
PHYSICAL REVIEW D, VOLUME 60, 084017
Classical self-force

Fritz Rohrlich*
Department of Physics, Syracuse University, Syracuse, New York 13244-1130

~Received 8 March 1999; published 24 September 1999!

The self-force for the classical dynamics of finite size particles is obtained. It is to replace the one of von
Laue type obtained for point particles. Such particles are beyond the validity domain of classical mechanics,
and their self-force leads to pathological solutions. Both electromagnetic and gravitational self-interactions are
considered. The approximation made neglects nonlinear terms in the derivatives of the acceleration. A by-
product is the fact that the new self-force destroys the time-reversal invariance of the equations of motion.
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I. INTRODUCTION

The self-force has a long history which has recently be
reviewed@1#. It is best known in the Lorentz-Abraham-Dira
equation@2# where this self-force~also known as the von
Laue four-vector! is responsible for unphysical solution
such as runaway and noncausal ones@3#. The symptomatic
infinite self-energy of a point charge need hardly be m
tioned. As pointed out a long time ago, the von Laue s
force is due to the point particle approximation~see@3#, p.
186!. This approximation lies outside the domain of validi
of classical physics, which is characterized roughly by
Compton wavelength.

When gravitation was taken into account, either in t
presence of a charge@4,5# or for neutral particles@6,7,8#, the
offending terms remained even though additional terms w
found to be present and even though some of the approx
tions @7,8# did not assume point particles. The followin
study is directed at those terms and answers the questio
to by what terms these are to be replaced when the inte
interaction of classical finite size particles is taken into
count. The other self-force terms in the equations of mot
such as the ‘‘tail terms’’ are not affected by these consid
ations.

The next section, Sec. II, is devoted to the self-force d
to an electric charge, Sec. III to the self-force due to
particle’s mass, and Sec. IV presents the general conclus
dealing also with the breaking of time-reversal invarian
All equations will be given in Gaussian units withc51 and
the metric tensor of positive signature.

II. CHARGED PARTICLE

A. Charge in a nongravitational force field

In the Lorentz-Abraham-Dirac equation the self-force o
point charge is given by the von Laue four-vector

Fm
S~e,pt!5

2

3
e2~ v̈m2 v̇av̇avm!. ~1!

This vector is sometimes incorrectly referred to as the fo
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vector of ‘‘radiation reaction.’’ Only the last term is the fou
vector of the rate of energy-momentum loss due to radiat
the first term, sometimes called the Schott term, has noth
to do with radiation. Its meaning will become clear later
~see end of Sec. II B!.

When inserted into the equation of motion of a po
charge,Fm

S(e,pt) leads to various pathological solution
The divergence of the electrostatic self-energy of a po
charge is well known. Then there are the self-accelera
~runaway! solutions which are due to the term involving th
second derivative of velocity~third derivative of position!.
The latter also violates the mandate that dynamical equat
be of second order of position. The self-acceleration can
avoided by requiring an extra condition: that asympto
cally the velocity be finite. The resulting integro-differenti
equation~@3#, Sec. 6-6!, however, gives noncausal solution
because the acceleration now depends on thefuturebehavior
of the force. Additional pathological behavior includes t
head-on collision of particles. All can be traced to the a
sumption that the particle is a point. But a classical the
cannot be applied to characteristic distances smaller tha
Compton wavelength~not to speak of a particle radiu
shrinking to zero! because those distances fall into the d
main of quantum mechanics. The validity domain of clas
cal physics is outside oflC .

In order to construct the self-force for a particle of fini
size ~assume a sphere of radiusa.lC!, one can proceed a
follows. The equation of motion is

mBv̇m5Fm1Fm
S , ~2!

wheremB is the bare mass andFm is an external force, for
example the Lorentz force. Since the other two terms in
equation are orthogonal to the velocity,FS

m must be too.
Therefore, it must be of the form

Fm
S5Pm

nXn, ~3!

where the projection into the subspace orthogonal tovm is

Pm
n5dm

n1vmvn . ~4!

