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Quantum entropy of a nonextreme stationary axisymmetric black hole due to a minimally
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By using the ’t Hooft ‘‘brick wall’’ model and the Pauli-Villars regularization scheme we calculate the
statistical-mechanical entropy arising from minimally coupled scalar fields which rotate with azimuthal angular
velocity V05VH (VH is the angular velocity of the black hole horizon! in general four-dimensional nonex-
treme stationary axisymmetric black hole space-time. We also show, for the Kerr-Newman and the Einstein-
Maxwell dilaton-axion black holes, that the statistical-mechanical entropy obtained from our derivation and the
quantum thermodynamical entropy by the conical singularity method are equivalent.@S0556-2821~99!02918-5#

PACS number~s!: 04.70.Dy, 04.62.1v, 97.60.Lf
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I. INTRODUCTION

Since Bekenstein and Hawking found that black hole
tropy is proportional to the event horizon area by compar
black hole physics with thermodynamics and from the d
covery of black hole evaporation@1–3#, much effort has
been devoted to the study of the statistical origin of bla
hole entropy. Especially, the idea to relate the entropy of
black hole to quantum excitations of the black hole has
tracted much attention@4–24#. The thermodynamical entrop
of the black hole is related to the covariant Euclidean f
energyFE@g,b#5b21W@g,b# @25#, whereb is the inverse
temperature. The functionW@g,b# is given on Euclidean
manifolds with the periodb in Euclidean timet. We can
calculate the free energyFE by the conical singularity
method. This procedure was consistently carried out for s
ies of static black holes and the rotating charged Kerr bl
hole@5,19,26,27,23#. On the other hand, canonical statistica
mechanical entropy can be derived from the free energyFC

of a system@25#, whereFC can be defined in terms of th
one-particle spectrum. One of the ways to calculateFC is the
‘‘brick wall’’ model ~BWM! proposed by ’t Hooft@4#. He
argued that black hole entropy is identified with t
statistical-mechanical entropy arising from a thermal bath
quantum fields propagating outside the horizon. In t
model, in order to eliminate the divergence which appe
due to the infinite growth of the density of states close to
horizon, ’t Hooft introduces a ‘‘brick wall’’ cutoff: a fixed
boundarySh near the event horizon within the quantum fie
does not propagate and the Dirichlet boundary condition
imposed on the boundary, i.e., the wave functionf50 for
r 5r (Sh). Later, Demers, Lafrance, and Myers@28# pointed
out that the Dirichlet condition can be removed if we use
Pauli-Villars regulated theory. The BWM has been succe
fully used in studies of the statistical-mechanical entropy
many black holes@4,10–14,17,22#.
0556-2821/99/60~8!/084015~7!/$15.00 60 0840
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Recently, Frolov and Fursaev@25# reviewed studies of the
relation between the thermodynamic entropy and
statistical-mechanical entropy of black holes. They show
that for general static black holes the covariant Euclide
free energyFE and the statistical-mechanical free energyFC

are equivalent when one uses the ultraviolet regulariza
method@25#.

As in the static case, the quantum entropy for station
axisymmetric black holes has also been studied by m
authors recently. Mann and Solodukhin@23# investigated the
covariant Euclidean formulation for the Kerr-Newman bla
hole. They showed that an Euclidean manifold which w
obtained by Wick rotation of the Kerr-Newman geomet
with a Killing horizon has a conical singularity similar to th
one which appears in static black holes. The one-loop qu
tum correction to the entropy of the charged Kerr black h
was calculated by applying the method of conical singula
ties. They found an interesting result, that the logarithm
term of the quantum entropy for the Kerr-Newman bla
hole can be written as a constant plus a term proportiona
the charge and so, for the Schwarzschild and the Kerr bl
holes, the logarithmic parts in the entropy are exactly eq

Cognola@24#, through the Euclidean path integral and u
ing a heat kernel andz-function regularization scheme, stud
ied the one-loop contribution to the entropy for a scalar fi
in the Kerr black hole. In the calculation he took an appro
mation of the metric, which, after a conformal transform
tion, takes a Rindler-like form. He pointed out in Ref.@24#
that the result is valid also for the Kerr-Newman black ho
Nevertheless, the result is in contrast with the correspond
one obtained in Ref.@23#.

In Refs. @11–13#, by using the ’t Hooft BWM Lee and
Kim and Ho, Kim and Park discussed the statistic
mechanical entropy of some stationary black holes, such
the Kerr black hole, Kerr-Newman black hole, and Kaluz
Klein black hole. The results showed that the entropies
be expressed askAH /«2, whereAH is the area of the even
©1999 The American Physical Society15-1
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horizon, and«5* r H

r H1hdrAgrr is the proper distance from th

horizon to ther H1h and theh the cutoff in the radial coor-
dinate near the horizon. However, the logarithmically div
gent term of the statistical-mechanical entropy for the fo
dimensional stationary axisymmetric black hole space-t
was not investigated.

