s function,Gret(x,x8),
for a massless scalar field, over quantized metric fluct
tions, we get@6#

^Gret~x,x8!&5
u~ t2t8!

8p2 A p

2^s1
2&

expS 2
s0

2

2^s1
2& D . ~5!

This form is valid for the case in whicĥs1
2&.0. It reveals

that the delta-function behavior of the classical Green’s fu
tion, Gret , has been smeared out into a Gaussian func
peaked around the classical light cone. This smearing ca
understood as due to the fact that photons may be e
slowed down or speeded up by the light-cone fluctuatio
Photon propagation now becomes a statistical phenome
with some photons traveling slower than the light on t
classical spacetime, and others traveling faster. Note tha
Gaussian function in Eq.~5! is symmetrical about the class
cal light cone,s050, and so the quantum fluctuations a
equally likely to produce a time advance as a time delay

Light-cone fluctuations are in principle observable. It h
been shown, by considering light pulses between a so
and a detector separated by a distancer , that the mean de
viation from the classical propagation time is related to^s1

2&
by @6#

Dt5
A^s1

2&
r

. ~6!

Note, however, thatDt is the ensemble averaged deviatio
not necessarily the expected variation in flight time of tw
photons emitted close together in time. The latter can
much smaller thanDt due to the fact that the gravitationa
field may not fluctuate significantly in the interval betwe
the two photons. This point is discussed in detail in Ref.@7#.
In order to findDt in a particular situation, we need to ca
culate the quantum expectation value^s1

2& in a chosen quan
tum state. For this purpose, we first have to computes1 for
a given classical perturbation along a certain geodesic,
averages1

2 over the quantized metric perturbation. If w
consider a null geodesic specified by

dt25dx22hmndxmdxn, ~7!
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then by following the same steps as those of Ref.@6#, we can
show that in a general gauge

s15
1

2
Dr E

r 0

r 1
hmnnmnn dr, ~8!

and

^s1
2&5

1

4
~Dr !2E

r 0

r 1
drE

r 0

r 1
dr8nmnnnrns

3^hmn~x!hrs~x8!&R . ~9!

Here dr5udxu, Dr 5r 12r 0 and nm5dxm/dr. The graviton
two-point function,^hmn(x)hrs(x8)&R , is understood to be
renormalized, so that it is finite whenx5x8 and vanishes
when the quantum state of the gravitons is the Minkow
vacuum state.

A few comments on the derivation of Eq.~5! are in order
here. It is obtained by averaging the Fourier representatio
a d-function. It may come as a surprise that although
started with an analytic expansion ofs in powers ofhmn , the
result is not analytic aŝs1

2&→0. This arises because we us
the first order expansion ofs in the argument of an expo
nential function, but afterwards retain all powers ofhmn .
One can reasonably ask whether this is a valid procedur
test of the self-consistency is to retain thes2 term and then
follow the same procedure. The result is Eq.~5! with s0

2

replaced bys0
21s2 . This has the same physical interpret

tion as before; the only effect of thes2 part is to shift the
location of the mean light cone. Thus in this order we e
counter the backreaction of the gravitons in perturbing
original classical geometry to a new classical geometry.
though this is less than a complete demonstration of the
lidity of Eq. ~5!, it does indicate that it arises from a sel
consistent calculation. In any case, the only result that
really need in the remainder of this paper is Eq.~6!, which

FIG. 1. A light ray ~dashed line! makes a round trip travel be
tween two points, P and Q, in space.
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LIGHT-CONE FLUCTUATIONS IN FLAT SPACETIMES . . . PHYSICAL REVIEW D 60 084023
may be derived either from Eq.~5!, or else more directly by
averaging the square of Eq.~2!.

Let us now turn to the question of the gauge invariance
the formalism. Under a gauge transformation specified b

x8m5xm1jm~x!, ~10!

hmn8 ~x8!5hmn~x!2j (m,n)~x!, ~11!

wherejm(x) is of orderhmn , the quantitiess1 and^s1
2& are

not in general invariant. However, we can show that this
due to the fact thatDt is a coordinate time interval rathe
than a proper time interval. To better understand the ga
invariance, let us examine a situation in which a light sig
travels between two points in space labeled byP and Q,
with a classical metric perturbationhmn in the intervening
region, as illustrated in Fig. 1.

For simplicity, let us assume that the propagation is in
x-direction. We shall look at the travel time in two differe
gauges, or coordinate systems, primed and unprimed.
light rays traveling inx direction, we have
08402
f

s

ge
l

e

or

dt

dx
56A12hmn~x!

dxm

dx

dxn

dx
'617

1

2
hmn~x!

dxm

dx

dxn

dx
.

~12!

Here the upper sign is used for outgoing light rays and
lower sign for incoming rays. So, one way travel timedt in
the unprimed gauge is

dtP→Q5E
xP

xQ
dx2

1

2 ExP

xQ
hmn~x!

dxm

dx

dxn

dx
dx

5E
xP

xQ
dx2

1

2 ExP

xQ
hmn8 ~x8!

dxm

dx

dxn

dx
dx

2
1

2 ExP

xQ
j (m,n)~x!

dxm

dx

dxn

dx
dx, ~13!

which, within the linearized theory, can approximated as
dtP→Q5E
xP

xQ
dx2

1

2 ExP8

xQ8 hmn8 ~x8!
dx8m

dx8

dx8n

dx8
dx82

1

2 ExP

xQ
j (m,n)~x!

dxm

dx

dxn

dx
dx,

5E
xP

xQ
dx2

1

2 ExP8

xQ8 hmn8 ~x8!
dx8m

dx8

dx8n

dx8
dx82E

xP

xQ djx

dx
dx2E

xP

xQ dj t

dx
dx

5xQ~ t8!2jx~Q,t8!2„xP~ t0!2jx~P,t0!…2j t~Q,t8!1j t~P,t0!

