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Effective action and Hawking radiation for dilaton coupled scalars in two dimensions
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The effective one-loop action for general dilaton theories with an arbitrary dilaton-dependent measure and
nonminimal coupling to scalar matter is computed. As an application we determine the Hawking flux to infinity
from black holes inD dimensions. We resolve the recently resurrected problem of an apparent negative flux for
nonminimally coupled scalars: For anyD>4 black hole the complete flux turns out to be precisely the one of
minimal coupling. This result is obtained from a Christensen-Fulling type argument involving the~non!con-
servation of energy-momentum. It is compared with approaches using the effective action.
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I. INTRODUCTION

The study of gravity models in two dimensions~2D! pro-
vides some important answers to the difficult questio
posed by the quantization of gravity. Indeed, the restrict
to one time and one space coordinate of Einstein gravity
four and higher dimensions, to aD52 dilaton theory
~spherical reduction, SRG! @1# represents a class of suc
models with immediate physical relevance.

The last decade has seen substantial progress in this
Especially the use of a light cone gauge for the Cart
variables @2# which amounts to choosing an Eddingto
Finkelstein gauge for the 2D metric has led to a much be
and simpler understanding of the classical theory@3,4# as
well as at the quantum level@5#. Most of these results hav
turned out to be less obvious or even not attainable in
traditional approach where a conformal gauge was used
the 2D metric@6,7#.

In order to be able to attribute to 2D models of gravity
sufficient credibility as far as the application of their resu
to the genuine~higher dimensional! case is concerned, a
obvious precondition is that what has been found alread
D>4 should be fully reproduced inD52, wherever such an
overlap occurs and can be tested. Hawking radiation, on
the most interesting features of black hole~BH! physics, is a
consequence of precisely this kind. It is known from calc
lations in D54 that the thermal radiation from a BH t
infinity is related to the Hawking temperature at the horiz
according to the laws of blackbody radiation@8#. A central
role is played by the scale anomaly of the energy momen
~EM! tensor.

By spherical reduction fromD>4 the scalar field ac-
quires nonminimal coupling to the dilaton field. That th
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may cause complications in a fully two-dimensional calcu
tion of the Hawking flux has been realized only relative
recently in the pioneering paper by Mukhanov and collab
rators@9#. As observed for the first time by these authors
naive adoption of the 4D approach due to the dependenc
the anomaly of the dilaton field leads to a negative flux
infinity. Therefore, these authors added to their integra
effective ~Polyakov! action a nonlocal Weyl-invariant term
of the Coleman-Weinberg type which depends on a ren
malization scale. Then the sign of the resulting total flux w
seen to become positive.

This question was taken up in a number of papers w
mutually contradicting results for the anomaly@10–14#. Us-
ing different expressions for the effective action it w
claimed@11,13# that instabilities and ‘‘antievaporation’’ phe
nomena can occur. Even the conformal anomaly itself
came the subject of a discussion@10–12,14,15#. In our opin-
ion this part of the problem has been settled with t
enlightening paper by Dowker@16# who confirmed the pre-
vious results@9,10,14# for SRG and our result@12# for gen-
eral dilaton models. A recent summary of the different a
proaches leading to negative Hawking flux and a gene
framework for a solution of this problem has been propos
in @17#; another attempt to solve this problem can be found
Ref. @18#.

We believe that our present work for the first time pr
vides a complete but perhaps surprising answer to the q
tion of 2D Hawking radiation from nonminimally couple
scalar fields. Our approach is based upon a consistent u
z-function regularization, not only for the part of the effe
tive action determined by minimally coupled scalars, but a
for the part controlled by the dilaton field.

In Sec. II we recall the action of SRG inD>4 dimen-
sions. We summarize our conventions for the solution of t
~BH! background part. We also derive in a simple mann
the nonconservation relation for the EM tensor, valid f
arbitrary dilaton theories in any dimension for nonminima
coupled matter. The integrated effective action is determi
in Sec. III. Our result generalizes the Polyakov action@19# to
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W. KUMMER AND D. V. VASSILEVICH PHYSICAL REVIEW D 60 084021
arbitrary nonminimal dilaton coupling of matter fields and
arbitrary dilaton dependent measure. Section IV contains
application of the results of Sec. III to the Hawking flux
infinity. We first integrate the nonconvervation equation
the EM tensor. Here the input is the 2D anomaly toget
with the result for the ‘‘dilaton anomaly,’’ not requiring th
knowledge of the functionally integrated action. Subs
quently we discuss how one may arrive at this flux from
EM tensor, obtained directly from that action.

