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Classical self-force
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The self-force for the classical dynamics of finite size particles is obtained. It is to replace the one of von
Laue type obtained for point particles. Such particles are beyond the validity domain of classical mechanics,
and their self-force leads to pathological solutions. Both electromagnetic and gravitational self-interactions are
considered. The approximation made neglects nonlinear terms in the derivatives of the acceleration. A by-
product is the fact that the new self-force destroys the time-reversal invariance of the equations of motion.
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I. INTRODUCTION vector of “radiation reaction.” Only the last term is the four-
vector of the rate of energy-momentum loss due to radiation;
The self-force has a long history which has recently beerhe first term, sometimes called the Schott term, has nothing
reviewed[1]. It is best known in the Lorentz-Abraham-Dirac to do with radiation. Its meaning will become clear later on
equation[2] where this self-forcgalso known as the von (see end of Sec. IIB
Laue four-vector is responsible for unphysical solutions  When inserted into the equation of motion of a point
such as runaway and noncausal of@s The symptomatic charge,F*g(e,pt) leads to various pathological solutions.
infinite self-energy of a point charge need hardly be menThe divergence of the electrostatic self-energy of a point
tioned. As pointed out a long time ago, the von Laue self<charge is well known. Then there are the self-accelerating
force is due to the point particle approximatitsee[3], p.  (runaway solutions which are due to the term involving the
186). This approximation lies outside the domain of validity second derivative of velocitythird derivative of position
of classical physics, which is characterized roughly by theThe latter also violates the mandate that dynamical equations
Compton wavelength. be of second order of position. The self-acceleration can be
When gravitation was taken into account, either in theavoided by requiring an extra condition: that asymptoti-
presence of a chardd,5] or for neutral particle$6,7,8, the  cally the velocity be finite. The resulting integro-differential
offending terms remained even though additional terms werequation([3], Sec. 6-8, however, gives noncausal solutions
found to be present and even though some of the approximdecause the acceleration now depends oritthue behavior
tions [7,8] did not assume point particles. The following of the force. Additional pathological behavior includes the
study is directed at those terms and answers the question head-on collision of particles. All can be traced to the as-
to by what terms these are to be replaced when the internalumption that the particle is a point. But a classical theory
interaction of classical finite size particles is taken into ac-cannot be applied to characteristic distances smaller than a
count. The other self-force terms in the equations of motiorCompton wavelength(not to speak of a particle radius
such as the “tail terms” are not affected by these considershrinking to zerp because those distances fall into the do-
ations. main of quantum mechanics. The validity domain of classi-
The next section, Sec. Il, is devoted to the self-force duecal physics is outside of .
to an electric charge, Sec. lll to the self-force due to the In order to construct the self-force for a particle of finite
particle’s mass, and Sec. IV presents the general conclusiosize (assume a sphere of radias \ ), one can proceed as
dealing also with the breaking of time-reversal invariance follows. The equation of motion is
All equations will be given in Gaussian units with=1 and
the metric tensor of positive signature. mgVv#=F#+Ftg, 2

wheremg is the bare mass arfg” is an external force, for
example the Lorentz force. Since the other two terms in the
A. Charge in a nongravitational force field equation are orthogonal to the velocitlys must be too.
Therefore, it must be of the form

II. CHARGED PARTICLE

In the Lorentz-Abraham-Dirac equation the self-force of a

point charge is given by the von Laue four-vector Fhe=Pr X", 3)
Fig(e,pt)= §QZ(W_\-,a\-,avu). (1)  where the projection into the subspace orthogonal‘tas
pP#,=0o",+vtv,,. (4)

This vector is sometimes incorrectly referred to as the four-
In the instantaneous rest frame of the particke:g(0)
=X*(0). It is therefore sufficient to compute the self-force
*Email address: rohrlich@syr.edu in the instantaneous rest frame.
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Consider a particle at rest, and let it be a rigid sphere ofeads to Eq(7). His calculation is completely equivalent to
radiusa. The self-force is the result of the interaction of eachthe one used above using Jackson.
small element of charge of the sphere with every other ele- The last step, not carried out by Yaghjian, is to insert Eq.
ment. In the rest frame, only the electric fielt= —V ¢ (7) into Eqgs.(3) and (4) or |, directly into Eq.(5’). This
—A is involved. The potentials are to be computed in theresults in the final expression for the self-force of a surface
standard way from the charge denséy and the current charged sphere;
density epv by using the integrals involving theetardgt)ad 2 e? 1
times. Herep is the charge density distribution witfp d>x © _cE T rumi u @ _
=1. At this stage, this becomes a graduate student exerciseF; sea)=33 ’Ta,[v (7= 7o) TVAIVEHTV (7= 70) ]
the calculation can be found in Jackson’s textbp@k(Sec. (8
17.3 in the 2nd edition and Sec. 16.3 in the 3rd edjtidine _ ) ) ) _
result, obtained byneglecting all nonlinear powers of the This remarkable equation was first conjectured by Caldirola