In the instantaneous rest frame of the particle,Fm
S(0)

5Xm(0). It is therefore sufficient to compute the self-forc
in the instantaneous rest frame.
©1999 The American Physical Society17-1
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Consider a particle at rest, and let it be a rigid sphere
radiusa. The self-force is the result of the interaction of ea
small element of charge of the sphere with every other
ment. In the rest frame, only the electric fieldE52¹f

2Ȧ is involved. The potentials are to be computed in t
standard way from the charge densityer and the current
density erv by using the integrals involving theretarded
times. Herer is the charge density distribution with*r d3x
51. At this stage, this becomes a graduate student exer
the calculation can be found in Jackson’s textbook@9# ~Sec.
17.3 in the 2nd edition and Sec. 16.3 in the 3rd edition!. The
result, obtained byneglecting all nonlinear powers of th
acceleration and its derivatives, can be written as~note Jack-
son’sdp/dt52FS!

FS~e,a!52
2

3
e2(

n50

`
~21!n

n!
I nS ]

]t D
n

v̇ ~v50!, ~5!

where

I n5E E d3x d3x8 r~x!ux2x8un21r~x8!. ~6!

In the point particle limit,I 0 diverges corresponding t
the infinite self-energy of a point particle,I 151, and I n
50 (n.1). One recovers the well-known damping ter
(2/3)e2v̈ of the Lorentz equation.

For a general inertial reference frame, Eqs.~3! and~4! tell
us that the self-force for an arbitrary charge distribution i

Fm
S~e,a!52

2

3
e2@hmn1vm~t!vn~t!#

3 (
n50

`
~21!n

n!
I nS ]

]t D n

v̇n~t!. ~58!

Note that Jackson does not take us beyond Eq.~5!. Whenr is
a volume distribution, the integral~6! is too complicated a
function of n to permit the summation in Eq.~58! to be
carried out. However, when the charge is distributed u
formly over thesurfaceof the sphere,

I n5~2a!n21
2

n11
. ~68!

and Eq.~5! can be summed to

2

3

e2

a

1

ta
v~ t2ta! ~v50!, ~7!

whereta52a is the time it takes light to cross the diamet
of the sphere. Note that this is fully relativistic, but written
the instantaneous rest frame of the particle.

The result~7! was previously obtained by Yaghjian in th
last appendix of his book@10#. He used the well-known ex
pression forE that is obtained after substitution of th
Liénard-Wiechert potentials@see, for example,@9#, ~14.14!#.
An expansion remaining fully relativistic, but neglecting a
higher powers of the acceleration and its derivatives t
08401
f
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leads to Eq.~7!. His calculation is completely equivalent t
the one used above using Jackson.

The last step, not carried out by Yaghjian, is to insert E
~7! into Eqs. ~3! and ~4! or I n directly into Eq. ~58!. This
results in the final expression for the self-force of a surfa
charged sphere;

Fm
S~e,a!5

2

3

e2

a

1

ta
@vm~t2ta!1vm~t!va~t!va~t2ta!#.

~8!

This remarkable equation was first conjectured by Caldir
@11#, but he was unable to prove it. The equation of moti
has now become a differential-difference equation. The s
force also spoils time reversal invariance@12# which is still
enjoyed by the point particle Lorentz-Abraham-Dirac equ
tion despite expression~1! ~see@3#, Sec. 9-2b for a proof of
time-reversal invariance!.

When Eq.~8! is expanded for smallta , one obtains the
point particle results~1! as well as an inertial term due t
self-interaction:

Fm
S~e,a!52medv̇

m1Fm
S~e,pt!1O~ta!, ~9a!

med54/3mes, mes5e2/~2a!, ~9b!

wheremed and mes are the electrodynamic and the electr
static self-energies which diverge in the point limit. The i
ertial term can be combined with the bare mass inertial te
in Eq. ~2! to yield the observed rest massmo5mB1med
~mass renormalization!.