II. DILATON THEORY FOR SPHERICAL REDUCTION

A. Spherically reduced action

SRG in D>4 is based upon the choice of th
D-dimensional metric

~ds!25gmndxmdxn2
1

l2
e2@4/~D22!#f~dV!2, ~1!

wheredV is the standard line element onSD22, l is a scale
parameter. The dilaton fieldf and gmn depend on the two
first coordinatesxm only. In terms of~1! the D-dimensional
Einstein-Hilbert Lagrangian reduces to

LSRG5e22fA2gS R1
4~D23!

D22
~¹f!2

2
l2

4
~D22!~D23!e@4/~D22!#fD ~2!

which is the particular casea5(D23)/(D22) and B
52(l2/4)(D22)(D23) of a more general dilatonic La
grangian treated in Ref.@4# for general values of the param
eter 0<a<1

Lg5A2ge22f@R14a~¹f!21Be4(12a)f#. ~3!

The family of models of this type comprises all theori
with one horizon, Minkowski asymptotics and~for 0,a
,1) with the same~null and non-null incomplete! singular-
ity as the Schwarzschild BH. The dilaton BH@6# is contained
as the limit a51 or D→` with l2→l2/D2. It has null-
complete geodesics at the singularity@4#.

The most convenient way to obtain the general solut
for Eqs. ~2! or ~3! has been described in Ref.@4#. For our
present purposes we need the background solution in con
mal gauge. With the proper choice of the coordinates@20,21#
which yields the Minkowski metric in the asymptotic regio
it takes the form

~ds!25K~u!~dt22dz2!, dU5K~u!dz, ~4!

K~u!512S uh

u D D23

, ~5!

f~u!52
D22

2
logS 2u

D22D , ~6!
08402
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where uh is the value ofu at the horizon@defined by the
equationK(uh)50], the asymptotic region corresponds
u5`. The explicit expression foruh is not needed for our
calculations,uh is proportional to the absolutely conserve
quantity C, which, in turn, is proportional to the Arnoevitt
Deser-Misner~ADM ! mass of the BH@21#. For D54 one
obtains the usual Schwarzschild solution. In the solution~4!–
~6! we slightly change the notation of Ref.@21# @U
→u,L(U)52K(u)#. The line element~4! in conformal
light cone coordinates reads

~ds!25e2rdx1dx2, r5
1

2
log@K~u!#, ~7!

where x65t6z. The range forz is 2`<z<1`. Thus
derivatives of light cone coordinates, acting on functions ou
become

]152]25
1

2
]z52

1

2
K~u!]u . ~8!

For completeness we also quote the Hawking temperat
computed fromK(u) as the surface gravity at the horizon

TH5
1

4p
K8~u!uu5uh

5
D23

4puh
. ~9!

Reducing the action for massless matterf, coupled mini-
mally in D54 according to Eq.~1! leads to nonminimal
coupling in the corresponding 2D Lagrangian

L(m)5
1

2
e22f A2g gmn ~]m f ! ~]n f !. ~10!

The formalism in the following will be developed for a gen
eral dilaton factor exp@22w(f)#.

Spherical reduction also affects the definition of the co
riant measure. This is seen most directly from the path in
gral whose diffeomorphism invariant definition at generalD
requires a factorA4 2g(D) whereg(D) is the determinant of
the originalD-dimensional metric@22#. By Eq.~1! this yields
a factor e2f so that the scalar fieldf̃ redefined asf̃
5 f e2f possesses a trivial measure. Of course, such a fa
is nothing else but the inverse power of the radius requi
for a proper inclusion ofs-wave excitations. Also here we
consider the more general case

f̃ 5 f e2c(f) ~11!

and take the standard path integral measure forf̃ . Namely,
we require* (d f̃)A4 2g exp(i*A2g f̃2) be a field independen
~infinite! constant.

