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We compute the graviton-induced corrections to the trajectory of a classical test particle. We show that the
motion of the test particle is governed by an effective action given by the expectationwatlueespect to the
graviton statg of the classical action. We analyze the quantum corrected equations of motion for the test
particle in two particular backgrounds: a Robertson Walker spacetime and-&)¢@imensional spacetime
with rotational symmetry. In both cases we show that the quantum corrected trajectory is not a geodesic of the
background metrid.S0556-282199)09118-3

PACS numbegps): 04.60—m, 11.15.Kc

[. INTRODUCTION lar or spinor quantum matter fields, but the graviton contri-
bution was simply omitted.
A full quantum theory of gravity is still out of reach. It is in general stressed that the graviton effects should be

However, in situations where the spacetime curvature is wekimilar to those of a couple of massless, minimally coupled
below Planck’s curvature, it is possible to compute somescalar fields. While this is true at the level of the back reac-
guantum gravity effects. Indeed, metric fluctuations can beion equations, there is an important physical difference that
quantized using standard methods. The nonrenormalizabilitias been pointed only recenfly]. When metric fluctuations
of the resulting quantum field theory is not an impedimentare taken into account, the background geométs. the
for making meaningful quantum corrections. The key pointmetric that solves the back reaction equatjomisrns out to
is to consider general relativity as an effective field theorybe nonphysical. The reason is the following: any classical or
[1]. quantum device used to measure the spacetime geometry
Although the leading long distance quantum correctionswill also feel the graviton fluctuations. As the coupling be-
are expected to be too small in realistic situations, the analytween the device and the metric is nonlinear, the device will
sis of general relativity as an effective field theory is of con-not measure the background geometry, which therefore is not
ceptual interest. Moreover, tiny but measurable quantunthe relevant physical quantity to compute. In particular, in
gravity effects could show up when measuring the decoherRef. [5] we have shown that, working in the Newtonian ap-
ence of wavepackets of a nonrelativistic particle subjected tproximation, the trajectory of a classical test particle is not a
the gravitational potential2]. On the other hand, recent geodesic of the background metric. Instead its motion is de-
speculations raise the length scale relevant for quantum gravermined by a quantum corrected equation that takes into
ity effects from Planck length to a TeV scdl8]. In this  account its coupling to the gravitons. Moreover, while the
situation, the effects of metric fluctuations could be easier tdack reaction equations and their solutions depend on the
observe. gauge fixing of the gravitons, this dependence cancels out in
In the context of effective field theories, it is in principle the quantum corrected equation of motion for the test par-
possible to compute an effective action and effective fieldicle.
equations for the mean value of the spacetime metric. The The aim of this paper is to analyze the effect of the gravi-
effective field equationgknown as semiclassical Einstein tons on the motion of a test particle beyond the Newtonian
equations or back reaction equatipiclude the back reac- approximation. In order to avoid technical complications, we
tion of quantum matter fields and of the metric fluctuationswill assume we know a solution to the back reaction equa-
on the spacetime metric. These equations should be the statiens, and will focus only on the departure of the test parti-
ing point to investigate interesting physical problems like,cle’s equation of motion from the geodesic equation of the
for example, the dynamical evolution of a black hole geom-background metric. Moreover, we will consider models
etry taking into account the evaporation process. where it is easy to fix completely the gauge of the gravitons
The back reaction equations have been investigated bgnd quantize the theory by taking into account the remaining
several authors in the last twenty years or{4b However, degrees of freedom.
due to the complexity of the probleand also to the non- The paper is organized as follows. In Sec. Il we prove that
renormalizability of the theopymost works considered sca- the effective action that governs the motion of the test par-
ticle is the mean value of the classical action. In Sec. Il we
consider Robertson Walker universes. We first briefly de-
*Email address: dalvit@lanl.gov scribe how to quantize the metric fluctuations in terms of
"Email address: fmazzi@df.uba.ar massless scalar fields. Then we compute the quantum correc-
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tions to the geodesic equation and solve the quantum cor- mx? L

rected equations of motion perturbatively. In particular, we mHrPo(y) = TJ drot(y —x(7)X“X"XPX7. (2
find the graviton corrections to the cosmological redshift. In

Sec. IV we consider three-dimensional gravity coupled to
Maxwell field. Following Ref.[6], we first show that this
model is exactly soluble: one can fully fix the gauge and
show that the degrees of freedom reside in the Maxwell field
Then we compute the quantum corrected equation of motiof
for the test particle. We show that, even in regions where the
background metric is locally flat, the trajectory of the test™
particle is not a straight line. Section V contains our final
remarks.

al'here is also a second order term in ghost fields, that for
gauge-fixing functions linear in the metric fluctuations de-
couple from the gravitons, and couple only to the back-
ground metric.

