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Light-cone fluctuations in flat spacetimes with nontrivial topology
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The quantum light-cone fluctuations in flat spacetimes with compactified spatial dimensions or with bound-
aries are examined. The discussion is based upon a model in which the source of the underlying metric
fluctuations is taken to be quantized linear perturbations of the gravitational field. General expressions are
derived, in the transverse trace-free gauge, for the summation of graviton polarization tensors, and for vacuum
graviton two-point functions. Because of the fluctuating light cone, the flight time of photons between a source
and a detector may be either longer or shorter than the light propagation time in the background classical
spacetime. We calculate the mean deviations from the classical propagation time of photons due to the changes
in the topology of the flat spacetime. These deviations are in general larger in the directions in which topology
changes occur and are typically of the order of the Planck time, but they can get larger as the travel distance
increases[S0556-282(99)10118-9

PACS numbegps): 04.60—m, 04.62+v

[. INTRODUCTION tum state, such as a squeezed vacuum state, or a thermal
state, can produce light-cone fluctuations, thus smearing out
The existence of fixed light-cone structures is one of thghe light cone. Because of the fluctuating light cone, the
characteristics of classical gravitational theory. Light conegpropagation time of a classical light pulse over distanie
are basically hypersurfaces which distinguish timelike sepano longer precisely, but undergoes fluctuations around a
ration from spacelike separation and divide spacetime inténean value of . The fluctuations in the photon arrival time
causally distinct regions. However, if gravity is to be quan-can also be understood as fluctuations in the velocity of light.
tized, it is natural to expect that the quantum metric fluctua-This model has been applied to study the quantum cosmo-
tions would smear out the light cone, and the concept of dogical and black hole horizon fluctuatiofg]. It is interest-
fixed light-cone structure has to be abandoned. Based updig to note that recently, the quantum gravitational metric
the observation that the ultraviolet divergences of quantunfluctuations have also been discussed within a different con-
field theory arise from the light-cone singularities of two- text, i.e., a Liouville string formulation of quantum gravity
point functions, and that quantum fluctuations of the spacel9,10]. In this paper we shall examine light-cone fluctuations
time metric ought to smear out the light cone, thus possiblyn flat spacetime with nontrivial topology based upon the
removing these singularities, Padli] conjectured many model proposed in Ref6]. In Sec. II, we review the basic
years ago that the ultraviolet divergences of quantum fieldormalism and examine its gauge invariance, then derive
theory might be removed if gravity is quantized. This ideageneral expressions for the vacuum graviton two-point func-
was further explored by several other auth@s4]. At the tions in the transverse trace-free gauge. In Sec. lll we study
present time, this conjecture remains unproven. If light cone#he light cone fluctuations in flat spacetimes with a compac-
fluctuate, so do horizons, which are, of course, light conedlified spatial dimension, and with a single plane boundary.
The horizon fluctuations could then presumably lead to inOur results are summarized and discussed in Sec. VI.
formation leakage across the black hole in a way that is not
allowed by classical phySICS Bekens_tein and Mukha[rﬁjv _1l. BASIC FORMALISM AND GRAVITON TWO-POINT
have suggested that horizon fluctuations could result in dis- FyNCTION IN TRANSVERSE TRACE-FREE GAUGE
creetness of the spectrum of black holes. Since the existence
of black hole horizons is the origin of the so-called black Let us consider a flat background spacetime with a linear-
hole information paradox, which has been widely discussedzed perturbatiorh,,, propagating upon it, so the spacetime
in the literature but still remains to be resolved, the study ofmetric may be written as
light-cone fluctuations might help us better understand the
problem. ds’=g,,,dx“dx"=(n,,+h,,)dx“dx"
Recently the problem of light-cone fluctuations has been Y
investigated6,7] in a model of quantum linearized theory of =dt*—dx*+h,, dx“dx". @
gravity, where the fluctuations are produced by gravitons
propagating on a background spacetime. The light cone ket o(x,x") be one half of the squared geodesic separation
smeared out if the linearized gravitational perturbations aréor any pair of spacetime pointsandx’, andoo(x,x") be

quantized. It has been demonstrated that gravitons in a quaie corresponding quantity in the flat background. We can
expand, in the presence of the perturbatie(x,x’) in pow-

ers ofh,, as

*Email address: hwyu@cosmos2.phy.tufts.edu
TEmail address: ford@cosmos2.phy.tufts.edu o=0gtoitayt-, (2

0556-2821/99/6(8)/08402314)/$15.00 60 084023-1 ©1999 The American Physical Society



HONGWEI YU AND L. H. FORD PHYSICAL REVIEW D60 084023

whereo is first order inh,,,,, etc. We now suppose that the then by following the same steps as those of R&ff.we can
linearized perturbatioi ,, is quantized, and that the quan- show that in a general gauge
tum state|y) is a “vacuum” state in the sense that we can

decomposen,,, into positive and negative frequency parts 1 r ,
h., andh,,, respectively, such that 01:§Arfr h,,n*n"dr, 8
0
h' =0, h, ,=0. 3
il ) (ylh,, () and
It follows immediately that
1 r ri
— 2y _ = 2 I ARAVAPAT
(h,,)=0 (4) (o) 4(Ar) frodrﬁodr n“n’n’n
H 2
in state[¢). In general, however((h,,)*)r#0, where the X (N, () (X' ))g. (9)

expectation value is understood to be suitably renormalized.