Although much attention has been paid to the study of
quantum entropy of stationary axisymmetric black holes,
relation between the statistical-mechanical entropy and
thermodynamical entropy for rotating black holes has
been investigated yet@25#. The aim of this paper is to obtai
an expression of the general statistical-mechanical entr
for the general four-dimensional nonextreme stationary a
symmetric black hole by using the BWM and the Pau
Villars regularization scheme, and then make a compari
of the statistical-mechanical entropy obtained by us
BWM and the thermodynamical entropy by the conical s
gularity method for some well-known stationary axisymm
ric black holes.

The paper is organized as follows: In Sec. II, the gene
stationary axisymmetric black hole is introduced and so
properties of the black hole that are necessary to unders
the thermodynamics of quantum fields are studied. In S
III, making use of ’t Hooft’s BWM@21# we deduce a formula
of the statistical-mechanical entropy for the general non
treme stationary axisymmetric black hole. In the last sect
the statistical-mechanical entropies for the Kerr-Newm
and the Einstein-Maxwell dilaton-axion~EMDA! black holes
are studied by using the formula. Then the results are c
pared with the entropy obtained by the conical singula
method. Finally, we end with some conclusions.

II. SPACE-TIME OF THE GENERAL NONEXTREME
STATIONARY AXISYMMETRIC BLACK HOLE

In Boyer-Lindquist coordinates the most general line e
ment for a stationary axisymmetric black hole in fou
dimensional space-time can be expressed as

ds25gttdt21grr dr21gtwdtdw1guudu21gwwdw2, ~1!

wheregtt , grr , gtw , guu , andgww are functions of the co-
ordinatesr andu only. Because the space-time~1! is a sta-
tionary and axisymmetric one, a stationary Killing vect
field jm5(1,0,0,0) and an axial Killing fieldCm5(0,0,0,1)
exist @29#. By taking a linear combination ofjm andCm we
obtain a new Killing field

l m5jm1VHCm, ~2!

which is normal to the horizon of the black hole. In Eq.~2!
the constantVH is called the angular velocity of the eve
horizon. An interesting feature of the black hole worthy
note is that the norm of the Killing fieldl m is zero on the
horizon since the horizon is a null surface and the vectol m

is normal to the horizon. That is to say, the black hole ho
zon is a surface where the Killing fieldl m is null. Substitut-
ing l m into the formula of the surface gravity@30#, k2

52 1
2 l m;nl m;n , we obtain
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21

2
lim

r→r H

FA 21

grr ~gtt2gtw
2 /gww!

d

dr S gtt2
gtw

2

gww
D G5

2p

bH
,

~3!

wherer H represents the outermost event horizon, 1/bH is the
Hawking temperature, and here and hereafter the metric
nature is taken as (2,1,1,1). We know that the even
horizon is a null hypersurface determined by

gmn
]H

]xm

]H

]xn
50. ~4!

For the stationary axisymmetric black hole~1! the functionH
is a function ofr andu only. Substituting the metric~1! into
Eq. ~4! and discussing carefully we find

1

gtt~r H!
5S gtt2

gtw
2

gww
D

r H

50, ~5!

solutions of which determine the location of the event ho
zons. From Eq.~5! we know that for a nonextreme stationa
axisymmetric black hole 1/gtt can be expressed as

S gtt2
gtw

2

gww
D[G1~r ,u!~r 2r H!, ~6!

where G1(r ,u) is a regular function in the regioǹ .r
>r H and its value is nonzero on the outermost event hori
r H . On the other hand, sincek5const and 1/gtt50 on the
event horizonr 5r H , we find from Eq.~3! thatgrr must take
the following form:

grr [G2~r ,u!~r 2r H!, ~7!

where G2(r ,u) is a well-defined function in the regioǹ
.r>r H and is nonzero on the horizonr H too. Making use of
Eqs.~6! and ~7!, we obtain

grr S gtt2
gtw

2

gww
D 5

G1~r ,u!

G2~r ,u!
[2 f ~r ,u!, ~8!

where thef (r ,u) is a constant or a regular function on th
outermost event horizon and outside the horizon.

