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By using the 't Hooft “brick wall” model and the Pauli-Villars regularization scheme we calculate the
statistical-mechanical entropy arising from minimally coupled scalar fields which rotate with azimuthal angular
velocity Qo=Qy (Qy is the angular velocity of the black hole horizan general four-dimensional nonex-
treme stationary axisymmetric black hole space-time. We also show, for the Kerr-Newman and the Einstein-
Maxwell dilaton-axion black holes, that the statistical-mechanical entropy obtained from our derivation and the
qguantum thermodynamical entropy by the conical singularity method are equiN&6586-282199)02918-5

PACS numbsg(s): 04.70.Dy, 04.62tv, 97.60.Lf

I. INTRODUCTION Recently, Frolov and Fursa¢@5] reviewed studies of the
relation between the thermodynamic entropy and the
Since Bekenstein and Hawking found that black hole enstatistical-mechanical entropy of black holes. They showed
tropy is proportional to the event horizon area by comparinghat for general static black holes the covariant Euclidean
black hole physics with thermodynamics and from the dis-free energy=F and the statistical-mechanical free eneFdy
covery of black hole evaporatiofl—3], much effort has are equivalent when one uses the ultraviolet regularization
been devoted to the study of the statistical origin of blackmethod[25]. _
hole entropy. Especially, the idea to relate the entropy of the AS in the static case, the quantum entropy for stationary
black hole to quantum excitations of the black hole has at@xiSymmetric black holes has also been studied by many

tracted much attentiof#—24]. The thermodynamical entropy autho_r S recent_ly. Mann and soloduklﬁﬁﬁ] investigated the
of the black hole is related to the covariant Euclidean fre covariant Euclidean formulation for the Kerr-Newman black

E _ -1 . . ei’nole. They showed that an Euclidean manifold which was
?enrirge};ztu[rge’ﬂ ']I'h eB fuxgi%ldﬁ\;l% [25}’ ivs\/hei:/eei If)r:hgulgl\i/s;i obtained by Wick rotation of the Kerr-Newman geometry
P : : _g,ﬁ > given with a Killing horizon has a conical singularity similar to the
manifolds with the period3 in Euclidean timer. We can

E X ) ) one which appears in static black holes. The one-loop quan-
calculate the free energy¥™ by the conical singularity y,m correction to the entropy of the charged Kerr black hole

method. This procedure was consistently carried out for studyas calculated by applying the method of conical singulari-
ies of static black holes and the rotating charged Kerr blackjeg They found an interesting result, that the logarithmic
hOle[5,19,26,27,23 On the other hand, canonical statistical- term of the quantum entropy for the Kerr-Newman black
mechanical entropy can be derived from the free en€fgy hole can be written as a constant plus a term proportional to
of a system25], whereF® can be defined in terms of the the charge and so, for the Schwarzschild and the Kerr black
one-particle spectrum. One of the ways to calcukdtds the  holes, the logarithmic parts in the entropy are exactly equal.
“brick wall” model (BWM) proposed by 't Hooff4]. He Cognola[24], through the Euclidean path integral and us-
argued that black hole entropy is identified with theing a heat kernel ang-function regularization scheme, stud-
statistical-mechanical entropy arising from a thermal bath ofed the one-loop contribution to the entropy for a scalar field
quantum fields propagating outside the horizon. In thisin the Kerr black hole. In the calculation he took an approxi-
model, in order to eliminate the divergence which appearsnation of the metric, which, after a conformal transforma-
due to the infinite growth of the density of states close to th&ion, takes a Rindler-like form. He pointed out in RE24|
horizon, 't Hooft introduces a “brick wall” cutoff: a fixed that the result is valid also for the Kerr-Newman black hole.
boundary2,, near the event horizon within the quantum field Nevertheless, the result is in contrast with the corresponding
does not propagate and the Dirichlet boundary condition waene obtained in Ref.23].