This reflects the quantum metric fluctuations. Heredr=|dx|, Ar=r,—ro andn“=dx*/dr. The graviton

two-point function,(h,,,(x)h,,(x"))r, is understood to be
renormalized, so that it is finite whex=x' and vanishes

If we average the retarded Green’s functi@e«(x,x"), when the quantum state of the gravitons is the Minkowski
for a massless scalar field, over quantized metric fluctuavacuum state.

A. Basic formalism and gauge invariance

tions, we ge{6] A few comments on the derivation of E¢p) are in order
5 here. It is obtained by averaging the Fourier representation of
, o(t—t’) ™ 0 a Sfunction. It may come as a surprise that although we
(Gredx.x")) = 8?2 2<Ui> exr{ B 2(071>> - started with an analytic expansion@fn powers ofh ,,, the

result is not analytic aéo3)— 0. This arises because we use

This form is valid for the case in whicfu3)>0. It reveals the first order expansion af in the argument of an expo-
that the delta-function behavior of the classical Green'’s funcnential function, but afterwards retain all powers of, .
tion, G,¢t, has been smeared out into a Gaussian functio®ne can reasonably ask whether this is a valid procedure. A
peaked around the classical light cone. This smearing can Hest of the self-consistency is to retain thie term and then
understood as due to the fact that photons may be eithdollow the same procedure. The result is Ef) with og
slowed down or speeded up by the light-cone fluctuationsreplaced byg(z)+(,-2_ This has the same physical interpreta-
Photon propagation now becomes a statistical phenomenofign as before; the only effect of the, part is to shift the
with some photons traveling slower than the light on thejocation of the mean light cone. Thus in this order we en-
classical spacetime, and others traveling faster. Note that th@yunter the backreaction of the gravitons in perturbing the
Gaussian function in Ed5) is symmetrical about the classi- original classical geometry to a new classical geometry. Al-
cal light cone,oy=0, and so the quantum fluctuations are though this is less than a complete demonstration of the va-
equally likely to produce a time advance as a time delay. |idity of Eq. (5), it does indicate that it arises from a self-

Light-cone fluctuations are in principle observable. It hasconsistent calculation. In any case, the only result that we

been shown, by considering light pulses between a sourceally need in the remainder of this paper is B8), which
and a detector separated by a distanc¢éhat the mean de-

viation from the classical propagation time is related dg)
by [6] to
y
V(o) “

At: r . (6) \\

Note, however, thait is the ensemble averaged deviation, \
not necessarily the expected variation in flight time of two St
photons emitted close together in time. The latter can be s
much smaller tharAt due to the fact that the gravitational s
field may not fluctuate significantly in the interval between s
the two photons. This point is discussed in detail in Ref. s
In order to findAt in a particular situation, we need to cal- .
culate the quantum expectation valug) in a chosen quan- ’
tum state. For this purpose, we first have to compuytdor

a given classical perturbation along a certain geodesic, then
averageof over the quantized metric perturbation. If we P Q
consider a null geodesic specified by

FIG. 1. A light ray (dashed ling makes a round trip travel be-
dt?=dx*—h,,,dx*dx", (7)  tween two points, P and Q, in space.
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may be derived either from E@5), or else more directly by (¢ dx* dx” 1 dx* dx*
averaging the square of E(®). * \/ h(X) 5o go~ 15 5h,, () —— ——.
Let us now turn to the question of the gauge invariance of dx dx dx 2 dx d)((12)
the formalism. Under a gauge transformation specified by
X' F=xH4 EH(X), (10 Here the upper sign is used for outgoing light rays and the
lower sign for incoming rays. So, one way travel tirdiein
hl (X)) =h,,(X) = &) (X), (11)  the unprimed gauge is

where¢#(x) is of orderh,,,, the quantitiesr; and(o?) are dxt dx”
not in general invariant. However, we can show that this is Stp o= f dx— = f h,,(X) —— ——dx
due to the fact thaf\t is a coordinate time interval rather 2 dx dx
than a proper time interval. To better understand the gauge

invariance, let us examine a situation in which a light signal Xq 1 (%o dxt dx”
travels between two points in space labeled byand Q, f dx— f h ax dx
with a classical metric perturbatiom,, in the intervening
region, as illustrated in Fig. 1.

dx* dx”

For simplicity, let us assume that the propagation is in the J Eun(X) == dx dx dx, (13
x-direction. We shall look at the travel time in two different
gauges, or coordinate systems, primed and unprimed. For
light rays traveling inx direction, we have which, within the linearized theory, can approximated as
|
ot —JXQd 1f><<3hr N J dx“ dx”
P—Q™ . X_E X|’:> /.LV(X ) dx’ dx g(,u V)(X) dx dX X,
XQ 1 X" dx'# dx'" XQ dgx XQ dft
— _ QR’/ ! r__ -~
pr dx ZJX,’, hw(x )—dx, ax dx . dx dx— d ——dx
=Xq(t") = &(Q,t") = (Xp(to) = &x(P,t)) = &(Q,t") + &(P,to)
1f °h i OIX’Vd ' 14
Z'W()dx’Wx’ (14)

where we have used the fadt/dx=1 for outgoing light rays within our approximation. Similarly, we have

st _ jxpd lJ’XPh dx* dXVd
@p= 7 | OXF 3 ) M) g Tax X

—fod 1 fo dx* dx f dx“ dx”d

=), 2 ), e 000 (9 g ax B
x 1 [y dx'# dx'” xp d xp d

=f de——fXQh' () DD e [P 9 gy [P 2
Xp 2 Jx dx’ dx Xo dx Xq dx

=Xq(t") = &(Q,t") = (Xp(ty) = &x(P,tg)) + £(Q.t") = &(P.tg)