Finally, the nonrelativistic limit of Eq.~8! yields

FS~e,a!NR5
2

3

e2

a

1

ta
@v~ t2ta!2v~ t !#. ~88!

which can also be obtained from Eq.~7! by a Galilean boost.
This is an old result first derived by Sommerfeld in 1904@13#
and later by Page@14#. Its point limit gives the inertial term
correction and the Lorentz term for the self-force:

FS~e,pt!NR52medv̇1
2

3
e2v̈. ~10!

It is to be noted that the equations of motion for a fin
size particle such as Eqs.~8! and ~88! have no pathologica
solutions.

The above deduction of Eqs.~9! and ~10! from Eq. ~8!
provides an explanation of the mysteriousv̈ term, the Schott
term. It is seen to arise from the nonlocality in time due
the occurrence of botht andt2ta , or, more generally, from
the fact that the equation of motion is an infinite order d
ferential equation.

B. Charge in a gravitational field

This problem was first successfully treated by Dewitt a
Brehme@4# and later corrected by Hobbs@5#. The only in-
terest in their result for the present purpose is the von L
7-2
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CLASSICAL SELF-FORCE PHYSICAL REVIEW D60 084017
self-force~1! which is part of their result. They are still usin
the point particle approximation.

From the above discussion it follows that this offendi
term ~1! can now be replaced by the self-force~8! for a finite
size particle. The other terms, the tail term and the Ricci te
found by Hobbs, do not show point particle pathologies a
remain unaltered.

III. NEUTRAL PARTICLE IN A GRAVITATIONAL FIELD

This problem was studied by Havas and Goldberg@6# in
1962. In the point particle~single pole! approximation which
they used, the self-force of an electrically neutral massm in
a gravitational field was found to be the Lorentz-invaria
expression

Fm
S~G,pt!52

11

3
Gm2@ v̈m~t!2vm~t!v̇a~t!v̇a~t!#.

~11!

This force is in many ways analogous to the von Laue s
force Fm

S(e,pt) of a point particle~1!.
Very recent calculations of the gravitational self-force

Mino, Sasaki, and Tanaka@7# and by Quinn and Wald@8#
were done in a much more sophisticated approximation.
former describe a finite size particle by a spherically sy
metric black hole. Their result of@8# nevertheless reproduce
Eq. ~11! @@8#, Eq. ~50!#, but also has additional terms th
depend on the curvature and includes a Dewitt-Brehme-t
tail term. The authors of@8# use an axiomatic approac
which reproduces the results of@7#.

The present calculation is based on a much more sim
minded approximation, namely, the linear gravity appro
mation. Therefore, neither curvature-dependent terms nor
terms are obtained. However, as a result, the self-force~11!
is replaced by the self-force due to the internal~retarded!
gravitational interaction of a macroscopic particle with r
dius a@lC . Such a self-force does not lead to unphysi
solutions.

The procedure will be as follows. First, the self-force w
be derived for a particle which is instantaneously at rest. T
will be done by use of the linearized gravity approximati
~Wald @15#, Sec. 4.4, or Rindler@16#, Sec. 8.12!. In this
approximation, the particle is assumed to be rigid in
sense that all points of the small but finite size particle~ra-
dius a! are simultaneously at rest when its center is at r
Then, a boost will be applied so that an expression is
tained valid for a moving particle.

In the linear gravity approximation it is assumed that t
gravitational field is weak, so that one can expand the me
tensor and keep only the first term,gmn5hmn1hmn . There
exists a well-known choice of gauge in which the gravi
tional field equations take on an especially simple form: o
definesgmn5hmn2 1

2 hmnh with h5hmnhmn and chooses a
gauge in whichgmn is divergence free,gmn,

n50. The field
equations then become

hgmn528pGTmn , ~12!
08401
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with Tmn5mrvmvv and *r d3x51 as before. These field
equations can be solved in terms of the retarded fieldsgmn

exactly as in the electromagnetic case. However, since
first assume that the particle is in its instantaneous rest fra
only T00 will contribute.

