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Quantum gravity effects near the null black hole singularity
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The structure of the Cauchy horizon singularity of a black hole formed in a generic collapse is studied by
means of a renormalization group equation for quantum gravity. It is shown that during the early evolution of
the Cauchy horizon the increase of the mass function is damped when quantum fluctuations of the metric are
taken into accoun{.S0556-282(199)02816-1
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[. INTRODUCTION times. More complete investigations in four dimensipnk
have been performed in the semiclassical approximation by

Recently much progress has been made in understandirmgnsidering a massless minimally coupled scalar field, but
the formation of singularities in realistic black holes. After they were inconclusive about the ‘“sign” of the quantum
the seminal work by Poisson and Isra#], the outcome of correction, i.e. about whether it would lead to a stronger or to
several investigations with spherical modésee[2] for a  a weaker divergence.
general overvieywwas that the spacetime develops a null  The objective of the present investigation is to show that
scalar singularity at the Cauchy horiz6@H) whose subse- quantum fluctuations of the gravitational field indeed weaken
quent evolution eventually stops at the final spacelike singuthe strength of the singularity at the inner horizon. This result
larity atr =0 [3]. is obtained by studying the running of the Newton constant

In particular the Petrov type D componet, of the  at large momenta by means of the non-perturbative
Weyl curvature diverges exponentially with advanced time akenormalization-group equatiof8—10] which governs the
this lightlike hypersurface, although the “measured” tidal g5l dependence of the effective average adtiofor grav-

distortion is bounded. The metric tensor is regular in a suit-lty [11]. T, is a Wilson-type effective action with a built-in

able local chart adapted to the inner horizon and the metriﬁﬁrared(lR) cutoff at the mass scale The functionall’, is
perturbations are small. This scenario is likely to be essenspiained by integrating out the quantum fluctuations with
. o Mhomenta between a fixed ultraviolgtV) cutoff k,,, and the
metry [4], but the structure of the singularity is more com- variable IR cutoffk. In this framework, a renormalizable

plicated then since the square of the Weyl tensortheor . . Do ) :

VN . i y with the classical actio®is quantized by solving the
Cpyn C**™ is dominated by the radiative componeig, flow equation subject to the initial conditiohi, =S and
of a Petrov type N curvaturb]. wv

It is an interesting question whether quantum effects cafetting thenkyy— e k—0 (after suitable renormalization
modify the classical evolution of the fields in a significant _ Vhat makes the effective average action an ideal tool for
way. As far as the classical evolution is concerned, causalitytudying quantum gravity is the fact that this method can
does not permit our ignorance about the correct form of thé!S0 be used in order to renormalization-group-evolve
dynamics in the inner, Planckian curvature regions of thdc0&rse grainthe actions of non-renormalizable effective
interior to infect the description of the overlaying layers in 1€ld theories. In this case one assumes that there is some
terms of classical general relativity. The radial coordindge  undamental theory which has been “partially quantized,
in fact timelike in the interior of a spherical hole. i.e., its qua_mtum fluctuations with momenta from infinity

This picture changes in quantum field theory because ifOWn to a fixed scal&,y have been integrated out already.
loop calculations even states localized outside the light congNiS leads to an effective actid®y which, when evaluated
have an impact on the value of the renormalized quantitied {rée approximation, correctly describes all phenomena
One can then imagine that the metric fluctuations near th¥/ith typical momenta of the ordes,y . If we are interested
inner horizon modify the infrared region where the Weyl in Processes at smaller momeitakyy , we can construct a
curvature is still growing but it has not yet reached Planckiar'€W €ffective action, appropriate for the lower scale by set-
levels. In particular it is interesting to see if the presence ofiNd I'k,, = Serr @nd solving the flow equation fdr, with this
some “self-regulator” mechanism could prevent the localinitial condition. Itis clear that for effective theories the limit
curvature from diverging at the CH. An indication has beenkyy—> should not be performed; hence the non-
given in[6] where it has been noticed that the classical di-renormalizability of a theory does not pose any problems in
vergence of the mass function in an evaporating black holéhis context.