III. STATISTICAL-MECHANICAL ENTROPY OF THE
GENERAL NONEXTREME STATIONARY

AXISYMMETRIC BLACK HOLE

We now try to find an expression of the statistica
mechanical entropy due to the minimally coupled quant
scalar fields in a general four-dimensional stationary axisy
metric black hole. We first seek the total number of mod
with energy less thanE by using the Klein-Gordon equation
and then calculate a free energy. The statistical-mechan
entropy of the black hole is obtained by variation of the fr
energy with respect to the inverse temperature and se
b5bH .

Using a WKB approximation with
5-2
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f5exp@2 iEt1 imw1 iW~r ,u!#, ~9!

and substituting the metric~1! into the Klein-Gordon equa
tion of the scalar fieldf with massm and nonminimaljRf2

(R is the scalar curvature of the spacetime! coupling

1

A2g
]m~A2ggmn]nf!2~m21jR!f50, ~10!

we find @31#

pr
25

1

grr
@2gttE212gtwEm2gwwm22guupu

22~m21jR!#,

~11!

wherepr[] rW(r ,u) andpu[]uW(r ,u). If the scalar curva-
ture R takes a nonzero value at the horizon, then this reg
can be approximated by some sort of constant curva
space. However, the exact results for such a black h
showed that the mass parameter in the solution enters on
the combination (m22R/6) @21,32#. Therefore, inserting the
covariant metric into Eq.~11! we arrive at

pr
252

grr gww

gttgww2gtw
2 F ~E2Vm!2

1S gtt2
gtw

2

gww
D S m2

gww
1

pu
2

guu
1M2~r ,u! D G , ~12!

whereV[2gtw /gww and M2(r ,u)[m22( 1
6 2j)R. In this

paper our discussion is restricted to studying minima
coupled (j50) scalar fields. We know from Eq.~12! that
W(r ,u) can be expressed as

W~r ,u!56E rA 2grr gww

gttgww2gtw
2

K~r ,u!dr1c~u!, ~13!

where

K~r ,u!

5A~E2Vm!21S gtt2
gtw

2

gww
D S m2

gww
1

pu
2

guu
1M2~r ,u! D .

~14!

Therefore, in phase space the number of modes withE, m,
andpu is shown by@33#

n~E,m,pu!5
1

pE duE
r H1h

r E A 2grr gww

gttgww2gtw
2

K~r ,u!dr.

~15!

Zhao and Gui@34# pointed out that ‘‘a physical space
must be dragged by the gravitational field with an azim
angular velocityVH in the stationary axisymmetric spac
time ~1!. Apparently, a quantum scalar field in thermal eq
librium at temperature 1/b in the stationary axisymmetric
black hole must be dragged too. Therefore, it is rationa
08401
n
re
le
in

h

-

o

assume that the scalar field is rotating with angular veloc
V05VH . For such an equilibrium ensemble of states of t
scalar field, the free energy is given by

bF5E dmE dpuE dn~E,m,pu!ln@12e2b(E2V0m)#

5E dmE dpuE dn~E1V0m,m,pu!ln~12e2bE!

52bE dmE dpuE n~E1V0m,m,pu!

ebE21
dE

52bE n~E!

ebE21
dE, ~16!

with

n~E!5E dmE dpuE n~E1V0m,m,pu!

5
1

3pE duE
r H1h

r E drAg4

F S gtt2
gtw

2

gww
D S 11

gww(V2V0)2
2

gttgww2gtw
2 D G 2

3FE21S gtt2
gtw

2

gww
D S 11

gww(V2V0)2
2

gttgww2gtw
2 D

3M2~r ,u!G 3/2

, ~17!

where the functionn(E) presents the total number of mode
with energy less thanE. The integrations of them andpu in
the Eq. ~16! are taken only over the value for which th
square root in Eq.~14! exists.

Taking the integration of ther in Eq. ~17! for the case
V05VH we have

n~E!52
1

2pE duH AguugwwF2

3 S EbH

4p D 3

C~r ,u!1M2~r ,u!

3S EbH

4p D G lnS E2

Emin
2 D J

r H

2
1

3p S bH

4p D
3E duH AguugwwM2~r ,u!S E2

E3

Emin
2 D J

r H

, ~18!

where

C~r ,u!5
]2grr

]r 2
1

3

2

]grr

]r

] ln f

]r
2

2p

bHAf
S 1

guu

]guu

]r

1
1

gww

]gww

]r D2
2gww

f F ]

]r S gtw

gww
D G2

,

5-3
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Emin
2 52M2~r H ,u!S gtt2

gtw
2

gww
D

Sh

, ~19!