When the self-field is completely neglected, the trajecto
of a neutral particle in a gravitational field is a geodes
ẍm52Gm

abẋaẋb. In our approximation, we neglect all non
linear terms involving the velocity and its derivatives. As
well known, this equation then reduces in the rest system
the particle to an equation reminiscent of the Lorentz fo
equation~see, e.g., Wald@15# or Rindler @16#!,

ẍ52
1

4
“g2

]

]t
g, g5g0

0, g5~g0
k!.

With the new fieldsg/452f and g/452A, this equation
can be written in the familiar form~inserting gratuitous fac-
tors of m!

mẍ52mE, E52“f24Ȧ. ~13!

In Rindler @16# the last term was omitted since it playe
no role in the calculation done there. Note that the te
2v3(“34A) is absent in Eqs.~13! because we are work
ing in the instantaneous rest frame. The gratuitous factom
reminds us of the weak equivalence principle, which sta
the equality of inertial and gravitational mass,mi5mg5m.

The problem has thus been reduced to the previous p
lem of electrodynamics except for the factor of 4 onA and
an overall minus sign relative to electrodynamics. The la
is a consequence of the fact that masses attract one ano
while charges of the same sign repel one another.

It is now possible to exploit this similarity with electro
dynamics and to proceed by using the calculation in Ja
son’s textbook that was used in Sec. II above, the only
ference being a factor of 4 in front ofJ, when it occurs as the
source ofA. The result, analogous to Eq.~5!, is the self-force
in the instantaneous rest frame:

FS~G,a!5
11

3
Gm2(

n50

`
~21!n

n!
I nS ]

]t D
n

v̇ ~v50!.

~14!

The first term in this sum is an inertial term,dmv̇, where

dm5
11

3
Gm2I 0 . ~15!

Therefore, it could be renormalized away by combining
with the left hand side of the equation of motion~13!. The
result would be that the inertial mass now becomesmi5m
2dm,m, where m is the gravitational mass.The weak
equivalence principle would therefore be violated. ~One
notes thatdm would make the renormalized masssmaller,
which is contrary to the electromagnetic case, a differe
attributable to the attraction between masses, while cha
of equal sign repel one another.!
7-3
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FRITZ ROHRLICH PHYSICAL REVIEW D 60 084017
However, such a violation of the equivalence principle
due to the approximations made in our calculation; it is no
true phenomenon. We have ignored the fact that a mass
tribution such as is used to represent our particle is not st
without the addition of stresses that would prevent its imp
sion. Such an omission would not have been possible in
exact treatment due to the nonlinear nature of general r
tivity @17#. To correct for this, the first term in the sum of E
~14! must be omitted,

FS~G,a!5
11

3
Gm2(

n51

`
~21!n

n!
I nS ]

]t D
n

v̇ ~v50!.

~16!

Next, one can make a Lorentz boost to a reference fra
in which the particle moves with velocityvm. But since the
force must be orthogonal to the velocity, the factor~4! must
be supplied. The result is

Fm
S~G,a!5

11

3
Gm2@hmn1vm~t!vn~t!#

3 (
n51

`
~21!n

n!
I nS ]

]t D n

v̇n~t!. ~17!

It differs from the electromagnetic case~58! only by the nu-
merical coefficient and the missing inertial term~first term!
in the summation. The similarity with electromagnetism
Eq. ~13! makes this not entirely surprising.

The self-force~17! gives a Lorentz-invariant equation o
motion for a finite size particle in a weak gravitational fiel

mv̇m5Fm
S~G,a!, ~18!

which is just the geodesic equation in our approximation
is interesting to note that in the point particle limita→0, the
self-force~17! reproduces exactly the result~11! obtained by
Havas and Goldberg@6#.