(BH) can be damped out by the contribution of the blue- Quite generally, the effective actidn or the average ac-
shifted influx of the Hawking radiation at late advancedtion I'y encapsulatesll physical effects of a given theory.
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Once we have identified its leading terms for a given rangenverse of the distancebecause in the massless theory this
of momenta, no other quantum corrections beyond thoses the only relevant scale. The result of this substitution reads
which are already contained in the running coupling con-
stants parametrising the approximate formlgfneed to be V(n=—e’roHl1+bin(ro/r)+0O(e*)J/4mr (2
taken into account. In the case at hand, a truncated derivative
expansion in powers of the curvature tensor and its covarianyhere the IR reference scalg=1/u has to be kept finite in
derivatives are a sensible approximation as long ashe massless theory. Note that H@) is the correct(one-
k<mj, since the terms omitted are suppressed by higheloop, masslegdJehling potential which is usually derived by
powers ofk/m,. (m, denotes the Planck mag#Vithin this  standard perturbative methofs2]. Obviously the position
approximation, the most relevant term in the action is thedependent renormalization group improvemeft-e?(k),
Einstein-Hilbert term since it has the smallest canonical dik«1/r encapsulates the most important effects which the
mension. As a consequence, the most important effects @fuantum fluctuations have on the electric field produced by a
quantum gravity are encoded in the running of the associategoint charge. We argue that analogous substitut®n
coupling, i.e. Newton’s constant. Thus, when we incrédase — G(k) with an appropriatek=k(x*) yields the leading
from the classicali.e., IR) domain to larger values in order modification of the spacetime metric.
to explore gravity at smaller distances, the first sign of a
non-classical behavior is a changing value of Newton’s con-
stant. In the present paper we investigate the regime of mo-
menta where, on the one hand, the first quantum gravitational
effects appear already while on the other hand higher order Considering a spherically symmetric, charged BH the
invariants R? terms, etq. are not yet important. metric can be conveniently expressed using the coordinates
In the following we shall consider Einstein gravity as anx® (a,b=0,1) on the radial two-spaced,()=const and
effective field theory and we identify the standard Einstein-the functionr(x®) that measures the area of those two-
Hilbert action with the average actiohiy . Herekgpsis  spheres whose line elementridd)?. The metric element is

S

some typical “observational scale” at which the classicalthends?=g,,dx?dx’+r2dQ?. By defining the scalar fields
tests of general relativity have confirmed the Einstein-Hilbertf (x¥),m(x®) ~and —2«(x®)=df/or through f=1
action. We assume that also flor Ky, i.€. at higher ener-  —2GpdN/1 +Gop£?/r? the Einstein equations reduce to the
gies,I'y is well approximated by an action of the Einstein- two-dimensionally covariant equations

Hilbert form as long a& is not too close to the Planck scale.

II. QUANTUM GRAVITY EFFECTS BEHIND
THE INNER POTENTIAL BARRIER

The two parameters in this action, Newton’s constant and the Mabt kGap= —47Gopd (Tap— JapT)
cosmological constant, will depend d&n however, and the
flow equation will tell us how the running Newton constant R—20,k=87Gypd{ T—2P) ©)

G(k) and the running cosmological constak{k) depend
on the cutoff. Their experimentally observed values arewhere the static electro-magnetic field is generated by a
G(Kob9 =Gops and A (Kopd = Aqpe=0. The Newton constant charge of strengteandT,,, is the stress-energy tensor of the
defines the Planck mass accordingrg=1/y327Gps matter field whose two-dimensional traceTisind tangential
We fix a scalekyy>Kkqps in such a way that it is still pressure i€. From the conservation laws one finds the fol-
sufficiently below the Planck scale so tHat is not yet very  lowing two-dimensional wave equation for the mass function
different from the Einstein-Hilbert action, but is already
large enough for quantum gravitational effects to play a role. Om= — 167%r 3Gl 4y TP+ 87 G pf (P—T)
We start the renormalization group evolution at the skgle
with bare parameter&(kyy)=G and A(kyy)=A which
should be thought of as functions Gf,,sand A ;. We shall
use our result for the functio®(k), ke[kgps,Kyy], in order

+ AT ?G ok T— AT ?Gopd T2 (4)