The result of the path integral is the classical act®ps
Sg+ Su+ S plus the sum of two functional determinants,

[ SN R
Sett= SglasT ETrIn(F—m)—iTrInG 3)

Il. EFFECTIVE ACTION FOR A TEST PARTICLE ~ ) )
where G is also a second order differential operator that

In this section we will show that, when quantum metric grises from integrating over ghosts. Once the effective action
fluctuations are taken into account, the effective action folis evaluated, one can derive the equations of motion for the
the test particle i§ the mean value of its classical action. Thigackground metrig,,,, the so-called semiclassical Einstein
result is summarized in Eq5) below (the reader may want equations, i.e8S.4/6g,,=0. To solve these equations one
to accept this as a reasonable assumption and skip this segan discard all contributions coming from the test particle, as
tion). they are vanishingly small. As they stand, these equations

Consider pure gravity described by Einstein-Hilbert gbtained from the standaid-out effective action are nei-
action” Sg=(2/k?)[d*x\=gR, where x’=327G, and ther real nor causal. In order to get real and causal equations
imagine that in addition we have some type of matter contengf motion for the background metric, the-in effective ac-
described by an actioy . The effect of quantum metric tion must be evaluatel]. Alternatively, one can take twice
fluctuations can be analyzed with the background fielcthe real and causal part of the propagators initheut field
method, expanding the whole actiSg+ Sy around a back- equations. In both ways one gets semiclassical Einstein equa-
ground metric ag,,,—9d,,* «h,,, and integrating over the tions suitable for initial value problems.
graviton fieldh ,, to get an effective action for the back-  From the effective action given above one can also derive
ground metric. In order to fix the gauge one chooses a gaugehe quantum corrected equation of motion for the test par-

fixing function x#[g,h], a gauge-fixing actiorBy{g,h]= ticle, i.e. S/ 8x”=0, which will be our main concern in
—(1/2)fd4x\/—gX”gWXV, and the corresponding ghost ac- what follows. The same comments about reality and causal-
tion Syp. ity apply to this equation of motion. In this paper we will

Imagine that in addition we have a classical test particlavork with the usualin-out effective action and use the ad-
that moves in the above background metric and we wish t@quate propagators in the quantum corrected equations.
study the effects of metric fluctuations on it. We couple grav- In general it is extremely complicated, if not impossible,
ity to the particle by means of the standard act@®x]= to work out the functional traces in E¢B), so several ap-
—mf\/—gwdx“de, wherex* denotes the path of this test proximation methods have been developed to deal with
particle. The complete effective actid® for the back- them. However, in this paper we will only focus on the quan-
ground metricg,,, and for the test particlen is obtained by tum 'effects of the coupling between the test particle apd
integrating the whole actiof=Sg+ Sy + Sy+ Sy + Sy over  gravitons. We can make use of the fact that the test particle
the graviton and ghost fields. To evaluate it in the one looghas a small mass, so we can expand Bgin powers ofm
approximation we first expanBlup to second order in gravi- and just keep the leading contribution. In this way we find
tons. The second order term reads that the whole effective action reads

i . “
S(2)= j d4y — ghp,vF'quUhpo_ J d4y — gh,uvmlwpghpo Seff[glu,, ,X] = Sclas+ ETI’ INF=iTrinG