imposed on the boundary, i.e., the wave functips 0 for In Refs.[11-13, by using the 't Hooft BWM Lee and
r=r(3;). Later, Demers, Lafrance, and Myd@8] pointed Kim and Ho, Kim and Park discussed the statistical-
out that the Dirichlet condition can be removed if we use themechanical entropy of some stationary black holes, such as
Pauli-Villars regulated theory. The BWM has been successthe Kerr black hole, Kerr-Newman black hole, and Kaluza-
fully used in studies of the statistical-mechanical entropy forKlein black hole. The results showed that the entropies can
many black hole$4,10-14,17,2p be expressed agA, /e2, whereA, is the area of the event
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horizon, anck =f::+hdr\/a is the proper distance from the 1 P d @2 o
horizon to ther;+h and theh the cutoff in the radial coor- ™~ Tr[TH O (On— 02/ )a Ot — P =B
dinate near the horizon. However, the logarithmically diver- o' oo 3

gent term of the statistical-mechanical entropy for the four-

dimensional stationary axisymmetric black hole space-timevherer, represents the outermost event horizog,lis the

was not investigated. Hawking temperature, and here and hereafter the metric sig-
Although much attention has been paid to the study of the\ature is taken as—,+,+,+). We know that the event

quantum entropy of stationary axisymmetric black holes, theéhorizon is a null hypersurface determined by
relation between the statistical-mechanical entropy and the

thermodynamical entropy for rotating black holes has not JH oH
been investigated y¢25]. The aim of this paper is to obtain ’W&X—# X’
an expression of the general statistical-mechanical entropy

for the g_eneral four-dimensio_nal nonextreme stationary a?(iFor the stationary axisymmetric black hdls the functionH
symmetric black hole by using the BWM and the Pauli-jq 5 fnction ofr and @ only. Substituting the metri€l) into
Villars regularization scheme, and then make a compansogq_ (4) and discussing carefully we find

of the statistical-mechanical entropy obtained by using

=0. (4)

BWM and the thermodynamical entropy by the conical sin- 1 92
gularity method for some well-known stationary axisymmet- —— = 9u— ﬂ) =0, (5
ric black holes. g7 (rn) Yool

The paper is organized as follows: In Sec. Il, the general
stationary axisymmetric black hole is introduced and someolutions of which determine the location of the event hori-
properties of the black hole that are necessary to understa@@ns. From Eq(5) we know that for a nonextreme stationary
the thermodynamics of quantum fields are studied. In Sec@xisymmetric black hole @/* can be expressed as
[ll, making use of 't Hooft's BWM[21] we deduce a formula )
of the statistical-mechanical entropy for the general nonex- G
treme stationary axisymmetric black hole. In the last section, Gu Joe
the statistical-mechanical entropies for the Kerr-Newman
and the Einstein-Maxwell dilaton-axidEMDA) black holes ~ Where Gy(r,6) is a regular function in the regiom>r
are studied by using the formula. Then the results are con®r'y and its value is nonzero on the outermost event horizon
pared with the entropy obtained by the conical singularityr;. On the other hand, since=const and J"'=0 on the
method. Finally, we end with some conclusions. event horizorr =ry, we find from Eq(3) thatg"™ must take

the following form:

9"'=Gy(r,0)(r—ry), (7)

=Gy (r,0)(r—ry), (6)

II. SPACE-TIME OF THE GENERAL NONEXTREME
STATIONARY AXISYMMETRIC BLACK HOLE

In Boyer-Lindquist coordinates the most general line ele-Wneré Ga(r, ) is a well-defined function in the region
ment for a stationary axisymmetric black hole in four- ~ =T andis nonzero on the horizop too. Making use of

dimensional space-time can be expressed as Egs.(6) and(7), we obtain
2
_ Gq(r,0
ds?=gudt?+ g, dr2+ g, dtde+gy,d6?+g,,.de?, (1) grr( - Gie | _ G )E_f(r,o), (8)
g(p(p Gz(r,a)

wheregy, 9, Gie» 9gg, andg,, are functions of the co- ) )
ordinatesr and @ only. Because the space-tim® is a sta- where thef(r,6) is a constant or a regular fqncnon on the
tionary and axisymmetric one, a stationary Killing vector Outermost event horizon and outside the horizon.
field £#=(1,0,0,0) and an axial Killing field?#=(0,0,0,1)
exist[29]. By taking a linear combination of* andV* we . STATISTICAL-MECHANICAL ENTROPY OF THE
obtain a new Killing field GENERAL NONEXTREME STATIONARY
AXISYMMETRIC BLACK HOLE
[#=¢r+ QuTH, (2
We now try to find an expression of the statistical-