This latter equation is the key to understanding the phenom-
to study the impact of the scale dependent Newton constaft O of the mass mfl.atlon. The late time behavior of the
on the mass-inflation scenario. exter.nal gravitational field produged during the collapse of a
In a sense, we shall “renormalization-group-improve” star s that of a(Kerr-Newman, in generhiblack hole of
the classical metric describing the late-time behavior of the&vﬁgggah&azg‘;pser;ib%% t\)/\)//itﬁ taﬂ zzlgi\;ltglrogarln\gﬁi\-/es
spacetime near the CH. Our method is similar to the follow- ole of ordetl Asya con\sle uencepo;the boundary conditions
ing renormalization-group based derivation of the Uehlingp ' . q ab : : Y
correction to the Coulomb potential in massless QHRB). set ‘?t the event horizon, tﬁ'qle _|nteract|0n term between
One starts from the classical potential ener(r) the influx and out-flux of gravitational waves scattered from
— 2471 and replaces? by the runnind oaude cou Ilin in the inner potential barrier triggers a divergent source term for
the one-loop apgroximatioyn' g gaug pling the local mass functiom(u,v). The outflow can be mod-
' elled as a radial stream of light-like material particles be-
e2(k)=eX(ko)[1—bIn(k/ko)]", b=e?(ky)/6m2. cause of the infinite blue-shift near the Cauchy Horizon. It is
(1) possible to show1] that near the CH

Hereby one may identify the renormalization pdirwith the m(v,r)~v PexoV  (v—oo) (5)
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%\‘\aﬁw C r2=r2—2G,{ A(U)+B(V)] 8

8 wherer is the location of the CH in the static BH spacetime
> configuration. The dimensionless functioAéU) and B(V)

are regular at the CHA(—)=B(0)=0, but B diverges

like INV[ — In(—kV)]P*? asV— 0~ while A is positive defi-

B ittty A nite andA is bounded. Even though the metric coefficients
Potential @O H and the scalar field> are both regular at the CH, the mass

oo Barrier function is divergent fo—0~, being

Gobs- :

m(U,V)= AB. (9)

)

We consider the evolution of the above geometry in the
mass-inflating regime starting from a value of the coordinate
V=V g for which the mass function is already exponentially
growingm(U,V)/my>1 (we assume51~mo>1 in Planck

E units) but the curvature has not yet reached Planckian values.
I°- At this point we need an explicit expression for the run-
ning Newton constant. We use the result obtained1lih]
where, for pure gravity, the evolution df, has been ob-
tained in the “Einstein-Hilbert approximation” where only
FIG. 1. Penrose conformal diagram of a collapsing star. Notethe \/—_g and \/—_gR opergtors are considered n the renor-
that the point H is not part of the manifold, but a singular point of Malization group flow. This amounts to truncating the space

this mapping. of all the actions to those of the form
Whergv is the standard advanced time Egdington-Finkelstein Fk[g.g]=(l@rrG(k))_1f d%x
coordinate. ky denotes the surface gravity of the Reis-sner-

Nord-stranstatic black hole that characterises the external —

field configuration). X Vo{~R(@)+2A(K}+Sy{9.9] (10
It must be observed that in E¢4) the strength of the

gravitational interactions between out-flux and in-flux is pro-

portional to the Newton constant. Hence small changés in

whereSy; is the classical background gauge fixing term. For
this truncation the flow equation reads

due to renormalization effects are then exponentially ampli- 1 o - -

fied by the mass function like in a magnifying lens. In par- k4, I'\[g,9]==Tr{(I'?[g,9]+ R I (g]) ko R I g]}

ticular if gravity is asymptotically free, the classical diver- 2

gence of the mass function can be weakened by the — —.-1 —

decreasing of the Newton constant at small distances. —Tr{(—M[g,g]+R§h[g]) KR Eh[g]}
In order to discuss this phenomenon in the mass-inflation 11

scenario we consider the model analyze@3hfor the scalar o

field collapse although our result should not depend on thisvhereg,,, , I'(?) and M denote the background metric, the
particular framework. We are interested in the asymptoticHessian ofl", with respect to the “ordinary” metric argu-
portion of the spacetime at late retarded tintee “corner”  mentg,,, and the Faddeev-Popov ghost operator, respec-
region near the point H in Fig.) before the strong focusing tively. The operator®R ' and R {" are the IR cutoffs in the
region wherer—0. The null Kruskal coordinate,V are  graviton and the ghost sector, respectively. They are defined

thus introduced, being in terms of an arbitrary smooth functioR,(p?) (interpolat-
ing between zero fop?— and a constantk? at p>=0)
koU=—exp(koU), KoV=—€xp«koV) (6) by replacingp? with the graviton and ghost kinetic operator,

) ) respectively. Inside loops, they suppress the contribution
where (1,v) are the retarded and advanced time coordinategrom modes with covariant momente<k.