B. Nonconservation of the energy momentum tensor for
dilaton coupled fields

For nonminimal coupling of the scalars to the dilaton fie
the conservation law for the EM tensor must be modifie
Classically the matter field action is invariant under the d
feomorphism transformations
1-2
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EFFECTIVE ACTION AND HAWKING RADIATION FOR . . . PHYSICAL REVIEW D60 084021
dgmn5¹mjn1¹njm ,

dF5jn]nF, ~12!

d f 5jn]n f ,

whereF denotes either the dilaton fieldf or any local func-
tion thereof. By applying the transformation~12! to the ac-
tion S(m) we obtain on the mass-shell for the scalar field

¹mTmn52~]nF!
1

A2g

dS(m)

dF
, ~13!

where the EM tensor is defined as usual

A2g

2
Tmn5

dS(m)

dgmn
. ~14!

The symmetry~12! is retained also at the quantum lev
when the scalar field is integrated out. Thus Eq.~13! holds as
well for the expectation values, i.e., for the correspond
quantities computed from the one-loop effective actionW.
Recently the appearance of a nonconservation equation~13!
in D52 has been noted after reduction from theD54 case
@17,18#. As seen from the simple derivation above such
relation holds in fact for any generic dilaton theory in a
dimension. It could also be interpreted as an ‘‘extende
conservation law, involvingdW/dF as part of an extende
EM tensor.

III. EFFECTIVE ACTION FOR DILATON THEORIES

Expressing the classical action related to Lagrangian~10!

in terms of the fieldf̃ according to Eq.~11! yields the clas-
sical action

S52
1

2E A2gd2x f̃A f̃ , ~15!

containing the differential operator

A52e22w12cgmn@¹m¹n12~c ,m2w ,m!¹n

1~¹m¹nc!22w ,mc ,n1c ,mc ,n#. ~16!

The one loop effective action is obtained by the path
tegral for f̃ as

W5
1

2
Tr ln A. ~17!

W depends on the metric, onw andc which in the following
all will be regarded as independent~background! fields. In
Eq. ~17! W represents the Euclidean action. The path integ
leading to that equation should be done withA2g→ i Ag in
Eq. ~15! to obtain thez-function regularization method with
elliptic differential operatorA after continuation to the Eu
clidean domain. This is implied in the following, althoug
we retain Minkowski space notation.
08402
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In that regularization@23,24# W can be expressed in term
of the zeta function of the operatorA:

W52
1

2
zA8 ~0!, zA~s!5Tr~A2s!. ~18!

The prime denotes differentiation with respect tos.
Evaluation of thezA8 (0) in general is quite a tedious tas

For the case of a generic operatorA no analytic formulas are
available. Fortunately, as will be shown below, in the p
ticular case of Eq.~16! variations of thezA8 (0) with respect
to the dilaton field and to the scale transformation of t
metric can be reduced to known heat kernel coefficients
certain second order operators.

First, we repeat our derivation@12# of the trace of the EM
tensor. The variation of the zeta function with respect to
certain parameter or field is related to the one of the oper
A as @25,26#

dzA~s!52sTr@~dA!A212s#. ~19!

An infinitesimal conformal transformationdgmn5dk(x)gmn

produces the trace of the~effective! EM tensor

dW5
1

2E d2xA2g dgmnTmn

52
1

2E d2xA2g d k~x! Tm
m~x!. ~20!

Due to the multiplicative transformation propertydA
52dkA of Eq. ~16! ~valid in D52 only! powers ofA in Eq.
~19! recombine toA2s. With the definition of a generalized
z-function @27#

z~sudk,A!5Tr~dkA2s! ~21!

the variation in Eq.~20! can be identified with

dW52
1

2
z~0udk,A!. ~22!

Combining Eqs.~22! and ~20! one obtains

z~0udk,A!5E d2xA2gdk~x!Tm
m~x!. ~23!

By a Mellin transformation one can show th
z(0udk,A)5a1(dk,A) @27#, wherea1 is defined as a coeffi-
cient in a smallt asymptotic expansion of the heat kernel

Tr@F exp~2At!#5(
n

an~F,A!tn21. ~24!

