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Effective action and Hawking radiation for dilaton coupled scalars in two dimensions
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The effective one-loop action for general dilaton theories with an arbitrary dilaton-dependent measure and
nonminimal coupling to scalar matter is computed. As an application we determine the Hawking flux to infinity
from black holes irD dimensions. We resolve the recently resurrected problem of an apparent negative flux for
nonminimally coupled scalars: For aby=4 black hole the complete flux turns out to be precisely the one of
minimal coupling. This result is obtained from a Christensen-Fulling type argument involvingdngon-
servation of energy-momentum. It is compared with approaches using the effective action.
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I. INTRODUCTION may cause complications in a fully two-dimensional calcula-
tion of the Hawking flux has been realized only relatively
The study of gravity models in two dimensiof2D) pro-  recently in the pioneering paper by Mukhanov and collabo-
vides some important answers to the difficult questiongators[9]. As observed for the first time by these authors, a
posed by the quantization of gravity. Indeed, the restrictiomaive adoption of the 4D approach due to the dependence of
to one time and one space coordinate of Einstein gravity inhe anomaly of the dilaton field leads to a negative flux at
four and higher dimensions, to ®=2 dilaton theory infinity. Therefore, these authors added to their integrated
(spherical reduction, SRG1] represents a class of such effective (Polyakoy action a nonlocal Weyl-invariant term
models with immediate physical relevance. of the Coleman-Weinberg type which depends on a renor-
The last decade has seen substantial progress in this fielghalization scale. Then the sign of the resulting total flux was
Especially the use of a light cone gauge for the Cartanseen to become positive.
variables[2] which amounts to choosing an Eddington-  This question was taken up in a number of papers with
Finkelstein gauge for the 2D metric has led to a much bettemutually contradicting results for the anomalh0—14. Us-
and simpler understanding of the classical the[8y}] as ing different expressions for the effective action it was
well as at the quantum levgb]. Most of these results have claimed[11,13 that instabilities and “antievaporation” phe-
turned out to be less obvious or even not attainable in th@omena can occur. Even the conformal anomaly itself be-
traditional approach where a conformal gauge was used farame the subject of a discussid0-12,14,1% In our opin-
the 2D metric[6,7]. ion this part of the problem has been settled with the
In order to be able to attribute to 2D models of gravity aenlightening paper by Dowkdd 6] who confirmed the pre-
sufficient credibility as far as the application of their resultsvious result9,10,14 for SRG and our resulft12] for gen-
to the genuinelhigher dimensionalcase is concerned, an eral dilaton models. A recent summary of the different ap-
obvious precondition is that what has been found already giroaches leading to negative Hawking flux and a general
D=4 should be fully reproduced i =2, wherever such an framework for a solution of this problem has been proposed
overlap occurs and can be tested. Hawking radiation, one af [17]; another attempt to solve this problem can be found in
the most interesting features of black héBH) physics, isa Ref.[18].
consequence of precisely this kind. It is known from calcu- We believe that our present work for the first time pro-
lations in D=4 that the thermal radiation from a BH to vides a complete but perhaps surprising answer to the ques-
infinity is related to the Hawking temperature at the horizontion of 2D Hawking radiation from nonminimally coupled
according to the laws of blackbody radiatip8]. A central  scalar fields. Our approach is based upon a consistent use of
role is played by the scale anomaly of the energy momenturg-function regularization, not only for the part of the effec-
(EM) tensor. tive action determined by minimally coupled scalars, but also
By spherical reduction fronD=4 the scalar field ac- for the part controlled by the dilaton field.
quires nonminimal coupling to the dilaton field. That this In Sec. Il we recall the action of SRG iD=4 dimen-
sions. We summarize our conventions for the solution of this
(BH) background part. We also derive in a simple manner
*E-mail address: wkummer@tph.tuwien.ac.at the nonconservation relation for the EM tensor, valid for
TOn leave from Department of Theoretical Physics, St. Petersburgrbitrary dilaton theories in any dimension for nonminimally
University, 198904 St. Petersburg, Russia. E-mail addresscoupled matter. The integrated effective action is determined
Dmitiri.Vassilevich@itp.uni-leipzig.de in Sec. Ill. Our result generalizes the Polyakov acfib8] to
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arbitrary nonminimal dilaton coupling of matter fields and to where uy, is the value ofu at the horizon[defined by the
arbitrary dilaton dependent measure. Section IV contains thequationK (u,) =0], the asymptotic region corresponds to
application of the results of Sec. Il to the Hawking flux at u=. The explicit expression fou,, is not needed for our
infinity. We first integrate the nonconvervation equation forcalculations,u;, is proportional to the absolutely conserved
the EM tensor. Here the input is the 2D anomaly togethequantity C, which, in turn, is proportional to the Arnoevitt-
with the result for the “dilaton anomaly,” not requiring the Deser-MisnerfADM) mass of the BH21]. For D=4 one
knowledge of the functionally integrated action. Subse-obtains the usual Schwarzschild solution. In the solutiba
quently we discuss how one may arrive at this flux from the(6) we slightly change the notation of Ref21] [U
EM tensor, obtained directly from that action. —u,L(U)=—=K(u)]. The line element(4) in conformal
light cone coordinates reads

