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Quantum gravity effects near the null black hole singularity
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The structure of the Cauchy horizon singularity of a black hole formed in a generic collapse is studied by
means of a renormalization group equation for quantum gravity. It is shown that during the early evolution of
the Cauchy horizon the increase of the mass function is damped when quantum fluctuations of the metric are
taken into account.@S0556-2821~99!02816-7#
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I. INTRODUCTION

Recently much progress has been made in understan
the formation of singularities in realistic black holes. Aft
the seminal work by Poisson and Israel@1#, the outcome of
several investigations with spherical models~see @2# for a
general overview! was that the spacetime develops a n
scalar singularity at the Cauchy horizon~CH! whose subse-
quent evolution eventually stops at the final spacelike sin
larity at r 50 @3#.

In particular the Petrov type D componentC2 of the
Weyl curvature diverges exponentially with advanced time
this lightlike hypersurface, although the ‘‘measured’’ tid
distortion is bounded. The metric tensor is regular in a s
able local chart adapted to the inner horizon and the me
perturbations are small. This scenario is likely to be ess
tially the same in more general contexts than spherical s
metry @4#, but the structure of the singularity is more com
plicated then since the square of the Weyl ten
CmntlCmntl is dominated by the radiative componentC0C4
of a Petrov type N curvature@5#.

It is an interesting question whether quantum effects
modify the classical evolution of the fields in a significa
way. As far as the classical evolution is concerned, causa
does not permit our ignorance about the correct form of
dynamics in the inner, Planckian curvature regions of
interior to infect the description of the overlaying layers
terms of classical general relativity. The radial coordinater is
in fact timelike in the interior of a spherical hole.

This picture changes in quantum field theory because
loop calculations even states localized outside the light c
have an impact on the value of the renormalized quantit
One can then imagine that the metric fluctuations near
inner horizon modify the infrared region where the We
curvature is still growing but it has not yet reached Planck
levels. In particular it is interesting to see if the presence
some ‘‘self-regulator’’ mechanism could prevent the loc
curvature from diverging at the CH. An indication has be
given in @6# where it has been noticed that the classical
vergence of the mass function in an evaporating black h
~BH! can be damped out by the contribution of the blu
shifted influx of the Hawking radiation at late advanc
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times. More complete investigations in four dimensions@7#
have been performed in the semiclassical approximation
considering a massless minimally coupled scalar field,
they were inconclusive about the ‘‘sign’’ of the quantu
correction, i.e. about whether it would lead to a stronger o
a weaker divergence.

The objective of the present investigation is to show t
quantum fluctuations of the gravitational field indeed weak
the strength of the singularity at the inner horizon. This res
is obtained by studying the running of the Newton const
at large momenta by means of the non-perturbat
renormalization-group equation@8–10# which governs the
scale dependence of the effective average actionGk for grav-
ity @11#. Gk is a Wilson-type effective action with a built-in
infrared~IR! cutoff at the mass scalek. The functionalGk is
obtained by integrating out the quantum fluctuations w
momenta between a fixed ultraviolet~UV! cutoff kUV and the
variable IR cutoff k. In this framework, a renormalizabl
theory with the classical actionS is quantized by solving the
flow equation subject to the initial conditionGkUV

5S and

letting thenkUV→`,k→0 ~after suitable renormalization!.
What makes the effective average action an ideal tool

studying quantum gravity is the fact that this method c
also be used in order to renormalization-group-evo
~coarse grain! the actions of non-renormalizable effectiv
field theories. In this case one assumes that there is s
fundamental theory which has been ‘‘partially quantized
i.e., its quantum fluctuations with momenta from infini
down to a fixed scalekUV have been integrated out alread
This leads to an effective actionSeff which, when evaluated
in tree approximation, correctly describes all phenome
with typical momenta of the orderkUV . If we are interested
in processes at smaller momentak,kUV , we can construct a
new effective action, appropriate for the lower scale by s
ting GkUV

5Seff and solving the flow equation forGk with this
initial condition. It is clear that for effective theories the lim
kUV→` should not be performed; hence the no
renormalizability of a theory does not pose any problems
this context.