acceleration and its derivativesan be written agnote Jack-  [11], but he was unable to prove it. The equation of motion
son'sdp/dt=— Fg) has now become a differential-difference equation. The self-

force also spoils time reversal invariande2] which is still
(=" [a\™ enjoyed by the point particle Lorentz-Abraham-Dirac equa-
—In<ﬁ> v (v=0), (5 tion despite expressiofl) (see[3], Sec. 9-2b for a proof of
time-reversal invariange
When Eq.(8) is expanded for smalt,, one obtains the
point particle resultg1) as well as an inertial term due to
self-interaction:

2 <)
Fs(e,a)=— §922

n=0 n'

where

In:j f d3x d3x’ p(x)|x—x'|""p(x"). (6)
Ftg(e,a)=—mev”+F¥g(e,pt)+0O(7,), (99

In the point particle limit,|, diverges corresponding to

the infinite self-energy of a point particlé;=1, and |, Meg=4/3Mgs,  Mes=€%/(2a), (9b)

=0 (n>1). One recovers the well-known damping term

(2/3)e?V of the Lorentz equation. wherem,4 and mg are the electrodynamic and the electro-
For a general inertial reference frame, E@.and(4) tell static self-energies which diverge in the point limit. The in-

us that the self-force for an arbitrary charge distribution is ertial term can be combined with the bare mass inertial term
in Eq. (2) to yield the observed rest mass,=mg+mMmgq
(mass renormalizatign

Fis(ea)=— 562[ 7 HvE(TVI(T)] Finally, the nonrelativistic limit of Eq(8) yields
s O (2) : . _2¢ g
anoTl” 57 Vi) (5 s(e,a)NR—ggT—a[V(t 7o) —V(D]. (8)

Note that Jackson does not take us beyond®qWhenpis  which can also be obtained from E@J) by a Galilean boost.
a volume distribution, the integrdb) is too complicated a This is an old result first derived by Sommerfeld in 1903]
function of n to permit the summation in Eq5’) to be and later by Paggl4]. Its point limit gives the inertial term
carried out. However, when the charge is distributed unicorrection and the Lorentz term for the self-force:

formly over thesurfaceof the sphere,

2
|t 2 o Fs(€,pt)nr=—MedV + 5 €%V. (10)
n=(2a) 1 (6")
It is to be noted that the equations of motion for a finite
and Eq.(5) can be summed to size particle such as Eq&) and (8') have no pathological
2 solutions.
Ee_iv(t_T ) (v=0) ) The above deduction of Eq$9) and (10) from Eq. (8)
3ar, “ ' provides an explanation of the mysteriouserm, the Schott

i o ) ) term. It is seen to arise from the nonlocality in time due to
wherer,=2a is the time it takes light to cross the diameter {he gccurrence of bothand— 7, or, more generally, from

of the sphere. Note that this is fully relativistic, but written in e fact that the equation of motion is an infinite order dif-
the instantaneous rest frame of the particle. ferential equation.

The result(7) was previously obtained by Yaghjian in the
last appendix of his booKklO]. He used the well-known ex-
pression forE that is obtained after substitution of the
Liénard-Wiechert potentialgsee, for exampld9], (14.14]. This problem was first successfully treated by Dewitt and
An expansion remaining fully relativistic, but neglecting all Brehme[4] and later corrected by HobB§]. The only in-
higher powers of the acceleration and its derivatives thererest in their result for the present purpose is the von Laue

B. Charge in a gravitational field
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self-force(1) which is part of their result. They are still using with T,,=mpv,v, and [p d®x=1 as before. These field

the point particle approximation. equations can be solved in terms of the retarded figigs
From the above discussion it follows that this offendingexactly as in the electromagnetic case. However, since we

term (1) can now be replaced by the self-for@ for a finite  first assume that the particle is in its instantaneous rest frame,

size particle. The other terms, the tail term and the Ricci ternonly Too will contribute.

found by Hobbs, do not show point particle pathologies and When the self-field is completely neglected, the trajectory

remain unaltered. of a neutral particle in a gravitational field is a geodesic,
XM= —F“QBX“X'B. In our approximation, we neglect all non-
IIl. NEUTRAL PARTICLE IN A GRAVITATIONAL FIELD linear terms involving the velocity and its derivatives. As is