Il. DILATON THEORY FOR SPHERICAL REDUCTION 1
2 2p vt v _
A. Spherically reduced action (ds)*=e®dx"dx™, p= §|09[K(U)], (7)

SRG in D=4 is based upon the choice of the

D-dimensional metric where x*=7+z. The range forz is —co<z<+o. Thus

derivatives of light cone coordinates, acting on functions of
become

1
(dS)2=glqux:“de—Ee—[4/(D—2)]¢(dQ)2, 1)

1 1
t?+=—(9_=§c72=—§K(U)3u. (8)

whered() is the standard line element & 2, \ is a scale

parameter. The dilaton fiel¢ andg,, depend on the two For completeness we also quote the Hawking temperature,
first coordinates<* only. In terms of(1) the D-dimensional computed fromK(u) as the surface gravity at the horizon:
Einstein-Hilbert Lagrangian reduces to

Tum K _o°3 9
4(D-3) W= 20 (U)|u=uh—m- €)
Lspe=€ *’V—g| R+ W(V@Z
Reducing the action for massless maftecoupled mini-
A2 mally in D=4 according to Eq(1) leads to nonminimal
- Z(D—Z)(D—S)e[‘”“}z)]‘/’ (2)  coupling in the corresponding 2D Lagrangian
L . 1,

which is the particular case=(D—3)/(D—2) and B E(m)=§e ¢\-g g“"(d,f) (a,1). (10

=—(\?/4)(D—2)(D—3) of a more general dilatonic La-
grangian treated in Ref4] for general values of the param- The formalism in the following will be developed for a gen-

eter O<as<l1 eral dilaton factor exp-2¢(4)].
) " Spherical reduction also affects the definition of the cova-
Ly=\—-ge ?[R+4a(Ve)°+Be't"27], (3 riant measure. This is seen most directly from the path inte-

gral whose diffeomorphism invariant definition at genddal
The family of models of this type comprises all theoriesrequires a factoﬂ/T(D) wheregp is the determinant of
with one horizon, Minkowski asymptotics andor 0<a  the originalD-dimensional metri¢22]. By Eq. (1) this yields
<1) with the samenull and non-null incomplefesingular- 5 factor e ¢ so that the scalar field redefined asf
ity as the Schwarzschild BH. The dilaton B[ is contained  _t ¢-¢ nossesses a trivial measure. Of course, such a factor

