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Negative energy, superluminosity, and holography
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The holographic connection between largeN super Yang-Mills~SYM! theory and gravity in anti–de Sitter
~AdS! space requires unfamiliar behavior of the SYM theory in the limit that the curvature of the AdS
geometry becomes small. The paradoxical behavior includes superluminal oscillations and negative energy
density. These effects typically occur in the SYM description of events which take place far from the boundary
of AdS when the signal from the event arrives at the boundary. The paradoxes can be resolved by assuming a
very rich collection of hidden degrees of freedom of the SYM theory which store information but give rise to
no local energy density. These degrees of freedom, called precursors, are needed to make possible sudden
apparently acausal energy momentum flows. Such behavior would be impossible in classical field theory as a
consequence of the positivity of the energy density. However we show that these effects are not only allowed
in quantum field theory but that we can model them in free quantum field theory.@S0556-2821~99!06616-3#

PACS number~s!: 04.50.1h, 11.25.Hf
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I. INTRODUCTION AND REVIEW

That there is some sort of holographic@1,2# correspon-
dence between maximally supersymmetricSU(N) Yang-
Mills ~SYM! theory and supergravity or string theory o
AdS53S5 @3–5# has been established beyond reasona
doubt. In this paper we will assume the correspondenc
the strongest sense, namely, that SYM theory and type
string theory are equivalent for all values ofN and gauge
coupling constant.

Equivalence between theories in different dimensions
mediately raises questions about how detailed bulk inform
tion in one theory can be completely coded in lower dime
sional degrees of freedom. Despite the large amoun
evidence that we have for the AdS conformal field theo
~CFT! correspondence, there is not yet any direct transla
of the configurations of one theory to the other. We will s
that the existence of such a dictionary requires behavior
the largeN limit of SYM theory which seems very unusua
and even unphysical, but we will argue that it is neither.

The parameters of the SYM theory are the gauge coup
constantg and the number of colorsN. These are related to
the radius of curvatureR of the AdS53S5, the string length
scalel s and the string couplinggs by

gs5g2

R5 l s~Ng2!1/4. ~1.1!

The 5 and 10 dimensional Newton constants are given b

G55G10/R5

G105gs
2l s

8 . ~1.2!

Throughout we will neglect constants of order one.
The features of the correspondence that are most rele

to our discussion are the following:
0556-2821/99/60~8!/084006~8!/$15.00 60 0840
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~1! Certain local gauge invariant SYM operators corr
spond to bulk supergravity fields evaluated at the bound
of the AdS space. That is, the expectation value of the S
operator is determined from the boundary value of the fie
as explained more fully in Sec. III. For example the ener
momentum tensorTmn of the SYM theory corresponds to th
metric perturbationgmn . Similarly FmnFmn corresponds to
the dilaton fieldf.

~2! The ultraviolet-infrared connection@6# relates the
short wave length ultraviolet modes of SYM theory to t
supergravity modes near the boundary of AdS space. To
more precise let us introduce ‘‘cavity coordinates’’ in whic
the AdS metricds2 is written in terms of a dimensionles
metric dS2 and the radius of curvatureR:

ds25R2dS2

dS25S 11r 2

12r 2D 2

dt22S 2

12r 2D 2

~dr2

1r 2dV2!. ~1.3!

The coordinatest,r are dimensionless. The center of Ad
means the pointr 50. Near a point of the boundary atr
51 the metric has the form

ds25R2F 1

z2 ~dt22dz22dxidxi !G ~1.4!

wherez512r and x1,x2,x3 replace the coordinates of th
3-sphere. For our purposes the metric~1.4! is to be regarded
as a local approximation to the cavity metric. It is true, b
irrelevant to our purposes, that the same metric also give
exact description of a patch of AdS space. In any case
will call these the half-plane coordinates.

The SYM theory will be thought of as living on the d
mensionless unit sphereV times the dimensionless timet.
©1999 The American Physical Society06-1
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All quantities such as energy, distance and time in the S
theory are regarded as dimensionless. To relate them to
responding bulk quantities the conversion factor isR. Thus
for example, a time intervaldt corresponds to a proper in
terval Rdt in the bulk theory. Similarly an energyESYM in
the SYM theory is related to the bulk energy byESYM
5EbulkR.