2
1

2 ExP8

xQ8 hmn8 ~x8!
dx8m

dx8

dx8n

dx8
dx8, ~14!

where we have used the factdt/dx51 for outgoing light rays within our approximation. Similarly, we have

dtQ→P52E
xQ

xP
dx1

1

2 ExQ

xP
hmn~x!

dxm

dx

dxn

dx
dx

5E
xP

xQ
dx2

1

2 ExP

xQ
hmn8 ~x8!

dxm

dx

dxn

dx
dx1

1

2 ExQ

xP
j (m,n)~x!

dxm

dx

dxn

dx
dx,

5E
xP

xQ
dx2

1

2 ExP8

xQ8 hmn8 ~x8!
dx8m

dx8

dx8n

dx8
dx81E

xQ

xP djx

dx
dx2E

xQ

xP dj t

dx
dx

5xQ~ t8!2jx~Q,t8!2„xP~ t08!2jx~P,t08!…1j t~Q,t8!2j t~P,t08!

2
1

2 ExP8

xQ8 hmn8 ~x8!
dx8m

dx8

dx8n

dx8
dx8, ~15!
using the fact that for incoming light rays,dt/dx521. Note
that

xQ8 ~ t !5xQ~ t !2jx~Q,t !, ~16!
xP8 ~ t !5xP~ t !2jx~P,t !, ~17!

so

dtP→Q5dtP→Q8 2j t~Q,t8!1j t~P,t0!, ~18!
3-3
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and

dtQ→P5dtQ→P8 1j t~Q,t8!2j t~P,t08!. ~19!

It follows that the round trip travel time is

Dt5dtP→Q1dtQ→P5Dt81j t~P,t0!2j t~P,t08!. ~20!

Therefore, the one way travel times,dtP→Q anddtQ→P are,
in general, not invariant unless both the source and the
tector are outside the regions where gravitational pertu
tions hmn are non-zero. In that case, it is physically reaso
able to setj(P,t) and j(Q,t) to zero. Similarly, the round
trip time Dt is invariant only if the source~it also acts as a
detector in this case! is outside of the gravitational perturba
tions.

However, it is interesting to note that the round tr
proper time interval for the source,Dt, is gauge invariant.
Denote the proper time intervals in two different gauges
Dt andDt8, and keep in mind the fact that on the world lin
of the source, generally,dxi /dt!1. We then have

Dt85E A11h008 dt85E dt81
1

2 E h008 dt8

5Dt81
1

2 E h00dt2E dj t

dt
dt

5Dt81j t~P,t0!2j t~P,t08!1
1

2 E h00dt

5Dt1
1

2 E h00dt5Dt, ~21!

where we have used Eq.~20!. This shows that we should
really consider how proper time rather than the coordin
time is affected by light-cone fluctuations. However, the c
culation of the proper time in a general gauge is a rat
difficult task, because the source~and detector! may not be at
rest with respect to the chosen coordinate system, and th
general the emission and the subsequent reception may
happen at the same point in space. To find the proper t
we have to integrate along the geodesic between two eve
the emission and the subsequent reception. In general,
is a Doppler shift due to fluctuations in the positions of t
source and the mirror. However, the analysis can be gre
simplified if we adopt the transverse-tracefree~TT! gauge,
which is specified by the conditions

hj
j5] jh

i j 5h0n50. ~22!

To see this, let us examine the geodesic equations for a
particle

d2xm

d2l
52Grs

m dxr

dl

dxr

dl
, ~23!

which, when written in terms of derivatives with respect
coordinate timet, becomes
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d2xm

d2t
1Grs

m dxr

dt

dxs

dt
2Grs

t dxm

dt

dxr

dt

dxs

dt
50. ~24!

For a non-relativistic test particle,dxi /dt!1, so, to the lead-
ing order,

d2xi

d2t
'G tt

i . ~25!

But, in the TT gauge,G tt
i 50. Therefore, from the above

equation, we can see that if the test particle is at restt
50, then it will subsequently always remain at rest@13#. So,
if we are considering the emission and reflection of a lig
signal between two points~particles! in the TT gauge, then
the proper timedt between emission and reception~after
reflection! of the signal is related with the coordinate time b

dt5E Agttdt5E A~11h00!dt5E dt5dt. ~26!

Here we have appealed to the fact thath0050 in the TT
gauge. Therefore, the coordinate time for the round trip
the TT gauge is the proper time, andDt calculated from Eq.
~6! in the TT gauge is actually a gauge invariant quantity.
this gauge, the mean squared fluctuation in the geodesic
terval function reduces to

^s1
2&5

1

4
~Dr !2E

r 0

r 1
drE

r 0

r 1
dr8ninjnknm^hi j ~x!hkm~x8!&R

5
1

8
~Dr !2E

r 0

r 1
drE

r 0

r 1
dr8ninjnknm

3^hi j ~x!hkm~x8!1hi j ~x8!hkm~x!&R . ~27!

Hereni5dxi /dr is the unit three-vector defining the spati
direction of the geodesic.