which is normal to the horizon of the black hole. In E)  mechanical entropy due to the minimally coupled quantum
the constant)y is called the angular velocity of the event scalar fields in a general four-dimensional stationary axisym-
horizon. An interesting feature of the black hole worthy of metric black hole. We first seek the total number of modes
note is that the norm of the Killing fielt¥ is zero on the with energy less thak by using the Klein-Gordon equation,
horizon since the horizon is a null surface and the velctor and then calculate a free energy. The statistical-mechanical
is normal to the horizon. That is to say, the black hole hori-entropy of the black hole is obtained by variation of the free
zon is a surface where the Killing field is null. Substitut- energy with respect to the inverse temperature and setting
ing |* into the formula of the surface gravitj30], x?  B=py.
=— %I”?”IM;V, we obtain Using a WKB approximation with
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d=exd —iEt+ime+iW(r,6)], 9) assume that the scalar field is rotating with angular velocity
Q¢=Qy. For such an equilibrium ensemble of states of the
and substituting the metric) into the Klein-Gordon equa- scalar field, the free energy is given by
tion of the scalar fieldp with massu. and nonminimakR ¢?

(R is the scalar curvature of the spacetinseupling BFZJ dmf dpaJ' dn(E,m,py)In[1—e AE~om]

1
——3,(V—99*"d,¢) — (u?+ ER) $=0, (10
o L(N—=099"",¢) = (n“+ER) @

we find[31]

:fdmfdpaj dn(E+Qym,m,p,)In(1—e AE)

B N(E+Qem,m,py)
__ﬁfdmfdp(,f N dE

1
p?:E[ —g"E*+2g"YEm—g#*m’—g"’pj— (u*+ {R)],

ap ——p[ e 16

wherep,=4d,W(r, ) andp,=d,W(r,#). If the scalar curva-

ture R takes a nonzero value at the horizon, then this regiomnith

can be approximated by some sort of constant curvature

space. However, the exact results for such a black hole

showed that the mass parameter in the solution enters only ift(E) = f dmf dp@j N(E+Qm,m,py)
the combination &?— R/6) [21,32. Therefore, inserting the

covariant metric into Eq(11) we arrive at 1 f 4o f re drvg,
3w ry+h 2 92 2
[oh Pe(Q-0Qp)?
pf=—M{(E—Qm)2 |:(gtt_g_¢)<l+m
gttg(p(p_gup eP tt9 oo te
2 2 2 2 2
g m p g a0-0.)2
+ gn—ﬂ)<—+—”+Mz(r,6)”, (12) x| E2+ gtt_%)(ﬁ—w 0)2)
gtp(p g(’p(p 9oo g"""o gttgzpzp_gt(p

where Q=—g,,/9,, and M?(r,0)=pu?— (5 - £R. In this

paper our discussion is restricted to studying minimally XM2(r, 6)
coupled ¢=0) scalar fields. We know from Ed12) that

W(r,6) can be expressed as

: (17

where the functiom(E) presents the total number of modes
r ~ O Yo with energy less thak. The integrations of thenandp, in
W(f,0)=if — S K(r,0)dr+c(60), (13  the Eq.(16) are taken only over the value for which the
9tt9ee~ Oty square root in Eq(14) exists.

Taking the integration of the in Eq. (17) for the case

where
0o=Q we have

K(r,0)

= \/(E—Qm)2+

2 2 n E)——ij des E(%)E’c:(r 6)+M?23(r,6)
1+&+M2(I’,ﬁ)). ( B 2 900g<p<p 3\ 47 ' ( !
g(p(p 900

-3
tt g<P<P

E E2 1
(14 o EPH 1y EZ|L L (Bu
. ) A E2. 3w \dnw
Therefore, in phase space the number of modes Rjtm, L

andp, is shown by{33]

E3
1 " “ong xfdal \/ggggWMZ(r,o)(E—ET)] . (19
n(E.m.pg)=—f daf ——EK(r,0)dr. min/ J ¢,
m rHth gttg<p<p_gt<p