The UV-IR connection states that supergravity degree
freedom at 12r 5d correspond to SYM degrees of freedo
with wavelength;d. The UV-IR connection is at the hea
of the holographic requirement that the number of degree
freedom should be of order the area of the boundary m
sured in Planck units. It also suggests that physical syst
near the center of the AdS space should be described
modes of the SYM theory of the longest wavelength, tha
the homogeneous modes onV.

~3! The existence of a flat space limit@7,8#. This limit
involves N→` but is not the ’t Hooft limit in whichg2N
and the energy are kept fixed. The flat space limit is given

g2→fixed

N→`. ~1.5!

In addition, all energy scales are kept fixed in string un
This means that the dimensionless SYM energy scales
R, or using Eq.~1.1!

ESYM→N1/4. ~1.6!

As argued in@7,8# an S-matrix can be defined in this limit i
terms of SYM correlation functions~see Refs.@9# for related
developments!. We will outline the construction but the
reader is referred to the references for details.

A bulk massless particle of energyk is described by a
SYM excitation of energyv given by

v5Rk5~Ng2!1/4l sk . ~1.7!

In order to obtain definite kinematics in the flat space lim
the scattering must occur in a known position due to
position-dependence of the metric. Therefore, we require
particles to collide within a space-time region called t
‘‘lab.’’ The lab is centered att5r 50 and has a large bu
fixed sizeL in string units. At the end we may takeL/ l s as
big as we like.1 In terms of dimensionless coordinates the l
dimensions are

dt;dr;L/R. ~1.8!

SinceL is fixed in string units

dt;dr;~Ng2!21/4. ~1.9!

1For generic wave packets the analysis in Refs.@7,8# shows that
they grow asN1/8 due to geometric optics effects, but for simplici
we imagine special packets chosen to intersect in a volume of o
N0. The size and duration of any collision process is determined
the external energies and so is of orderN0.
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Creation and annihilation operators for emitting and a
sorbing particles at the AdS boundary can be defined
order that the particles pass through the lab they mus
emitted at timet in'2p/2. The collision process lasts for
fixed time in string units which means a dimensionless ti
of orderN21/4. Thus in the dimensionless time of the SYM
theory the duration of the collision becomes negligible
N→`. The outgoing particles will arrive at the boundary
time tout'p/2. The graviton creation operators correspon
ing to this situation are given by

Ain5E dt d3x Tmn~x,t !eivtG~x2x0 ,t1p/2! ~1.10!

where the integration is over the boundary andx0 is the point
from which the graviton is emitted. Annihilation operato
Aout at t5p/2 are defined in a similar manner. In order
make sure that the particles pass through the origin the fu
tionsG in Eq. ~1.8! must not be too sharply peaked atx0. We
refer the reader to@7,8# for a discussion of this point.

Let us consider a state involving a packet of gravito
emitted att52p/2 from the boundary at pointx0, in a uni-
form state on theS5. The packet is very well concentrated
the dimensionless coordinatest,r ,V. In order to translate
this into the SYM theory we need to compute the gravi
tional field of such a source. Fortunately this has been d
in @10#. The result is an AdS generalization of the Aichelbu
Sexl metric and like that metric, it is described by a sho
wave that propagates in the bulk with the particle. The thi
ness of the shock in dimensionless coordinates tends to
with the spread of the packet. The intersection of the sh
wave with the boundary forms a 2-sphere or shell wh
expands away from the pointx0 with the speed of light. Both
in front of the shell and behind it̂Tmn& vanishes. The shel
expands to its maximum size att50 and then contracts to
the antipodal point att51p/2. Thus the expectation valu
of the SYM energy momentum tensor has its support on s
a moving shell and is zero everywhere else.

The description given above is somewhat surprising
view of the UV-IR connection. We might have expected th
in the SYM description the energy would be transferred fro
the short wave length modes of the field theory to long wa
lengths as the graviton moves towardr 50. In this event the
sharp features of the shell should have dissipated. Howe
the energy stays concentrated in a thin shell whose thickn
tends to zero withN. This in itself is somewhat puzzling.