L Hh N2 ) 212 . . ; : :
as the limita=1 or D—o with A*—=\*/D*. It has null- 5 hothing else but the inverse power of the radius required

complete geodesics at the singulafigy. _ for a proper inclusion ok-wave excitations. Also here we
The most convenient way to obtain the general solution.gnsider the more general case

for Egs. (2) or (3) has been described in Ré#]. For our
present purposes we need the background solution in confor- FT=fe ¥ (12)
mal gauge. With the proper choice of the coording&&s21]
which yields the Minkowski metric in the asymptotic region and take the standard path integral measurd fakamely,
it takes the form we requiref (d)3/—gexp(fV—gf?) be a field independent
infinite) constant.
(ds)?=K(u)(dm?—dz?), dU=K(u)dz (4) ( )
b_3 B. Nonconservation of the energy momentum tensor for
K(u)=1— (ﬁ) , ) dilaton coupled fields
u For nonminimal coupling of the scalars to the dilaton field
the conservation law for the EM tensor must be modified.
S(u)=— D-2 -2 (s  Classically the mater field action is invariant under the dif-
2 Y9 p=2) feomorphism transformations
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09,,=V .6+ V6L,
SD=¢"9,®, (12)
St=¢"a,f,

where® denotes either the dilaton fiell or any local func-
tion thereof. By applying the transformati@f?) to the ac-
tion S, we obtain on the mass-shell for the scalar field

VAT, =—(d cb)i i ) (13)
my v \/__g ob
where the EM tensor is defined as usual
v—0 5S(m)
—T,,=——. (14)
2 # S5g™”

The symmetry(12) is retained also at the quantum level

when the scalar field is integrated out. Thus B@) holds as

PHYSICAL REVIEW D60 084021

In that regularizatioi23,24] W can be expressed in terms
of the zeta function of the operatéx

1
W==50a0),  Za(s)=Tr(A™?). (18

The prime denotes differentiation with respectsto

Evaluation of theZ,(0) in general is quite a tedious task.
For the case of a generic operafono analytic formulas are
available. Fortunately, as will be shown below, in the par-
ticular case of Eq(16) variations of the/,(0) with respect
to the dilaton field and to the scale transformation of the
metric can be reduced to known heat kernel coefficients for
certain second order operators.

First, we repeat our derivatidii2] of the trace of the EM
tensor. The variation of the zeta function with respect to a
certain parameter or field is related to the one of the operator
A as[25,26]

SLa(S)=—sTr (SA)A"17S]. (19

well for the expectation values, i.e., for the correspondingay, infinitesimal conformal transformatiodg,,,= ok(X)g,.,

guantities computed from the one-loop effective actitbh
Recently the appearance of a nonconservation equéti®n
in D=2 has been noted after reduction from fhe-4 case

[17,18. As seen from the simple derivation above such a
relation holds in fact for any generic dilaton theory in any
dimension. It could also be interpreted as an “extended”

conservation law, involvinggW/é® as part of an extended
EM tensor.

Ill. EFFECTIVE ACTION FOR DILATON THEORIES

Expressing the classical action related to Lagrangish

in terms of the fieldf according to Eq(11) yields the clas-
sical action

1 ~ o~
S:—Ef V—gd?xfAT | (15
containing the differential operator
A=—e 22V VY +2(4,— ¢ )Y,
(V.Y =20 4, 0] (16)

The one loop effective action is obtained by the path in-

tegral forf as
1
W= ETr InA. (17

W depends on the metric, gmand ¢ which in the following
all will be regarded as independetitackground fields. In

produces the trace of tHeffective EM tensor
1 2 v
5VV=§fd X\—g 89" T,

1
= §J d?x'—g ok(x) T4(X). (20

Due to the multiplicative transformation propertyA
= — 5kA of Eq.(16) (valid in D=2 only) powers ofA in Eq.
(19) recombine toA™3. With the definition of a generalized
Z-function [27]

£(s|8k,A)=Tr(SkA™®) (21
the variation in Eq(20) can be identified with
1
SW=— §§(0| ok,A). (22
Combining Eqs(22) and(20) one obtains
g(o|5k,A)=f d?x /= gok(x) Th(x). (23

By a Mellin transformation one can show that
£(0| 8k,A)=a,(5k,A) [27], wherea, is defined as a coeffi-
cient in a smallt asymptotic expansion of the heat kernel:

TI[F exp(—At)]= >, a,(F,A)t"" L (24)

Eqg. (17) Wrepresents the Euclidean action. The path integral

leading to that equation should be done with g—i \/g in
Eq. (15) to obtain the-function regularization method with
elliptic differential operatorA after continuation to the Eu-

clidean domain. This is implied in the following, although

we retain Minkowski space notation.