B. Graviton two-point function in transverse trace-free gauge

If we work in the TT gauge, the gravitational perturb
tions have only spatial componentshi j and they may be
quantized using a plane wave expansion as

hi j 5(
k,l

@ak,lei j ~k,l! f k1H.c.#. ~28!

Here H.c. denotes the Hermitian conjugate,l labels the po-
larization states, and

f k5„2v~2p!3
…

2 1/2ei (k–x2vt) ~29!

is the mode function, where

v5uku, uku5~kx
21ky

21kz
2!1/2, ~30!

and theemn(k,l) are polarization tensors.~Units in which
32pG51, whereG is Newton’s constant and in which\
5c51, will be used in this paper.!
3-4
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Now we shall first calculate the Minkowski spacetime Hadamard function for gravitons in the transverse tracefree
Let us define

Gi jkl
(1) ~x,x8!5^0uhi j ~x!hkl~x8!1hi j ~x8!hkl~x!u0&. ~31!

Then we have

Gi jkl
(1) ~x,x8!5

2Re

~2p!3 E d3k(
l

ei j ~k,l!ekl~k,l!
1

2v
eik•(x2x8)e2 iv(t2t8). ~32!

Equation~A7! in the Appendix for the summation of polarization tensors in the transverse tracefree gauge gives

(
l

ei j ~k,l!ekl~k,l!5d ikd j l 1d i l d jk2d i j dkl1 k̂i k̂ j k̂kk̂l1 k̂i k̂ jdkl1 k̂kk̂ld i j 2 k̂i k̂ld jk2 k̂i k̂kd j l 2 k̂ j k̂ld ik2 k̂ j k̂kd i l , ~33!

where

k̂i5
ki

k
. ~34!

We find thatGi jkl
(1) (x,x8) can be expressed as@11#

Gi jkl
(1) ~x,x8!52Re~d ikd j l 1d i l d jk2d i j dkl1Di j !3

1

~2p!3 E d3k
1

2v
eik•(x2x8)e2 iv(t2t8)

52Re~d ikd j l 1d i l d jk2d i j dkl1Di j !3^0uf~x!f~x8!u0&, ~35!

where we have defined a formal operator

Di j 5S ] i] j8

¹2 dkl1
]k] l8

¹2 d i j 2
] i]k8

¹2 d j l 2
] i] l8

¹2 d jk2
] j] l8

¹2 d ik2
] j]k8

¹2 d i l 1
] i] j8]k] l8

¹4 D , ~36!

and^0uf(x)f(x8)u0& is the usual scalar field two-point function. Here the formal operator¹22 should be understood in th
sense of a Green’s function, but when we do our calculations in momentum space its effect is to bring in a factor ok22.

The combination of these results with Eq.~27! gives

^s1
2&5

1

4
~Dr !2E

r 0

r 1
drE

r 0

r 1
dr8S 12

2~¹•n!~¹8•n!

¹2 1
~¹•n!2~¹8•n!2

¹4 D ^f~x!f~x8!&R . ~37!

Introduce two functionsFi j (x,x8) andHi jkl (x,x8) by

Fi j ~x,x8!5Re
] i] j8

¹2 ^0uf~x!f~x8!u0&

5Re
] i] j8

¹2

1

~2p!3 E d3k
1

2v
eik•(x2x8)e2 iv(t2t8)

5
Re

~2p!3 E d3k
kikj

2v3 eik•(x2x8)e2 iv(t2t8), ~38!

and

Hi jkl ~x,x8!5Re
] i] j8]k] l8

¹4 ^0uf~x!f~x8!u0&

5Re
] i] j8]k] l8

¹4

1

~2p!3 E d3k
1

2v
eik•(x2x8)e2 iv(t2t8)

5
Re

~2p!3 E d3k
kikjkkkl

2v5 eik•(x2x8)e2 iv(t2t8). ~39!
084023-5
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Gi jkl
(1) can be expressed as

Gi jkl
(1) 52Fi j dkl12Fkld i j 22Fikd j l 22Fil d jk

22F jl d ik22F jkd i l 12Hi jkl

12D (1)~x,x8!~d ikd j l 1d i l d jk2d i j dkl!, ~40!

where

D (1)~x,x8!52
1

8p2s0
2 ~41!

is the usual Hadamard function for massless scalar fi
with 2s0

25(t2t8)22(x2x8)2, and Fi j (x,x8) and
Hi jkl (x,x8), which will be calculated in the Appendix, ar
given by

Fi j ~x,x8!52
1

~2p!2 ] i] j8F1

2
ln~R22Dt2!

1
Dt

4R
lnS R1Dt

R2Dt D
2G , ~42!

and

Hi jkl ~x,x8!5
1

96p2 ] i] j8]k] l8F ~R213Dt2!ln~R22Dt2!2

1S 3RDt1
Dt3

R D lnS R1Dt

R2Dt D
2G . ~43!

HereR5ux2x8u.

III. LIGHT-CONE FLUCTUATIONS IN FLAT SPACETIME
WITH NONTRIVIAL TOPOLOGIES OR BOUNDARIES

In this section, we study light-cone fluctuations in tw
cases: flat spacetime with a compactified spatial section,
with a single plane boundary.

A. Flat spacetime with a compactified spatial section

Let us now assume that the spacetime is flat but comp
tified in thez direction with a periodicity lengthL ~‘‘circum-
ference of the universe’’!. This means the spatial pointsz
andz1L are identified. The effect of the space closure is
restrict the field modes to a discrete set

f k5„2v~2p!2L…21/2ei (k–x2vt) ~44!

with

kz5
2pn

L
, n50,61,62,63, . . . ~45!