II. HISTORY OF A COLLISION

Paradoxes become apparent when we consider the c
sion of two packets. The packets are emitted from poi
x1 ,x2 at timet52p/2. The first thing to notice is that from
the viewpoint of the boundary SYM theory the behavior
the system aftert50 becomes infinitely sensitive to the de
tails of the emission process. As an example supposex1 and
x2 are separated by an angle of 90 degrees on the 3-sp
V. If the two particles are emitted at the same time they w
reach r 50 simultaneously and collide. But suppose t
emission processes are separated by timee!1. In this case
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NEGATIVE ENERGY, SUPERLUMINOSITY, AND HOLOGRAPHY PHYSICAL REVIEW D60 084006
the arrivals will be separated by a timein string units of
order e(Ng2)1/4. This means that ife.(Ng2)21/4 the par-
ticles will miss each other and pass essentially unscatte
On the other hand ife,(Ng2)21/4 a collision will take place
leading to a very different final state. In other words shifti
the parameters of the emission process by tiny amounts
lead to large differences in the outcome.

Consider a process in which two packets of fixed ene
in string units are emitted from diametrically opposing poin
in such a way that they pass through the lab. In the SY
theory the process starts out as a pair of expanding thin s
of energy. At timet50 the shells meet. Now from what wa
said above, one might expect the evolution just aftert50 to
be supersensitive to to the initial conditions. However this
not true. In fact the two shells just pass through one ano
without any apparent interaction. The reason is that aR
→`, points near the boundary are so far~again in string
units! from the sources that the gravitational field equatio
linearize. The energy-momentum continues to be conc
trated on the thin shells which are now contracting tow
the points antipodal from where they originated. Not only
^Tmn& zero everywhere off the shells but so are all oth
SYM fields that correspond to classical supergravity field

We now come to a critical question. The vanishing
^Tmn& in classical field theory would indicate that the loc
state of the system is vacuum-like. In other words all fie
or functionals of fields supported off the shells should ha
their vacuum values. As we shall see, this can not be tru
the quantum theory. We will find that after the shells pa
through each other the region between them must be exc
away from the local vacuum configuration despite the f
that the expectation value of the energy density~as well as
the value of every SYM field which corresponds to classi
supergravity! vanishes.

A simple illustrative example is the case where the t
packets are prepared so as to collide head-on att5r 50.
Assume the particles have a fixed energy which is m
larger than the 10-dimensional Planck mass. In this case
will form a 10-dimensional Schwarzschild black hole. N
all the energy will go into the black hole but much of it wi
continue to propagate as gravitational bremsstrahlung.
cording to the assumption of a flat space limit@7,8# the per-
centage of energy trapped in the black hole can be calcul
in the flat space limit@11#. The black hole quickly become
spherically symmetric and then decays by Hawking eva
ration. The entire history of the black hole lasts a fixed tim
in string units and therefore a dimensionless time wh
tends to zero likeN21/4.

How does the creation and evaporation of the black h
affect the metric and other supergravity fields at the A
boundary? The answer is that it does not, at least at firs
fact the supergravity fields do not respond until light has h
a chance to propagate fromr 50 to the boundary. The
evaporating black hole sends out a spherically symme
signal which arrives at the boundary att5p/2. The arrival of
the signal is very sudden, occupying a timedt;(Ng2)21/4.
At this time the entire boundary suddenly ‘‘lights up’’ with
spherically symmetric distribution of energy which in tot
equals the mass of the black hole. In other words a frac
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of the energy originally stored in the collapsing shells ve
quickly flows and is redistributed into a homogeneous co
ponent. We will call this phenomenon ‘‘light-up.’’

This behavior seems extremely bizarre. The instantane
rearrangement of energy appears to violate causality. H
ever this may not be so. To better understand it we w
describe an analogous example involving a sudden flow
electric charge. Consider an example in which initially the
is a concentration of charge in some regionR1. At time t
50 the charge is found to disappear fromR1 and reappear a
R2 which is outside the forward light cone ofR1. To see how
this can happen, imagine a wire connectingR1 andR2. The
wire is full of electrons and positive ions so that it is elect
cally neutral. Now we prearrange observers at each poin
the wire so that att50 they move each electron slightl
towardR2. The result is a sudden appearance of charge a
ends with no charge density ever occurring anywhere els
there was already a charge atR1 it would be cancelled by the
new charge at that point. The net result would be a sud
redistribution of charge.

Two ingredients are necessary for such behavior. The
is that the current vectorj m be spacelike. Since the charg
density on the wire is always zero it is clear that the curr
is purely in the spacelike direction. This also means tha
some frame the charge density was negative. This of co
is not a difficulty since charge density can be either posit
or negative.