To evaluatea; according to Ref[27] we rewriteA as (V u
refers to the metrig,,,)

A=-(g"D,D,+E), E=0""(—¢,¢,+V,V,0),
(25)
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where éuv:e—zwwgw' DM:@IDL ®u 0=, which proves Eq(31) after integration by parts. Therefore,
Then fora, follows [27] in flat space

1 — 1
ay( 0k A) = 5t f d>\/— gsk(R+6E).  (26) 2W(0) = SlogdetD D) (33

tr denotes ordinary trace over all matrix indidgsany). In holds. For the function of the operatoD D' we use its

the present case this is a trivial operation. However, belowgpresentation in terms of an inverse Mellin transform of the
we will need the heat kernel coefficieat for a matrix op-  heat kernel

erator where the more general formy®6) is essential. Re-
turning to the initial metric and comparing with E@O0) the

1 ©
most general form of the “conformal anomaly” for non- (o Df(s)=—J dtt> Trexp—tDDT). (34
minimal coupling inD =2 is found to bg12] I'(s) Jo
1 This yields the variation of with respect top and ¢:
Tﬁ=E[R—6(V<p)2+4D<p+2D¢//]. 27 is yields variation of with resp (0% v
1 * s—1 (_t)n Tyn
The variation of the effective action with respectgoor 6{p pt(s)= T Jo dtt Tr; o7 [204(D DY)
¢ does not exhibit the same multiplicative property as the
conformal variation, because after substituting in Etp) —26¢(D'D)"]

the variation ofA does not recombine to powers Af There-

fore, the heat kernel technique is not applicable to the evalu-

ation of Eq.(19) as it stands. However, crucial simplifica-

tions occur after transition to flat space by means of a . .

conformal transformation. In conformal gauge,, +26¢D'Dexp(—tD'D)]

=e? 5, with flat metric »,,, the identity 2T(1+s)
=———Tr[—-256yDDT(DD") s

2 )
=—— | dttSTrf—28yD D'exp—tD D'
risr, 4 T-2000 D'exs 00"

SW(p) [(r  W(o) S6W(0) ['(s)
=f o + (28
oS¢ 0 8o 6o o¢p +25(pDTD(D’rD)—s—1]
is obvious, with an analogous one for the variation with re- =-2sTr[(DD") %8y~ (D'D) %s¢]. (35
spect toy. The first term on the right hand side of E&8)
can be expressed in terms of the conformal anomaly: Thus the introduction ofDD' has provided a means to
achieve multiplicative factors for the two variations—at least
oW(p) [ N T,(a)]  6W(0) in flat space, but this is sufficient for our purpose. By differ-
se f 0 dov—g Se + So (29 entiating Eq.(35) with respect tos one arrives at

To evaluate the second term, which@t0 represents the 5§|’3 ot(0)=—2[{(0[5y,D D" —¢(0|6¢,D'D)]

flat space contribution, we rewrit&/(0) as
=—2[ay(6y,DD")—a,(5¢,D'D)]. (36)

1 - - -
— 2
W(0)= Zlogf (df) exp{ - f dxV=nT 1 (AT, To evaluatea, in the first term on the right hand side of Eq.
(30)  (36) we again use the method of R¢R7]. Introducing yet

another type of differential operator in spinor space, we rep-
where we have doubled bosonic degrees of freedom by inesent the operatdd D' as

troducing the two-component fielld In flat space the inte-

gral in the exponential in Eq30) can be rewritten as DD'= _(EJMVD#DV_;_ E),
f d2x\— 7 f1,(A) f= f d’>x(-nfDDTf. (31 D=, th,— 0, Vo, §=e2h e,
Here new differential operators in spinor spade Ezéw(@lﬁv@), 37)

=iy*e’d,e” ¢ andD'=D (¢ — ¢) have been introduced.