We now analyze the light-cone fluctuations, assuming t
the gravitons are in the new vacuum stateu0L& associated
with the discrete modes of Eq.~44!.

First consider a light ray alongz direction, i.e. along the
direction of compactification~Fig. 2!, propagating from point
08402
s
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(0,0,a) to point (0,0,b) in space, then, we have from Eq
~27!

^s1
2&5

1

8
~b2a!2E

a

b

dzE
a

b

dz8

3^0Luhzz~x!hzz~x8!1hzz~x8!hzz~x!u0L&R

5
1

8
~b2a!2E

a

b

dzE
a

b

dz8Gzzzz
(1)R~ t,0,0,z,t8,0,0,z8!.

~46!

Here we have defined

Gzzzz
(1)R~x,x8!5^0Luhzz~x!hzz~x8!1hzz~x8!hzz~x!u0L&R

5^0Luhzz~x!hzz~x8!1hzz~x8!hzz~x!u0L&

2^0uhzz~x!hzz~x8!1hzz~x8!hzz~x!u0&,

~47!

and the integral is to be carried out along the geodesic.
If we adopt the notation

~ t,0,0,z,t8,0,0,z8![~ t,z,t8,z8!, ~48!

the renormalized two-point function can be found by usi
the method of images to be

Gzzzz
(1)R~ t,z,t8,z8!5 ( 8

n52`

1`

Gzzzz
(1) ~ t,z,t8,z81nL!

52 ( 8
n52`

1`

@D (1)~ t,z,t8,z81nL!

22Fzz~ t,z,t8,z81nL!

1Hzzzz~ t,z,t8,z81nL!#, ~49!

where the prime on the summation indicates that then50
term is omitted. SubstitutingRt50 into Eq. ~A24! in the
Appendix and replacingDx by Dz, we have

FIG. 2. A light ray ~dashed line! propagates in the direction o
compactification in a cylindrical ‘‘universe’’ from point (t,0,0,a) to
point (t8,0,0,b). Here only two spatial dimensions are plotted.
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Gzzzz
(1)R~ t,z,t8,z8!52

2

p2 ( 8
n52`

1` F Dt2

~Dz2nL!4 1
Dt3

4~Dz2nL!5 lnS Dz2nL2Dt

Dz2nL1Dt D
2

2
2

3~Dz2nL!2

2
Dt

4~Dz2nL!3 lnS Dz2nL2Dt

Dz2nL1Dt D
2G . ~50!

For the null geodesic

Dt5Dz, ~51!

we get, after an evaluation of the integral,

E
a

b

dzE
a

b

dz8Gzzzz
(1)R~ t,z,t8,z8!uDt5Dz5

1

12p2 ( 8
n52`

1` F8e2~n222e2!

~n22e2!2 1
~n12e!3

2~n1e!3 lnS 11
2e

n D 2

1
~n22e!3

2~n2e!2 lnS 12
2e

n D 2G
5

1

12p2 (
n51

1` F16e2~n222e2!

~n22e2!2 1
~n12e!3

~n1e!3 lnS 11
2e

n D 2

1
~n22e!3

~n2e!3 lnS 12
2e

n D 2G
[

1

12p2 (
n51

1`

f ~n,e!, ~52!
n

,
i

d

a

fir

is

tion

ls
nck

’
-

where we have defined

e[
~b2a!

L
5

r

L
, ~53!

and

f ~n,e![
16e2~n222e2!

~n22e2!2 1
~n12e!3

~n1e!3 lnS 11
2e

n D 2

1
~n22e!3

~n2e!3 lnS 12
2e

n D 2

. ~54!

It appears that there is a singularity in the summa
f (n,e) whenevern5e, i.e., whenever the distancer is an
integer multiple ofL. However this singularity is illusionary
as it should be from a physical point of view since there
nothing special whenn5e. This can be seen if we expan
the summand at the pointe5n to get

f ~n,e!'
19

3
1

27

4
ln~3!

1
27 ln~3!168

8n
~e2n!1O„~e2n!2

…. ~55!

So, f (n,e) is finite ase approachesn. Note also that 2e
5n is also not a singularity. The summation converges,
the asymptotic form off (n,e) asn→` is

f ~n,e!;
32e2

n2 1O~n24!. ~56!

However, a generic closed form result for the summation
hard to find. So we now discuss two special cases. The
08402
d

s

s

is
st

is the one in which the distance traversed by the light ray
much less than the periodicity length,b2a!L. Then we get

E
a

b

dzE
a

b

dz8Gzzzz
(1)R~x,x8!' (

n51

1`
8e2

3p2

1

n2 5
4e2

9
. ~57!

Substitution of this result into Eq.~46! yields

^s1
2&'

r 4

18L2 . ~58!

Therefore the mean deviation from the classical propaga
time is

Dt5
A^s1

2&
r

'
1

3&

r

L
. ~59!

Since we are working in Natural Units, this result revea
that the mean deviation in travel time is less than the Pla
time and grows linearly with increasingr when r is small
compared to the periodicity lengthL of the universe.

If e@1, i.e.,r @L, the light loops around the ‘‘universe,’
and summation Eq.~52! can be approximated by the follow
ing integral

E
a

b

dzE
a

b

dz8Gzzzz
(1)R~ t,z,t8,z8!

'
e

12p2 E
1/e

`

dxF ~x12!3

~x11!3 lnS 11
2

xD 2

1
~x22!3

~x21!3 lnS 12
2

xD 2

1
16~x222!