Quite generally, the effective actionG or the average ac
tion Gk encapsulatesall physical effects of a given theory
©1999 The American Physical Society11-1
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Once we have identified its leading terms for a given ran
of momenta, no other quantum corrections beyond th
which are already contained in the running coupling co
stants parametrising the approximate form ofGk need to be
taken into account. In the case at hand, a truncated deriva
expansion in powers of the curvature tensor and its covar
derivatives are a sensible approximation as long
k!mp since the terms omitted are suppressed by hig
powers ofk/mp . (mp denotes the Planck mass.! Within this
approximation, the most relevant term in the action is
Einstein-Hilbert term since it has the smallest canonical
mension. As a consequence, the most important effect
quantum gravity are encoded in the running of the associ
coupling, i.e. Newton’s constant. Thus, when we increask
from the classical~i.e., IR! domain to larger values in orde
to explore gravity at smaller distances, the first sign o
non-classical behavior is a changing value of Newton’s c
stant. In the present paper we investigate the regime of
menta where, on the one hand, the first quantum gravitati
effects appear already while on the other hand higher o
invariants (R2 terms, etc.! are not yet important.

In the following we shall consider Einstein gravity as
effective field theory and we identify the standard Einste
Hilbert action with the average actionGkobs

. Here kobs is
some typical ‘‘observational scale’’ at which the classic
tests of general relativity have confirmed the Einstein-Hilb
action. We assume that also fork.kobs, i.e. at higher ener-
gies,Gk is well approximated by an action of the Einstei
Hilbert form as long ask is not too close to the Planck scal
The two parameters in this action, Newton’s constant and
cosmological constant, will depend onk, however, and the
flow equation will tell us how the running Newton consta
G(k) and the running cosmological constantL(k) depend
on the cutoff. Their experimentally observed values
G(kobs)5Gobs andL(kobs)5Lobs.0. The Newton constan
defines the Planck mass according tomp51/A32pGobs.

We fix a scalekUV@kobs in such a way that it is still
sufficiently below the Planck scale so thatGk is not yet very
different from the Einstein-Hilbert action, but is alread
large enough for quantum gravitational effects to play a ro
We start the renormalization group evolution at the scalekUV

with bare parametersG(kUV)5Ḡ and L(kUV)5L̄ which
should be thought of as functions ofGobsandLobs. We shall
use our result for the functionG(k), kP@kobs,kUV#, in order
to study the impact of the scale dependent Newton cons
on the mass-inflation scenario.

In a sense, we shall ‘‘renormalization-group-improve
the classical metric describing the late-time behavior of
spacetime near the CH. Our method is similar to the follo
ing renormalization-group based derivation of the Uehl
correction to the Coulomb potential in massless QED@12#.
One starts from the classical potential energyVcl(r )
5e2/4pr and replacese2 by the running gauge coupling i
the one-loop approximation:

e2~k!5e2~k0!@12b ln~k/k0!#21, b[e2~k0!/6p2.
~1!

Hereby one may identify the renormalization pointk with the
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inverse of the distancer because in the massless theory th
is the only relevant scale. The result of this substitution re

V~r !52e2~r 0
21!@11b ln~r 0 /r !1O~e4!#/4pr ~2!

where the IR reference scaler 0[1/m0 has to be kept finite in
the massless theory. Note that Eq.~1! is the correct~one-
loop, massless! Uehling potential which is usually derived b
standard perturbative methods@12#. Obviously the position
dependent renormalization group improvemente2→e2(k),
k}1/r encapsulates the most important effects which
quantum fluctuations have on the electric field produced b
point charge. We argue that analogous substitutionG
→G(k) with an appropriatek5k(xm) yields the leading
modification of the spacetime metric.

II. QUANTUM GRAVITY EFFECTS BEHIND
THE INNER POTENTIAL BARRIER

Considering a spherically symmetric, charged BH t
metric can be conveniently expressed using the coordin
xa (a,b50,1) on the radial two-spaces (u,f)5const and
the function r (xa) that measures the area of those tw
spheres whose line element isr 2dV2. The metric element is
thends25gabdxadxb1r 2dV2. By defining the scalar fields
f (xa),m(xa) and 22k(xa)5] f /]r through f 51
22Gobsm/r 1Gobse

2/r 2 the Einstein equations reduce to th
two-dimensionally covariant equations

r ;ab1kgab524pGobsr ~Tab2gabT!

R22] rk58pGobs~T22P! ~3!

where the static electro-magnetic field is generated b
charge of strengthe andTab is the stress-energy tensor of th
matter field whose two-dimensional trace isT and tangential
pressure isP. From the conservation laws one finds the fo
lowing two-dimensional wave equation for the mass funct

hm5216p2r 3GobsTabT
ab18pGobsf ~P2T!