D
- [ a=atnume ). @

whereF=F#""7 is a second order differential operator that

depends on the background metric, ant”*“ is a tensor The expectation value is taken with respect to the graviton

depending on the position and velocity of the test particle, state. The effective action for the test particle will be the sum
of the classical terng,[x] and this last term, so that we
conclude that in fact that effective action is the expectation

tour metric has signature<(+ + +) and the curvature tensor is value of the classical one

defined asR” 5= 0,5~ ..., Ryg=R",,, and R=g"R,;z.
We use unitsi=c=1. Ser X] = (Sm[X1)- ®)
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It is important to stress that due to the nonlinear nature of thection Sg+ Sy, in terms of the two independent degrees of
coupling between gravity and test particle, the effective Lafreedom of the fieldh, andh,
grangian is not the same as the classical lagrangian evaluated

in the expectation value for the particle’s path. 2 _ 1r,
The calculation described so far preserves the covariance SG+M_§ d*x=gld,h+(x) 9" (x)
in the background metrig,, . Alternatively, one can fully
fix the gauge of the quantum fluctuations of the geometry + 3,5 (X) 3« (x)] 9

and quantize the remaining degrees of freedom. As can be _ . . . .
easily proved, the argument leading to Eg) remains un- and then imposes equal-time canonical conmutation relations

changed, since it relies only on the fact that the test particl0! the wo scalar fieldgha(x,t), I(x',1) ] =i Japd(x—X"),
mass is small. wherea,b= +,X andlIl, is the canonical momentum con-

jugate toh,. This quantization procedure is equivalent to
that for the individual modek! . Instead of using canonical
quantization, one can also do path integrals. One expands the
action in terms of the individual modés (or in terms ofh ,

A. Noncovariant quantization andhy) and integrates over them in order to get an effective
action for the background metric. For the one loop effective

method of quantization for flat Robertson-Walk&W) uni- action one needs the second order term of the expansion of
verses. The metrics we are dealing with are therefore of thi1® aCt'fn n teirmsj of metric perturbations, naméf},
form ds?= — dt>+ a%(t)dx?, wherea(t) is the expansion co- = 1/2/d"yv—ghjLIhi, where [J denotes the scalar

efficient. The action for the matter content in RW metrics hag® Alambertian operator. Finally one has to evaluate the
the form functional determinant of this differential operator.

IIl. QUANTUM CORRECTIONS TO GEODESICS
FOR FLAT ROBERTSON-WALKER METRICS

In this subsection we briefly review the noncovariant

B. Quantum corrected geodesic equation

(6)

1 1
8w=fd&J:EP«p+muWVmw+—@+3m
2 2 Having summed up how to quantize metric perturbations
) ) ) in RW universes, let us see how such quantum metric fluc-
whereu”, p andp and the fluid’s four-velocity, density and yations affect the motion of a classical test particle. As de-
pressure, respectively. The associated classical Einstefyriped in the previous section, the effective action for the
equations are test particle is the expectation value of the classical action,
namely

Sulxl=—m [ {=g,.000xax

1 N
R,uV: - 5 T,U.V_ Eg,u,VT)\ (7)

where the classical energy-momentum tensoiT js=(p M2
+P)UU,~ DYy, , , ——f dr(h;; ) hR())XXIX'X™  (10)
There are different ways to quantize the theory. One is 8

based on the background field method, which was describedh he dot d he derivati ith h
above. Here we follow another quantization procedure thaf/"ere the dot _en]?tes the erl\éa'uve wit rgs_pect.tﬁ ef H
starts from the classical theory of perturbations in RW met9raviton two-point function can be expressed In terms of the

rics, developed if8]. One considers perturbations such that
op=op=6u*=0, and metric perturbatioris,, that satisfy 1 3
u“h,,=0, and further imposes the gauge conditidrts,, (hij(X)hm(x")) = — §a2(t)a2(t’)( 8ij Oim~ 5 % 9]
=0. Finally one ends up with only two independent compo-

nents of the metrich, andh, , which can be expressed in

terms of the original components ¢f,,, and that corre- —§5im5j|
spond to the two polarizations of a gravitational wave. The

above conditions on the metric imply thap,=0 and @ we recall that in these expressions the megijg, is the
transversality conditiorV;h'/ =0, whereV; denotes the co- solution to the semiclassical Einstein equations that follow
variant derivative with respect to the spatial part of the metfrom quantizing gravity in a RW universe. In the following
ric. Both component$1, andh,, and alsoh!, verify the  we will assume that these equations have been solved and
field equation for a minimally coupled massless scalar fieldhat the quantum corrected expansion facfr) has been

in RW metrics found.
The geodesic equation for the test particle follows from

scalar two-point functioq ¢(x) ¢(x')) as

(p(x)(x")). (11)