~x221!2 G . ~60!
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Evaluating the integral with the aid of the computer alge
package Maple, series expanding the result and keeping
leading terms only, we arrive at

E
a

b

dzE
a

b

dz8Gzzzz
(1)R~ t,z,t8,z8!'e2

8 ln~2e!

3p2 . ~61!

Therefore the mean deviation from the classical propaga
time is
08402
a
he

n

Dt5
A^s1

2&
r

'
1

2&
Ar

L
, ~62!

wherer is assumed to be much greater thanL. So the light-
cone fluctuations can, in principle, get as large as one wo
like if the light ray travels around and around. This is inte
esting in the sense that it suggests that a fluctuation whic
much greater than the Planck scale could be achieved.

Now we turn to the case where the light ray moves alo
the direction perpendicular to that of compactification, f
instance, alongx direction. If the light ray travels from poin
(a,0,0) to point (b,0,0), as illustrated in Fig. 3, then
^s1
2&5

1

8
~b2a!2E

a

b

dxE
a

b

dx8^0Luhxx~x!hxx~x8!1hxx~x8!hxx~x!u0L&R

5
1

8
~b2a!2E

a

b

dxE
a

b

dx8Gxxxx
(1)R~ t,x,0,0,t8,x8,0,0!,

5
1

8
~b2a!2E

a

b

dxE
a

b

dx8 ( 8
n52`

1`

Gxxxx
(1) ~ t,x,0,0,t8,x8,0,nL!. ~63!
s

e
t
re
Let us now define

r5x2x8, b2a5r , ~64!

then if we use Eq.~A24! in the Appendix and bear in mind
the fact that for the light rayDt5Dx, we have

Gxxxx
(1)R~ t,x,0,0,t8,x8,0,0![g1~r!1g2~r!, ~65!

where

g152 ( 8
n52`

1`

2
1

8p2

r2~nL!4

@r21~nL!2#4 2
1

3p2

r6

@r21~nL!2#4

1
47

12p2

r4~nL!2

@r21~nL!2#4 , ~66!

and

g2522 ( 8
n52`

1`
1

2p2 lnS Ar21~nL!21r

Ar21~nL!22r
D 2

3F2
1

16

r~nL!6

@r21~nL!2# (9/2) 2
3

4

r3~nL!4

@r21~nL!2# (9/2)

1
3

2

r5~nL!2

@r21~nL!2# (9/2)G . ~67!
We can clearly see thatGxxxx
(1)R is an even function ofr, so,

E
a

b

dxE
a

b

dx8Gxxxx
(1)R~ t,x,0,0,t8,x8,0,0!

52E
0

r

dr~r 2r!~g11g2!. ~68!

Performing the integration~integrate by parts for those term
involving logarithmic function!, we arrive at

FIG. 3. A light ray~dashed line! propagates perpendicular to th
direction of compactification in a cylindrical ‘‘universe’’ from poin
(t,a,0,0) to point (t8,b,0,0). Here only two spatial dimensions a
plotted.
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2E
0

r

dr~r 2r!~g11g2!

5
2

p2 ( 8
n52`

1` F2
e4

2~e21n2!2 2
e2n2

4~e21n2!2

1
8e518n2e313n4e

24~n21e2!5/2 lnS An21e21e

An21e22e
D G ,

~69!

wheree5r /L as before. The above series can be shown
be convergent. Yet a result in closed form is not easy to fi
Let us first examine the case in whichr !L, where

E
a

b

dxE
a

b

dx8Gxxxx
(1)R~x,x8!' (

n51

1`
64e6

45p2

1

n6 5
64p4e6

452321
.

~70!

Here we have used

(
n51

1`
1

n6 5
p6

45321
. ~71!

Thus the mean deviation from the classical propagation t
is

Dt5
A^s1

2&
r

'A 2

21

2p2

45 S r

L D 3

. ~72!

This result holds in the smalle regime. The time deviation is
much smaller than that for light rays propagating along
compactification direction@compare with Eq.~59!#. This re-
veals that light-cone fluctuations due to topology change
more likely to be felt in the direction of compactificatio
than in the transverse direction, if we perform local expe
ments in whichr , the distance between the source and
detector, is very small as compared toL, the periodicity
length.

We now turn our attention to the case in whichr @L, i.e.,
e@1. Here it is easy to see that the summation in Eq.~69!
can be approximated by the following integral

E
a

b

dxE
a

b

dx8Gxxxx
(1)R~ t,x,0,0,t8,x8,0,0!

'
4e

p2 E
1/e

`

dxF2
1

2~11x2!2 2
x2

4~11x2!2

1
818x213x4

24~x211!5/2 lnS Ax21111

Ax21121
D G . ~73!

If we perform the integral and series expand the result,
have, to the order ofO(e),

E
a

b

dxE
a

b

dx8Gxxxx
(1)R~ t,x,0,0,t8,x8,0,0!'c1

2e2c2
2 ln~e!,

~74!
08402
to
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e

e

re
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e

e

wherec1 andc2 are constants given, respectively, by

c1
25E

0

`

dx
ln~x1Ax211!

xAx211
'2.468 ~75!

and

c2
25

8

3p2 . ~76!

Therefore we have for the mean squared geodesic inte
fluctuation

^s1
2&'

1

8 S c1r

p D 2

e, ~77!

and the mean deviation from the classical propagation tim

Dt5
A^s1

2&
r

'
c1

p

1

2&
Ar

L
. ~78!