In a neighborood of Y =—o,V=0) an approximate ana-  ypon projecting the renormalization group flow on the
lytical solution of the Einstein equations and the wave equayyo dimensional space spanned by the operatbrg and

tion for a massless minimally coupled scalar fidldcan be /=R the functional flow equation becomes two ordinary
found [3]. The explicit asymptotic expression for the metric differential equations fo5(k) and A (k). The equation for

IS the scale derivative of the running dimensionless Newton
constantg(k) =k?G(Kk) is found to be

__,'o 24002
ds*=—272dUdv+r*d0 @) ka(K)=[2+ (k) ]g(K) (12
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wheren(k)=gB;/(1—gB,) is an anomalous dimension in- . IMPROVED MODEL
volving two known functiong11] of the cosmological con-

. . 2
stant,B, andB,, Wh'.Ch depend_on th_e choice fat,(p°). . _iterative calculation, where the zeroth-order solution for the
Contrary fo the running of the dimensionless gauge COUpIInQ'netric is substituted into the running &fin order to calcu-

El(ekv)vtl(r)]chEo%sigﬁtbiestangnSﬁ(i)vne?szsl’crlltb 'ir;gstg?er#]r;nglgpgztgeerl?te the first-order correction of the metric. For the sake of

even in the lowest order of the Iooh expansion. In our frame—SImpIICIty let us now consider the simpler case of the cross-

work this is reflected by th&, dependence of .To lowest flow model discussed ifG].

order of an expansion ?;1 povbers?dfm one ma.y ignore the The first question to be answered is what is the analogue

. . ) p of the identificationkec 1/r which we used in QED. We are

impact of the running cosmological constant and set . ;

A(?():O Thus retSrning to %h sical units@gl(”n)d retaining looking for ax*-dependent cutofk=Kk(x") which respects

onl the'leadin’ term of thi/m eyx ansion the solution to general coordinate invariance and which measure the typical

£ y(12) d 9 p €XP mass scale set by the curvature of spacetime. Since in the

a- reads case at hand the metric is spherically symmetric, the natural

candidate for the cutoff is the “Coulombian” component of

G(K)=Gopd 1~ 0Gopk®+ O(K/m?)]. (13  the Weyl curvaturg[7]: kzoc_|\If2|:G?bSm(U,V)/r8. More:
precisely we use the classical metfaeroth-order approxi-
mation to define the position dependent IR cutoff by

We are now going to implement this mechanism in an

For pure gravity one obtain®=wg=-B;(A=0)/2>0
which assumes the numerical valug =4 (1— 7/144)/x for k2(V) =maxb?| W[} =maxb?Gypn(U,V)/r3} (15
a standard exponential cutdff1]. While w depends on the v U
shape ofRy, it can be shown thatv is positive for any
choice of this function. Consequently pure gravity is “anti-
screening:” Newton’s constant decreasek ascreases; i.e.,
it is large in the IR and becomes smaller in the UV.
Equation(13) is believed to be reliable as long kgy is

with b another fixed number much larger than unity and the
maximum is performed over the region néar —o. Here

we are invoking a kind of adiabatic approximation where the
use of a position dependent cutoff is justified because the

still below the Planck mass. K<kyy,<m,, the effect, in the mass functionm(U,V) is almost constant on the length

renormalized system, of higher curvature invariants such a calt_as_at which t_he e_lgenmodes integrated out are varying.
R2, R,,R*’ or R® which were omitted from the ansatz0) A similar approximation has already been used7hin a

is indeed small. In fact, those invariants have been classifieg€Mi-classical calculationFromk(V) one obtains a running

accordingly to their anomalous scaling dimension which ewton constant as a function of thecoordinate
characterize the linearised renormalization group flow near :

the Gaussian fixed poirffl0]. The result is that the flow in G(V)=Gop{1-AB(V)] (16)
the UV region is determined only by the “relevant” opera-
tors /g and VgR, and that any other invariant with a higher
canonical dimension is suppressed by additional powers of Y 3 4

k/m, [10]. We shall then assume that A=wb mUax{GobgA(U)/ro}. 17)

where

(14) It is now possible to evolve the classical geometry in &9
by considering the running Newton’s constant in the Einstein
equations. Within our approximation, the improvement

with a a fixed number well above unity. This defines the amounts to replacing

domain of validity of our approximation. ,

It is straightforward to include matter fields. In our model GobsT ab=Gapsl an( V) + GopsT an(U) (18

it might appear natural to keep the electro-magnetic field

classical but quantize the full scalar field. The only effect onwith

the running ofG is to shift the parametan. Using the same

k< kUV: mp/a

cutoff as above, one find$13] w=wgs=4/m—37/72 To=G(V) Tab(V) + GopalT ap(U). (19
which, again, is positive and leads to the same qualitative - ) .
features as pure gravity. This modified energy-momentum tensor is then covariantly