1JXQ h dx’# dx”’d , 15
=3 ) M) g g 9% (15
|
using the fact that for incoming light raydt/dx= —1. Note Xp(t)=xp(t) — &(P,1), (17
that
SO
Xo(t) =Xq(t) = £(Q,1), (16) Stp = Otp_q— &(Q,t") + & (P tg), (18)
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and d2xm dx” dx” _ dx* dx? dx”
M T 0. (24
Stgp=0tg pt+&(Q,t") = &(P tg). 19

—— T ——————=
d<t Podt  dt Po dt dt dt
P . . | < _
It follows that the round trip travel time is For a non-relativistic test particlex'/dt<1, so, to the lead

ing order,
At=6tp_ o+ dtg p=At"+&(P,tg) — &(P,ty). (20) g
: ——~T},. 2
Therefore, the one way travel timestp .o and ot _.p are, d’t (25
in general, not invariant unless both the source and the de- _
tector are outside the regions where gravitational perturbaBut, in the TT gaugel';;=0. Therefore, from the above
tionsh,, are non-zero. In that case, it is physically reason-equation, we can see that if the test particle is at rest at
able to sett(P,t) and §(Q,t) to zero. Similarly, the round =0, then it will subsequently always remain at rgk3]. So,
trip time At is invariant only if the sourcéit also acts as a if we are considering the emission and reflection of a light
detector in this cages outside of the gravitational perturba- signal between two point§articles in the TT gauge, then
tions. the proper timedr between emission and receptidafter
However, it is interesting to note that the round trip reflection of the signal is related with the coordinate time by
proper time interval for the sourcér, is gauge invariant.
Denote the proper time intervals in two different gauges by B B — . B
ArandA7’, and keep in mind the fact that on the world line o7= | Ngudt= | V(1+heodt= | dt=at. (26)
of the source, generallylx'/dt<1. We then have
Here we have appealed to the fact thgt=0 in the TT
, 7 , 1 L e gauge. Therefore, the coordinate time for the round trip in
AT _J 1+ hogdt _f dr’+ Ef hoodt the TT gauge is the proper time, aad calculated from Eq.
(6) in the TT gauge is actually a gauge invariant quantity. In

dé this gauge, the mean squared fluctuation in the geodesic in-
=At'+ Ef hodt— | 57 dt terval function reduces to
1 (03)= 1(Ar)zfrldrfrldr’ninjn"nm<h--(x)h (x"))

:At,+§t(PvtO)_§t(P!t(,))+Ef hoedt ! o o . km R

1 r r o
1 =—(Ar)zj 1drf “dr/nininkp™

=At+ > hodt=Ar, (21 8 ro "o

X (hij () hin(X") + i (XD (X)) R - (27

where we have used E@20). This shows that we should

really consider how proper time rather than the coordinatgjeren'=dx'/dr is the unit three-vector defining the spatial

time is affected by light-cone fluctuations. However, the cal-gjrection of the geodesic.

culation of the proper time in a general gauge is a rather

dlﬁ'cu!t task, because the sourtnd dgtectc)rmay not be at .B. Graviton two-point function in transverse trace-free gauge

rest with respect to the chosen coordinate system, and thus in

general the emission and the subsequent reception may not If we work in the TT gauge, the gravitational perturba-

happen at the same point in space. To find the proper timgions have only spatial components; and they may be

we have to integrate along the geodesic between two eventgyantized using a plane wave expansion as

the emission and the subsequent reception. In general, there

is a Doppler shift _due to fluctuations in the positions of the hi; => [ay e (k,\)f+H.cl. (29

source and the mirror. However, the analysis can be greatly koA

simplified if we adopt the transverse-tracefri@) gauge,

which is specified by the conditions Here H.c. denotes the Hermitian conjugatdabels the po-
larization states, and

hl=g;hl=h%"=0. (22) ,
fk: (2(1)(277)3)_ 1/Zel(k~x—a)t) (29)
To see this, let us examine the geodesic equations for a test
particle is the mode function, where
d2x# dx? dx? o=k|, [k|=(Ki+k;+k5)M2, (30)

e I
d’x Lo dn dh’ 23

and thee,,(k,\) are polarization tensorgUnits in which

which, when written in terms of derivatives with respect to 327G=1, whereG is Newton’s constant and in which

coordinate timet, becomes =c=1, will be used in this paper.