This result applies in the regime wherer @L. Here we have
the same functional dependence onr as in the case where
light rays loop around the compactified dimension ma
times. The only difference lies in the proportionality co
stants. In fact, here the mean time deviation is also sma
than that for light rays traveling in the direction of compa
tification, since the numerical constantc1 /p'0.5.

B. Single plane boundary

Let us assume that there is a single plane boundary
cated atz50 in space such that metric perturbations sati
the following Neumann boundary condition~the reason that
we use the Neumann boundary condition instead of the
richlet boundary condition here is to get a positive^s1

2&):

]zhjkuz5050. ~79!

In the presence of the boundary, the field mode no longer
the form of Eq.~44! but becomes

FIG. 4. A light ray ~dashed line! propagates in the direction
perpendicular to the plane boundary, startinga distance away from
the boundary.
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f k5„v~2p!2p…

21/2ei (kt–xt2vt) cos~kzz!, ~80!

wherekt and xt denote the components ofk and x, respec-
tively, in directions parallel to the boundary. Now if we a
sume that the gravitons are in the vacuum stateu08& associ-
ated with the modes of Eq.~80!, we have, for a light ray
propagating perpendicular to the boundary from po
(0,0,a) to (0,0,b) ~see Fig. 4!,

^s1
2&5

1

8
~b2a!2E

a

b

dzE
a

b

dz8^08uhzz~x!hzz~x8!

1hzz~x8!hzz~x!u08&R

5E
a

b

dzE
a

b

dz8Gzzzz
(1)R~ t,0,0,z,t8,0,0,z8!. ~81!

Here the renormalized graviton two point functio
Gzzzz

(1)R(x,x8) can be found by the method of images as us
and the only difference is an overall sign change as we
from the Dirichlet boundary condition to the Neuman
boundary condition. The reason for this is that, to satisfy
ve
ul
e

uc

g
th

ze

08402
t

l
o

e

Neumann boundary condition, we need to add the im
term instead of subtracting it as in the case of the Dirich
boundary condition. So,Gzzzz

(1)R(x,x8) may be obtained by
picking out then50 term in Eq. ~50! and settingDz5z
1z8 to get

FIG. 5. A light ray ~dashed line! propagates in the direction
parallel to the plane boundary, startingz distance away from it.
Gzzzz
(1)R~ t,0,0,z,t8,0,0,z8!52

2~ t2t8!2

p2~z1z8!4 2
~ t2t8!3

2p2~z1z8!5 lnS z1z82~ t2t8!

z1z1~ t1t8! D 2

1
4

3p2~z1z8!2

1
~ t2t8!

2p2~z1z8!3 lnS z1z82~ t2t8!

z1z81~ t1t8! D
2

. ~82!
re-

n

by

in
Substituting this result into Eq.~81! and performing the in-
tegration, we finally get

^s1
2&5

~b2a!3@b22a21~a214ab1b2!ln~b/a!#

24p2~b1a!3 .

~83!

Note that this result is always greater than zero. Howe
had we chosen the Dirichlet boundary condition, we wo
have that̂ s1

2&,0. Recall that the formalism which we ar
using applies only if̂ s1

2&.0.
When the light ray starts very close to the boundary s

that a!r , we have

^s1
2&'

r 4

24p2 @11 ln~r /a!#. ~84!

The mean deviation in travel time is

Dt5
A^s1

2&
r

5A11 ln~r /a!

24p2 , ~85!

which diverges asa approaches 0. This is not surprisin
since the energy density of a quantized field blows up on
boundary. However, it has been shown recently@12# that, if
one treats the boundaries as quantum objects with a non
r,
d

h

e

ro

position uncertainty, the singularity in energy density is
moved. The result, Eq.~85!, applies wheneverr @a. The
other limit is whenr !a, where the mean squared fluctuatio
in the geodesic interval function is approximated as

^s1
2&'

r 4

24p2a2 , ~86!

consequently, the mean deviation in time is given by

Dt5
A^s1

2&
r

5
1

2A6p

r

a
. ~87!

We now consider a null geodesic which isz distance
away from and parallel to the plane boundary~see Fig. 5!.
The relevant renormalized Hadamard function is given
Eq. ~A24! with Dz being replaced byz1z8.

Now suppose the geodesic starts at point (t,a,0,z) and
ends at point (t8,b,0,z), then the mean squared fluctuation
the geodesic interval function is

^s1
2&5

1

8
~b2a!2E

a

b

dxE
a

b

dx8Gxxxx
R ~ t,x,0,z,t8,x8,0,z!.

~88!
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HereGxxxx
R (t,x,0,z,t8,x8,0,z) is also given by Eqs.~65!–~67!

but with a replacement ofnL by 2z. Therefore

E
a

b

dxE
a

b

dx8Gxxxx
(1)R~ t,x,0,z,t8,x8,0,z!

5
2

p2 F2
e4

2~e214!2 2
e2

~e214!2

1
8e5132e3148e

24~41e2!5/2 lnS A41e21e

A41e22e
D G , ~89!

where e5r /z. Since the above expression is very comp
cated, we shall discuss two interesting special cases. O
when r @z, then we have

^s2&'
r 2

6p2 ln~r /z! ~90!

and

Dt5
A^s1

2&
r

5Aln~r /z!

6p2 . ~91!

This also blows up asz approaches 0, however the function
dependence uponz is different from that of Eq.~85!. The
other limit is whenr !z. For this case, we find

^s2&'
r 8

720z6p2 ~92!

and

Dt5
A^s1

2&
r

5
1

12A5p
S r

zD
3

. ~93!