9 d O0Ser| X1/ 6xP=0. For the temporal component we get
Dd):—a‘SE a3ﬁ¢ +V2¢4=0. (8)
d2t+ (' (1) X)2 Kz'i'j'l'mé,G [X(1)]=0
—+a(t)a — | = =X XXX =Gy [ X(D) ]=
To quantize we use the noncovariant quantization proce- d-2 dr 8 gt~ om
dure of[9,10]. First one writes the second order term of the (12
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wherea’ (t)=da/dt and Gj;,[x(t)] is the coincident limit dx aa 2(t) 32 a?a~(t)
of the graviton two-point function, evaluated along the TN e §WG<¢2(t)>T :
trayectory of the particle. For tha-th spatial component Vitata (1) 1+aa (1)
(n=1,2,3) we obtain (20

d dx" & : This is the main result of this section. It expresses the quan-

— az(t)E—?Gim[x(t)]éi”)'(j)'(kx' =0. (13

dr tum corrections to the velocity of a test particle that moves in

a flat Robertson-Walker quantum background. In the null
Now let us solve Eqg12,13 for dx/d7 anddt/d7. From  [imit
Eqg. (13) we see that the expression in parentheses is con-
served. These conserved three quantities reflect the spatial
translational invariance of RW metric, which is preserved
upon the quantization procedure. Therefore

dx/dt=a"}(t)[1+(32/3 wG(p*(1))] (21)

describes the graviton correction to the cosmological red-
shift. This expression is valid as long as the quantum correc-
tion remains small. Since, as we will shortly see, the two-
point function in the coincident limit is proportional to the
where a" is a dimensionless constant three-vector that descalar curvature, the quantum correction is proportional to
pends on the initial velocity of the particle. Plugging this R/Rppncktimesa?a™ 2. For R/Rpan< 1 it is possible to sat-

2 X K? inLigkyl— n
a (I)E_?G”H[X(t)]g XXX =« (14)

identity into Eq.(12) we find isfy both the null limit condition and the smallness of the
; quantum correction at the same time, i€’a ?>1 and
2 2 2,-2 <
ﬂ: \/1+a—2(t)2 an+ K_G [X(t)]élnXJXkXI a“a (R/.Rplancl)<l. . .
dr i~ 2 ikl : To estimate the effect of this quantum correction on the

(15) classical trajectory of the test particle, we first have to evalu-
ate the two-point function in the coincident limitp?(t)).
Now we solve Eqs(14,15 perturbatively in terms of the As is well known, this coincident limit is divergent, so a
coupling between the test particle and gravitons. Let us agenormalization procedure is compelling. In the following
sume that the initial velocity of the test particle is in tae We will calculate(¢*(t)) for particular RW metrics, namely
=x! direction; i.e.a"=as". The zeroth order approxima- a(t)=ace™ (de Sittey anda(t) =at®.
tion corresponds to neglecting the coupling between the par- For de Sitter spacetime, the two-point function not only

ticle and gravitons, which results in has UV problems but also IR ones. However, in the late time
limit t=t’>H"1 it is possible to give an approximate form
dx @ for the renormalized function. It was shown by several au-
ar 220 (16)  thors[11-14 that the coincident limit grows linearly with
a*(t) the coordinate time,{?(t))~H3t/27%. Using that «?
dt *Rppmnck @nd that for de Sitter the curvature is const&nt
—=1+a% 2(1). (17) «H?, we conclude that the quantum correction is propor-
dr tional to R/RpancdF(t), where the function F(t)

= a®Hta, %e2M/(1+ a®a, %exp ™) decreases exponen-
tially for late times. The velocity of the test particle in the
(Iaate time limit is therefore given by

Note that the limiting case of a light rayull limit) dx/dt
=1/a is obtained whem?a 2>1.