Indeed, the right hand side of E(1) is equal to . . L. =
'9 ! (1) Is equ and again use the resul26). The covariant derivativey¥ ,

- (g - refer to the present metr'@:w. In a similar manner the sec-
j d?xy =y f(A+2y%er e ‘p)‘P,u‘ﬂ,v)f ond heat kernel coefficiers; for the operatoD'D is ob-
o tained by the replacemegt— — ¢, y— — ¢. From Eq.(36)
+erre?V=9g 9, (fy5)] (32 with A=9*"9,4,
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1 1
8¢, DT(0)=—§J d2x\— 5[ S(2A o+ A ) WSRG:@J d?x(—g[RO'R-12(V¢)2O0 1R
t0¢0(2Ay+Ag)] (38) +12R—24(V )21+ W( e, 1t'). (44)

follows. The curved space version of E@8) can be ob- The second, nonlocal term was not present in the analogous
tained by means of the identityy— 7A=+—gO formula for the full effective action in Ref[9]. The first

N v ; : three terms, however, appear in the “uncorrected” effective
=\J=gg*"V,V,. We have retained the determinant also PP

for the flat metric in order to cover the case of light coneaCtion. there. In the first Ref13] all four terms, but the last
coordinated7) where y=dety# — 1 two with different factors, can be found.

Now all variations of the effective actio(p, ¢, ) with . Us_ually, tth_e full .FfECt'Ve action mclgdlpg confolrlmally
respect to all background fields can be summarized: invarnant part IS avarable as a power Series In a smail param-
eter[28]. No such parameter exists for the BH background.

SW Therefore, the closed form of the actidd4) is essential.
S _\/__,7(6&#(,),9#@)+2Ap_2A¢,_A¢), Two previous famous examples where such a closed form
¢ could be obtained were the Polyakov and WZNW actions. In
(39 those cases the effective actions were completely defined by
the corresponding anomalies. For general dilaton theories in

oW 1 — D=2 we have here a similar situation, because the “dilaton
Sy 12wV (Ap=28¢=A4), (40 anomaly” Egs.(39), (40) ultimately can be interpreted as
carrying the information of part of the conformal anomaly
SW belonging to some theory iB dimensions. But, as will be
2 ; .
Y. seen i xt section, ann w story.
5 12WV N(—Ap—3(d,0)"+20p+AY). een in the next section, E@4) cannot be the whole story

(41)
IV. HAWKING RADIATION

The solutions to Eqs39)—(41) can be found by inspection:  aq nointed out above, the direct derivation of the Hawk-

ing flux to 7" from Eq. (44) has to rely on a complete
W= d2x /_ Ap+24A A functional integration of the action. This is avoided in the
TPApT2YAPTYAY Christensen-Fulling approa¢B] where only an ordinary in-
tegration is required.

_ 2 _ _
6p(9.0)"+4eAp—ApAy—Ag). (42 In conformal light cone coordinates Ed3), (8) we sepa-
rate the conformal anomal for o=y=¢ as
By the replacementg n A=+/—gl when acting onp or 127 e=v=9
¢, and— nAp=— —\/— R and some partial integrations T, =TM+T1® (45)
the integrated effective action can be brought into covariant
form: . 1
T+—_ 127Ta+& P (46)

w=—%f dzx\/—_g[—%RD_lR+3(Vgo)2D‘1R .
T = —[0.0-¢= (0, 4)(3-9)]. (47)
—R(y+20) +(Vih)2+ (V)2 +4(V ) (V ,0) ,

From Egs.(39) and (40) we obtain
+W(u,u'). (43

1 W 1

- - M _

The first term in Eq(43) represents the Polyakov actifito] J—g 9¢ 477[2(9 (pdu @)+ Ap—24¢]. (49
for minimal coupling ¢p=¢=0) of the scalar fieldse( )

and () encode a general dilaton coupling of the scalarsEquation(13) for the minus component of the indexbe-
and of the dilaton-dependent measure, respectively. Thus E§OMES