The running of G has dramatic consequences for theconserved since it satisfie3 {;r?)'°=0.
mass-inflation scenario. The leading quantum correction of From the Bianchi identities one obtains the following
the metric is obtained by replacin@,s in Eq. (9) for the  wave equation for the mass function:
mass function by the running Newton const&tk) with an
appropriately chosen scalke Since G(k)<G,,s, for any
value ofk>k,,s, we conclude that thquantum corrections
tend to damp the increase of the mass functibims quali-
tative conclusion is independent of the precise definition ofThe general solution is uniquely determined once the value
the cutoffk. It is a rather robust result therefore. of the fields along the characteristic=U g andV=V are

a

G
O(Gm) = — 1672r3G2T,, T2+ 2 % (20)
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given. Asymptotically the improved metric is still of the adiabatic approximation is not available any longéme

form (7) but Eq.(8) is now replaced by monotonicity of the function in Eq.13) suggests that taking
. o additional modes into account will lead to an even stronger
r<=r5—=2G(V)B(V) =2GxA(U). (21)  damping of the classical increase of the mass function. On

the other hand, by adding further matter fields the antiscreen-

By noticing thatG approaches its bare value very rapidly Oneing nature of the gravitational interaction could be destroyed

finds that the leading teriasV—0") on the right hand side i, "ninciple. (In Ref. [14] a condition on the number of the

of Eq_. (2(.)) is now given by the classically divergeﬁngab_ various species of fields implying>0 can be read off We
contribution. Thus, after the inner potential barrier, one f'ndsnevertheless believe that the qualitative features of our dis-

the solution cussion will hold for arbitrary matter systems with>0. In
Gope o particular for the matter system consisting of a massless
m(U,V)= (1- AB)AB (220  minimally coupled scalar field considered in this investiga-
Fo tion the quantum-corrected geometry is less singular than its

which replaces the classical expressi@. Inserting the classical counterpart.

function B one has more explicitly for the leading term V. CONCLUSIONS

m(U. V)= Gobs 1— A We have discussed a possible physiqal mechanism which

' ro —V[—In(— koV)]P*+2) has the effect of damping the classical increase of the mass
function behind the potential barrier inside a realistic black

A(U) hole. We believe that this mechanism is operative already for

X V[ In(—kqV) [P D) (23 black holes with massel >m, and before the Cauchy ho-
Ko rizon singularity is reached, i.e. in a regime of sub-Planckian

This is our main result. It confirms our earlier conclusion curvatures where it can be calculated reliably. On the basis
about the damped increase of the mass function within aff the present investigation we cannot make any claim about
improved approximation which takes the back reaction of théhe fate of the singularity at the CH. However, one can
metric into account. speculate that if the decrease Gf continues and thaG

A priori it might have appeared equally possible to per-—0 at the CH, the geometry of the spacetime near the late-
form the substitutionG,pc— G(k) directly in the Einstein time portion of the CH is regular with a sub-Planckian Weyl

equations. The identificatiok?= G(k)m/r3 leads to a non- curvature. In order to settle this issue completely a more
linear equation fork that up toO(kZ/mS) is equivalent to complete calculation is needed and we hope to address this

k%= G,qm/r3 which was used before. However, it is impor- problem in the future.
tant to observe that in this case a decreasinigads to the
additional effect of lowering the value of the surface gravity
at the inner horizon which, too, damps the increase of the It is a pleasure to thank W. Israel for stimulating discus-
mass function. sions. One of u§M.R.) would like to thank the Department
It should also be stressed that the above results were olof Physics of Catania University for the cordial hospitality

tained by integrating out only the field modes with momentaextended to him while this work was in progress. He is also
betweenb|¥,| and m,/a. While lowering the IR cutoff grateful to INFN, Sezione di Catania, for the financial sup-
even further is difficult from the technical point of viefthe  port which made this visit possible.
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