14pr 2GobskT24pr 2Gobsr ,aT,a. ~4!

This latter equation is the key to understanding the phen
enon of the mass inflation. The late time behavior of t
external gravitational field produced during the collapse o
star is that of a~Kerr-Newman, in general! black hole of
external massm0 perturbed by a tail of gravitational wave
whose flux decays as;v2p with p54(l 11) for a multi-
pole of orderl. As a consequence of the boundary conditio
set at the event horizon, theTabT

ab interaction term between
the influx and out-flux of gravitational waves scattered fro
the inner potential barrier triggers a divergent source term
the local mass functionm(u,v). The outflow can be mod-
elled as a radial stream of light-like material particles b
cause of the infinite blue-shift near the Cauchy Horizon. I
possible to show@1# that near the CH

m~v,r !;v2pek0v ~v→`! ~5!
1-2
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QUANTUM GRAVITY EFFECTS NEAR THE NULL BLACK . . . PHYSICAL REVIEW D60 084011
wherev is the standard advanced time Eddington-Finkelst
coordinate. (k0 denotes the surface gravity of the Reis-sn
Nord-strömstatic black hole that characterises the exter
field configuration.!

It must be observed that in Eq.~4! the strength of the
gravitational interactions between out-flux and in-flux is p
portional to the Newton constant. Hence small changes iG
due to renormalization effects are then exponentially am
fied by the mass function like in a magnifying lens. In pa
ticular if gravity is asymptotically free, the classical dive
gence of the mass function can be weakened by
decreasing of the Newton constant at small distances.

In order to discuss this phenomenon in the mass-infla
scenario we consider the model analyzed in@3# for the scalar
field collapse although our result should not depend on
particular framework. We are interested in the asympto
portion of the spacetime at late retarded times~the ‘‘corner’’
region near the point H in Fig. 1! before the strong focusing
region wherer→0. The null Kruskal coordinatesU,V are
thus introduced, being

k0U52exp~k0u!, k0V52exp~k0v ! ~6!

where (u,v) are the retarded and advanced time coordina
In a neighborood of (U52`,V50) an approximate ana
lytical solution of the Einstein equations and the wave eq
tion for a massless minimally coupled scalar fieldF can be
found @3#. The explicit asymptotic expression for the metr
is

ds2522
r 0

r
dUdV1r 2dV2 ~7!

FIG. 1. Penrose conformal diagram of a collapsing star. N
that the point H is not part of the manifold, but a singular point
this mapping.
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r 25r 0
222Gobs@A~U !1B~V!# ~8!

wherer 0 is the location of the CH in the static BH spacetim
configuration. The dimensionless functionsA(U) andB(V)
are regular at the CH,A(2`)5B(0)50, but Ḃ diverges
like 1/V@2 ln(2k0V)#(p12) asV→02 while A is positive defi-
nite andȦ is bounded. Even though the metric coefficien
and the scalar fieldF are both regular at the CH, the ma
function is divergent forV→02, being

m~U,V!.
Gobs

r 0
ȦḂ. ~9!

We consider the evolution of the above geometry in
mass-inflating regime starting from a value of the coordin
V5VIR for which the mass function is already exponentia
growingm(U,V)/m0@1 ~we assumer 0

21;m0@1 in Planck
units! but the curvature has not yet reached Planckian valu

At this point we need an explicit expression for the ru
ning Newton constant. We use the result obtained in@11#
where, for pure gravity, the evolution ofGk has been ob-
tained in the ‘‘Einstein-Hilbert approximation’’ where onl
the A2g andA2gR operators are considered in the reno
malization group flow. This amounts to truncating the spa
of all the actions to those of the form

Gk@g,ḡ#5~16pG~k!!21E d4x

3Ag$2R~g!12L~k!%1Sgf@g,ḡ# ~10!

whereSgf is the classical background gauge fixing term. F
this truncation the flow equation reads

k]kGk@g,ḡ#5
1

2
Tr$~Gk

(2)@g,ḡ#1R k
grav@ ḡ# !21k]kR k

grav@ ḡ#%

2Tr$~2M@g,ḡ#1R k
gh@ ḡ# !21k]kR k

gh@ ḡ#%

~11!

whereḡmn , Gk
(2) andM denote the background metric, th

Hessian ofGk with respect to the ‘‘ordinary’’ metric argu-
ment gmn , and the Faddeev-Popov ghost operator, resp
tively. The operatorsR k

grav andR k
gh are the IR cutoffs in the

graviton and the ghost sector, respectively. They are defi
in terms of an arbitrary smooth functionRk(p2) ~interpolat-
ing between zero forp2→` and a constant}k2 at p250)
by replacingp2 with the graviton and ghost kinetic operato
respectively. Inside loops, they suppress the contribu
from modes with covariant momentap,k.