To evaluatea1 according to Ref.@27# we rewriteA as (¹̂m

refers to the metricĝmn)

A52~ ĝmnDmDn1E!, E5ĝmn~2w ,mw ,n1¹̂m¹̂n w!,
~25!
1-3
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W. KUMMER AND D. V. VASSILEVICH PHYSICAL REVIEW D 60 084021
where ĝmn5e22w12cgmn, Dm5¹̂m1vm , vm5c ,m2w ,m .
Then fora1 follows @27#

a1~dk,A!5
1

24p
trE d2xA2ĝdk~R̂16E!. ~26!

tr denotes ordinary trace over all matrix indices~if any!. In
the present case this is a trivial operation. However, be
we will need the heat kernel coefficienta1 for a matrix op-
erator where the more general formula~26! is essential. Re-
turning to the initial metric and comparing with Eq.~20! the
most general form of the ‘‘conformal anomaly’’ for non
minimal coupling inD52 is found to be@12#

Tm
m5

1

24p
@R26~¹w!214hw12hc#. ~27!

The variation of the effective action with respect tow or
c does not exhibit the same multiplicative property as
conformal variation, because after substituting in Eq.~19!
the variation ofA does not recombine to powers ofA. There-
fore, the heat kernel technique is not applicable to the ev
ation of Eq. ~19! as it stands. However, crucial simplifica
tions occur after transition to flat space by means o
conformal transformation. In conformal gaugegmn

5e2rhmn with flat metrichmn the identity

dW~r!

dw
5E

0

r

ds
d2W~s!

ds dw
1

dW~0!

dw
~28!

is obvious, with an analogous one for the variation with
spect toc. The first term on the right hand side of Eq.~28!
can be expressed in terms of the conformal anomaly:

dW~r!

dw
52E

0

r

ds A2g
d@Tm

m~s!#

dw
1

dW~0!

dw
. ~29!

To evaluate the second term, which atr50 represents the
flat space contribution, we rewriteW(0) as

W~0!5
1

4
logE ~d fW ! expS 2E d2xA2h fW 12 ~A! fW D ,

~30!

where we have doubled bosonic degrees of freedom by
troducing the two-component fieldfW . In flat space the inte-
gral in the exponential in Eq.~30! can be rewritten as

E d2xA2h fW 12 ~A! fW5E d2xA2h fW D D† fW . ~31!

Here new differential operators in spinor spaceD
5 igmec]me2w andD†5D(c↔2w) have been introduced
Indeed, the right hand side of Eq.~31! is equal to

E d2xA2h@ fW~A12g5emne2(c2w)w ,mc ,n! fW

1emne2(c2w)w ,m]n~ fWg5fW !# ~32!
08402
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which proves Eq.~31! after integration by parts. Therefore
in flat space

2W~0! 5
1

2
logdet~D D†! ~33!

holds. For thez function of the operatorD D† we use its
representation in terms of an inverse Mellin transform of
heat kernel

zD D† ~s!5
1

G~s!
E

0

`

dt ts21Tr exp~2tD D†!. ~34!

This yields the variation ofz with respect tow andc:

dzD D†~s!5
1

G~s!
E

0

`

dt ts21Tr (
n

~2t !n

n!
@2dc~D D†!n

22dw~D†D !n#

5
2

G~s!
E

0

`

dtts Tr@22dcD D†exp~2tD D†!

12dwD†Dexp~2tD†D !#

5
2G~11s!

G~s!
Tr@22dcD D†~D D†!2s21

12dwD†D~D†D !2s21#

522s Tr @~D D†!2sdc2~D†D !2sdw#. ~35!

Thus the introduction ofDD† has provided a means t
achieve multiplicative factors for the two variations—at lea
in flat space, but this is sufficient for our purpose. By diffe
entiating Eq.~35! with respect tos one arrives at

dzD D†8 ~0!522@z~0udc,D D†!2z~0udw,D†D !#

522@a1~dc,D D†!2a1~dw,D†D !#. ~36!