) ) ) well known, this equation then reduces in the rest system of
This problem was studied by Havas and Goldb@hin  the particle to an equation reminiscent of the Lorentz force
1962. In the point particlésingle pol¢ approximation which equation(see, e.g., Wal§15] or Rindler[16]),
they used, the self-force of an electrically neutral mads
a gravitational field was found to be the Lorentz-invariant 1 g

expression k== Vy—=v r= Yo ¥=(78)-

With the new fieldsy/4= — ¢ and y/4= —A, this equation
can be written in the familiar forninserting gratuitous fac-
(11) tors of m)

11 . . .
Fis(G,pt)= = 5 GIFVA(7) ~vA(7) U ()¥ ()]

This force is in many ways analogous to the von Laue self- mx=—mE, E=-Vé—4aA. (13

force F#4(e,pt) of a point particle(1). , ) ) )

Very recent calculations of the gravitational self-force by N Rindler[16] the last term was omitted since it played
Mino, Sasaki, and Tanak&] and by Quinn and Waldg] no role in the_calculatlo_n done there. Note that the term
were done in a much more sophisticated approximation. The V> (V4A) is absent in Eqs(13) because we are work-
former describe a finite size particle by a spherically symIN9 in the instantaneous rest frame. The gratuitous fattor
metric black hole. Their result §B] nevertheless reproduces reminds us of the weak equivalence principle, which states
Eq. (12) [[8], Eq. (50)], but also has additional terms that the equality of inertial and gravitational mass,= mg=m.
depend on the curvature and includes a Dewitt-Brehme-type 1€ Problem has thus been reduced to the previous prob-

tail term. The authors of8] use an axiomatic approach '€m of electrodynamics except for the factor of 4 Arand
which reproduces the results . an overall minus sign relative to electrodynamics. The latter

The present calculation is based on a much more simplé-s a consequence of the fact that masses attract one another,

minded approximation, namely, the linear gravity approxi-While charges of the same sign repel one another.
mation. Therefore, neither curvature-dependent terms nor tail 't IS Now possible to exploit this similarity with electro-
terms are obtained. However, as a result, the self-fgige ~ dynamics and to proceed by using the calculation in Jack-
is replaced by the self-force due to the interfitarded son’s textbpok that was used in Sec. Il abpve, the only dif-
gravitational interaction of a macroscopic particle with ra-ference being a factor of 4 in front df when it occurs as the
dius a>\¢. Such a self-force does not lead to unphysicalSOUrce ofA. The result, analogous to E(), is the self-force
solutions. in the instantaneous rest frame:

The procedure will be as follows. First, the self-force will " . .

. . . . . ) . 11 (_ 1) (9 )

be derived for a particle which is instantaneously at rest. This Fo(G.a)= gszz - In(_) v (v=0).

will be done by use of the linearized gravity approximation =0 ot

(Wald [15], Sec. 4.4, or Rindlef16], Sec. 8.12 In this (14)
approximation, the particle is assumed to be rigid in the

sense that all points of the small but finite size particke The first term in this sum is an inertial terdmv, where

dius a) are simultaneously at rest when its center is at rest.

Then, a boost will be applied so that an expression is ob- 11

tained valid for a moving particle. om= gGm2|o- (15
In the linear gravity approximation it is assumed that the

gravitational field is weak, so that one can expand the metri

tensor and keep only the first terg,,= »,,+h,,. There

exists a well-known choice of gauge in which the gravita-

tional field equations take on an especially simple form: on

definesy,,,= hw—%ﬂwh with h=»*"h ,, and chooses a

gauge in whichy,,, is divergence freey,, "=0. The field

equations then become

Therefore, it could be renormalized away by combining it
with the left hand side of the equation of moti¢h3). The
result would be that the inertial mass now becomgs m

€ sm< m, where m is the gravitational massThe weak
equivalence principle would therefore be violate@@ne
notes thatém would make the renormalized masmaller,
which is contrary to the electromagnetic case, a difference
attributable to the attraction between masses, while charges
Oy,,=—8nGT,,, (12 of equal sign repel one another.
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However, such a violation of the equivalence principle isBoth equations show that, as in the electromagnetic case, the
due to the approximations made in our calculation; it is not aself-force introduces a finite shift in time.
true phenomenon. We have ignored the fact that a mass dis-

tribution such as is used to represent our particle is not stable IV. SUMMARY AND DISCUSSION
without the addition of stresses that would prevent its implo-
sion. Such an omission would not have been possible in an A. Self-force

exact treatment due to the nonlinear nature of general rela- The above derivations proved that when nonlinear terms
tivity [17]. To correct for this, the first term in the sum of Eq. i the derivatives of the velocity are neglected, an extended