084023-4



LIGHT-CONE FLUCTUATIONS IN FLAT SPACETIMES . .. PHYSICAL REVIEW D 60 084023

Now we shall first calculate the Minkowski spacetime Hadamard function for gravitons in the transverse tracefree gauge.
Let us define

G (x,x")=(0]h;; (X) i (x") +hyj (X )i (x)] 0). (31

Then we have

1 N ,
.(k,)\)ekl(k,)\)zem-(xfx Jg—iw(t—t) (32)

(1) "=
Gljkl(X’X ) (2 )3
Equation(A7) in the Appendix for the summation of polarization tensors in the transverse tracefree gauge gives

2)\: eij(ky)\)ekl(ky)\):5ik5jl+5iI5jk_6ij5kl+RiRijRI+RiRj5kI+RkRI5ij_Riklgjk_’kikkajl_Rjkléik_Rijéila (33

where
ok
ki:I. (34)
We find thatG{{)) (x,x’) can be expressed §s1]
|(]1k)l(x X ) 2Re(5lk5J|+5l|5]k 5I15k|+Dlj)X(2 )3 f d3 Ik (x=x )e o(t=t)
=2Re(6ix8) + 81 6k — i 8+ Dij) X (0] h(x) p(x")|0), (35
where we have defined a formal operator
53 adl  ddn  ad  ad ok 0l akd|
Dj 775“ V2 % w2z oI T vz Ok vz kT gz ot —a ) (36)

and(0| ¢(x) ¢(x")|0) is the usual scalar field two-point function. Here the formal oper&fof should be understood in the
sense of a Green’s function, but when we do our calculations in momentum space its effect is to bring in a fctor of
The combination of these results with E§7) gives

’ .n)2 YA
(oBy="= Ar)zf drf dr(l— ang(zV )+(V ”)V(f n)

(d(X)d(X"))r- 37

Introduce two functions=;;(x,x") andHjj(x,x") by

34}
Fij(x,x")= Re7(0|¢(x)¢(x’)|0>

1919 1 1 )
_ 3 ik-(x—=x")a—io(t—t")
RGVQ—W d kzwe e
Re kk N ,
:(277)3f d3k |k (Xx—x )e—lw(t—t )’ (38)

and

|]kI(X X ) Re

<0|¢>(X)¢>(X )|0)

aiaj’aka{ J B N
— N AN . (x=x")a—iw(t—t")
Re V4 W d kzwe e
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Gi(jlk)l can be expressed as 50’7?51) to point (0,0b) in space, then, we have from Eq.
2
Gl = 2Fj S 2F 1101 — 2F 8 = 2F

1 b (b
—2Fj 6ik— 2F kS + 2Hiji (oD)= g(b_a)zfa dZL dz

+2DEXN Byt didp— yB). - (40 X (0Ll )+ P ) O
where
— E _ 2 b b r~(1)R ’ ’
8(b a)°| dz| dz'G;,,(t,0,0zt,0,02").
a a

(1) N
DH(xx") 87720'(2) (41) (46)
is the usual Hadamard function for massless scalar fieldslere we have defined
with  205=(t—t')2—(x—x")?, and F;(xx’) and DORe w1 , ,
Hijia (x,x"), which will be calculated in the Appendix, are ~ Czzzd XX )=(O0L[h,AX)h,X") +h;x" )h;(x)|0 )r

given by =(0L[hzX)h;AX") +h,Ax")h,AX)[OL)
1 1 _ / /
Fi(xx') == 5 52010 5 In(RP— A% (Ol 00Rz X+ XN 09[0),
(47)
At [R+AL)|?
+—In| =—— } (420  and the integral is to be carried out along the geodesic.
4R | R—At If we adopt the notation
and (t,0,0z,t',0,02')=(t,zt",2"), (48)
i (X)) = L 39! 3| (R2+3At2)In(R?— At2)2 the renormalized two-point function can be found by using
KA 96772 171 KT the method of images to be
+(3RAt+At3)I REA 2} (43 <
—_— n . ’
R/ R-At Gzt )= 2 Gl tzt' 2 +nL)
n=—owx

HereR=|x—x'|. o
=2 > [DW(t,zt’,z' +nL)
lll. LIGHT-CONE FLUCTUATIONS IN FLAT SPACETIME n=—e
WITH NONTRIVIAL TOPOLOGIES OR BOUNDARIES
—2F,(t,z,t", 2’ +nlL)

In this section, we study light-cone fluctuations in two
cases: flat spacetime with a compactified spatial section, and
with a single plane boundary.

+H,,,4t,z,t", 2’ +nL)], (49

where the prime on the summation indicates thatrike0
term is omitted. Substituting?;=0 into Eq. (A24) in the
Appendix and replacing\x by Az, we have

Let us now assume that the spacetime is flat but compac-
tified in thez direction with a periodicity length (“circum-
ference of the universe’ This means the spatial poings ®
andz+L are identified. The effect of the space closure is to
restrict the field modes to a discrete set

A. Flat spacetime with a compactified spatial section

fr=Qw(2m)?L)” 2! kx=v) (44)
- Erad
with (t,0,0,2) (t',0,0,b)
2mn
ke=——» N=0+1%2+3,. .. (45)