The physical meaning of the self-force can be seen fr
the special case of a mass distribution in the form of a t
mass shell analogous to an electric surface charge dist
tion. From Eq.~68! it then follows that the sum in Eq.~17!
can be carried out and one obtains

Fm
S~G,a!52

11

3

Gm2

a

1

ta
@vm~t2ta!

1vm~t!va~t!va~t2ta!#2dmv̇m, ~19!

wheredm is the self-energy term that follows from Eqs.~15!
and ~68!,

dm5
11

3
Gm2/a. ~20!

The nonrelativistic limit of Eq.~19! is

FS~G,a!NR52
11

3

Gm2

a

1

ta
@v~ t2ta!2v~ t !#2dm v̇.

~198!
08401
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Both equations show that, as in the electromagnetic case
self-force introduces a finite shift in time.

IV. SUMMARY AND DISCUSSION

A. Self-force

The above derivations proved that when nonlinear ter
in the derivatives of the velocity are neglected, an exten
particle in relativistic motion has a self-force due to the
ternal interaction of its charge or mass distribution, which
given by

Fm
S~a!52C@hmn1vm~t!vn~t!#

3H (
n50

`
~21!n

n!
I nS ]

]t D n

v̇n~t!2I 0v̇nJ . ~21!

Herea is the radius of the~assumed! spherical particle,r its
charge or mass distribution, with*r d3x51, andI n is given
by the rest frame integral~6!. The constantC is

C5
2

3
e2 for a charge distribution, ~22a!

C52
11

3
Gm2 for a mass distribution. ~22b!

with e andm being the total charge and~gravitational! mass,
respectively. The last term in the curly brackets elimina
the inertial ~first! term of the sum. In the electromagnet
case, the same term must be added to the left side of
equation of motion thus providing for a mass renormaliz
tion. In the gravitational case, no mass renormalization
involved.

Fm
S(a) of Eq. ~21! turns the equation of motion into

differential equation of infinite order. However, in the sp
cial case of a sphere of uniformly distributed surface cha
or a thin mass shell, respectively, the sum in Eq.~21! can be
written in a closed form. The equation of motion then b
comes a differential-difference equation~a special form of a
differential equation of infinite order!.

The self-force~21! is to replace the von Laue type sel
force ~1! or ~11!, respectively, in the equations of motion
The great virtue of doing so is of course that they will th
have no pathological solutions. It also keeps theclassical
theory within its validity domain~the Compton wavelength
lC! by describing particles of sizea.lC and by therefore
excluding point particles.

B. Arrow of time

It is a well-known fact that all the fundamental dynamic
equations of physics are time-reversal invariant: Newton
Hamilton’s, Einstein’s gravitational equations, and Schro¨d-
inger’s. Also the Lorentz-Abraham-Dirac equation~2! with
Fm

S given by Eq. ~1! is time-reversal invariant~@3#, Sec.
9-2!. It may therefore be surprising that the self-force for
finite size particle, Eq.~21!, spoils this invariance. The rea
son is simple: the self-interaction of a finite size partic
7-4
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involves theretardedfield of one element acting on anoth
element of charge~or mass! some distance away. This intro
duces an asymmetry in time. In the point limit, the retard
and advanced actions can no longer be distinguished bec
the interaction distance between the charge~mass! elements
shrinks to zero. Therefore, in that limit the equations of m
tion are time-reversal invariant.

The fact that the equations of motion ofextendedparticles
are not time-reversal invariant when the self-force is tak
into account@12# removes an old puzzle: when one tries
explain the unidirectionality in time~the arrow of time! of
physical processes~the entropy law, the emission of radia
08401
d
use

-

tion, the Hubble expansion, etc.!, one has to start with the
time-symmetric fundamental dynamical equations. Th
qualitative difference between the fundamental dynam
and the actual physical processes which has been so puz
in the past is now eliminated by inclusion of the self-for
for finite size particles.
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