The other ingredient isprearrangement. The physical
conditions along the wire must include agents with synch
nized clocks that are instructed in advance to act simu
neously.

The sudden flow of energy requires the same two ing
dients. In order that the energy is rearranged so suddenly
flux of energy^T0i& must be much larger than the energ
density itself. This means that the energy density can
made negative by a Lorentz boost. However, unlike elec
charge, energy is not allowed to be negative in SYM theo
Since in classical SYM theory the energy density is posit
this kind of flow of energy is absolutely forbidden in th
classical theory. However quantum theory allows local ne
tive energy densities as long as they are~over!compensated
by nearby positive energy density@12#. In the next section
we will analyze this in more detail and show that the boun
as in Ref.@12# are consistent with the behavior required
the SYM theory.

A second puzzle concerns locality. Let us suppose t
before light-up the region between the separating shell
physically indistinguishable from the vacuum of the SY
theory. By this we mean that all expectation values of fun
tionals of fields in this region are identical to their vacuu
values. Then the light-up is impossible. To see this we c
sider a point (x,t) on the boundary just after light-up. Th
point is not near the points where the shells are localiz
The SYM Heisenberg equations of motion can be used
express the energy density at this point in terms of lo
fields at a time just before light-up. Furthermore, causa
requires that the only fields that can be involved are in
region between the shells where we have assumed vac
conditions. It follows that the energy density at (x,t) must be
6-3



rr
t

th
d

at
w
th
s
ric
up
m
a
p
m
th
th
il
th
bu
ls
on
gy
se
g

in
om
in
th
on
a

on

v
so

lity

r
nd
r
zed
in

a-
rn
ith

n

ith
is

et-

ne
t a
tri-

POLCHINSKI, SUSSKIND, AND TOUMBAS PHYSICAL REVIEW D60 084006
the same as for the vacuum, that is, zero.
The resolution of these paradoxes, assuming the co

spondence is really as strong as we believe, must be tha
region between the shells at time 0,t,p/2 must not be
vacuum-like even though the expectation value of
energy-momentum tensor vanishes. Thus we are force
postulate that in a region in whicĥTmn&5^FmnFmn&5•••

50, the vacuum is excited to a non-vacuum-like local st
which provides the precursor for the later event that
called light-up. The precursor fields must play the role of
prearranged agents which simultaneously move charge
the electric example. Furthermore there must be a very
manifold of such precursor configurations. To see this s
pose we change the initial emission parameters by a s
amount of orderN21/4. As we have seen this can lead to
very large change in the results of the collision. For exam
such a change can cause an increase of the impact para
so that a peripheral grazing collision results. In this case
particles may get deflected through a small angle. Again,
news of the collision does not arrive at the boundary untt
5p/2. As before the energy must suddenly rearrange but
time the result is not a spherically symmetric component
a new pair of localized small shells at shifted positions. A
as before, the information must be locally stored in a c
figuration with vanishing expectation value for the ener
momentum tensor. Evidently all the local physical proces
that can take place in the lab are coded in precursor confi
rations.

III. GRAVITATIONAL WAVE

The principal

In this section we will consider a simplified example
which a gravitational wave propagates radially outward fr
r;0. We begin with the wave in the linearized theory
which the field equations are treated to lowest order in
deviations from AdS space. Assume that the wave is in
of the lowest spherical harmonics on the 3–sphere. In h
plane coordinates the plane fronted wave has the form

gmn~z,x,t !5jmnR2z2f ~z,t ! ~3.1!

wheregmn(z,x,t) is defined by

ds25R2F 1

z2 ~dt22dz22dxidxi !G1gmn~z,x,t !dxmdxn

~3.2!

andjmn is a transverse traceless polarization tensor with n
vanishing components in thex directions. The polarization
tensor is assumed normalized to unity.

According to the AdS-CFT correspondence, the wa
makes a contribution to the SYM energy momentum ten
given by @13–15#

^Ti j &;2
R

G5
z22g i jU

z50

52j i j

R3

G5
f ~0,t !. ~3.3!
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We assume that at some initial timet0 in the past, the func-
tion f (z,t) describes a wave propagating towardz50 and
that it vanishes forz,t0 . Thus at the initial time the contri-
bution to^T& from the wave vanishes. Furthermore causa
of the bulk theory insures thatf (0,t) will remain exactly zero
until t50. At that time f (0,t) and the SYM stress tenso
begin to oscillate. After a time the wave will be reflected a
the value atz50 will return to zero exponentially. Thus fa
we have considered the gravitational wave in the lineari
approximation. By analogy with terminology introduced
@12# the contribution tô T& in this approximation is called
the principal.