We now analyze the light-cone fluctuations, assuming that ©

the gravitons are in the new vacuum stilg) associated

with the discrete modes of E¢44). FIG. 2. A light ray (dashed ling propagates in the direction of
First consider a light ray along direction, i.e. along the compactification in a cylindrical “universe” from point (0,0a) to

direction of compactificatiofFig. 2), propagating from point  point (t’,0,0p). Here only two spatial dimensions are plotted.
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GOR 217 71— E At? . At? [ 227 NL—At 2 2
2462121 = Zn_,x (Az—nD)? " a(Az—n0)S ™M Az—nLtAt) ~ 3(Az—nL)?
At I Az—nL—At\? 50
T 4(hz-n0)® M\ Az—nL+ At (50)
For the null geodesic
At=Az, (51
we get, after an evaluation of the integral,
1 %, [8€3(n?—2€2) (n+2¢) 262 (n—2¢)3 2¢€)2
(R 1ot - ' — i
f dzf dZ'Gyz .2t 2 |ar-az 12772,;_00 =2 " 2(nte? ”(1 ) 2(n—e)? ”( )
1662(n2—2€) (n+2¢)° 2e 2 (n—2¢)° 2¢€\?
3 E 22 3-In —| +———==zIn -
T 1277 ) (n+e) (n—e€) n
+ 00
_12777E f(n,e), (52
|
where we have defined is the one in which the distance traversed by the light ray is
much less than the periodicity lengti;-a<<L. Then we get
_(b=a) r
T T (53 b b DR < 821 4¢?
f de dZ'GgZ)Z XX z 3——2_? (57)
and a e "=
f B 16€%(n%—2¢?) (n+26)3| 26 2 Substitution of this result into Eq46) yields
(n,E)Z (n2_€2)2 + ( n+ )3 r-4
2 A —
n (n_26)3| 1 26) 54 (0-1>~ 18L2 (58)
=t MW (54

Therefore the mean deviation from the classical propagation
It appears that there is a singularity in the summandime is
f(n,e) whenevern=e¢, i.e., whenever the distanaeis an

integer multiple ofL. However this singularity is illusionary, Wody 1 r
as it should be from a physical point of view since there is At= N “asl (59
nothing special whem=e. This can be seen if we expand 3v2

the summand at the poirt=n to get ) o ) ]
Since we are working in Natural Units, this result reveals

that the mean deviation in travel time is less than the Planck

f(n,e)~ 3+ In(3) time and grows linearly with increasingwhenr is small
compared to the periodicity length of the universe.
27In(3)+ 68 ) If e1,i.e.,r>L, the light loops around the “universe,”
—an (e MFO(e=n)%. (55  and summation Eq52) can be approximated by the follow-
ing integral

So, f(n,e€) is finite ase approaches. Note also that 2

=n is also not a singularity. The summation converges, as J’b Jb ) ~(LR
the asymptotic form of (n,e) asn—« is dz] dZ' Gy (t.zt".2')
3262 _4 _ € jw dx ( )3| 2 2
f(n,e)~—nz—+0(n ) (56) ~ 1271_2 Ue (X+1)3 X
However, a generic closed form result for the summation is N (X— 2)3| 2 2+ 16(x*~2) 60
hard to find. So we now discuss two special cases. The first (x—1)° (x>—1)% |
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Evaluating the integral with the aid of the computer algebra m 1 r
package Maple, series expanding the result and keeping the At= Y~ \/: (62
leading terms only, we arrive at r 2v2

wherer is assumed to be much greater thanSo the light-
cone fluctuations can, in principle, get as large as one would
b b GR 8 In(2¢) like if the light ray travels around and around. This is inter-
f dzf dZ'Gizzdtzt',2)~e=—5 5. (61  esting in the sense that it suggests that a fluctuation which is
much greater than the Planck scale could be achieved.
Now we turn to the case where the light ray moves along
the direction perpendicular to that of compactification, for
Therefore the mean deviation from the classical propagatioimstance, along direction. If the light ray travels from point
time is (a,0,0) to point p,0,0), as illustrated in Fig. 3, then

2 1 2 b b
<Ul>:§(b_a) J;dxfadXI<OL|hxx(X)hxx(X,)+hxx(xl)hxx(x)|0L>R

1 b b
= g(lo—a)ZJ de’ dx'G{R(t,x,0,0t",x’,0,0),
a a

+ oo

=—(b a)ZJ de’ dx' X" G® (t,x,0,01',x",0nL). (63
n_,

|
Let us now define We can clearly see th& % is an even function o, so,

p=X_X’, b—a=r, (64) b b
f dxf dx'GMR(t,x,0,0t",x’,0,0)
then if we use Eq(A24) in the Appendix and bear in mind & Ja

the fact that for the light raAt=Ax, we have r
=2fodp(r—p)(gl+gz)- (68)

GUR(1,x,0,01',x",0,00=01(p) +0a(p), (65

Performing the integratiofintegrate by parts for those terms

where involving logarithmic function, we arrive at
3 et >
9522 5t b 54 [ (DT
47  p*(nL)? 66
T2 [ (D (66 { ©50.0)
and I
o : (£2,0,0)
5 +2 2-I-(ﬂL +p '
x[—i /D(nl-)6 3 103(n|-)4
16 [p2+(nL)2]®? 4 [p2+(nL)?]®? FIG. 3. A light ray(dashed lingpropagates perpendicular to the

direction of compactification in a cylindrical “universe” from point
(67) (t,a,0,0) to point ¢',b,0,0). Here only two spatial dimensions are

3 p3nL)?
plotted.