(15  where

Zhao and Gui34] pointed out that “a physical space”
must be dragged by the gravitational field with an azimuth C(r,0)=

a%g" 349" dinf 2w (i 900

angular velocityQ),, in the stationary axisymmetric space- gr2 2.9r g pB\f\ Qg
time (1). Apparently, a quantum scalar field in thermal equi- 14 5 P 5
librium at temperature B in the stationary axisymmetric +_M) _ ﬂ[_(%”
black hole must be dragged too. Therefore, it is rational to 9gp OF folor\gee/ ]’
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5 ) gtch = ¢y and u= o, then these fields sans@ _oAi=0 and
Enin=—M(ry, )| gu— 9. (19 35 ,A;u?=0, whereA,=Az=A,=+1 for the commuting
#er3 fields andA;=A,=A:=—1 for the anticommuting fields.
5 Since each of the fields makes a contribution to the free
K2=E2+| g, — %) MZ(r,,6) energy of Eq(16), the total free energy can be expressed as
ool s,
here and hereaftdr=1(r, #), which is defined by Eq(8). ﬁEzE A;BF;. (20
=0

Now let us use the Pauli-Villars regularization scheme
[28] by introducing five regulator fieldsp; ,i=1,...,3 of
different statistics with masses;,i=1, ...,3 dependent Substituting Eq(16) into Eq.(18) and then taking the inte-
on the UV cutoff[28]. If we rewrite the original scalar field gration overE we find

B3
B4

g Sag”&lnf 27 [ 1 dg 1 dge| 29 g
xf ( /—9009¢>¢| _ - 00+_ 0@ frpw e

2 o or BuVflGos I Gy, Ir (o

-1 1
Eﬁ_'gf de{\/_gwg‘P(P}rHZ AME(T DI My, 0) = 5o

5
X, A InM3(ry,6), (21)
=0

whereMiz(rH ,0)=,ui2— £R. Then the total statistical-mechanical entropy at the Hawking temperat@rel1p,, is given by

5
3 Jk 1
20,8 487 dode(vg M2 2
B=By 8 j ( eﬁg‘P‘P)rHiZo A|M|(rH,0)|nMI(rH,0)

9%g" 3ag”a|nf 2m (1 9949 1 99,
(32><457-rf dadq"g”g‘”’[ T2 Tar B\ Qag O "9, or

5
zgfw[ (%” }) 2, AilnME(ry,6). “

9ee

Using the assumption that the scalar curvafrat the horizon is much smaller than eaghand noting that the area of the
event horizon is given by = [de [d6{ \/ggggw}rH, we obtain at last the following expression of the statistical-mechanical

entropy:

5

Az 3 ag" dinf
S= E Al/’ﬂ In /'Ll

azgrr
X487 fdad‘P(Rvgf”’gw)fH 32% 457 Jd”d‘o(vg””gW{ T2 ar

2z)

which is valid for the general nonextreme stationary axisymmetric black holes which the metric can be expresséd)as Eq.
in the Boyer-Lindquist coordinates and their signature 4s,€,+,+). For black holes with signaturet,—,—,—) a
corresponding formula can be obtained by replacing@hewith — By in Eq. (23).

2 ( 1 &ggaJri &gw) 20,0 @

5
T B Jf\g,, or In w?
,BH\/? Qgg Or oo ar f |:20 AI In Mi (23

IV. DISCUSSION AND SUMMARY

In this section, let us begin a discussion with the study of the statistical-mechanical entropy of the Kerr-Newman black hole
and EMDA black hole by using formulé23).
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A. Entropy of the Kerr-Newman black hole
In Boyer-Lindquist coordinates, the metric of the Kerr-Newman black fglie36 takes the form
A—a?®sirte asirto(r’+a?—A)

Q= > Gip= — ,
p? p?

2
_Pr _ 2 _
O = A’ gaa Py g<p<p

5 sirfe, (24)
p

(r2+a2)2—Aa2sin29>

with
p’=r?+a®cosh, A=(r—r.)(r—r_), =

wherer . =ry=M+M?—=Q%-a?, r_=M—/M?—Q?—a?, andM andQ represent the mass and charge of the black hole,
respectively. Using the metri@4) we get

azg”+3 ag" alnf 27 [ 1 ageﬁ+ 1 ag(,,(,,) Zgw[ (gtq,”
g2 2 dr or BH\/? Jpo O Qyp OF f Joo

"+

B 16ri[(r+r_—a2)—(r++r_)r+]+4[(a2—r+r_)+3(r++r_)r+]p2+ 2(a%—=r,r_)

p° p*

. 2a%(1+cog0)p?—8a%(r2 +a?)cos

p° ’

R=0. (26)

Inserting Eq.(26) into Eq. (23) and then taking the integrations of theand ¢ we find that the statistical-mechanical entropy
of the Kerr-Newman black hole is given by

As 1 3(a%-r.r_) r’ +a? a
SN= 780 E Aip?In pu?— 90|1+ e 1+ ar - arctan —
+

5
]Zo Ajinpf, (27)

whereAz=47r(ri+a2). Noting r .r _ —a?=Q? and the Pauli-Villars regularization scheme caused a factor bffor the
second part in Eq27), we know that the statistical-mechanical entr@py) coincides with the Mann-Solodukhin’s res[3]
which was obtained by using the conical singularity method.