(14) must be omitted, particle in relativistic motion has a self-force due to the in-

1 = (g ternal interaction of its charge or mass distribution, which is

Fs(G,a)= 5 Gm Y, — |n(ﬁ) v (v=0). given by
n=1 :
(16 Frs(@)=—CL 7" +v*(1)v"(7)]
Next, one can make a Lorentz boost to a reference frame S o(—1)n a\". )

. ; . . ' . x{ > Inl =] v, (7)=lgv,[. (2D
in which the particle moves with velocity*. But since the ni=o n! ar

force must be orthogonal to the velocity, the fagtdr must
be supplied. The result is Herea is the radius of théassumegispherical particlep its
charge or mass distribution, witfp d®x=1, andl,, is given

FAy(G,a)= gsz[ P EVE(IVY(D)] by the rest frame integrdb). The constanC is

2
“o(=D" [ a\™ C=§e2 for a charge distribution, (229
XX =l 57| Vu(n). (D)
. . 11 .
It differs from the electromagnetic cag®’) only by the nu- C=-—Gn? for a mass distribution. (22b)

merical coefficient and the missing inertial teffirst term 3

in the summation. The similarity with electromagnetism of
Eq. (13) makes this not entirely surprising.

The self-force(17) gives a Lorentz-invariant equation of
motion for a finite size particle in a weak gravitational field,

with e andm being the total charge ar(dravitational] mass,
respectively. The last term in the curly brackets eliminates
the inertial (first) term of the sum. In the electromagnetic
case, the same term must be added to the left side of the
mvA=F*#(G,a), (18 equation of motipn .thus providing for a mass renqrmglizq—
tion. In the gravitational case, no mass renormalization is

which is just the geodesic equation in our approximation. Itnvolved.

is interesting to note that in the point particle linait-0, the ~ F*s(a) of Eq. (21) turns the equation of motion into a
self-force(17) reproduces exactly the resgitl) obtained by differential equation of infinite order. However, in the spe-
Havas and Goldberfs]. cial case of a sphere of uniformly distributed surface charge

The physical meaning of the self-force can be seen fron®r a thin mass shell, respectively, the sum in &4) can be
the special case of a mass distribution in the form of a thinwritten in a closed form. The equation of motion then be-
mass shell analogous to an electric surface charge distribgomes a differential-difference equatica special form of a
tion. From Eq.(6') it then follows that the sum in Eq17)  differential equation of infinite ordgr

can be carried out and one obtains The self-force(21) is to replace the von Laue type self-

force (1) or (11), respectively, in the equations of motion.

" 1 Gn? 1 u The great virtue of doing so is of course that they will then
Fis(G.a)=~ 3?7“ (7= 74) have no pathological solutions. It also keeps thessical

o

_ theory within its validity domainthe Compton wavelength
FVATIVI(TIV(T— 7o) ]=omv¥, (190 \.) by describing particles of siza>\. and by therefore

) excluding point particles.
wheredm is the self-energy term that follows from Edq45)

and ("), B. Arrow of time
Sm= l—leZ/a (20) It is a well-known fact that all the fundamental dynamical
3 ' equations of physics are time-reversal invariant: Newton'’s,
Hamilton’s, Einstein’s gravitational equations, and Schro
The nonrelativistic limit of Eq(19) is inger’s. Also the Lorentz-Abraham-Dirac equati®) with
5 F#5 given by Eq.(1) is time-reversal invarian{[3], Sec.
F(G.a) e — 11Gm i[v(t— Y v(t)]— Smi 9-2). It may therefore be surprising that the self-force for a
SSTENRT 3 a1, @ ' finite size particle, Eq(21), spoils this invariance. The rea-

(19) son is simple: the self-interaction of a finite size particle
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involves theretardedfield of one element acting on another tion, the Hubble expansion, etcone has to start with the
element of chargéor mas$ some distance away. This intro- time-symmetric fundamental dynamical equations. This
duces an asymmetry in time. In the point limit, the retardedqualitative difference between the fundamental dynamics
and advanced actions can no longer be distinguished becauggd the actual physical processes which has been so puzzling

the interaction distance between the chafgess elements  in the past is now eliminated by inclusion of the self-force
shrinks to zero. Therefore, in that limit the equations of mo-oy finjte size particles.

tion are time-reversal invariant.
The fact that the equations of motion@ftendedarticles

are not time-reversal invariant when the self-force is taken ACKNOWLEDGMENTS
into accoun{12] removes an old puzzle: when one tries to
explain the unidirectionality in timéthe arrow of time of I want to thank Arthur Komar for a valuable discussion

physical processefthe entropy law, the emission of radia- and for drawing his papdil7] to my attention.
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