(43) generalizes the Polyakov action for the case of nonmini-

mal coupling to the dilaton field. The appearance of a new O4T-—==0-Ty_+2(8-p) T+

nonlocal term should be emphasized. A functional integral ((9 ¢)

applied to a bounded region in space time always contains —— (0,9 _p+d (pd_P)+d_(pd.P)

ambiguities with respect to eventual surface variables. In that

case Eq(43) may acquire furthethere undetermingdcon- —2(d,.9_¢)]. (49)

tributions. The term&V(uw,u') depending on the renormal-

ization pointsu,u’ will be discussed below. From Egs.(7) and(8) the external fields only depend on
For SGR fromD dimensions the case=¢=¢ is of  z(u), therefore Eq(49) may be integrated straightforwardly.

special interest: Choosing the limits,= —« andz=« for T_ _ we take into
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account the condition of a finite flujn Kruskal coordinates
at the horizon8] which means vanishind@ __ at z= —oo.
The integrated first term on the right hand side of Ef)

only contributes at the limits of the integral. It vanishes there

[see Eqs(6)—(8)]. The integral fromT™" in the second term

PHYSICAL REVIEW D 60 084021

In the framework of the zeta function regularization this is
taken into account by the terms

1
W(w,p")=Ea(0)logu+ 5 Lppr(0)logu’ (53

on the right hand side of E¢49) produces the flux for mini-
mal coupling[see Eq.(9)]: in Wsgre, EQ.(44). Here we need two normalization param-
eters,u andu’, since we use zeta functions of two different
operators. FromZ,(0)=a;(1,A) and the explicit formulas
(25), (26), and(37) it can be verified that the only term in

Eqg. (563) which is not a total derivative reads
If expressed in terms of the Hawking temperature it does not 1
IoguJ dzxv—g(—m(w)z :

(D-3)%

1927 u? 12

min _

T2, (50)

depend on the dimension. Of course, the corresponding flux
of the unreduced theory acquires an additional factor propor-
tional to T4°~2 from proper counting of further degrees of
freedom onSP 2. Inserting the nonminimal contribution Eq. However, the contribution of Eq54) to T__ vanishes at
(47) from the anomalyT'!) into the same term of Eq49) infinity as well as at the horizon.
after integration yields The first three terms in E¢44) coincide with the inte-
grated effective action of Ref9] before there a compensat-
ing expression has been added. Their contributiof ta
has been discussed recently in Réf7]. Direct insertion of
the background solutio)—(7) corresponds to the choice of
the so-called Boulware vacuuf8]. It implies vanishing flux
at infinity for all those terms, including the one for minimal
coupling. At the same time the conformal flux at the horizon
is finite which entails a divergent flux in glob&Kruska)
coordinates. On the other hand, if—as in our Christensen-
Fulling approach—the Unruh vaccum is chodeanishing

In terms of the parameter in the models of Eq(3) this ~ conformal flux at the horizon the total flux from Eq.(44)
result has been obtained already in H&2]. Together with becomes negative, because the negative dilaton dependent
T™N this would yield the unphysical result of a negative contribution is larger than th€‘correct”) positive one from
flux. However, the nonconservation also implies the addithe Polyakov action. o
tional terms in the second line of Eq49). The last In this context we should recall that the derivation of the
p-independent one only contributes a total derivative to théadiation flux to infinity is known to be quite a delicate mat-
zintegral which from the explicit expression gfin Eq.(5)  ter[29]. Even without dilatongas in the fullD=4 theory
with Eq. (8) again vanishes at the limits of integration. The the choice of the asymptotics for the inverse d’Alembertian
remaining terms by partial integrals may be written as has a decisive influence on the result. The direct integration
of the EM conservation also is completely insensitive to back
scattering effects which appear when the equations of motion
for the scalar field are solved in a BH background. This back
scattering is influenced strongly by the inclusion of dilaton
+p(d, $)?], fields[9].