IV. SUMMARY AND DISCUSSION

In this paper, we have obtained general expressions, in
transverse tracefree gauge, for the vacuum graviton t
point function for various boundary conditions. These we
used to study the light-cone fluctuations in flat spacetim
with a compactified spatial section and with a plane bou
ary. The mean squared fluctuations of the geodesic inte
function and therefore the mean deviations from the class
propagation time have been obtained.

In the case of a compactified spatial section, when
travel distance is less than the periodicity length, the fluct
tion in the propagation time is less than the Planck time
this limit, the effect is much larger for propagation in th
periodicity direction than for propagation in the transve
direction. Thus the local light-cone fluctuations become
isotropic, reflecting the global structure of the spacetim
When the travel distance is large compared to the periodi
length, the fluctuation in travel time increases with t
square root of the distance traveled for propagation in ei
direction, and the only difference lies in the proportional
constants. Here we have a possibility of having fluctuatio
08402
-
is

l

he
o-
e
s
-
al
al

e
-

n

e
-
.

ty

er

s

larger than Planck scale by several orders of magnitude.
In the case of a plane boundary, as light rays start clo

and closer to the boundary, the light-cone fluctuations bl
up as the square root of the logarithm of the starting dista
both when light rays propagate perpendicular and paralle
the boundary. This is not as surprising as it might seem
cause the imposition of a fixed boundary can lead to sing
expectation values of local observables, such as energy
sities. However we expect this singularity to disappear if o
treats the boundary as a quantum mechanical object wi
nonzero position uncertainty@12#. It is also found that if the
starting distance from the boundary is fixed, then the fluct
tion in travel time grows as the square root of the logarith
of the distance traversed when this distance is large c
pared to the starting distance.

In summary, we have demonstrated that in the lineari
theory of quantum gravity, changes in the topology of fl
spacetime produce light-cone fluctuations. These fluctuat
are in general larger in the directions in which topolo
changes occur and are typically of the order of Planck sc
but they can get larger for path lengths large compared to
compactification scale. It is interesting to note that this eff
could become significant in theories which postulate ex
dimensions compactified on a very small scale.
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APPENDIX

1. Summation of graviton polarization tensors in the TT
gauge

Let us introduce a triad of orthonormal vecto
@e1(k),e2(k),e3(k)# with

e3~k!5
k

uku
5 k̂, ~A1!

the unit vector in the direction of propagation. The triad s
isfies the orthonormality relation

ea~k!•eb~k!5dab , a,b51,2,3. ~A2!

This relation can be written, in terms of the components
the coordinate system characterizing the metric, as

ea
i ~k!eb

i ~k!5dab , a,b51,2,3. ~A3!

Here the Einstein summation convention is employed.
also have

ea
i ~k!ea

j ~k!5e1
i e1

j 1e2
i e2

j 1 k̂i k̂ j5d i j , i , j 5x,y,z.
~A4!
3-11
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Therefore, the two independent graviton polarization tensors in the TT gauge are given, in terms of the triad, by

ei j ~k,1 !5e1
i ~k! ^ e1

j ~k!2e2
i ~k! ^ e2

j ~k!, ~A5!

ei j ~k,3 !5e1
i ~k! ^ e2

j ~k!1e2
i ~k! ^ e1

j ~k!, ~A6!

where we have adopted the notation of Ref.@13#. Hence,

(
l

ei j ~k,l!ekl~k,l!5ei j ~k,1 !ekl~k,1 !1ei j ~k,3 !ekl~k,3 !

5e1
i e1

j e1
ke1

l 2e1
i e1

j e2
ke2

l 2e2
i e2

j e1
ke1

l 1e2
i e2

j e2
ke2

l 1e1
i e2

j e1
ke2

l 1e1
i e2

j e2
ke1

l 1e2
i e1

j e1
ke2

l 1e2
i e1

j e2
ke1

l

5~e1
i e1

k1e2
i e2

k!~e1
j e1

l 1e2
j e2

l !1~e1
i e1

l 1e2
i e2

l !~e1
j e1

k1e2
j e2

k!2~e1
i e1

j 1e2
i e2

j !~e1
ke1

l 1e2
l e2

k!

5~d ik2 k̂i k̂k!~d j l 2 k̂ j k̂l !1~d i l 2 k̂i k̂l !~d jk2 k̂ j k̂k!2~d i j 2 k̂i k̂ j !~dkl2 k̂kk̂l !

5d ikd j l 1d i l d jk2d i j dkl1 k̂i k̂ j k̂kk̂l1 k̂i k̂ jdkl1 k̂kk̂ld i j 2 k̂i k̂ld jk2 k̂i k̂kd j l 2 k̂ j k̂ld ik2 k̂ j k̂kd i l . ~A7!
ro

ru

n

an

-
to

gral,

is
This result can also be obtained as follows. Let us int
duce a 4th-rank tensor

Ti jkl ~k!5(
l

ei j ~k,l!ekl~k,l!, ~A8!

which has the following symmetry properties

Ti jkl 5Tjikl 5Ti jlk 5Tkli j . ~A9!

However, the objects, which are at our disposal to const
Ti jkl , are onlyki andd i j , thus in general, we have

Ti jkl 5Ad i j dkl1Bd ikd j l 1Bd i l d jk1C~ k̂i k̂ jdkl1 k̂kk̂ld i j !

1D~ k̂i k̂kd j l 1 k̂i k̂ld jk1 k̂ j k̂ld ik1 k̂ j k̂kd i l !