K̄25E21S gtt2
gtw

2

gww
D

Sh

M2~r H ,u!,

here and hereafterf [ f (r ,u), which is defined by Eq.~8!.
Now let us use the Pauli-Villars regularization schem

@28# by introducing five regulator fields$f i ,i 51, . . . ,5% of
different statistics with masses$m i ,i 51, . . . ,5% dependent
on the UV cutoff@28#. If we rewrite the original scalar field
08401
f5f0 andm5m0, then these fields satisfyS i 50
5 D i50 and

S i 50
5 D im i

250, whereD05D35D4511 for the commuting
fields andD15D25D5521 for the anticommuting fields
Since each of the fields makes a contribution to the f
energy of Eq.~16!, the total free energy can be expressed

bF̄5(
i 50

5

D ibFi . ~20!

Substituting Eq.~16! into Eq. ~18! and then taking the inte
gration overE we find
e
ical

s Eq.

ck hole
F̄5
21

48

bH

b2E du$Aguugww% r H(i 50

5

D iM i
2~r H ,u!ln Mi

2~r H ,u!2
1

2880

bH
3

b4

3E duXAguugwwH ]2grr

]r 2
1

3

2

]grr

]r

] ln f

]r
2

2p

bHAf
S 1

guu

]guu

]r
1

1

gww

]gww

]r D2
2gww

f F ]

]r S gtw

gww
D G2J C

r H

3(
i 50

5

D i ln Mi
2~r H ,u!, ~21!

whereMi
2(r H ,u)5m i

22 1
6 R. Then the total statistical-mechanical entropy at the Hawking temperature 1/b51/bH is given by

S5Fb2
]F̄

]b
G

b5bH

5
1

48pE dudw~Aguugww!r H(i 50

5

D iM i
2~r H ,u!ln Mi

2~r H ,u!

1X 1

32345pE dudwAguugwwH ]2grr

]r 2
1

3

2

]grr

]r

] ln f

]r
2

2p

bHAf
S 1

guu

]guu

]r
1

1

gww

]gww

]r D
2

2gww

f F ]

]r S gtw

gww
D G2J C

r H

(
i 50

5

D i ln Mi
2~r H ,u!. ~22!

Using the assumption that the scalar curvatureR at the horizon is much smaller than eachm i and noting that the area of th
event horizon is given byAS5*dw*du$Aguugww% r H

, we obtain at last the following expression of the statistical-mechan
entropy:

S5
AS

48p (
i 50

5

D im i
2 ln m i

21F2
1

6348pE dudw~RAguugww!r H
1

1

32345pE dudwXAguugwwH ]2grr

]r 2
1

3

2

]grr

]r

] ln f

]r

2
2p

bHAf
S 1

guu

]guu

]r
1

1

gww

]gww

]r D2
2gww

f F ]

]r S gtw

gww
D G2J C

r H

G(i 50

5

D i ln m i
2 , ~23!

which is valid for the general nonextreme stationary axisymmetric black holes which the metric can be expressed a~1!
in the Boyer-Lindquist coordinates and their signature is (2,1,1,1). For black holes with signature (1,2,2,2) a
corresponding formula can be obtained by replacing thebH with 2bH in Eq. ~23!.

IV. DISCUSSION AND SUMMARY

In this section, let us begin a discussion with the study of the statistical-mechanical entropy of the Kerr-Newman bla
and EMDA black hole by using formula~23!.
5-4
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A. Entropy of the Kerr-Newman black hole

In Boyer-Lindquist coordinates, the metric of the Kerr-Newman black hole@35,36# takes the form

gtt52
D2a2 sin2u

r2
, gtw52

a sin2u~r 21a22D!

r2
,

grr 5
r2

D
, guu5r2, gww5S ~r 21a2!22Da2 sin2u

r2 D sin2u, ~24!

with

r25r 21a2 cos2u, D5~r 2r 1!~r 2r 2!, ~25!

wherer 15r H5M1AM22Q22a2, r 25M2AM22Q22a2, andM andQ represent the mass and charge of the black h
respectively. Using the metric~24! we get

H ]2grr

]r 2
1

3

2

]grr

]r

] ln f

]r
2

2p

bHAf
S 1

guu

]guu

]r
1

1

gww

]gww

]r D2
2gww

f F ]

]r S gtw

gww
D G2J

r 1

5
16r 1

2 @~r 1r 22a2!2~r 11r 2!r 1#14@~a22r 1r 2!13~r 11r 2!r 1#r2

r6
1

2~a22r 1r 2!

r4

1
2a2~11cos2u!r228a2~r 1

2 1a2!cos2u

r6
,

R50. ~26!

Inserting Eq.~26! into Eq. ~23! and then taking the integrations of theu andw we find that the statistical-mechanical entro
of the Kerr-Newman black hole is given by

SKN5
AS

48p (
i 50

5

D im i
2 ln m i

22
1

90H 11
3~a22r 1r 2!