When the coupling is taken into account, we see that th
particle still moves in the samedirection, and we get

dx o a’K? = — =
— = 2 dt \/1+ 2a 2e 2Ht
. a2(t)(1+ w0 <t)>), a9 o2

3mcC

dx aa, e Mt 16GAH2F(t)
s (22)

4 2 5 where we have restored uniisandc.
ﬂ: \/m( 14 a’k (p=(1)) ) (19 As we pointed out before, the scale fac&gt) should be
dr 3a%(t) 1+a”a (1) a solution to the semiclassical Einstein equations. A pertur-
bative solution will be of the forma(t)=ag.{t) + da(t),
where we expressed the graviton two-point function in terms,s being the classical scale factor afd<ag. It is well
of the scalar two-point function asG,,,(t)=(2/  known that the semiclassical Einstein equations admit de Sit-
3)a’*(t){¢3(t)). The speed of the particle results ter solutions [15] a(t)=age™ with H=H. {1
+ y(HéaJRManc,)], v=0(1). Therefore, as long as
Hglast/ Rpianck€ 1 the correction to the scale factor is given by
2This equation also follows from the very definition of the proper 6a/agjas™ Y(H3ad/Reiana) - Replacinga(t) =ag,dt) + da(t)

time. Indeed, from & (dt/d7)?—a?(t)(dx/d7)? we easily get Eq. in Eq. (22) we obtain, to first order in all quantum correc-
(15). tions

084018-4



QUANTUM CORRECTED GEODESICS PHYSICAL REVIEW B0 084018

IV. QUANTUM CORRECTIONS TO GEODESICS
IN THREE DIMENSIONAL GRAVITY

dx aag 2e~2Hoad ( 16GHH2F (1)

dt 1+ a?a, 2e 2Hond 3mc® . -
A. Three dimensional general relativity
B 2+ a?agi(t) H3d 23 In this section we will consider (21) gravity coupled to
71+a2a_|25(t) Rpianc (23 Maxwell fields. Under the assumption of rotational symme-
cla:

try, this model is exactly soluble. Moreover, it is possible to
associate a well defined quantum operator to the spacetime

. . . metric. Therefore, it is particularly useful to analyze the ef-
whereF(t) is to be evaluated with the classical value for thefective action for a test particle and the corrections to the

Hubble parameter. This shows that the quantum correction taeodesics. In this subsection we will follow closely Refs.
the geodesics coming from the graviton couplirsgcond [6,16].

term in Eq.(23)] and the one coming from the semiclassical” At the classical level, the theory is governed by the
Einstein equationghird term) are of the same order of mag- Ejnstein-Maxwell equations, which read

nitude.

Consider now metrics witha(t) =agt®. Although these Rap=87GV,46V o, (25
are not solutions to the semiclassical Einstein equation, they
are useful to illustrate the corrections to the geodesics. In this 9%V, V=0 (26)

case there are no infrared divergencies. In the Appendix we
give some details as to how to evaluate the renormalizewhere the electromagnetic field has been written in terms of
two-point function. The result is{$?(t))oct™2log(t?u?), a scalar field af ,,= €,,.V ¢. Assuming rotational symme-
where u is an (arbitrary renormalization scale. Since for {ry, the above equations can be easily solved. The metric can
these metrics the curvature Rxt~2, we obtain that the be written as

uantum correction also has the fori/ F(t), where
20w F(t)= azagztfzclog(tZ,uz)/(lnLazaggi’lagcc)? V\(/h)iCh also GapdX?dx’ =TI —dt?+dr?]+r?de?.  (27)

decreases for long times. The velocity of the test particle 'SMoreover, the scalar field decouples from the metric

, 9%°V V= 0—(— 92+ %) $=0. (28)
dx  aagt™* 2c(2c—1)GhF(t)
dt \/1+a2a‘2t‘2° + 37c5t2 ' Therefore, one can solve the {11) Klein Gordon equation
0 (24) for ¢ and then determinE from the Einstein equation. The
result is

As the two-point function is divergent in the coincidence _ Ef' / / 2 )2
limit, a counterterm is needed in the effective action Eq. .y 2 odr e (29
(10). The theory is not renormalizable because the counter-

term needed is not of the form of the classical action. Indeed\ote that, asr—o, I' tends to a constant valuE(e,t)
the counterterm must have the following schematic form=H,. The metric becomes locally flat with a deficit angle