The interest

The nonlinear corrections to the gravitational field equ
tions give rise to a correction to the metric which in tu
corrects the SYM energy density. Again by analogy w
@12# this term is called theinterest. It is smaller than the
principal by a factorG5. To compute the interest let us retur
to cavity coordinates. Consider any spherical2 distribution of
energy which is non-vanishing only forr ,r 0. Then, as in
flat space, the gravitational field atr .r 0 is completely de-
termined to be that of a neutral non-rotating black hole w
the same total energy. The metric of a black hole in AdS
given in Schwarzschild-like coordinates by

ds25R2F S 11b22
2MG5

R2b2 Ddt22S 11b22
2MG5

R2b2 D 21

3db22b2dV2G ~3.4!

whereb is the radial coordinate. The coordinatesb andr are
related by

11b25
~11r 2!2

~12r 2!2 . ~3.5!

Near the boundary this becomes

b5
1

12r
. ~3.6!

Thus near the boundary the time-time component of the m
ric has the form

g005g00
AdS22MG5~12r !2. ~3.7!

This gives a contribution tog00 given by

g00522MG5~12r !2522MG5z2. ~3.8!

2Near the boundary, the gravitational wave looks like a pla
sheet with uniform energy density. The correction to the metric a
given point should be the same with that of a large spherical dis
bution of the same energy density.
6-4
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NEGATIVE ENERGY, SUPERLUMINOSITY, AND HOLOGRAPHY PHYSICAL REVIEW D60 084006
Using the time-time component of Eq.~3.3! we find the in-
terest

^T00
int&;MR. ~3.9!

Thus to compute the interest we need to compute the
ergy M stored in the gravitational wave. Our goal will be
compute the energy in terms of data on the boundary. T
will facilitate comparison with the boundary CFT. For o
purposes, it is convenient to set

gmn5
hmn

z2
5jmnR2

F~z,t !

z2 . ~3.10!

We work in the gaugehzm50. In the case whenjmn is trace-
less with no timelike components, the constraints from
zm components of the Einstein equations are automatic
satisfied. The linearized equations forhi j reduce to the fol-
lowing differential equation forF(z,t):

]z
2F2

3

z
]zF2] t

2F50. ~3.11!

The corresponding~111! dimensional Lagrangian density
obtained to be

L5
R2

2G5z3 @~] tF!22~]zF!2#. ~3.12!

This is just the Lagrangian density of a minimally coupl
massless scalar field in AdS. Using the equation of mot
we can write the energy stored in the gravitational wave

M5
R2

2G5
E dz

z3 @~] tF!22F] t
2F#. ~3.13!

We now look for solutions that fall likez4 near the bound-
ary so thatgmn falls like z2. If we set

F5z2x~z!e2 ivt, ~3.14!

thenx satisfies a standard Bessel differential equation

z2]z
2x1z]zx2~42z2v2!x50 ~3.15!

with solutionJ2(vz). Thus, the most general solution can
written as follows:

F~z,t !5
z2

2 E dvf~v!J2~vz!e2 ivt1c.c. ~3.16!

Near the boundary,J2(vz);(vz)2, and so

f ~v!5v2f~v! ~3.17!

is the Fourier transform of the boundary data.
It is a simple exercise to compute the energy, and, th

fore, the interest in terms of the boundary data. Using E
~3.13!, ~3.16! and the orthogonality relations for Bessel fun
tions gives
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^T00
int&;

R3

G5
E dv

u f ~v!u2

v3 . ~3.18!

There are two things to note about the interest. First is t
it is completely featureless having neither space nor ti
dependence. The second is that in a certain sense it ca
made arbitrarily small. To see this let us compare the inte
with the principal obtained in Eq.~3.3!

^Ti j &;2j i j

R3

G5
f ~0,t !52j i j

R3

2G5
E dv f ~v!e2 ivt1c.c.

~3.19!

Defining

P5^Ti j &

I 5T00
int ~3.20!

we note that the ratioI /P2 is given by

I

P2 ;G5 /R3. ~3.21!