Of course, by certain explicit assumptions which treat the
where the second term on the right hand side of &)  different terms in Eq(44) in a different manner, our result
vanishes. We thus observe complete cancellation of the dild50) could be obtained also from that equation; for example,
ton dependent terms in the flux. different choices could be made for the asymptotic behavior

It should be noted that the nonconservation equati@®  of the inverse d’Alembertian in the Polyakov teifleading
is nothing else than th®-dimensional conservation condi- to T™) and in the first dilaton ternileading to a vanishing
tion for the energy-momentum tensor. Hence we are allowetBoulware” flux at infinity). This certainly does not seem
to apply the Christensen-Fulling proceduf8] without  satisfactory; it just underlines our opinion that the effective
changes. action approach has a fundamental weakness: it encodes a

We finally compare this result to the one of a direct com-UV effect from quantum corrections, i.e., in coordinate space
putation of T__|,_,., from the functionally integrated effec- is certainly only correct locally. This is in agreement with the
tive action. The contribution from the last term in squarerules for functional differentiation which in an expression
brackets of Eq(44) to the functional derivative with respect such as Eq(44) require sufficiently strong vanishing of the
to g,, leads to a term proportional ®,, itself and to one fields at the infinite boundaries of the integration in order to
proportional ¢,¢)(d,¢). For T__ in conformal gauge be able to perform partial integrations without surface con-
g__=0 and @_¢)?xK?/u? vanishes at infinity and at the tributions. But the region where the flux is needed here is
horizon. precisely at that boundary. There the functional derivative

(54)

T = —2]_ dz (d9,p) T

1 o]
_ S—Wf_xdz’(ﬂz/ﬁ’)[(ﬂz'éﬁ)z_35' )]

_ 9(D—2) min
——mT__. (51)

1 0
7@ = 7 4 ﬁﬁw dz' 9,[2(d, ) (I, p)

(52
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with respect to the metric, the flux, should give a nonvanishmomentum tensor we find that the Hawking radiation at in-
ing result. Also the metric itself does not vanish there buffinity is identical to the one for minimally coupled scalars.
becomes Minkowskian. The main advantage of the approach The cancellation of dilaton dependent terms in the flux
used in our paper is that the input from the one loop quantundoes not seem too surprising in view of the fact that this is
effects entered locally. The subsequent integral from the hatue also in theD =4 calculation. Thus the input for a com-
rizon to infinity is a trivial, well defined ordinary one. pleteD =2 computation should therefore be the same one as
We conclude this section by noting that in the presence ofrom theD =4 anomaly. InD =2 the effect of that anomaly
general nonminimal coupling to the dilaton in the 2D contextis separated into the information encoded in the=2
the very definitions of various vacua must probably beanomaly plus another contribution which is expressible as a
changed. Due to the dilaton ordinary plane waves are nfunctional derivative of the effective action with respect to
longer solutions of the field equations. Hence the argumentthe dilaton field. Indeed, the relation of the latter quantity to
based successfully in 4[80] on selection of positive fre- the “transversal” part of theD=4 anomaly has been
quency modes fail. Again we do not need to worry aboutpointed out already in Ref§9] and[17].

such issues in our approach. However, taking the functionally integrated effective ac-
tion as starting point, we encounter the usual probldyiks7|
V. CONCLUSIONS related to the derivation of a global result—flux at infinity—

, from a quantity in which only local quantum corrections are
With Eq. (43) of our present paper we are able to preseniyncoged. Our method to integrate completely the effective
—to best of our knowledge—the first complete derivation ofycion, however, seems to allow interesting aplications in

the local part of the effective one-loop actionD=2 fora  iher fields, upon which we hope to be able to report soon.
general dilaton theory. The nonminimal coupling to scalar

fields encoded by (¢) and the dilaton measurg(¢) may

be specialized to any given dilaton model. This expression,
as well as the one of E@44) with o= y= ¢ for spherically One of the authordW. K.) thanks H. Balasin and V.
reduced gravity fromD dimensions beside the Polyakov Mukhanov for stimulating discussions. We thank R. Bousso
term contains another nonlocal contribution. Our derivationand R. Balbinot for correspondence. This work has been sup-
consistently useg-function regularization forll terms. We  ported by the Fonds zur Faerung der wissenschaftlichen
are able to tie in the functional derivative for the dilaton field Forschung Project No. P-12.815-TPH. D.V. is also grateful
with a kind of integrability condition involving the 2d scale to the Alexander von Humboldt foundation and to the Erwin
anomaly together with a contribution which refers to a flatSchralinger International Institute for Mathematical Physics
background. Integrating the nonconservation of the energfor support.
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