4r 1
2 F11

r 1
2 1a2

ar1
arctanS a

r 1
D G J (

i 50

5

D i ln m i
2 , ~27!

whereAS54p(r 1
2 1a2). Noting r 1r 22a25Q2 and the Pauli-Villars regularization scheme caused a factor of2 1

2 for the
second part in Eq.~27!, we know that the statistical-mechanical entropy~27! coincides with the Mann-Solodukhin’s result@23#
which was obtained by using the conical singularity method.

B. Entropy of the stationary axisymmetric EMDA black hole

The stationary axisymmetric EMDA black hole metric@we take the solutionb50 in Eq.~14! in Ref. @2#; the reason we use
this solution is that the solutionbÞ0 cannot be interpreted properly as a black hole# is described by@37#

gtt52
D2a2 sin2u

S
, gtw52

a sin2u@~r 21a222dr !2D#

S
,

grr 5
S

D
, guu5S, gww5S ~r 21a222dr !22Da2 sin2u

S D sin2u, ~28!

with

S5r 222dr1a2 cos2u, D5r 222mr1a25~r 2r 1!~r 2r 2!, ~29!

wherer 15m1Am22a2, r 25m2Am22a2. The massM, the angular momentumJ, the electric chargeQ, and the magnetic
chargeP of the black hole are, respectively, given by

M5m2d, J5a~m2d!, Q5A2vd~d2m!, P5g. ~30!

By using the metric~28! we obtain
084015-5
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H ]2grr

]r 2
1

3

2

]grr

]r

] ln f

]r
2

2p

bHAf
S 1

guu

]guu

]r
1

1

gww

]gww

]r D2
2gww

f F ]

]r S gtw

gww
D G2J

r 1

5
16r 1

2 @~2d2r 12r 2!r 1#14d~8r 123d!~r 1
2 22dr11a2!

S3
1

4@~3r 122d!~r 11r 222d!2d2#

S2

1
2d~r 11r 222d!~S22dr1!

S3
1

2a2~11cos2u!S28a2~r 1
2 1a222dr1!cos2u

S3
,

R5
2a2d2 sin2u

S3
. ~31!
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Substituting Eq.~31! into Eq. ~23! and then taking the inte
gration of theu andw we find that the statistical-mechanic
entropy of the EMDA black hole is

S5
AS

48p (
i 50

5

D im i
2 ln m i

22
1

90

3H 11
9d2

8r 1
2 216dr1

1

9dH 3a2d1~r 1
2 22dr1!F4

3
~r 11r 2!2dG J

16~r 1
2 22dr1!2

3F11
r 1

2 1a222dr1

aAr 1
2 22dr1

arctanS a

Ar 1
2 22dr1

D G J
3(

i 50

5

D i ln m i
2 , ~32!

whereAS54p(r 1
2 1a222dr1). In order to compare the en

tropy ~32! with the thermodynamical entropy obtained by t
covariant Euclidean formulation, we@38# calculated the ther-
modynamical entropy of the EMDA black hole by using t
conical singularity method of Ref.@23#. We also find that the
results obtained by the two methods are equivalent.

From Eq.~27! or Eq. ~32! we find the same result for th
Kerr black hole@setting Q50 in Eq. ~27! or d50 in Eq.
08401
~32!# as that found by Mann and Solodukhin in Ref.@23#;
i.e., the quantum entropy does not depend on the rota
parametera and coincides with the quantum entropy of th
Schwarzschild black hole. We think the reason is that
quantum entropy is mainly caused by quantum scalar fie
near the event horizon and in the region the scalar fields
corotating with the black hole.

In summary, by using the BWM and with the Pau
Villars regularization scheme, we investigate the statistic
mechanical entropy arising from minimally coupled quantu
scalar fields rotating with angular velocityV0 in the general
four-dimensional nonextreme stationary axisymmetric bla
hole space-time. An expression of statistical-mechanical
tropy is obtained for the caseV05VH . The Kerr-Newman
black hole and the EMDA black hole are studied. It is sho
that the statistical-mechanical entropy obtained by using
mula ~23! and the quantum thermodynamical entropy d
rived from the covariant Euclidean formulation~by using the
conical singularity method! are equivalent for the Kerr-
Newman and the EMDA black holes. The result fills in th
gaps mentioned in Ref.@25#, that the relation between th
canonical and covariant Euclidean formulations in the ro
ing black hole has not been investigated. The study m
provide us with a better understanding of the relations
between the different entropies to the black holes.
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