B. Entropy of the stationary axisymmetric EMDA black hole

The stationary axisymmetric EMDA black hole mete take the solutiob=0 in Eq.(14) in Ref.[2]; the reason we use
this solution is that the solutiob# 0 cannot be interpreted properly as a black hidedescribed by37]

A—a?sirfe asirtd[(r’+a’—2dr)—A]

gtt:_Tv Oto= — s )

3 (r’+a2—2dr)?—Aa?sirfg\
On=3 9= O™ 5 sir’ g, (28)

with
S=r2-2dr+a%cogd, A=r’-2mr+a’=(r—r,)(r—r_), (29

wherer . =m+Jm?—a’?, r_=m-m?—a?. The mas3\, the angular momentud the electric charg®, and the magnetic
chargeP of the black hole are, respectively, given by

M=m-d, J=a(m-d), Q=\2wd(d—m), P=g. (30

By using the metrid28) we obtain
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i(%) 2]
I\ Qg .

16ri[(2d—r —r )r ]+4d(8r,—3d)(r? —2dr, +a’) . A[(3r,—2d)(r,+r_—2d)—d?]

azg"+3 gg" oinf 27 [ 1 (9900+ 1 ﬂgw) 2940
a2 2.9 g Jf\Ges I Gy, I f

33 32
2d(r,+r_—2d)(S—2dr,) 2a’1+cos6)S—8a’(r’+a’—2dr,)coso
+ 23 + 23 ,
2a%d?sirte

Substituting Eq(31) into Eq. (23) and then taking the inte- (32)] as that found by Mann and Solodukhin in RE23];
gration of thed and ¢ we find that the statistical-mechanical i.e., the quantum entropy does not depend on the rotation
entropy of the EMDA black hole is parametera and coincides with the quantum entropy of the
Schwarzschild black hole. We think the reason is that the
_As 2 2 2 quantum entropy is mainly caused by quantum scalar fields
T 487 & AjpiIn ui— 90 near the event horizon and in the region the scalar fields are
corotating with the black hole.
In summary, by using the BWM and with the Pauli-

5
S

9d2 Villars regularization scheme, we investigate the statistical-
X| 1+ mechanical entropy arising from minimally coupled quantum
8ri —1ledr, scalar fields rotating with angular velocify, in the general
4 four-dimensional nonextreme stationary axisymmetric black
9d{ 3a’d+(r2 —2dr.) —(r++r)—d” hole space-time. An expression of statistical-mechanical en-
+ 3 tropy is obtained for the case = . The Kerr-Newman
16(r2 —2dr,)? black hole and the EMDA black hole are studied. It is shown

that the statistical-mechanical entropy obtained by using for-
mula (23) and the quantum thermodynamical entropy de-
r2 +a%-2dr, a rived from the covariant Euclidean formulatidoy using the
+ arZ—2dr arcta 2 —2dr conical singularity methodare equivalent for the Kerr-
* * + + Newman and the EMDA black holes. The result fills in the
5 gaps mentioned in Ref25], that the relation between the
x> Ajiln w?, (320  canonical and covariant Euclidean formulations in the rotat-
i=0 ing black hole has not been investigated. The study may
provide us with a better understanding of the relationship
between the different entropies to the black holes.

x| 1

whereAs =4 (r2 +a?—2dr.). In order to compare the en-
tropy (32) with the thermodynamical entropy obtained by the
covariant Euclidean formulation, W88] calculated the ther-
modynamical entropy of the EMDA black hole by using the
conical singularity method of Reff23]. We also find that the
results obtained by the two methods are equivalent. This work was partially supported by the National Natural

From Eq.(27) or Eq.(32) we find the same result for the Science Foundation of China and Natural Science Founda-
Kerr black hole[settingQ=0 in Eqg. (27) or d=0 in Eq. tion of Hunan Province.
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