T2 [p (N2 )
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r wherec; andc, are constants given, respectively, by
ZJO dp(r—p)(911+92)

- Jm In(x+ x?+1)

R R N B
0 2(e°+n?%)?  4(€°+n?)?
and
8€°+8n2e%+3n’e nN%+ e+ e
7 n , 8
24(n*+ €%)°2 Jyn+e*—e ngﬁ. (76)

(69)
wheree=r/L as before. The above series can be shown t%SftLegggi we have for the mean squared geodesic interval
be convergent. Yet a result in closed form is not easy to find.
Let us first examine the case in whickkL, where 1(cyr\2
<oi>~§(—) € (77)

+ oo T

b b 64e% 1 6478
TRy /) i
fadxfadx G X:X") n; 4572 0 45Px 21"

and the mean deviation from the classical propagation time is

(70)
[ 2
Here we have used _ Vo et o
At= ~ . (78
+oo r m2v2 VL
> L™ 71
“4n% 45x21 (71 This result applies in the regime where-L. Here we have

the same functional dependence oms in the case where
Thus the mean deviation from the classical propagation timéight rays loop around the compactified dimension many

is times. The only difference lies in the proportionality con-
stants. In fact, here the mean time deviation is also smaller
N \/?2772 r\é than that for light rays traveling in the direction of compac-
At= r  N2125\L (72) tification, since the numerical constant/ 7~0.5.
This result holds in the smadlregime. The time deviation is B. Single plane boundary
much smaller than that for light rays propagating along the ) .
compactification directioficompare with Eq(59)]. This re- Let us assume that there is a single plane boundary lo-

veals that light-cone fluctuations due to topology change aré&ted az=0 in space such that metric perturbations satisfy
more likely to be felt in the direction of compactification the following Neumann boundary conditidthe reason that
than in the transverse direction, if we perform local experi-€& use the Neumann boundary condition instead of the Di-

ments in whichr, the distance between the source and thdichlet boundary condition here is to get a positive)):

detector, is very small as compared ltg the periodicit

Iength. y P P y &zhjk|z=0:0- (79
We now turn our attention to the case in whichlL, i.e.,

e>1. Here it is easy to see that the summation in 6§)

can be approximated by the following integral

In the presence of the boundary, the field mode no longer has
the form of Eq.(44) but becomes

b b 1
fdxf dx' G{MR(t,x,0,0t’,x",0,0)
a a

----------- -

1 x2 (.0,0.2) (t ,0,0,b)
2(1+x%)%  4(1+x%)?
VXP+1+1
Ve+1-1

If we perform the integral and series expand the result, we
have, to the order 0D(e),

de (=

~— dx
T J1le

8+ 8x%+3x*
2"

(73 .

b b
f de dX’Gg(lxﬁ(t,X,O,OI’,X’,O,O)NC%E-C% In(e), FIG. 4. A light ray (dashed ling propagates in the direction
a a perpendicular to the plane boundary, startindistance away from
(74) the boundary.
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fir=(0(2m)?7)” Y% kXl cogk,z), (80) n (t 50.2)
wherek; andx; denote the components &fandXx, respec-
tively, in directions parallel to the boundary. Now if we as-
sume that the gravitons are in the vacuum staté associ-
ated with the modes of Eq80), we have, for a light ray
propagating perpendicular to the boundary from point
(0,0a) to (0,0b) (see Fig. 4,

A
I
I
I
I

(t,2,0,2)

(o= go-a2 [ g2 o2 (0 In gt

+hzz(X,)hzz(X)|0,>R

b b . . . . .
_ ' ~(1)R , , FIG. 5. A light ray (dashed ling propagates in the direction
fa dzja dz'G,;24(1,0,02,t",0,02"). (81) parallel to the plane boundary, startinglistance away from it.
Here the renormalized graviton two point function Neumann boundary condition, we need to add the image
G{YR(x,x") can be found by the method of images as usuaferm instead of subtracting it as in the case of the Dirichlet
and the only difference is an overall sign change as we gboundary condition. SoG{2%(x,x') may be obtained by
from the Dirichlet boundary condition to the Neumann picking out then=0 term in Eq.(50) and settingAz=z

boundary condition. The reason for this is that, to satisfy thet z' to get

GMR(1,0,02,t',0,07 ) = 2(t—t")* (t=t)®  [(z+2'—(t—t') 2+ 4
ZZZz(! ,0Z,1,0,07 )_ 772(Z+Z’)4 2772(Z+Z,)5 n Z+Z+(t+t’) 3772(Z+Z’)2
t—t z+2' —(t—t")\?
(t-t) —(t-t)? -
2w (z+2") z+z'+(t+t")

Substituting this result into Eq81) and performing the in- position uncertainty, the singularity in energy density is re-

tegration, we finally get moved. The result, Eq(85), applies whenever>a. The
aro o ) ) other limit is whernr <a, where the mean squared fluctuation
(0?)— (b—a)’[b“—a“+(a“+4ab+b?)in(b/a)] in the geodesic interval function is approximated as
71 24m2(b+a)3 '
(83 ) r4
(o)~ SanZal (86)

Note that this result is always greater than zero. However,
had we chosen the Dirichlet boundary condition, we would S
have that{c3)<0. Recall that the formalism which we are consequently, the mean deviation in time is given by

using applies only if 03)>0.