Upon projecting the renormalization group flow on th
two dimensional space spanned by the operatorsA2g and
A2gR the functional flow equation becomes two ordina
differential equations forG(k) and L(k). The equation for
the scale derivative of the running dimensionless New
constantg(k)5k2G(k) is found to be

k]kg~k!5@21h~k!#g~k! ~12!

e
f

1-3
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A. BONANNO AND M. REUTER PHYSICAL REVIEW D60 084011
whereh(k)[gB1 /(12gB2) is an anomalous dimension in
volving two known functions@11# of the cosmological con-
stant,B1 and B2, which depend on the choice forRk(p2).
Contrary to the running of the dimensionless gauge coup
e(k) in QED, the beta function describing the running of t
Newton constant is not universal. It is scheme depend
even in the lowest order of the loop expansion. In our fram
work this is reflected by theRk dependence ofh. To lowest
order of an expansion in powers ofk/mp one may ignore the
impact of the running cosmological constant onh(k) and set
L(k).0. Thus, returning to physical units and retaini
only the leading term of thek/mp expansion the solution to
Eq. ~12! reads

G~k!5Gobs@12vGobsk
21O~k4/mp

4!#. ~13!

For pure gravity one obtainsv5vG[2B1(L50)/2.0
which assumes the numerical valuevG54(12p/144)/p for
a standard exponential cutoff@11#. While v depends on the
shape ofRk , it can be shown thatv is positive for any
choice of this function. Consequently pure gravity is ‘‘an
screening:’’ Newton’s constant decreases ask increases; i.e.,
it is large in the IR and becomes smaller in the UV.

Equation~13! is believed to be reliable as long askUV is
still below the Planck mass. Ifk,kUV!mp , the effect, in the
renormalized system, of higher curvature invariants such
R2, RmnRmn or R3 which were omitted from the ansatz~10!
is indeed small. In fact, those invariants have been class
accordingly to their anomalous scaling dimension wh
characterize the linearised renormalization group flow n
the Gaussian fixed point@10#. The result is that the flow in
the UV region is determined only by the ‘‘relevant’’ oper
torsAg andAgR, and that any other invariant with a highe
canonical dimension is suppressed by additional power
k/mp @10#. We shall then assume that

k,kUV5mp /a ~14!

with a a fixed number well above unity. This defines t
domain of validity of our approximation.

It is straightforward to include matter fields. In our mod
it might appear natural to keep the electro-magnetic fi
classical but quantize the full scalar field. The only effect
the running ofG is to shift the parameterv. Using the same
cutoff as above, one finds@13# v5vGS54/p23p/72
which, again, is positive and leads to the same qualita
features as pure gravity.

The running of G has dramatic consequences for t
mass-inflation scenario. The leading quantum correction
the metric is obtained by replacingGobs in Eq. ~9! for the
mass function by the running Newton constantG(k) with an
appropriately chosen scalek. Since G(k),Gobs, for any
value ofk.kobs, we conclude that thequantum corrections
tend to damp the increase of the mass function. This quali-
tative conclusion is independent of the precise definition
the cutoffk. It is a rather robust result therefore.
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III. IMPROVED MODEL

We are now going to implement this mechanism in
iterative calculation, where the zeroth-order solution for t
metric is substituted into the running ofG in order to calcu-
late the first-order correction of the metric. For the sake
simplicity let us now consider the simpler case of the cro
flow model discussed in@3#.