To evaluatea1 in the first term on the right hand side of Eq
~36! we again use the method of Ref.@27#. Introducing yet
another type of differential operator in spinor space, we r
resent the operatorD D† as

D D†52~ ĝmnDmDn1E!,

Dn5]n1c ,n2w ,n2g5em
nw ,m , ĝmn5e2(c2w)hmn,

E5ĝmn ~¹̂m¹̂nw!, ~37!

and again use the result~26!. The covariant derivatives¹̂m

refer to the present metricĝmn . In a similar manner the sec
ond heat kernel coefficienta1 for the operatorD†D is ob-
tained by the replacementw→2c, c→2w. From Eq.~36!
with D5hmn]m]n
1-4
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EFFECTIVE ACTION AND HAWKING RADIATION FOR . . . PHYSICAL REVIEW D60 084021
dzD D†8 ~0!52
1

3pE d2xA2h@dc~2Dw1Dc!

1dw~2Dc1Dw!# ~38!

follows. The curved space version of Eq.~38! can be ob-
tained by means of the identityA2hD5A2gh

5A2g gmn ¹m¹n . We have retained the determinant al
for the flat metric in order to cover the case of light co
coordinates~7! whereh5dethÞ21.

Now all variations of the effective actionW(r,f,c) with
respect to all background fields can be summarized:

dW

dw
52

1

12p
A2h~6]m~r]mw!12Dr22Dc2Dw!,

~39!

dW

dc
52

1

12p
A2h~Dr22Dw2Dc!, ~40!

dW

dr
52

1

12p
A2h~2Dr23~]mw!212Dw1Dc!.

~41!

The solutions to Eqs.~39!–~41! can be found by inspection

W52
1

24pE d2x A2h~2rDr12cDr2cDc

26r~]mw!214wDr24wDc2wDw!. ~42!

By the replacementsA2h D5A2gh when acting onw or
c, andA2hDr52 1

2 A2gR and some partial integration
the integrated effective action can be brought into covar
form:

W52
1

24pE d2xA2g F2
1

4
Rh21R13~¹w!2h21R

2R~c12w!1~¹c!21~¹w!214~¹mc!~¹mw!G
1W~m,m8!. ~43!

The first term in Eq.~43! represents the Polyakov action@19#
for minimal coupling (w5c50) of the scalar fields.w(f)
and c(f) encode a general dilaton coupling of the scal
and of the dilaton-dependent measure, respectively. Thus
~43! generalizes the Polyakov action for the case of nonm
mal coupling to the dilaton field. The appearance of a n
nonlocal term should be emphasized. A functional integ
applied to a bounded region in space time always cont
ambiguities with respect to eventual surface variables. In
case Eq.~43! may acquire further~here undetermined! con-
tributions. The termsW(m,m8) depending on the renorma
ization pointsm,m8 will be discussed below.

For SGR fromD dimensions the casew5c5f is of
special interest:
08402
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WSRG5
1

96p E d2xA2g@R h21R212~¹f!2h21R

112fR224~¹f!2#1W~m,m8!. ~44!

The second, nonlocal term was not present in the analog
formula for the full effective action in Ref.@9#. The first
three terms, however, appear in the ‘‘uncorrected’’ effect
action there. In the first Ref.@13# all four terms, but the last
two with different factors, can be found.

Usually, the full effective action including conformall
invariant part is available as a power series in a small par
eter @28#. No such parameter exists for the BH backgroun
Therefore, the closed form of the action~44! is essential.
Two previous famous examples where such a closed f
could be obtained were the Polyakov and WZNW actions
those cases the effective actions were completely define
the corresponding anomalies. For general dilaton theorie
D52 we have here a similar situation, because the ‘‘dila
anomaly’’ Eqs.~39!, ~40! ultimately can be interpreted a
carrying the information of part of the conformal anoma
belonging to some theory inD dimensions. But, as will be
seen in the next section, Eq.~44! cannot be the whole story

IV. HAWKING RADIATION

As pointed out above, the direct derivation of the Haw
ing flux to J 1 from Eq. ~44! has to rely on a complete
functional integration of the action. This is avoided in th
Christensen-Fulling approach@8# where only an ordinary in-
tegration is required.

In conformal light cone coordinates Eqs.~7!, ~8! we sepa-
rate the conformal anomaly~27! for w5c5f as

T125T12
min 1T12

(1) , ~45!