When the light ray starts very close to the boundary such Ao V(o) 1o &%)
thata<r, we have r 2/6ma’
I,4
(ai)wmz[lﬂn(r/a)]. (84) We now consider a null geodesic which zsdistance

away from and parallel to the plane boundasge Fig. 5.
The relevant renormalized Hadamard function is given by
Eq. (A24) with Az being replaced by+2z'.

J(U?l) /1+In(_r/a) Now suppose the geodesic starts at poina,0,z) and
At: =
r 24?7

The mean deviation in travel time is

(85) ends at pointf(’,b,0z), then the mean squared fluctuation in
the geodesic interval function is

which diverges as approaches 0. This is not surprising
. ' . . 1 b b
since the energy density of a quantized field blows up on the <02>: —(b—a)zf dxf dx'GR (t,x,0Zt",x',02).
boundary. However, it has been shown recefitlg] that, if V8 a Ja oot
one treats the boundaries as quantum objects with a nonzero (89

084023-10
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HereGR,,(t,x,0z,t",x",02) is also given by Eq465)—(67)  larger than Planck scale by several orders of magnitude.

but with a replacement aiL by 2z. Therefore In the case of a plane boundary, as light rays start closer
and closer to the boundary, the light-cone fluctuations blow
up as the square root of the logarithm of the starting distance
both when light rays propagate perpendicular and parallel to
the boundary. This is not as surprising as it might seem be-

b (b
fdxf dx'GR(t,x,02,t",x',02)
a a

2 e €2 cause the imposition of a fixed boundary can lead to singular
=27 2(&+4)2 - (2+4)2 e_xpectation values of local olbsgrvables, such as energy den-
sities. However we expect this singularity to disappear if one
865+ 3263+ 48¢ A+ 2+ e treats the boundary as a quantum mechanical object with a
>IN , (89  nonzero position uncertainfyl2]. It is also found that if the
24(4+ €) Va+el—e starting distance from the boundary is fixed, then the fluctua-

tion in travel time grows as the square root of the logarithm

where e=r/z. Since the above expression is very compli-of the distance traversed when this distance is large com-
cated, we shall discuss two interesting special cases. One pared to the starting distance.

whenr>z, then we have In summary, we have demonstrated that in the linearized
2 theory of quantum gravity, changes in the topology of flat

(o2~ r—zln(r/z) (90)  spacetime produce light-cone fluctuations. These fluctuations
6w are in general larger in the directions in which topology

changes occur and are typically of the order of Planck scale,
but they can get larger for path lengths large compared to the

oD compactification scale. It is interesting to note that this effect
At= (o) _ /'”(”Z) (91) could become significant in theories which postulate extra
r 67’ dimensions compactified on a very small scale.

and

This also blows up as approaches 0, however the functional

dependence upon is different from that of Eq(85). The ACKNOWLEDGMENTS
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APPENDIX
2
At= V{o?) _ 1 ([)3 (93) 1. Summation of graviton polarization tensors in the TT
r 12\67\2) gauge
Let us introduce a triad of orthonormal vectors
IV. SUMMARY AND DISCUSSION [ei(K),ex(Kk),e3(k)] with

In this paper, we have obtained general expressions, in the k .

transverse tracefree gauge, for the vacuum graviton two- e3(k)=ﬂ=k, (A1)

point function for various boundary conditions. These were

used to study t.h.e Ilght—c;one flu_ctuatlons.m flat spacetlmeﬁqe unit vector in the direction of propagation. The triad sat-
with a compactified spatial section and with a plane bound:

ary. The mean squared fluctuations of the geodesic interv:!ﬂc’fles the orthonormality relation
function and therefore the mean deviations from the classical
propagation time have been obtained. €a(k)-en(k)=dap, a,b=123. (A2)

In the case of a compactified spatial section, when the
travel distance is less than the periodicity length, the fluctuaThis relation can be written, in terms of the components in
tion in the propagation time is less than the Planck time. Irthe coordinate system characterizing the metric, as
this limit, the effect is much larger for propagation in the
periodicity direction than for propagation in the transverse el(k)el(k)=68,,, ab=1,2,3. (A3)
direction. Thus the local light-cone fluctuations become an-
isotropic, reflecting the global structure of the spacetime . . . L
When the travel distance is large compared to the periodicitlgligehzveeE'nStem summation convention is employed. We
length, the fluctuation in travel time increases with the
square root of the distance traveled for propagation in either ' S
direction, and the only difference lies in the proportionality ey(k)ey(k)=ejel +ebeb+k'kl=6;, i,j=xy,z
constants. Here we have a possibility of having fluctuations (A4)
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Therefore, the two independent graviton polarization tensors in the TT gauge are given, in terms of the triad, by
el(k,+)=ey(k)@el (k) —eh(k) e eh(k), (A5)
ell(k,x) =€ (k)®eh(k) +ey(k)2 el (k), (AB)

where we have adopted the notation of R&f3]. Hence,
2 ek Me(k,N) =ik, ek, )+ ek, X e (k, X)
=gl elefe] — el el efe, —elebeke! + ehebeke, + el ebekel + el ebekel + ebel efe, + ehel ele]
=(elek+elel)(elel +ebel) +(ele) +eleh) (elek+ebel) — (elel +elel) (ke + ebe)
=(8*—kk* (8- kK + (8" =K k") (8= kikk) — (87— k'kiy (8- kK"