Now using Eqs.~1.1! and ~1.2! we can rewrite this in terms
of SYM quantities

I

P2 ;1/N2. ~3.22!

The point is that if we hold fixed the principal then the i
terest goes to zero like 1/N2. Therefore in the largeN limit
the interest becomes negligible.

To summarize, the AdS-CFT correspondence requires
following behavior for the SYM energy momentum tenso
For t,0 the energy density and pressure are constant w
respect to spatial and temporal position. For largeN they are
vanishingly small;N22. At t50 the stress tensor begins
oscillate simultaneously over all space with magnitude
order unity. After a time the wave is reflected and the os
lations cease.

IV. SQUEEZED STATES IN FIELD THEORY

The superluminal behavior and non-positivity of th
energy-momentum tensor are incompatible with class
field theory. However as we will see in this section, they a
not only compatible with quantum field theory but can ev
be found in the theory of free fields. For notational simplic
we will use the theory ofN2 free scalar fieldsfnm . Thus, we
will be able to obtain a field theoretic model for the gravit
tional wave we have just described.

Conformal invariance requires that we use the improv
form of the energy-momentum tensor, which in four dime
sions is given by
6-5
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POLCHINSKI, SUSSKIND, AND TOUMBAS PHYSICAL REVIEW D60 084006
Tmn5TrS 2

3
]mf]nf2

1

6
hmn~]sf!22

1

3
f]m]nf

1
1

12
hmnf]2f D . ~4.1!

In this form, the energy-momentum tensor is traceless
satisfies the usual conservation law. In what follows
normal-order the energy-momentum tensor so that all
ation operators appear to the left of all annihilation operato
This is equivalent to setting the vacuum energy to zero.

Consider the squeezed state3

uc&5expF1

2E d3kWd3kW8F~kW ,kW8!amn
† ~kW !anm

† ~kW8!G u0&

~4.2!

for the particular choice

F~kW ,kW8!5F~kW !d3~kW1kW8! ~4.3!

such thatF(kW )5F(2kW ). We consider the case whenF is
small; then,

^cuTmnuc&5Tmn
(1)1Tmn

(2) ~4.4!

with the first piece being linear inF and the second piec
being quadratic inF.

The effect linear inF is obtained from contracting two
annihilation operators inTmn with two creation operators in
uc&, or vice versa witĥ cu. The gauge indices in each pa
are contracted among themselves, and soT(1) is of orderN2.
All timelike components,T0m

(1) , are zero as one can easi
verify. The nonzero diagonal components are given by

Tii
(1)5

N2

2 E d3pW

vpW
S pi

22
1

3
vpW

2DF~pW !e22ivpW t1c.c.,

~4.5!

and the off-diagonal components

Ti j
(1)5

N2

2 E d3pW

vpW
pipjF~pW !e22ivpW t1c.c. ~4.6!

As expectedT(1) is homogeneous, traceless and oscillato
in time. In all, five independent components are non-zero
in the case of the gravitational wave studied above. The
fore, we identify this piece with the principal.

The only non-vanishing piece which is quadratic inF has
the form ^FuTuF&. It receives contributions from terms i
Tmn with one creation and one annihilation operator only
is also of orderN2 and homogeneous. In particular,

3The terminology ‘‘squeezed state’’ originated in the quantu
optics literature. The squeezing refers to the shape of the oscil
phase space probability distributions.
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T00
(2)5N2~2p!3E d3pW vpW uF~pW !u2 ~4.7!

is positive and time-independent. We identify this piece w
the interest.

We are now ready to compare with the results found
the previous section. First, we note that the ratio

T2

~T1!2
;

1

N2 ~4.8!

has the same scaling withN as before. Moreover, we ca
obtain a consistent relation between the Fourier transform
the boundary data,f (v), and the angle average ofF(pW ). If
we compareT(1) with the principal, we find

f ;Fv3. ~4.9!

Now, if we substitutef /v3 for F in Eq. ~4.7!, we obtain the
same connection between interest and principal as give
Eq. ~3.18!.

We proceed now to study the time dependence of
principal. We wish to show that it can be oscillatory for
certain period of time and then vanishingly small. Take

F~pW !5a
p3

2

p3 ~p2l!n/2e2lp2
~4.10!

as an example. Here,a has units of mass andl has units of
inverse mass squared. We consider the case for which
numbern is even. We focus on a particular non-zero co
ponent. For example,

T33
(1)5

4al23/2pN2

45 E
2`

1`

dxx(21n)e2x2
e2ix(t/Al).