T12
min 52

1

12p
]1]2r, ~46!

T12
(1) 5

1

4p
@]1]2f2~]1f!~]2f!#. ~47!

From Eqs.~39! and ~40! we obtain

1

A2g

dW

df
52

1

4p
@2]m~r]mf!1Dr22Df#. ~48!

Equation~13! for the minus component of the indexn be-
comes

]1T2252]2T1212~]2r! T12

2
~]2f!

2p
@]1]2r1]1~r]2f!1]2~r]1f!

22~]1]2f!#. ~49!

From Eqs.~7! and ~8! the external fields only depend o
z(u), therefore Eq.~49! may be integrated straightforwardly
Choosing the limitszh52` andz5` for T22 we take into
1-5
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W. KUMMER AND D. V. VASSILEVICH PHYSICAL REVIEW D 60 084021
account the condition of a finite flux~in Kruskal coordinates!
at the horizon@8# which means vanishingT22 at z52`.
The integrated first term on the right hand side of Eq.~49!
only contributes at the limits of the integral. It vanishes the
@see Eqs.~6!–~8!#. The integral fromT12

min in the second term
on the right hand side of Eq.~49! produces the flux for mini-
mal coupling@see Eq.~9!#:

T22
min 5

~D23!2

192p uh
2

5
p

12
TH

2 . ~50!

If expressed in terms of the Hawking temperature it does
depend on the dimension. Of course, the corresponding
of the unreduced theory acquires an additional factor prop
tional to TH

D22 from proper counting of further degrees
freedom onSD22. Inserting the nonminimal contribution Eq
~47! from the anomalyT12

(1) into the same term of Eq.~49!
after integration yields

T22
(1) 522E

2`

`

dz8~]z8r!T12
(1)

52
1

8pE2`

`

dz8~]z8r!@~]z8f!22]z8
2 f!]

52
9~D22!

2~D21!
T22

min . ~51!

In terms of the parametera in the models of Eq.~3! this
result has been obtained already in Ref.@12#. Together with
T22

min this would yield the unphysical result of a negati
flux. However, the nonconservation also implies the ad
tional terms in the second line of Eq.~49!. The last
r-independent one only contributes a total derivative to
z-integral which from the explicit expression off in Eq. ~5!
with Eq. ~8! again vanishes at the limits of integration. Th
remaining terms by partial integrals may be written as

T22
(2) 52T22

(1) 1
1

8pE2`

`

dz8 ]z8@2~]z8f!~]z8r!

1r~]z8f!2#, ~52!

where the second term on the right hand side of Eq.~52!
vanishes. We thus observe complete cancellation of the d
ton dependent terms in the flux.

It should be noted that the nonconservation equation~13!
is nothing else than theD-dimensional conservation cond
tion for the energy-momentum tensor. Hence we are allow
to apply the Christensen-Fulling procedure@8# without
changes.

We finally compare this result to the one of a direct co
putation ofT22uz→` from the functionally integrated effec
tive action. The contribution from the last term in squa
brackets of Eq.~44! to the functional derivative with respec
to gmn leads to a term proportional togmn itself and to one
proportional (]mf)(]nf). For T22 in conformal gauge
g2250 and (]2f)2}K2/u2 vanishes at infinity and at th
horizon.
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In the framework of the zeta function regularization this
taken into account by the terms

W~m,m8!5zA~0!logm1
1

2
zDD†~0!logm8 ~53!

in WSRG, Eq. ~44!. Here we need two normalization param
eters,m andm8, since we use zeta functions of two differe
operators. FromzA(0)5a1(1,A) and the explicit formulas
~25!, ~26!, and ~37! it can be verified that the only term in
Eq. ~53! which is not a total derivative reads

logmE d2xA2gS 2
1

4p
~¹f!2D . ~54!

However, the contribution of Eq.~54! to T22 vanishes at
infinity as well as at the horizon.