1Ek̂i k̂ j k̂kk̂l , ~A10!

whereA,B,C,D,E are constants to be determined. This te
sor is subject to the transversality condition

kiT
i jkl 5kjT

i jkl 5kkT
i jkl 5klT

i jkl 50, ~A11!

and the trace-free condition

Tiikl 5Ti jkk50. ~A12!

Applying these constraint conditions toTi jkl and solving the
resulting equations leads to

a5d52e52c52b. ~A13!

ThereforeTi jkl is the same as the right-hand side of Eq.~A7!,
apart from a multiplicative normalization constant which c
be chosen to be unity.
08402
-

ct

-

2. Vacuum graviton Hadamard function in the TT gauge

Here we evaluate the functionFi j (x,x8) andHi jkl (x,x8)
defined in Eqs.~42! and~43!, respectively. Once these func
tions are given, the graviton two point functions are easy
obtain. Define

R5A~x2x8!21~y2y8!21~z2z8!2,

Dt5t2t8, k5uku5v. ~A14!

Then,

Fi j ~x,x8!5
Re

~2p!3 E d3k
kikj

2v3 eik•(x2x8)e2 iv(t2t8)

5
Re

~2p!3 ] i] j8E
0

` e2 ikDt

2k
dk

3E
0

p

du sinueikR cosuE
0

2p

df

5
1

~2p!2 ] i] j8
1

R E
0

` dk

k2 sinkRcoskDt.

~A15!

Because there is an infrared divergence in the above inte
we will introduce a regulatorb in the denominator of the
integrand and then letb approach 0 after the integration
performed:

Fi j ~x,x8!5
1

~2p!2 ] i] j8 lim
b→0

1

R E
0

1` dk

k21b2 sinkRcoskDt

5
1

~2p!2 ] i] j8 lim
b→0

f ~b,R,Dt !. ~A16!

Here we have used a integral in Ref.@14# and defined
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f ~b,R,Dt !5
1

4bR
$eb(Dt2R)Ei@b~R2Dt !#

1e2b(Dt1R)Ei@b~R1Dt !#

2eb(Dt1R)Ei@2b~R1Dt !#

2eb(R2Dt)Ei@b~Dt2R!#%. ~A17!

Here Ei(x) is the exponential-integral function. Making u
of the fact that, whenx is small,

Ei~x!'g1 lnuxu1x1
1

4
x21

1

18
x31O~x4!, ~A18!

where g is the Euler constant, and expandingf aroundb
50 to the order ofb2, we get

f ~b,R,Dt !'12g2 ln b2
1

2
ln~R22Dt2!

2
Dt

4R
lnS R1Dt

R2Dt D
2

1O~b2!. ~A19!

Taking the limit and keeping in mind that the constant ter
~with respect tox and x8) vanish under differentiation, we
finally obtain

Fi j ~x,x8!52
1

~2p!2 ] i] j8F1

2
ln~R22Dt2!

1
Dt

4R
lnS R1Dt

R2Dt D
2G . ~A20!

Now let us turn our attention toHi jkl (x,x8). We have,
proceeding with similar steps as we did forFi j (x,x8),

Hi jkl ~x,x8!5
Re

~2p!3 E d3k
kikjkkkl

2v5 eik•(x2x8)e2 ivDt
08402
s

52
1

~2p!2 ] i] j8]k] l8 lim
b→0

1

2bR

]

]b

3E
0

1` dk

k21b2 sinkRcoskDt

52
1

~2p!2 ] i] j8]k] l8 lim
b→0

1

2b

]

]b
f ~b,R,Dt !.

~A21!

Now expand (1/2b)(]/]b) f (b,R,Dt) to orderb2 to find

1

2b

]

]b
f ~b,R,Dt !52

1

2b
2

1

3
@~ ln b1g21!R2

13~ ln b1g21!Dt2#

2
1

12R
@~R1Dt !3 lnuR1Dtu

1~R2Dt !3 lnuR2Dtu#. ~A22!

Plugging this result into Eq.~A21! and noting that only
terms higher than quadratic inR contribute after the differ-
entiation, we obtain

Hi jkl ~x,x8!5
1

96p2 ] i] j8]k] l8

3F ~R213Dt2!ln~R22Dt2!2

1S 3RDt1
Dt3

R D lnS R1Dt

R2Dt D
2G . ~A23!

For convenience, we give the explicit forms forGxxxx
(1) and

Gzzzz
(1) here:
Gxxxx
(1) ~x,x8!52„D (1)~x,x8!22Fxx~x,x8!1Hxxxx~x,x8!…

5
1

12p2R8s2 $~Dx22Dt2!~16Dx6224Dx4Dt2!23Dt2Rt
61~9Dt4169Dx2Dt2116Dx4!Rt

4

1~272Dx2Dt4132Dx4Dt2132Dx6!Rt
2%2

Dt

16p2R9 lnS R1Dt

R2Dt D
2

@2Rt
62~3Dt219Dx2!Rt

4124Dt2Dx2Rt
2

28Dx4Dt218Dx6#, ~A24!
where

Rt
25Dy21Dz2 ~A25!

Dx5x2x8 ~A26!
R25Rt
21Dx25Dx21Dy21Dz2 ~A27!

s25R22Dt25Dx21Dy21Dz22Dt2. ~A28!

To get Gzzzz
(1) (x,x8), all we need to do is to replaceRt

2 in
Eq. ~A24! by Rt

25Dy21Dx2.
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