~4.11!

This in turn is equal to

T33
(1)5

8al23/2pN2

45 SAl

2i D (21n)

] t
(21n)E

2`

1`

dxe2x2
e2ixt/Al

5
8al23/2pN2

45 SAl

2i D (21n)

] t
(21n)~Ape2t2/l!.

~4.12!

The final result is a polynomial int times a Gaussian. This
means that the principal is oscillatory for some period
time neart50 ~depending onl) and, then, it vanishes ex
ponentially ast→`.

It is interesting to consider gravitational waves whi
propagate along a direction which is not perpendicular to
boundary. Suppose the wave vector has components in
(x1,z) plane. In this case the wave fronts do not simul
neously arrive at the boundary. In fact the boundary d
itself becomes a wave propagating in thex1 direction. Fur-
thermore the wave has both group and phase velocity gre
than 1. It is superluminal. To see how this happens in
CFT we can compute the principal with the delta function

or
6-6
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Eq. ~4.3! replaced byd(kW1kW82qW ) whereqW lies along thex1

direction. The resulting principal is easily computed a
forms a superluminal wave. Actually it is not necessary to
any further calculation to see the bulk-boundary agreem
in this case. The gravitational wave propagating in thez,x1

direction can be obtained by an AdS-Lorentz transformat
from the original wave propagating alongz. This maps into a
conformal transformation of the boundary. Since the fi
theory we are using is conformally invariant the agreem
for the transformed wave follows from the agreement in
original case.

In addition to being superluminal, the wave in thex1 di-
rection also has nonvanishing oscillating time-time com
nent so that the energy density oscillates from positive
negative@12#.

V. PRECURSORS

The profile of the gravitational wave obviously carri
information. We would like to understand what precurs
degrees of freedom carry that information, particularly d
ing the timet,0 before the wave arrives at the bounda
The interestTmn

int is completely featureless in both space a
time and cannot be relevant here. Furthermore all bulk fie
vanish within a neighborhood of the boundary. This mea
that the local SYM fields that can be identified with boun
ary values of bulk fields also vanish.

Evidently the precursors are nonlocal. In the free fie
example a convenient example is given by

F~x,x8!5S 2

3
]m]n82

1

6
hmn]s]8s2

1

3
]m8 ]n8D

3^f~xW ,t !mnf~xW8,t8!nm&u t5t8 ~5.1!

where the expectation value is taken in the squeezed s
This quantity obeys a wave equation with respect tot and
(xW2xW8)/2. Furthermore atxW2xW850 it is given by^Tmn&. At
early times when̂ Tmn& vanishesF(x,x8) is nonzero foruxW

2xW8u'2utu. In other words the precursor becomes incre
ingly nonlocal the further the wave is from the bounda
This is of course a manifestation of the IR-UV connecti
@6#. Furthermore at any timeF(x,x8) has the same informa
tion as the functionF that characterizes the squeezed sta
’

. B
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VI. CONCLUSION

The main purpose of the free field model is to demo
strate that some of the odd superluminal and negative be
ior of T predicted by the AdS-CFT correspondence is co
sistent with the principles of quantum field theory. It
somewhat surprising that the free field model works so w
and captures the detailed relation between principal and
terest. We do not really know why this is so but it seems
be part of a pattern. For example, free field theory descri
the thermodynamics of AdS black holes correctly apart fr
a well known factor of 3/4 in the effective number of degre
of freedom. More exactly, free field theory agrees with Ad
CFT predictions for the two and three point functions
chiral primaries. We suspect that if the model scalar fi
theory is replaced by free SYM theory the numerical relat
between interest and principal may be exact as a co
quence of the non-renormalization theorems of the two
three point functions.

Perhaps the most interesting result of this paper is
identification of nonlocal precursor fields such as

fmn~x!fnm~x8!. ~6.1!

These fields would have to be modified in the interact
SYM since they are not gauge invariant as they stand
candidate would be

fmn~x!f rs~x8!WmrWsn8 ~6.2!

whereW andW8 are Wilson lines along two paths connec
ing the pointsx,x8. In fact the entire object~6.2! can be
thought of as a single Wilson loop. This suggests that
nonlocal precursors which code local bulk information a
expectation values of Wilson loops of size dictated by
UV-IR connection.
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