The first three terms in Eq~44! coincide with the inte-
grated effective action of Ref.@9# before there a compensa
ing expression has been added. Their contribution toT22

has been discussed recently in Ref.@17#. Direct insertion of
the background solution~4!–~7! corresponds to the choice o
the so-called Boulware vacuum@8#. It implies vanishing flux
at infinity for all those terms, including the one for minim
coupling. At the same time the conformal flux at the horiz
is finite which entails a divergent flux in global~Kruskal!
coordinates. On the other hand, if—as in our Christens
Fulling approach—the Unruh vaccum is chosen~vanishing
conformal flux at the horizon!, the total flux from Eq.~44!
becomes negative, because the negative dilaton depen
contribution is larger than the~‘‘correct’’ ! positive one from
the Polyakov action.

In this context we should recall that the derivation of t
radiation flux to infinity is known to be quite a delicate ma
ter @29#. Even without dilatons~as in the fullD54 theory!
the choice of the asymptotics for the inverse d’Alembert
has a decisive influence on the result. The direct integra
of the EM conservation also is completely insensitive to ba
scattering effects which appear when the equations of mo
for the scalar field are solved in a BH background. This ba
scattering is influenced strongly by the inclusion of dilat
fields @9#.

Of course, by certain explicit assumptions which treat
different terms in Eq.~44! in a different manner, our resul
~50! could be obtained also from that equation; for examp
different choices could be made for the asymptotic behav
of the inverse d’Alembertian in the Polyakov term~leading
to T22

min ) and in the first dilaton term~leading to a vanishing
‘‘Boulware’’ flux at infinity !. This certainly does not seem
satisfactory; it just underlines our opinion that the effecti
action approach has a fundamental weakness: it encod
UV effect from quantum corrections, i.e., in coordinate spa
is certainly only correct locally. This is in agreement with th
rules for functional differentiation which in an expressio
such as Eq.~44! require sufficiently strong vanishing of th
fields at the infinite boundaries of the integration in order
be able to perform partial integrations without surface co
tributions. But the region where the flux is needed here
precisely at that boundary. There the functional derivat
1-6
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with respect to the metric, the flux, should give a nonvani
ing result. Also the metric itself does not vanish there b
becomes Minkowskian. The main advantage of the appro
used in our paper is that the input from the one loop quan
effects entered locally. The subsequent integral from the
rizon to infinity is a trivial, well defined ordinary one.

We conclude this section by noting that in the presence
general nonminimal coupling to the dilaton in the 2D conte
the very definitions of various vacua must probably
changed. Due to the dilaton ordinary plane waves are
longer solutions of the field equations. Hence the argume
based successfully in 4D@30# on selection of positive fre-
quency modes fail. Again we do not need to worry abo
such issues in our approach.

V. CONCLUSIONS

With Eq. ~43! of our present paper we are able to pres
2to best of our knowledge—the first complete derivation
the local part of the effective one-loop action inD52 for a
general dilaton theory. The nonminimal coupling to sca
fields encoded byw(f) and the dilaton measurec(f) may
be specialized to any given dilaton model. This express
as well as the one of Eq.~44! with w5c5f for spherically
reduced gravity fromD dimensions beside the Polyako
term contains another nonlocal contribution. Our derivat
consistently usesz-function regularization forall terms. We
are able to tie in the functional derivative for the dilaton fie
with a kind of integrability condition involving the 2d scal
anomaly together with a contribution which refers to a fl
background. Integrating the nonconservation of the ene
.
.

.

. A
l.

.
d
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momentum tensor we find that the Hawking radiation at
finity is identical to the one for minimally coupled scalars

The cancellation of dilaton dependent terms in the fl
does not seem too surprising in view of the fact that this
true also in theD54 calculation. Thus the input for a com
pleteD52 computation should therefore be the same one
from theD54 anomaly. InD52 the effect of that anomaly
is separated into the information encoded in theD52
anomaly plus another contribution which is expressible a
functional derivative of the effective action with respect
the dilaton field. Indeed, the relation of the latter quantity
the ‘‘transversal’’ part of theD54 anomaly has been
pointed out already in Refs.@9# and @17#.

However, taking the functionally integrated effective a
tion as starting point, we encounter the usual problems@9,17#
related to the derivation of a global result—flux at infinity—
from a quantity in which only local quantum corrections a
encoded. Our method to integrate completely the effec
action, however, seems to allow interesting aplications
other fields, upon which we hope to be able to report so
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