AoR¥*, whereA, is a bare constanR s the Ricci scalar and  27(1—e” "),
x* denotes contractions of the components of the three- To quantize the theory, one can promgiéo an operator

velocity of the test particle. After absorbing the pole of the ¢ describing a free quantum scalar field in41) dimen-
divergence of the two-point function into the bare constantsions. The spacetime metric is a secondary operator that can

the finite part of the counterterm readfR¥*, whereA de-  be expressed in terms of as

notes the dressed constant. As usual, this dressed constant ~ . .

must depend on the scalein such a way that the complete Orr=—0y=6°" (30)
effective action is independent @f. In this paper, for sim-

plicitly we have omited the finite part of the counterterm. wherel is the operator defined by E(R9) with ¢— Eb

This can be justified in the following situations. On the one  For simplicity in what follows we will consider the metric
hand, one can assume that the dressed constant vanishes dgerator in the asymptotic regian—, where the operator
some particular value of the scale which, of course, is an r
unnatural assumption. On the ot_her hand, one can treat tré‘acalar field(denoted by|F) and peaked around a classical
theory that describes th_e dynamics of the test particle as aébnfigurationF(r,t)), it is easy to show that

effective, non-renormalizable theory. As the quantum fluc-
tuations involve massless particles, in the low energy regime
the finite, nonanalytic part of the quantum correction will be
more important than the finite counterterfsee[1] for a
general discussionln the particular case we are analyzing, (F|§ IF)=ex EfmdMF(W)lz(GGﬁW_ 1) (31)
this regime corresponds to the limit log§>1. " hJo '

is time independent. For a given coherent state of the

(Fl¢IF)=F(r.t),
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For sufficiently low frequenciesi.e. when the Fourier o r2 1242
transform of the classical configuration is peaked around a L=(e®")| 1- CRPYRNE 37
low frequency, the mean value of the metric operator can be 2(e”")

approximated by Therefore, the effective Lagrangian can be approximated by

. G? (= . .
<F|grr|F>:grr 1+h?J' dww? |F(W)|2)- (32 oF 1/Ag 2 r2 r2e?
0 Ler=—mv(e™)|1-¢ 9 T2 e
The first term is the value of the metric we would obtain
from the classical field equations for a classical scalar field 1[Ag\?
configuration given by (r,t). The second term represents a X|\1+ 2 E (38)

small quantum correction. As in the classical case, rfor
—oo the mean value of the metric describes a locally ﬂarwhere (Ag/g)Z:A2/<er>2.

spacetime, but with a quantum corrected deficit angle. We can see from Ed38) that in this nonrelativistic limit

the effective Lagrangian has, up to an irrelevant constant
factor, the same form ds, but with a different deficit angle.
According to our general discussion in Sec. Il, the effec-ndeed, after the redefinition of the angular varialfle

tive action for a test particle moving in the _, \/(eSl\[1-1(Ag/g)2]6, the effective Lagrangian be-

B. Effective action for a test particle

(2+1)-dimensional spacetime is given by comes proportional to the flat spacetime Lagrangian. There-
fore the trajectories will be straight lines in a locally flat

Ser X]1=(Sp[x]) = —m< f dt\/eGF(l— 'r2)—r2'02> spacetime. However, the global properties of the trajectories
will be different from the ones obtained with the mean value

33 2
33 of the metric(e®"), since the deficit angle for the effective

where the mean value is taken \_/vith_ respect to the coherenl_tagrangian is now given by 21— */(er>[1

;tate| F). Here a dot_ denotes_derlvapve with respect.t8s _—1(Agig)?]).

in the previous section we will consider only the asymptotic |\ e general cas@ relativistic particlg the situation is

region where the metric operator is time |[1deriendent. different. Indeed, one can prove that it is not possible to
We write the metric operator &' =(e®")+A. The ef-  redefined in order to bringL . [Eq. (36)] to a flat spacetime

fective Lagrangian then becomes form. As a consequence, although the mean value of the
- . metric is locally flat, the test particle “sees” a much more
— A(1-r?) complex geometry.
Lef=—mL 1+ L2 (34) The conclusion of this section is that, again, the trajecto-

ries of the test particle do not coincide with the geodesics of

whereL is proportional to the classical Lagrangian evaluatedh® mean value of the metric.

in the mean value of the metric
V. FINAL REMARKS

1 — GI' _r2\_¢2p2
L= \/<e Y(A=r9)—roe% (39 Let us summarize the new results contained in this paper.