The first question to be answered is what is the analo
of the identificationk}1/r which we used in QED. We are
looking for a xm-dependent cutoffk5k(xm) which respects
general coordinate invariance and which measure the typ
mass scale set by the curvature of spacetime. Since in
case at hand the metric is spherically symmetric, the nat
candidate for the cutoff is the ‘‘Coulombian’’ component
the Weyl curvature@7#: k2}uC2u5Gobsm(U,V)/r 0

3. More
precisely we use the classical metric~zeroth-order approxi-
mation! to define the position dependent IR cutoff by

k2~V!5max
U

$b2uC2u%5max
U

$b2Gobsm~U,V!/r 0
3% ~15!

with b another fixed number much larger than unity and
maximum is performed over the region nearU→2`. Here
we are invoking a kind of adiabatic approximation where t
use of a position dependent cutoff is justified because
mass functionm(U,V) is almost constant on the lengt
scales at which the eigenmodes integrated out are vary
~A similar approximation has already been used in@7# in a
semi-classical calculation.! Fromk(V) one obtains a running
Newton constant as a function of theV coordinate

G~V!5Gobs@12AḂ~V!# ~16!

where

A5vb2max
U

$Gobs
3 Ȧ~U !/r 0

4%. ~17!

It is now possible to evolve the classical geometry in Eq.~7!
by considering the running Newton’s constant in the Einst
equations. Within our approximation, the improveme
amounts to replacing

GobsTab5GobsTab
in ~V!1GobsTab

out~U ! ~18!

with

Tab
imp5G~V!Tab

in ~V!1GobsTab
out~U !. ~19!

This modified energy-momentum tensor is then covarian
conserved since it satisfies (Tab

impr 2);b50.
From the Bianchi identities one obtains the followin

wave equation for the mass function:

h~Gm!5216p2r 3G2TabT
ab1e2

G,a
;a

2r
. ~20!

The general solution is uniquely determined once the va
of the fields along the characteristicU5U IR andV5VIR are
1-4
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given. Asymptotically the improved metric is still of th
form ~7! but Eq.~8! is now replaced by

r 25r 0
222G~V!B~V!22GobsA~U !. ~21!

By noticing thatG approaches its bare value very rapidly o
finds that the leading term~asV→02) on the right hand side
of Eq. ~20! is now given by the classically divergentTabT

ab

contribution. Thus, after the inner potential barrier, one fin
the solution

m~U,V!.
Gobs

r 0
~12AḂ!ȦḂ ~22!

which replaces the classical expression~9!. Inserting the
function B one has more explicitly for the leading term

m~U,V!.
Gobs

r 0
S 12

A
2V@2 ln~2k0V!# (p12)D

3
Ȧ~U !

2V@2 ln~2k0V!# (p12)
. ~23!

This is our main result. It confirms our earlier conclusi
about the damped increase of the mass function within
improved approximation which takes the back reaction of
metric into account.

A priori it might have appeared equally possible to p
form the substitutionGobs→G(k) directly in the Einstein
equations. The identificationk25G(k)m/r 3 leads to a non-
linear equation fork that up toO(k2/mp

2) is equivalent to
k25Gobsm/r 0

3 which was used before. However, it is impo
tant to observe that in this case a decreasingG leads to the
additional effect of lowering the value of the surface grav
at the inner horizon which, too, damps the increase of
mass function.

It should also be stressed that the above results were
tained by integrating out only the field modes with mome
betweenbAuC2u and mp /a. While lowering the IR cutoff
even further is difficult from the technical point of view~the
es
el

R

et

k,
,
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adiabatic approximation is not available any longer! the
monotonicity of the function in Eq.~13! suggests that taking
additional modes into account will lead to an even stron
damping of the classical increase of the mass function.
the other hand, by adding further matter fields the antiscre
ing nature of the gravitational interaction could be destroy
in principle. ~In Ref. @14# a condition on the number of th
various species of fields implyingv.0 can be read off.! We
nevertheless believe that the qualitative features of our
cussion will hold for arbitrary matter systems withv.0. In
particular for the matter system consisting of a massl
minimally coupled scalar field considered in this investig
tion the quantum-corrected geometry is less singular than
classical counterpart.

IV. CONCLUSIONS

We have discussed a possible physical mechanism w
has the effect of damping the classical increase of the m
function behind the potential barrier inside a realistic bla
hole. We believe that this mechanism is operative already
black holes with massesM@mp and before the Cauchy ho
rizon singularity is reached, i.e. in a regime of sub-Planck
curvatures where it can be calculated reliably. On the ba
of the present investigation we cannot make any claim ab
the fate of the singularity at the CH. However, one c
speculate that if the decrease ofG continues and thatG
→0 at the CH, the geometry of the spacetime near the l
time portion of the CH is regular with a sub-Planckian We
curvature. In order to settle this issue completely a m
complete calculation is needed and we hope to address
problem in the future.
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