This result can also be obtained as follows. Let us intro- 2. Vacuum graviton Hadamard function in the TT gauge

duce a 4th-rank tensor Here we evaluate the functidfy;(x,x) and Hiji (x,x")

defined in Eqs(42) and(43), respectively. Once these func-
tions are given, the graviton two point functions are easy to

Tijkl(k):; eij(k’}\)ekl(k’)\)’ (A8) obtain. Define

= IVIAY _v\2 _ 51\2
which has the following symmetry properties R=x=x)*+(y=y")*+(2-2)",

At=t—t', k=|k|=w. (A14)
ikl — ikl — itk = klij (A9)
Then,
However, the objects, which are at our disposal to construct Re Kok
Tk are onlyk' and 8!, thus in general, we have Fii(x,x') = _f d3K =k @ik- (x=x")g=iw(t-t")
A (2m)3 2w°
TIM=AsT s+ B s+ B o o+ C(KTkI 64+ kiK' o) Re - o ikAt
+ DR + KI5+ IR+ RIRe o) = Gap et ], o
DIk m i m
+EKKk'k*K’, (A10) Xf dgsinaelchosf)J do
0 0
whereA,B,C,D,E are constants to be determined. This ten-
sor is subject to the transversality condition 1 g 1 f” dk KReoskAt
“ ) ) ) =22 %9R ok7$m coskAt.
kT =k T =k T =K TM=0,  (AL1D) (A15)

Because there is an infrared divergence in the above integral,
we will introduce a regulatopB in the denominator of the
integrand and then leB8 approach 0 after the integration is

and the trace-free condition

ikl _ rijkk _
T =TI =0. (A12) performed:
Applying these constraint conditions T and solving the - , 1 ¥ 1 f+oo dk . (R coskA
resulting equations leads to ij(X,x") = W&iaj Bmﬁ o k7+—’823|n coskAt
a=d=—e=—-c=—h. (A13) 1

- = Wﬂiaj, lim f(,B,R,At) (A].G)
ThereforeT'¥! is the same as the right-hand side of EAj7), B0
apart from a multiplicative normalization constant which can
be chosen to be unity. Here we have used a integral in REf4] and defined
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1
48R

VP

+ o
X\f
0

_ 1
- (@n)?

f(B,R,At)= {ePATRE[ B(R—AL)]

+e AAURIE B(R+AL)]
— PO RIE — B(R+AL)]
—efR-AVE[ B(At—R)]}.

dk
PJF—ZsinchoskAt

B

(A17) 19

55 751 (BRAD.

&|C7JI [;'kﬁ{ lim
Here Ei(x) is the exponential-integral function. Making use 0

of the fact that, wherx is small, (A21)

1, 1 Now expand (1/B)(a/3B)f(B,R,At) to order? to find
—X + J—

El(x)~y+ln|x|+x+4 18

x3+0(x%), (A18)

1

28 3
+3(In B+ y—1)At?]

1 9

25 &,Bf(’B’R’At):_

Ing+y—1)R?
where vy is the Euler constant, and expandifigaround 8 [(npg+y=1)

=0 to the order of3?, we get

1
1 _ = 2_ A2 1
f(B,R,At)~1—y—Inpg 2In(R At?) _ 12R[(R+At)3ln|R+At|

At +(R=AD3In[R—At[].

R+At)?2
el P et 2 (A22)
4R|n(R—At) +0(B%). (A19)

Plugging this result into EqA21) and noting that only

Taking the limit and keeping in mind that the constant termsgrms higher than quadratic R contribute after the differ-
(with respect tox andx’) vanish under differentiation, we entiation, we obtain

finally obtain
4 1 ’ 1 2 2 r — 1 ’ ’
Fij(xX) = = 5 528i4] | 5 In(R* = At?) Hijia (X,X) = 552 919 ko)
At [R+At)?
=Ll e X[ (R?+3At?%)In(R?— At?)?
+ 2N B At } (A20) ( )In( )
_ At3|  [R+AL)\2
Now let us turn our attention téi;;(x,x'). We have, +|3RAt+ = |In| 17 ] |- (A23)

proceeding with similar steps as we did fej(x,x"),

kiki kik,
f d3k ——

2w
LGX) =2(DD(X,X") = 2F (X, X" ) + Hyguol X, X))

Re

Hiji (X,X") = 27 gk (x=x)gmiwAt

GV

XXX

1
To7REo2 {(AX— At%)(16Ax° — 24AX*At?) —

For convenience, we give the explicit forms 8%, and

GY)  here:

3AtPR+ (9AL 4+ 69A XA t?+ 16A X R

T 127

2A 4 4742 6\p2 At R+ At ? 6 2 2\p4 2 2p2
+(—=72AXx“At*+ 32Ax*At°+ 32AX°)R{} — 167TzRgln ROAL [— R —(3At +9AX")R{ + 24At“AX“R{
—8AX*At2+8AX°], (A24)

|
where R?=R2+ Ax?=Ax?+Ay?+AZ? (A27)
RtZZAy2+ AZZ (A25) 0‘22 RZ_AtZZAX2+ Ay2+AZZ—At2. (A28)
To get G {x,x"), all we need to do is to replade? in

Ax=x—x' (A26)  Eq.(A24) by R?=Ay?+ Ax2.
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