We have computed the quantum corrections to the trajectory

\/7 _ ) ) of a test particle by taking into account the quantum fluctua-
—V(e™" )0, L becomes proportional to the Lagrangian of tions of the spacetime metric. We have analyzed two particu-
the test particle in a locally flat spacetime. The deficit anglgar models where it is easy to fix completely the gauge of the

Note that, after a redefinition of the angular varialsle

is given by 27(1— \/<er>)_ quantum fluctuations and quantize the remaining degrees of
Assuming that the quantum fluctuations around the meaffeedom. _ _
value are smallwe get For a Robertson-Walker spacetime, the fluctuations of the

metric can be described by two massless, minimally coupled
scalar fields. The quantum corrected trajectory has the same
(36) symmetries as the classical trajectory. However, it contains a
quantum correction proportional to the graviton two-point
function and to the initial velocity of the test particle. This

2_JA2\ _/(aGT GI\y2 P
where A®=(A%)=((e> — (e ))*). The above equation is 4qgitional term produces, in particular, a quantum correction
the starting point to describe the quantum corrections to thg, ihe gravitational redshift.

B 1(1-r?)2A?
Leg=—mL| 1— g T

trajectory of the test particle. o , Let us assume that we solve the back reaction equations
~ Let us first consider a nonrelativistic motion of the par- perturbatively and find a solutica(t) = a.(t) + da(t), where
ticle. In this situation we have a.(t) is the classical scale factor. Had we neglected the cou-

pling between gravitons and test particle, we would have
concluded that the test particle’s trajectories coincide with
3This is not always the case. See Hdfb]. the geodesics of the metra(t) =a.(t) + sa(t). However,

084018-6



QUANTUM CORRECTED GEODESICS PHYSICAL REVIEW B0 084018

this coppling in_duces an additional correction to the equation o a2+a? 32 a?a(t)
of motion that is of the same order of magnitude as the one =~ —=1-——— —wG(q&z(t))T.

produced bysa(t) (we have shown this in the particular case a a”+2a” 3 1+ata (1)

of a de Sitter solution and, in a previous papsf, in the

Newtonian approximation As a consequence, it is meaning-

less to computéa(t) and neglect the graviton effects on the The “effective scale factor” depends on the initial velocity
motion of the particle, which is the physical observable.  of the particle.

An interesting feature of our result is that the quantum In Ref. [18] the authors analyzed the graviton induced
corrections to the geodesic depend on the velocity of the tesluctuations of horizons in Robertson Walker and Schwarsz-
particle in such a way that one cannot define an “effectivechild spacetimes. The analysis was based on the study of the
metric” for the trajectory, i.e. a metric such that its geodesicseffects of gravitons oiinearly null geodesics. They pointed
coincide withall the quantum corrected trajectories. It is out that due to the interaction with the fluctuations of the
worth to note that if one tries to define observationally anmetric, there are two effects on the trajectories of photons:
“effective spacetime curvature” through a geodesic deviathe mean geodesic will deviate from the classical geodesic,
tion equation, this effective curvature will be dependent onang there will be stochastic fluctuations around the mean
the initial four velocity of the geodesics under consideration, 51ye. They studied the stochastic fluctuations and neglected
The effective metric and effective scale factor we are talkingy, o qeviation of the mean value. In this sense, our work is

about here should be looked upon as average quantities, aﬁ%mplementary to Ref[18], since we computed the mean

integration of the graviton fluctuations. value corrections. In our framework, the stochastic fluctua-

In the case of three-dimensional general relativity, there[. . )
. . ; jons could be analyzed by using the closed time path for-
are no propagating degrees of freedom associated with the

geometry. At the classical level one can make the degrees S@alism to compute the_effec_tive action for j{he test p"’?”ic'e- It
freedom to reside in the matter field. At the quantum level can be shown that the imaginary part of this closed time path

the operator associated with the metric can be written ineffectlve action introduces a noise term in the equation of

terms of the matter field operator, m_otion(similar_ideas have been applied to the semiclassical
In this model, given a quantum state of the matter fields, itE'r}St(tar']r.] equations, fgeedfor ex?rrsﬁléag%. fth i
is easy to compute the mean value of the metric and of any ? tl's page; We fixe t.COTp eA6|ty etgalnge ot the rlge ne
function of it. In particular, we computed the mean value of uctuations betore quantization. /Alternatively, one could use
the Lagrangian for a test particle. We have shown that, eveWe covariant method described in Sec. Il. We showed in a

in the asymptotic region, where both the classical metric an(?rewous work5] that the SO'”“.O” to the hack reac.t|on equa-
the mean value of the quantum metric operator describe lg2on and the quantum corrections to the geodesics are both

cally flat spacetimes, the test particle “feels” the quantumde‘:"nd.ent on thg gauge fixing procedure. In the NeMonlan

fluctuations and the trajectory is not a straight line. approxmatlon, this dependence cancels when computing the
Now we would like to comment about related works. To trajectory of the tes_t particle. _\/Vhe_ther_ this is true or n_ot

our knowledge, the fact that the mean value of the metric i eyond the Newtonian approximation is an open guestion

not enough to describe the spacetime geometry when thgat will be addressed in a forthcoming paper.
graviton contribution is taken into account, was first pointed

out in Ref.[17]. It was stressed there that one can assign an

effective metric to a given observabtg(g,,), through the ACKNOWLEDGMENTS
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The effective metric obviously depends 6hWe agree with

this point of view. Indeed, from our results it is easy to
illustrate this fact. Consider for example the quantum cor-
rected velocity of the test particle given in EQO). Taking
into account the classical result for the velocity, one can |n this appendix we calculate the renormalized two-point
introduce an “effective scale factor” through the identity  function ($(x)¢(x’)) in the coincide limitx’—x for a
massless minimally coupled scalar field in flat Roberton-
aae‘ﬁz(t) aa”?(t) Walker metrics witha(t) =agt°®. ThroughOllJtlthis appendix
7.2 . i 27 we work in conformal timep=[ag(1—c)] "t~ © The met-
VItafagi(t) 1+a%a () fic reads ds?=C(n)(—d72+dx?) where C(7)=a(t)
_ ag/(l—c)(l_ ¢)2e/(1=0) j2cl(1=c),
P . The two-point function we wish to evaluate is basically
1+a%a “(1) the Hadamard functio® V)= ({#(x),¢(x")}). By means of
(40)  the point-splitting technique, we separate the poixts’
only in their temporal componet n=7n—n'=¢e¢—0. The
This gives Hadamard function then takes the fof20]

APPENDIX A

32 ) a?a?(1)
x| 1+ §WG<¢ (t))
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c¥ 77)(:—1/2(7],) To renormalize we substract the second order adiabatic
D®(x,x")=— expansion for the Hadamard function, namely
2m°A 7?
R |1 | € 1 (3 B9, 7') =~ — o | Jlog(u?e) + ¥

— log—|+y+ ¢l s +v anr 8m%e’s,  24m?|2

2472 | 2 gcnz 722

1 /3 + ! R tatBJro( 2) (A3)

—— —~ €

Y 2 242 P S

+2¢ 5V +48772+O(€) (A1) T

where u is an arbitrary scale with dimensions of energy.
wherev=[1—3c|/(2|1—c]), y is Euler's constant an¢his  Finally
Euler’s function. The first term on the right is the expression

for D) in the conformally coupled case, which can also be Diaa(x,x)=lim (DW(7,7") =D (7, 7))
expanded in powers of =0
S CMEpCc Y y) 1 _ R Jlog(Cu?7?) (A4)
22A 72 872e’s &
all constants having been absorbed into a redefinitiop .of
1 teth 1 : : ;
—[R —— — R[4+ 0O(&?) We can now go back to coordinate time, and on using that
242 P X 6 for these metrics the scalar curvatureRs 6c(2c— 1)t 2,
A2) we get the final result
heret# i i h izes the direction of 2y 002~ o
wi .er'et is a unit vector that parametrizes the direction o (¢ (t))z—zt log(t2u2).
splitting andX =t ,t*. 96
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